1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This is the LLVM vectorization plan. It represents a candidate for 12 /// vectorization, allowing to plan and optimize how to vectorize a given loop 13 /// before generating LLVM-IR. 14 /// The vectorizer uses vectorization plans to estimate the costs of potential 15 /// candidates and if profitable to execute the desired plan, generating vector 16 /// LLVM-IR code. 17 /// 18 //===----------------------------------------------------------------------===// 19 20 #include "VPlan.h" 21 #include "VPlanDominatorTree.h" 22 #include "llvm/ADT/DepthFirstIterator.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "vplan" 49 50 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 51 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V)) 52 Instr->print(OS); 53 else 54 V.printAsOperand(OS); 55 return OS; 56 } 57 58 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 59 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 60 const VPBlockBase *Block = this; 61 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 62 Block = Region->getEntry(); 63 return cast<VPBasicBlock>(Block); 64 } 65 66 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 67 VPBlockBase *Block = this; 68 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 69 Block = Region->getEntry(); 70 return cast<VPBasicBlock>(Block); 71 } 72 73 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 74 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 75 const VPBlockBase *Block = this; 76 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 77 Block = Region->getExit(); 78 return cast<VPBasicBlock>(Block); 79 } 80 81 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 82 VPBlockBase *Block = this; 83 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 84 Block = Region->getExit(); 85 return cast<VPBasicBlock>(Block); 86 } 87 88 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 89 if (!Successors.empty() || !Parent) 90 return this; 91 assert(Parent->getExit() == this && 92 "Block w/o successors not the exit of its parent."); 93 return Parent->getEnclosingBlockWithSuccessors(); 94 } 95 96 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 97 if (!Predecessors.empty() || !Parent) 98 return this; 99 assert(Parent->getEntry() == this && 100 "Block w/o predecessors not the entry of its parent."); 101 return Parent->getEnclosingBlockWithPredecessors(); 102 } 103 104 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 105 SmallVector<VPBlockBase *, 8> Blocks; 106 for (VPBlockBase *Block : depth_first(Entry)) 107 Blocks.push_back(Block); 108 109 for (VPBlockBase *Block : Blocks) 110 delete Block; 111 } 112 113 BasicBlock * 114 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 115 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 116 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 117 BasicBlock *PrevBB = CFG.PrevBB; 118 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 119 PrevBB->getParent(), CFG.LastBB); 120 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 121 122 // Hook up the new basic block to its predecessors. 123 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 124 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 125 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 126 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 127 assert(PredBB && "Predecessor basic-block not found building successor."); 128 auto *PredBBTerminator = PredBB->getTerminator(); 129 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 130 if (isa<UnreachableInst>(PredBBTerminator)) { 131 assert(PredVPSuccessors.size() == 1 && 132 "Predecessor ending w/o branch must have single successor."); 133 PredBBTerminator->eraseFromParent(); 134 BranchInst::Create(NewBB, PredBB); 135 } else { 136 assert(PredVPSuccessors.size() == 2 && 137 "Predecessor ending with branch must have two successors."); 138 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 139 assert(!PredBBTerminator->getSuccessor(idx) && 140 "Trying to reset an existing successor block."); 141 PredBBTerminator->setSuccessor(idx, NewBB); 142 } 143 } 144 return NewBB; 145 } 146 147 void VPBasicBlock::execute(VPTransformState *State) { 148 bool Replica = State->Instance && 149 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 150 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 151 VPBlockBase *SingleHPred = nullptr; 152 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 153 154 // 1. Create an IR basic block, or reuse the last one if possible. 155 // The last IR basic block is reused, as an optimization, in three cases: 156 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 157 // B. when the current VPBB has a single (hierarchical) predecessor which 158 // is PrevVPBB and the latter has a single (hierarchical) successor; and 159 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 160 // is the exit of this region from a previous instance, or the predecessor 161 // of this region. 162 if (PrevVPBB && /* A */ 163 !((SingleHPred = getSingleHierarchicalPredecessor()) && 164 SingleHPred->getExitBasicBlock() == PrevVPBB && 165 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 166 !(Replica && getPredecessors().empty())) { /* C */ 167 NewBB = createEmptyBasicBlock(State->CFG); 168 State->Builder.SetInsertPoint(NewBB); 169 // Temporarily terminate with unreachable until CFG is rewired. 170 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 171 State->Builder.SetInsertPoint(Terminator); 172 // Register NewBB in its loop. In innermost loops its the same for all BB's. 173 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 174 L->addBasicBlockToLoop(NewBB, *State->LI); 175 State->CFG.PrevBB = NewBB; 176 } 177 178 // 2. Fill the IR basic block with IR instructions. 179 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 180 << " in BB:" << NewBB->getName() << '\n'); 181 182 State->CFG.VPBB2IRBB[this] = NewBB; 183 State->CFG.PrevVPBB = this; 184 185 for (VPRecipeBase &Recipe : Recipes) 186 Recipe.execute(*State); 187 188 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 189 } 190 191 void VPRegionBlock::execute(VPTransformState *State) { 192 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 193 194 if (!isReplicator()) { 195 // Visit the VPBlocks connected to "this", starting from it. 196 for (VPBlockBase *Block : RPOT) { 197 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 198 Block->execute(State); 199 } 200 return; 201 } 202 203 assert(!State->Instance && "Replicating a Region with non-null instance."); 204 205 // Enter replicating mode. 206 State->Instance = {0, 0}; 207 208 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 209 State->Instance->Part = Part; 210 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 211 State->Instance->Lane = Lane; 212 // Visit the VPBlocks connected to \p this, starting from it. 213 for (VPBlockBase *Block : RPOT) { 214 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 215 Block->execute(State); 216 } 217 } 218 } 219 220 // Exit replicating mode. 221 State->Instance.reset(); 222 } 223 224 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 225 Parent = InsertPos->getParent(); 226 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 227 } 228 229 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 230 return getParent()->getRecipeList().erase(getIterator()); 231 } 232 233 void VPInstruction::generateInstruction(VPTransformState &State, 234 unsigned Part) { 235 IRBuilder<> &Builder = State.Builder; 236 237 if (Instruction::isBinaryOp(getOpcode())) { 238 Value *A = State.get(getOperand(0), Part); 239 Value *B = State.get(getOperand(1), Part); 240 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 241 State.set(this, V, Part); 242 return; 243 } 244 245 switch (getOpcode()) { 246 case VPInstruction::Not: { 247 Value *A = State.get(getOperand(0), Part); 248 Value *V = Builder.CreateNot(A); 249 State.set(this, V, Part); 250 break; 251 } 252 default: 253 llvm_unreachable("Unsupported opcode for instruction"); 254 } 255 } 256 257 void VPInstruction::execute(VPTransformState &State) { 258 assert(!State.Instance && "VPInstruction executing an Instance"); 259 for (unsigned Part = 0; Part < State.UF; ++Part) 260 generateInstruction(State, Part); 261 } 262 263 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const { 264 O << " +\n" << Indent << "\"EMIT "; 265 print(O); 266 O << "\\l\""; 267 } 268 269 void VPInstruction::print(raw_ostream &O) const { 270 printAsOperand(O); 271 O << " = "; 272 273 switch (getOpcode()) { 274 case VPInstruction::Not: 275 O << "not"; 276 break; 277 default: 278 O << Instruction::getOpcodeName(getOpcode()); 279 } 280 281 for (const VPValue *Operand : operands()) { 282 O << " "; 283 Operand->