1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExit(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExit() == this && 179 "Block w/o successors not the exit of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 VPValue *VPBlockBase::getCondBit() { 192 return CondBitUser.getSingleOperandOrNull(); 193 } 194 195 const VPValue *VPBlockBase::getCondBit() const { 196 return CondBitUser.getSingleOperandOrNull(); 197 } 198 199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); } 200 201 VPValue *VPBlockBase::getPredicate() { 202 return PredicateUser.getSingleOperandOrNull(); 203 } 204 205 const VPValue *VPBlockBase::getPredicate() const { 206 return PredicateUser.getSingleOperandOrNull(); 207 } 208 209 void VPBlockBase::setPredicate(VPValue *CV) { 210 PredicateUser.resetSingleOpUser(CV); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 215 216 for (VPBlockBase *Block : Blocks) 217 delete Block; 218 } 219 220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 221 iterator It = begin(); 222 while (It != end() && It->isPhi()) 223 It++; 224 return It; 225 } 226 227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 228 if (!Def->getDef()) 229 return Def->getLiveInIRValue(); 230 231 if (hasScalarValue(Def, Instance)) { 232 return Data 233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 234 } 235 236 assert(hasVectorValue(Def, Instance.Part)); 237 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 238 if (!VecPart->getType()->isVectorTy()) { 239 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 240 return VecPart; 241 } 242 // TODO: Cache created scalar values. 243 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 244 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 245 // set(Def, Extract, Instance); 246 return Extract; 247 } 248 249 BasicBlock * 250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 251 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 252 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 253 BasicBlock *PrevBB = CFG.PrevBB; 254 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 255 PrevBB->getParent(), CFG.ExitBB); 256 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 257 258 // Hook up the new basic block to its predecessors. 259 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 260 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 261 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 262 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 263 264 // In outer loop vectorization scenario, the predecessor BBlock may not yet 265 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 266 // vectorization. We do not encounter this case in inner loop vectorization 267 // as we start out by building a loop skeleton with the vector loop header 268 // and latch blocks. As a result, we never enter this function for the 269 // header block in the non VPlan-native path. 270 if (!PredBB) { 271 assert(EnableVPlanNativePath && 272 "Unexpected null predecessor in non VPlan-native path"); 273 CFG.VPBBsToFix.push_back(PredVPBB); 274 continue; 275 } 276 277 assert(PredBB && "Predecessor basic-block not found building successor."); 278 auto *PredBBTerminator = PredBB->getTerminator(); 279 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 280 if (isa<UnreachableInst>(PredBBTerminator)) { 281 assert(PredVPSuccessors.size() == 1 && 282 "Predecessor ending w/o branch must have single successor."); 283 PredBBTerminator->eraseFromParent(); 284 BranchInst::Create(NewBB, PredBB); 285 } else { 286 assert(PredVPSuccessors.size() == 2 && 287 "Predecessor ending with branch must have two successors."); 288 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 289 assert(!PredBBTerminator->getSuccessor(idx) && 290 "Trying to reset an existing successor block."); 291 PredBBTerminator->setSuccessor(idx, NewBB); 292 } 293 } 294 return NewBB; 295 } 296 297 void VPBasicBlock::execute(VPTransformState *State) { 298 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 299 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 300 VPBlockBase *SingleHPred = nullptr; 301 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 302 303 // 1. Create an IR basic block, or reuse the last one if possible. 304 // The last IR basic block is reused, as an optimization, in three cases: 305 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 306 // B. when the current VPBB has a single (hierarchical) predecessor which 307 // is PrevVPBB and the latter has a single (hierarchical) successor; and 308 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 309 // is the exit of this region from a previous instance, or the predecessor 310 // of this region. 311 if (PrevVPBB && /* A */ 312 !((SingleHPred = getSingleHierarchicalPredecessor()) && 313 SingleHPred->getExitBasicBlock() == PrevVPBB && 314 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 315 !(Replica && getPredecessors().empty())) { /* C */ 316 NewBB = createEmptyBasicBlock(State->CFG); 317 State->Builder.SetInsertPoint(NewBB); 318 // Temporarily terminate with unreachable until CFG is rewired. 319 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 320 State->Builder.SetInsertPoint(Terminator); 321 // Register NewBB in its loop. In innermost loops its the same for all BB's. 322 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 323 State->CFG.PrevBB = NewBB; 324 } 325 326 // 2. Fill the IR basic block with IR instructions. 327 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 328 << " in BB:" << NewBB->getName() << '\n'); 329 330 State->CFG.VPBB2IRBB[this] = NewBB; 331 State->CFG.PrevVPBB = this; 332 333 for (VPRecipeBase &Recipe : Recipes) 334 Recipe.execute(*State); 335 336 VPValue *CBV; 337 if (EnableVPlanNativePath && (CBV = getCondBit())) { 338 assert(CBV->getUnderlyingValue() && 339 "Unexpected null underlying value for condition bit"); 340 341 // Condition bit value in a VPBasicBlock is used as the branch selector. In 342 // the VPlan-native path case, since all branches are uniform we generate a 343 // branch instruction using the condition value from vector lane 0 and dummy 344 // successors. The successors are fixed later when the successor blocks are 345 // visited. 346 Value *NewCond = State->get(CBV, {0, 0}); 347 348 // Replace the temporary unreachable terminator with the new conditional 349 // branch. 350 auto *CurrentTerminator = NewBB->getTerminator(); 351 assert(isa<UnreachableInst>(CurrentTerminator) && 352 "Expected to replace unreachable terminator with conditional " 353 "branch."); 354 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 355 CondBr->setSuccessor(0, nullptr); 356 ReplaceInstWithInst(CurrentTerminator, CondBr); 357 } 358 359 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 360 } 361 362 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 363 for (VPRecipeBase &R : Recipes) { 364 for (auto *Def : R.definedValues()) 365 Def->replaceAllUsesWith(NewValue); 366 367 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 368 R.setOperand(I, NewValue); 369 } 370 } 371 372 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 373 assert((SplitAt == end() || SplitAt->getParent() == this) && 374 "can only split at a position in the same block"); 375 376 SmallVector<VPBlockBase *, 2> Succs(successors()); 377 // First, disconnect the current block from its successors. 378 for (VPBlockBase *Succ : Succs) 379 VPBlockUtils::disconnectBlocks(this, Succ); 380 381 // Create new empty block after the block to split. 382 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 383 VPBlockUtils::insertBlockAfter(SplitBlock, this); 384 385 // Add successors for block to split to new block. 386 for (VPBlockBase *Succ : Succs) 387 VPBlockUtils::connectBlocks(SplitBlock, Succ); 388 389 // Finally, move the recipes starting at SplitAt to new block. 390 for (VPRecipeBase &ToMove : 391 make_early_inc_range(make_range(SplitAt, this->end()))) 392 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 393 394 return SplitBlock; 395 } 396 397 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 398 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 399 if (getSuccessors().empty()) { 400 O << Indent << "No successors\n"; 401 } else { 402 O << Indent << "Successor(s): "; 403 ListSeparator LS; 404 for (auto *Succ : getSuccessors()) 405 O << LS << Succ->getName(); 406 O << '\n'; 407 } 408 } 409 410 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 411 VPSlotTracker &SlotTracker) const { 412 O << Indent << getName() << ":\n"; 413 if (const VPValue *Pred = getPredicate()) { 414 O << Indent << "BlockPredicate:"; 415 Pred->printAsOperand(O, SlotTracker); 416 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 417 O << " (" << PredInst->getParent()->getName() << ")"; 418 O << '\n'; 419 } 420 421 auto RecipeIndent = Indent + " "; 422 for (const VPRecipeBase &Recipe : *this) { 423 Recipe.print(O, RecipeIndent, SlotTracker); 424 O << '\n'; 425 } 426 427 printSuccessors(O, Indent); 428 429 if (const VPValue *CBV = getCondBit()) { 430 O << Indent << "CondBit: "; 431 CBV->printAsOperand(O, SlotTracker); 432 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 433 O << " (" << CBI->getParent()->getName() << ")"; 434 O << '\n'; 435 } 436 } 437 #endif 438 439 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 440 for (VPBlockBase *Block : depth_first(Entry)) 441 // Drop all references in VPBasicBlocks and replace all uses with 442 // DummyValue. 443 Block->dropAllReferences(NewValue); 444 } 445 446 void VPRegionBlock::execute(VPTransformState *State) { 447 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 448 449 if (!isReplicator()) { 450 // Visit the VPBlocks connected to "this", starting from it. 451 for (VPBlockBase *Block : RPOT) { 452 if (EnableVPlanNativePath) { 453 // The inner loop vectorization path does not represent loop preheader 454 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 455 // vectorizing loop preheader block. In future, we may replace this 456 // check with the check for loop preheader. 457 if (Block->getNumPredecessors() == 0) 458 continue; 459 460 // Skip vectorizing loop exit block. In future, we may replace this 461 // check with the check for loop exit. 462 if (Block->getNumSuccessors() == 0) 463 continue; 464 } 465 466 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 467 Block->execute(State); 468 } 469 return; 470 } 471 472 assert(!State->Instance && "Replicating a Region with non-null instance."); 473 474 // Enter replicating mode. 475 State->Instance = VPIteration(0, 0); 476 477 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 478 State->Instance->Part = Part; 479 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 480 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 481 ++Lane) { 482 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 483 // Visit the VPBlocks connected to \p this, starting from it. 484 for (VPBlockBase *Block : RPOT) { 485 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 486 Block->execute(State); 487 } 488 } 489 } 490 491 // Exit replicating mode. 492 State->Instance.reset(); 493 } 494 495 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 496 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 497 VPSlotTracker &SlotTracker) const { 498 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 499 auto NewIndent = Indent + " "; 500 for (auto *BlockBase : depth_first(Entry)) { 501 O << '\n'; 502 BlockBase->print(O, NewIndent, SlotTracker); 503 } 504 O << Indent << "}\n"; 505 506 printSuccessors(O, Indent); 507 } 508 #endif 509 510 bool VPRecipeBase::mayWriteToMemory() const { 511 switch (getVPDefID()) { 512 case VPWidenMemoryInstructionSC: { 513 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 514 } 515 case VPReplicateSC: 516 case VPWidenCallSC: 517 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 518 ->mayWriteToMemory(); 519 case VPBranchOnMaskSC: 520 return false; 521 case VPWidenIntOrFpInductionSC: 522 case VPWidenCanonicalIVSC: 523 case VPWidenPHISC: 524 case VPBlendSC: 525 case VPWidenSC: 526 case VPWidenGEPSC: 527 case VPReductionSC: 528 case VPWidenSelectSC: { 529 const Instruction *I = 530 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 531 (void)I; 532 assert((!I || !I->mayWriteToMemory()) && 533 "underlying instruction may write to memory"); 534 return false; 535 } 536 default: 537 return true; 538 } 539 } 540 541 bool VPRecipeBase::mayReadFromMemory() const { 542 switch (getVPDefID()) { 543 case VPWidenMemoryInstructionSC: { 544 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 545 } 546 case VPReplicateSC: 547 case VPWidenCallSC: 548 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 549 ->mayReadFromMemory(); 550 case VPBranchOnMaskSC: 551 return false; 552 case VPWidenIntOrFpInductionSC: 553 case VPWidenCanonicalIVSC: 554 case VPWidenPHISC: 555 case VPBlendSC: 556 case VPWidenSC: 557 case VPWidenGEPSC: 558 case VPReductionSC: 559 case VPWidenSelectSC: { 560 const Instruction *I = 561 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 562 (void)I; 563 assert((!I || !I->mayReadFromMemory()) && 564 "underlying instruction may read from memory"); 565 return false; 566 } 567 default: 568 return true; 569 } 570 } 571 572 bool VPRecipeBase::mayHaveSideEffects() const { 573 switch (getVPDefID()) { 574 case VPBranchOnMaskSC: 575 return false; 576 case VPWidenIntOrFpInductionSC: 577 case VPWidenPointerInductionSC: 578 case VPWidenCanonicalIVSC: 579 case VPWidenPHISC: 580 case VPBlendSC: 581 case VPWidenSC: 582 case VPWidenGEPSC: 583 case VPReductionSC: 584 case VPWidenSelectSC: 585 case VPScalarIVStepsSC: { 586 const Instruction *I = 587 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 588 (void)I; 589 assert((!I || !I->mayHaveSideEffects()) && 590 "underlying instruction has side-effects"); 591 return false; 592 } 593 case VPReplicateSC: { 594 auto *R = cast<VPReplicateRecipe>(this); 595 return R->getUnderlyingInstr()->mayHaveSideEffects(); 596 } 597 default: 598 return true; 599 } 600 } 601 602 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 603 assert(!Parent && "Recipe already in some VPBasicBlock"); 604 assert(InsertPos->getParent() && 605 "Insertion position not in any VPBasicBlock"); 606 Parent = InsertPos->getParent(); 607 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 608 } 609 610 void VPRecipeBase::insertBefore(VPBasicBlock &BB, 611 iplist<VPRecipeBase>::iterator I) { 612 assert(!Parent && "Recipe already in some VPBasicBlock"); 613 assert(I == BB.end() || I->getParent() == &BB); 614 Parent = &BB; 615 BB.getRecipeList().insert(I, this); 616 } 617 618 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 619 assert(!Parent && "Recipe already in some VPBasicBlock"); 620 assert(InsertPos->getParent() && 621 "Insertion position not in any VPBasicBlock"); 622 Parent = InsertPos->getParent(); 623 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 624 } 625 626 void VPRecipeBase::removeFromParent() { 627 assert(getParent() && "Recipe not in any VPBasicBlock"); 628 getParent()->getRecipeList().remove(getIterator()); 629 Parent = nullptr; 630 } 631 632 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 633 assert(getParent() && "Recipe not in any VPBasicBlock"); 634 return getParent()->getRecipeList().erase(getIterator()); 635 } 636 637 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 638 removeFromParent(); 639 insertAfter(InsertPos); 640 } 641 642 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 643 iplist<VPRecipeBase>::iterator I) { 644 removeFromParent(); 645 insertBefore(BB, I); 646 } 647 648 void VPInstruction::generateInstruction(VPTransformState &State, 649 unsigned Part) { 650 IRBuilderBase &Builder = State.Builder; 651 Builder.SetCurrentDebugLocation(DL); 652 653 if (Instruction::isBinaryOp(getOpcode())) { 654 Value *A = State.get(getOperand(0), Part); 655 Value *B = State.get(getOperand(1), Part); 656 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 657 State.set(this, V, Part); 658 return; 659 } 660 661 switch (getOpcode()) { 662 case VPInstruction::Not: { 663 Value *A = State.get(getOperand(0), Part); 664 Value *V = Builder.CreateNot(A); 665 State.set(this, V, Part); 666 break; 667 } 668 case VPInstruction::ICmpULE: { 669 Value *IV = State.get(getOperand(0), Part); 670 Value *TC = State.get(getOperand(1), Part); 671 Value *V = Builder.CreateICmpULE(IV, TC); 672 State.set(this, V, Part); 673 break; 674 } 675 case Instruction::Select: { 676 Value *Cond = State.get(getOperand(0), Part); 677 Value *Op1 = State.get(getOperand(1), Part); 678 Value *Op2 = State.get(getOperand(2), Part); 679 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 680 State.set(this, V, Part); 681 break; 682 } 683 case VPInstruction::ActiveLaneMask: { 684 // Get first lane of vector induction variable. 685 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 686 // Get the original loop tripcount. 687 Value *ScalarTC = State.get(getOperand(1), Part); 688 689 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 690 auto *PredTy = VectorType::get(Int1Ty, State.VF); 691 Instruction *Call = Builder.CreateIntrinsic( 692 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 693 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 694 State.set(this, Call, Part); 695 break; 696 } 697 case VPInstruction::FirstOrderRecurrenceSplice: { 698 // Generate code to combine the previous and current values in vector v3. 699 // 700 // vector.ph: 701 // v_init = vector(..., ..., ..., a[-1]) 702 // br vector.body 703 // 704 // vector.body 705 // i = phi [0, vector.ph], [i+4, vector.body] 706 // v1 = phi [v_init, vector.ph], [v2, vector.body] 707 // v2 = a[i, i+1, i+2, i+3]; 708 // v3 = vector(v1(3), v2(0, 1, 2)) 709 710 // For the first part, use the recurrence phi (v1), otherwise v2. 711 auto *V1 = State.get(getOperand(0), 0); 712 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 713 if (!PartMinus1->getType()->isVectorTy()) { 714 State.set(this, PartMinus1, Part); 715 } else { 716 Value *V2 = State.get(getOperand(1), Part); 717 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 718 } 719 break; 720 } 721 722 case VPInstruction::CanonicalIVIncrement: 723 case VPInstruction::CanonicalIVIncrementNUW: { 724 Value *Next = nullptr; 725 if (Part == 0) { 726 bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; 727 auto *Phi = State.get(getOperand(0), 0); 728 // The loop step is equal to the vectorization factor (num of SIMD 729 // elements) times the unroll factor (num of SIMD instructions). 730 Value *Step = 731 createStepForVF(Builder, Phi->getType(), State.VF, State.UF); 732 Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); 733 } else { 734 Next = State.get(this, 0); 735 } 736 737 State.set(this, Next, Part); 738 break; 739 } 740 case VPInstruction::BranchOnCount: { 741 if (Part != 0) 742 break; 743 // First create the compare. 744 Value *IV = State.get(getOperand(0), Part); 745 Value *TC = State.get(getOperand(1), Part); 746 Value *Cond = Builder.CreateICmpEQ(IV, TC); 747 748 // Now create the branch. 749 auto *Plan = getParent()->getPlan(); 750 VPRegionBlock *TopRegion = Plan->getVectorLoopRegion(); 751 VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock(); 752 if (Header->empty()) { 753 assert(EnableVPlanNativePath && 754 "empty entry block only expected in VPlanNativePath"); 755 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 756 } 757 // TODO: Once the exit block is modeled in VPlan, use it instead of going 758 // through State.CFG.ExitBB. 759 BasicBlock *Exit = State.CFG.ExitBB; 760 761 Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]); 762 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 763 break; 764 } 765 default: 766 llvm_unreachable("Unsupported opcode for instruction"); 767 } 768 } 769 770 void VPInstruction::execute(VPTransformState &State) { 771 assert(!State.Instance && "VPInstruction executing an Instance"); 772 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 773 State.Builder.setFastMathFlags(FMF); 774 for (unsigned Part = 0; Part < State.UF; ++Part) 775 generateInstruction(State, Part); 776 } 777 778 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 779 void VPInstruction::dump() const { 780 VPSlotTracker SlotTracker(getParent()->getPlan()); 781 print(dbgs(), "", SlotTracker); 782 } 783 784 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 785 VPSlotTracker &SlotTracker) const { 786 O << Indent << "EMIT "; 787 788 if (hasResult()) { 789 printAsOperand(O, SlotTracker); 790 O << " = "; 791 } 792 793 switch (getOpcode()) { 794 case VPInstruction::Not: 795 O << "not"; 796 break; 797 case VPInstruction::ICmpULE: 798 O << "icmp ule"; 799 break; 800 case VPInstruction::SLPLoad: 801 O << "combined load"; 802 break; 803 case VPInstruction::SLPStore: 804 O << "combined store"; 805 break; 806 case VPInstruction::ActiveLaneMask: 807 O << "active lane mask"; 808 break; 809 case VPInstruction::FirstOrderRecurrenceSplice: 810 O << "first-order splice"; 811 break; 812 case VPInstruction::CanonicalIVIncrement: 813 O << "VF * UF + "; 814 break; 815 case VPInstruction::CanonicalIVIncrementNUW: 816 O << "VF * UF +(nuw) "; 817 break; 818 case VPInstruction::BranchOnCount: 819 O << "branch-on-count "; 820 break; 821 default: 822 O << Instruction::getOpcodeName(getOpcode()); 823 } 824 825 O << FMF; 826 827 for (const VPValue *Operand : operands()) { 828 O << " "; 829 Operand->printAsOperand(O, SlotTracker); 830 } 831 832 if (DL) { 833 O << ", !dbg "; 834 DL.print(O); 835 } 836 } 837 #endif 838 839 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 840 // Make sure the VPInstruction is a floating-point operation. 841 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 842 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 843 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 844 Opcode == Instruction::FCmp) && 845 "this op can't take fast-math flags"); 846 FMF = FMFNew; 847 } 848 849 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 850 Value *CanonicalIVStartValue, 851 VPTransformState &State) { 852 // Check if the trip count is needed, and if so build it. 853 if (TripCount && TripCount->getNumUsers()) { 854 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 855 State.set(TripCount, TripCountV, Part); 856 } 857 858 // Check if the backedge taken count is needed, and if so build it. 859 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 860 IRBuilder<> Builder(State.CFG.VectorPreHeader->getTerminator()); 861 auto *TCMO = Builder.CreateSub(TripCountV, 862 ConstantInt::get(TripCountV->getType(), 1), 863 "trip.count.minus.1"); 864 auto VF = State.VF; 865 Value *VTCMO = 866 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 867 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 868 State.set(BackedgeTakenCount, VTCMO, Part); 869 } 870 871 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 872 State.set(&VectorTripCount, VectorTripCountV, Part); 873 874 // When vectorizing the epilogue loop, the canonical induction start value 875 // needs to be changed from zero to the value after the main vector loop. 876 if (CanonicalIVStartValue) { 877 VPValue *VPV = new VPValue(CanonicalIVStartValue); 878 addExternalDef(VPV); 879 auto *IV = getCanonicalIV(); 880 assert(all_of(IV->users(), 881 [](const VPUser *U) { 882 if (isa<VPScalarIVStepsRecipe>(U)) 883 return true; 884 auto *VPI = cast<VPInstruction>(U); 885 return VPI->getOpcode() == 886 VPInstruction::CanonicalIVIncrement || 887 VPI->getOpcode() == 888 VPInstruction::CanonicalIVIncrementNUW; 889 }) && 890 "the canonical IV should only be used by its increments or " 891 "ScalarIVSteps when " 892 "resetting the start value"); 893 IV->setOperand(0, VPV); 894 } 895 } 896 897 /// Generate the code inside the body of the vectorized loop. Assumes a single 898 /// LoopVectorBody basic-block was created for this. Introduce additional 899 /// basic-blocks as needed, and fill them all. 900 void VPlan::execute(VPTransformState *State) { 901 // Set the reverse mapping from VPValues to Values for code generation. 902 for (auto &Entry : Value2VPValue) 903 State->VPValue2Value[Entry.second] = Entry.first; 904 905 // Initialize CFG state. 906 State->CFG.PrevVPBB = nullptr; 907 BasicBlock *VectorHeaderBB = State->CFG.VectorPreHeader->getSingleSuccessor(); 908 State->CFG.PrevBB = VectorHeaderBB; 909 State->CFG.ExitBB = VectorHeaderBB->getSingleSuccessor(); 910 State->CurrentVectorLoop = State->LI->getLoopFor(VectorHeaderBB); 911 912 // Remove the edge between Header and Latch to allow other connections. 913 // Temporarily terminate with unreachable until CFG is rewired. 914 // Note: this asserts the generated code's assumption that 915 // getFirstInsertionPt() can be dereferenced into an Instruction. 916 VectorHeaderBB->getTerminator()->eraseFromParent(); 917 State->Builder.SetInsertPoint(VectorHeaderBB); 918 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 919 State->Builder.SetInsertPoint(Terminator); 920 921 // Generate code in loop body. 922 for (VPBlockBase *Block : depth_first(Entry)) 923 Block->execute(State); 924 925 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 926 // VPBB's successors. 927 for (auto VPBB : State->CFG.VPBBsToFix) { 928 assert(EnableVPlanNativePath && 929 "Unexpected VPBBsToFix in non VPlan-native path"); 930 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 931 assert(BB && "Unexpected null basic block for VPBB"); 932 933 unsigned Idx = 0; 934 auto *BBTerminator = BB->getTerminator(); 935 936 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 937 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 938 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 939 ++Idx; 940 } 941 } 942 943 BasicBlock *VectorLatchBB = State->CFG.PrevBB; 944 945 // Fix the latch value of canonical, reduction and first-order recurrences 946 // phis in the vector loop. 947 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 948 if (Header->empty()) { 949 assert(EnableVPlanNativePath); 950 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 951 } 952 for (VPRecipeBase &R : Header->phis()) { 953 // Skip phi-like recipes that generate their backedege values themselves. 954 if (isa<VPWidenPHIRecipe>(&R)) 955 continue; 956 957 if (isa<VPWidenPointerInductionRecipe>(&R) || 958 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 959 PHINode *Phi = nullptr; 960 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 961 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 962 } else { 963 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 964 // TODO: Split off the case that all users of a pointer phi are scalar 965 // from the VPWidenPointerInductionRecipe. 966 if (all_of(WidenPhi->users(), [WidenPhi](const VPUser *U) { 967 return cast<VPRecipeBase>(U)->usesScalars(WidenPhi); 968 })) 969 continue; 970 971 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 972 Phi = cast<PHINode>(GEP->getPointerOperand()); 973 } 974 975 Phi->setIncomingBlock(1, VectorLatchBB); 976 977 // Move the last step to the end of the latch block. This ensures 978 // consistent placement of all induction updates. 979 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 980 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 981 continue; 982 } 983 984 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 985 // For canonical IV, first-order recurrences and in-order reduction phis, 986 // only a single part is generated, which provides the last part from the 987 // previous iteration. For non-ordered reductions all UF parts are 988 // generated. 989 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 990 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 991 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 992 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 993 994 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 995 Value *Phi = State->get(PhiR, Part); 996 Value *Val = State->get(PhiR->getBackedgeValue(), 997 SinglePartNeeded ? State->UF - 1 : Part); 998 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 999 } 1000 } 1001 1002 // We do not attempt to preserve DT for outer loop vectorization currently. 1003 if (!EnableVPlanNativePath) 1004 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 1005 State->CFG.ExitBB); 1006 } 1007 1008 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1009 LLVM_DUMP_METHOD 1010 void VPlan::print(raw_ostream &O) const { 1011 VPSlotTracker SlotTracker(this); 1012 1013 O << "VPlan '" << Name << "' {"; 1014 1015 if (VectorTripCount.getNumUsers() > 0) { 1016 O << "\nLive-in "; 1017 VectorTripCount.printAsOperand(O, SlotTracker); 1018 O << " = vector-trip-count\n"; 1019 } 1020 1021 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1022 O << "\nLive-in "; 1023 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1024 O << " = backedge-taken count\n"; 1025 } 1026 1027 for (const VPBlockBase *Block : depth_first(getEntry())) { 1028 O << '\n'; 1029 Block->print(O, "", SlotTracker); 1030 } 1031 O << "}\n"; 1032 } 1033 1034 LLVM_DUMP_METHOD 1035 void VPlan::printDOT(raw_ostream &O) const { 1036 VPlanPrinter Printer(O, *this); 1037 Printer.dump(); 1038 } 1039 1040 LLVM_DUMP_METHOD 1041 void VPlan::dump() const { print(dbgs()); } 1042 #endif 1043 1044 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 1045 BasicBlock *LoopLatchBB, 1046 BasicBlock *LoopExitBB) { 1047 // The vector body may be more than a single basic-block by this point. 1048 // Update the dominator tree information inside the vector body by propagating 1049 // it from header to latch, expecting only triangular control-flow, if any. 1050 BasicBlock *PostDomSucc = nullptr; 1051 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1052 // Get the list of successors of this block. 1053 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1054 assert(Succs.size() <= 2 && 1055 "Basic block in vector loop has more than 2 successors."); 1056 PostDomSucc = Succs[0]; 1057 if (Succs.size() == 1) { 1058 assert(PostDomSucc->getSinglePredecessor() && 1059 "PostDom successor has more than one predecessor."); 1060 DT->addNewBlock(PostDomSucc, BB); 1061 continue; 1062 } 1063 BasicBlock *InterimSucc = Succs[1]; 1064 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1065 PostDomSucc = Succs[1]; 1066 InterimSucc = Succs[0]; 1067 } 1068 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1069 "One successor of a basic block does not lead to the other."); 1070 assert(InterimSucc->getSinglePredecessor() && 1071 "Interim successor has more than one predecessor."); 1072 assert(PostDomSucc->hasNPredecessors(2) && 1073 "PostDom successor has more than two predecessors."); 1074 DT->addNewBlock(InterimSucc, BB); 1075 DT->addNewBlock(PostDomSucc, BB); 1076 } 1077 // Latch block is a new dominator for the loop exit. 1078 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1079 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1080 } 1081 1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1083 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1084 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1085 Twine(getOrCreateBID(Block)); 1086 } 1087 1088 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1089 const std::string &Name = Block->getName(); 1090 if (!Name.empty()) 1091 return Name; 1092 return "VPB" + Twine(getOrCreateBID(Block)); 1093 } 1094 1095 void VPlanPrinter::dump() { 1096 Depth = 1; 1097 bumpIndent(0); 1098 OS << "digraph VPlan {\n"; 1099 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1100 if (!Plan.getName().empty()) 1101 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1102 if (Plan.BackedgeTakenCount) { 1103 OS << ", where:\\n"; 1104 Plan.BackedgeTakenCount->print(OS, SlotTracker); 1105 OS << " := BackedgeTakenCount"; 1106 } 1107 OS << "\"]\n"; 1108 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1109 OS << "edge [fontname=Courier, fontsize=30]\n"; 1110 OS << "compound=true\n"; 1111 1112 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 1113 dumpBlock(Block); 1114 1115 OS << "}\n"; 1116 } 1117 1118 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1119 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1120 dumpBasicBlock(BasicBlock); 1121 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1122 dumpRegion(Region); 1123 else 1124 llvm_unreachable("Unsupported kind of VPBlock."); 1125 } 1126 1127 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1128 bool Hidden, const Twine &Label) { 1129 // Due to "dot" we print an edge between two regions as an edge between the 1130 // exit basic block and the entry basic of the respective regions. 1131 const VPBlockBase *Tail = From->getExitBasicBlock(); 1132 const VPBlockBase *Head = To->getEntryBasicBlock(); 1133 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1134 OS << " [ label=\"" << Label << '\"'; 1135 if (Tail != From) 1136 OS << " ltail=" << getUID(From); 1137 if (Head != To) 1138 OS << " lhead=" << getUID(To); 1139 if (Hidden) 1140 OS << "; splines=none"; 1141 OS << "]\n"; 1142 } 1143 1144 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1145 auto &Successors = Block->getSuccessors(); 1146 if (Successors.size() == 1) 1147 drawEdge(Block, Successors.front(), false, ""); 1148 else if (Successors.size() == 2) { 1149 drawEdge(Block, Successors.front(), false, "T"); 1150 drawEdge(Block, Successors.back(), false, "F"); 1151 } else { 1152 unsigned SuccessorNumber = 0; 1153 for (auto *Successor : Successors) 1154 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1155 } 1156 } 1157 1158 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1159 // Implement dot-formatted dump by performing plain-text dump into the 1160 // temporary storage followed by some post-processing. 1161 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1162 bumpIndent(1); 1163 std::string Str; 1164 raw_string_ostream SS(Str); 1165 // Use no indentation as we need to wrap the lines into quotes ourselves. 1166 BasicBlock->print(SS, "", SlotTracker); 1167 1168 // We need to process each line of the output separately, so split 1169 // single-string plain-text dump. 1170 SmallVector<StringRef, 0> Lines; 1171 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1172 1173 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1174 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1175 }; 1176 1177 // Don't need the "+" after the last line. 1178 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1179 EmitLine(Line, " +\n"); 1180 EmitLine(Lines.back(), "\n"); 1181 1182 bumpIndent(-1); 1183 OS << Indent << "]\n"; 1184 1185 dumpEdges(BasicBlock); 1186 } 1187 1188 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1189 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1190 bumpIndent(1); 1191 OS << Indent << "fontname=Courier\n" 1192 << Indent << "label=\"" 1193 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1194 << DOT::EscapeString(Region->getName()) << "\"\n"; 1195 // Dump the blocks of the region. 1196 assert(Region->getEntry() && "Region contains no inner blocks."); 1197 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1198 dumpBlock(Block); 1199 bumpIndent(-1); 1200 OS << Indent << "}\n"; 1201 dumpEdges(Region); 1202 } 1203 1204 void VPlanIngredient::print(raw_ostream &O) const { 1205 if (auto *Inst = dyn_cast<Instruction>(V)) { 1206 if (!Inst->getType()->isVoidTy()) { 1207 Inst->printAsOperand(O, false); 1208 O << " = "; 1209 } 1210 O << Inst->getOpcodeName() << " "; 1211 unsigned E = Inst->getNumOperands(); 1212 if (E > 0) { 1213 Inst->getOperand(0)->printAsOperand(O, false); 1214 for (unsigned I = 1; I < E; ++I) 1215 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1216 } 1217 } else // !Inst 1218 V->printAsOperand(O, false); 1219 } 1220 1221 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1222 VPSlotTracker &SlotTracker) const { 1223 O << Indent << "WIDEN-CALL "; 1224 1225 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1226 if (CI->getType()->isVoidTy()) 1227 O << "void "; 1228 else { 1229 printAsOperand(O, SlotTracker); 1230 O << " = "; 1231 } 1232 1233 O << "call @" << CI->getCalledFunction()->getName() << "("; 1234 printOperands(O, SlotTracker); 1235 O << ")"; 1236 } 1237 1238 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1239 VPSlotTracker &SlotTracker) const { 1240 O << Indent << "WIDEN-SELECT "; 1241 printAsOperand(O, SlotTracker); 1242 O << " = select "; 1243 getOperand(0)->printAsOperand(O, SlotTracker); 1244 O << ", "; 1245 getOperand(1)->printAsOperand(O, SlotTracker); 1246 O << ", "; 1247 getOperand(2)->printAsOperand(O, SlotTracker); 1248 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1249 } 1250 1251 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1252 VPSlotTracker &SlotTracker) const { 1253 O << Indent << "WIDEN "; 1254 printAsOperand(O, SlotTracker); 1255 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1256 printOperands(O, SlotTracker); 1257 } 1258 1259 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1260 VPSlotTracker &SlotTracker) const { 1261 O << Indent << "WIDEN-INDUCTION"; 1262 if (getTruncInst()) { 1263 O << "\\l\""; 1264 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1265 O << " +\n" << Indent << "\" "; 1266 getVPValue(0)->printAsOperand(O, SlotTracker); 1267 } else 1268 O << " " << VPlanIngredient(IV); 1269 } 1270 1271 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1272 VPSlotTracker &SlotTracker) const { 1273 O << Indent << "EMIT "; 1274 printAsOperand(O, SlotTracker); 1275 O << " = WIDEN-POINTER-INDUCTION "; 1276 getStartValue()->printAsOperand(O, SlotTracker); 1277 O << ", " << *IndDesc.getStep(); 1278 } 1279 1280 #endif 1281 1282 bool VPWidenIntOrFpInductionRecipe::isCanonical() const { 1283 auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue()); 1284 auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep()); 1285 return StartC && StartC->isZero() && StepC && StepC->isOne(); 1286 } 1287 1288 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const { 1289 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)); 1290 } 1291 1292 bool VPScalarIVStepsRecipe::isCanonical() const { 1293 auto *CanIV = getCanonicalIV(); 1294 // The start value of the steps-recipe must match the start value of the 1295 // canonical induction and it must step by 1. 1296 if (CanIV->getStartValue() != getStartValue()) 1297 return false; 1298 auto *StepVPV = getStepValue(); 1299 if (StepVPV->getDef()) 1300 return false; 1301 auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue()); 1302 return StepC && StepC->isOne(); 1303 } 1304 1305 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1306 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent, 1307 VPSlotTracker &SlotTracker) const { 1308 O << Indent; 1309 printAsOperand(O, SlotTracker); 1310 O << Indent << "= SCALAR-STEPS "; 1311 printOperands(O, SlotTracker); 1312 } 1313 1314 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1315 VPSlotTracker &SlotTracker) const { 1316 O << Indent << "WIDEN-GEP "; 1317 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1318 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1319 for (size_t I = 0; I < IndicesNumber; ++I) 1320 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1321 1322 O << " "; 1323 printAsOperand(O, SlotTracker); 1324 O << " = getelementptr "; 1325 printOperands(O, SlotTracker); 1326 } 1327 1328 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1329 VPSlotTracker &SlotTracker) const { 1330 O << Indent << "WIDEN-PHI "; 1331 1332 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1333 // Unless all incoming values are modeled in VPlan print the original PHI 1334 // directly. 1335 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1336 // values as VPValues. 1337 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1338 O << VPlanIngredient(OriginalPhi); 1339 return; 1340 } 1341 1342 printAsOperand(O, SlotTracker); 1343 O << " = phi "; 1344 printOperands(O, SlotTracker); 1345 } 1346 1347 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1348 VPSlotTracker &SlotTracker) const { 1349 O << Indent << "BLEND "; 1350 Phi->printAsOperand(O, false); 1351 O << " ="; 1352 if (getNumIncomingValues() == 1) { 1353 // Not a User of any mask: not really blending, this is a 1354 // single-predecessor phi. 1355 O << " "; 1356 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1357 } else { 1358 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1359 O << " "; 1360 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1361 O << "/"; 1362 getMask(I)->printAsOperand(O, SlotTracker); 1363 } 1364 } 1365 } 1366 1367 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1368 VPSlotTracker &SlotTracker) const { 1369 O << Indent << "REDUCE "; 1370 printAsOperand(O, SlotTracker); 1371 O << " = "; 1372 getChainOp()->printAsOperand(O, SlotTracker); 1373 O << " +"; 1374 if (isa<FPMathOperator>(getUnderlyingInstr())) 1375 O << getUnderlyingInstr()->getFastMathFlags(); 1376 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1377 getVecOp()->printAsOperand(O, SlotTracker); 1378 if (getCondOp()) { 1379 O << ", "; 1380 getCondOp()->printAsOperand(O, SlotTracker); 1381 } 1382 O << ")"; 1383 } 1384 1385 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1386 VPSlotTracker &SlotTracker) const { 1387 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1388 1389 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1390 printAsOperand(O, SlotTracker); 1391 O << " = "; 1392 } 1393 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1394 printOperands(O, SlotTracker); 1395 1396 if (AlsoPack) 1397 O << " (S->V)"; 1398 } 1399 1400 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1401 VPSlotTracker &SlotTracker) const { 1402 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1403 printAsOperand(O, SlotTracker); 1404 O << " = "; 1405 printOperands(O, SlotTracker); 1406 } 1407 1408 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1409 VPSlotTracker &SlotTracker) const { 1410 O << Indent << "WIDEN "; 1411 1412 if (!isStore()) { 1413 printAsOperand(O, SlotTracker); 1414 O << " = "; 1415 } 1416 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1417 1418 printOperands(O, SlotTracker); 1419 } 1420 #endif 1421 1422 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { 1423 Value *Start = getStartValue()->getLiveInIRValue(); 1424 PHINode *EntryPart = PHINode::Create( 1425 Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); 1426 EntryPart->addIncoming(Start, State.CFG.VectorPreHeader); 1427 EntryPart->setDebugLoc(DL); 1428 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1429 State.set(this, EntryPart, Part); 1430 } 1431 1432 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1433 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1434 VPSlotTracker &SlotTracker) const { 1435 O << Indent << "EMIT "; 1436 printAsOperand(O, SlotTracker); 1437 O << " = CANONICAL-INDUCTION"; 1438 } 1439 #endif 1440 1441 void VPExpandSCEVRecipe::execute(VPTransformState &State) { 1442 assert(!State.Instance && "cannot be used in per-lane"); 1443 const DataLayout &DL = 1444 State.CFG.VectorPreHeader->getModule()->getDataLayout(); 1445 SCEVExpander Exp(SE, DL, "induction"); 1446 Value *Res = Exp.expandCodeFor(Expr, Expr->getType(), 1447 State.CFG.VectorPreHeader->getTerminator()); 1448 1449 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1450 State.set(this, Res, Part); 1451 } 1452 1453 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1454 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent, 1455 VPSlotTracker &SlotTracker) const { 1456 O << Indent << "EMIT "; 1457 getVPSingleValue()->printAsOperand(O, SlotTracker); 1458 O << " = EXPAND SCEV " << *Expr; 1459 } 1460 #endif 1461 1462 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1463 Value *CanonicalIV = State.get(getOperand(0), 0); 1464 Type *STy = CanonicalIV->getType(); 1465 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1466 ElementCount VF = State.VF; 1467 Value *VStart = VF.isScalar() 1468 ? CanonicalIV 1469 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 1470 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1471 Value *VStep = createStepForVF(Builder, STy, VF, Part); 1472 if (VF.isVector()) { 1473 VStep = Builder.CreateVectorSplat(VF, VStep); 1474 VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType())); 1475 } 1476 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1477 State.set(this, CanonicalVectorIV, Part); 1478 } 1479 } 1480 1481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1482 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1483 VPSlotTracker &SlotTracker) const { 1484 O << Indent << "EMIT "; 1485 printAsOperand(O, SlotTracker); 1486 O << " = WIDEN-CANONICAL-INDUCTION "; 1487 printOperands(O, SlotTracker); 1488 } 1489 #endif 1490 1491 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1492 auto &Builder = State.Builder; 1493 // Create a vector from the initial value. 1494 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1495 1496 Type *VecTy = State.VF.isScalar() 1497 ? VectorInit->getType() 1498 : VectorType::get(VectorInit->getType(), State.VF); 1499 1500 if (State.VF.isVector()) { 1501 auto *IdxTy = Builder.getInt32Ty(); 1502 auto *One = ConstantInt::get(IdxTy, 1); 1503 IRBuilder<>::InsertPointGuard Guard(Builder); 1504 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1505 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1506 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1507 VectorInit = Builder.CreateInsertElement( 1508 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1509 } 1510 1511 // Create a phi node for the new recurrence. 1512 PHINode *EntryPart = PHINode::Create( 1513 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1514 EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader); 1515 State.set(this, EntryPart, 0); 1516 } 1517 1518 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1519 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1520 VPSlotTracker &SlotTracker) const { 1521 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1522 printAsOperand(O, SlotTracker); 1523 O << " = phi "; 1524 printOperands(O, SlotTracker); 1525 } 1526 #endif 1527 1528 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1529 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1530 auto &Builder = State.Builder; 1531 1532 // In order to support recurrences we need to be able to vectorize Phi nodes. 1533 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1534 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1535 // this value when we vectorize all of the instructions that use the PHI. 1536 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1537 Type *VecTy = 1538 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1539 1540 BasicBlock *HeaderBB = State.CFG.PrevBB; 1541 assert(State.CurrentVectorLoop->getHeader() == HeaderBB && 1542 "recipe must be in the vector loop header"); 1543 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1544 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1545 Value *EntryPart = 1546 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1547 State.set(this, EntryPart, Part); 1548 } 1549 1550 // Reductions do not have to start at zero. They can start with 1551 // any loop invariant values. 1552 VPValue *StartVPV = getStartValue(); 1553 Value *StartV = StartVPV->getLiveInIRValue(); 1554 1555 Value *Iden = nullptr; 1556 RecurKind RK = RdxDesc.getRecurrenceKind(); 1557 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1558 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1559 // MinMax reduction have the start value as their identify. 1560 if (ScalarPHI) { 1561 Iden = StartV; 1562 } else { 1563 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1564 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1565 StartV = Iden = 1566 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1567 } 1568 } else { 1569 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1570 RdxDesc.getFastMathFlags()); 1571 1572 if (!ScalarPHI) { 1573 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1574 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1575 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1576 Constant *Zero = Builder.getInt32(0); 1577 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1578 } 1579 } 1580 1581 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1582 Value *EntryPart = State.get(this, Part); 1583 // Make sure to add the reduction start value only to the 1584 // first unroll part. 1585 Value *StartVal = (Part == 0) ? StartV : Iden; 1586 cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader); 1587 } 1588 } 1589 1590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1591 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1592 VPSlotTracker &SlotTracker) const { 1593 O << Indent << "WIDEN-REDUCTION-PHI "; 1594 1595 printAsOperand(O, SlotTracker); 1596 O << " = phi "; 1597 printOperands(O, SlotTracker); 1598 } 1599 #endif 1600 1601 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1602 1603 void VPValue::replaceAllUsesWith(VPValue *New) { 1604 for (unsigned J = 0; J < getNumUsers();) { 1605 VPUser *User = Users[J]; 1606 unsigned NumUsers = getNumUsers(); 1607 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1608 if (User->getOperand(I) == this) 1609 User->setOperand(I, New); 1610 // If a user got removed after updating the current user, the next user to 1611 // update will be moved to the current position, so we only need to 1612 // increment the index if the number of users did not change. 1613 if (NumUsers == getNumUsers()) 1614 J++; 1615 } 1616 } 1617 1618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1619 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1620 if (const Value *UV = getUnderlyingValue()) { 1621 OS << "ir<"; 1622 UV->printAsOperand(OS, false); 1623 OS << ">"; 1624 return; 1625 } 1626 1627 unsigned Slot = Tracker.getSlot(this); 1628 if (Slot == unsigned(-1)) 1629 OS << "<badref>"; 1630 else 1631 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1632 } 1633 1634 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1635 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1636 Op->printAsOperand(O, SlotTracker); 1637 }); 1638 } 1639 #endif 1640 1641 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1642 Old2NewTy &Old2New, 1643 InterleavedAccessInfo &IAI) { 1644 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1645 for (VPBlockBase *Base : RPOT) { 1646 visitBlock(Base, Old2New, IAI); 1647 } 1648 } 1649 1650 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1651 InterleavedAccessInfo &IAI) { 1652 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1653 for (VPRecipeBase &VPI : *VPBB) { 1654 if (isa<VPHeaderPHIRecipe>(&VPI)) 1655 continue; 1656 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1657 auto *VPInst = cast<VPInstruction>(&VPI); 1658 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1659 auto *IG = IAI.getInterleaveGroup(Inst); 1660 if (!IG) 1661 continue; 1662 1663 auto NewIGIter = Old2New.find(IG); 1664 if (NewIGIter == Old2New.end()) 1665 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1666 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1667 1668 if (Inst == IG->getInsertPos()) 1669 Old2New[IG]->setInsertPos(VPInst); 1670 1671 InterleaveGroupMap[VPInst] = Old2New[IG]; 1672 InterleaveGroupMap[VPInst]->insertMember( 1673 VPInst, IG->getIndex(Inst), 1674 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1675 : IG->getFactor())); 1676 } 1677 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1678 visitRegion(Region, Old2New, IAI); 1679 else 1680 llvm_unreachable("Unsupported kind of VPBlock."); 1681 } 1682 1683 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1684 InterleavedAccessInfo &IAI) { 1685 Old2NewTy Old2New; 1686 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1687 } 1688 1689 void VPSlotTracker::assignSlot(const VPValue *V) { 1690 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1691 Slots[V] = NextSlot++; 1692 } 1693 1694 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1695 1696 for (const VPValue *V : Plan.VPExternalDefs) 1697 assignSlot(V); 1698 1699 assignSlot(&Plan.VectorTripCount); 1700 if (Plan.BackedgeTakenCount) 1701 assignSlot(Plan.BackedgeTakenCount); 1702 1703 ReversePostOrderTraversal< 1704 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1705 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1706 Plan.getEntry())); 1707 for (const VPBasicBlock *VPBB : 1708 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1709 for (const VPRecipeBase &Recipe : *VPBB) 1710 for (VPValue *Def : Recipe.definedValues()) 1711 assignSlot(Def); 1712 } 1713 1714 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1715 return all_of(Def->users(), [Def](VPUser *U) { 1716 return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(Def); 1717 }); 1718 } 1719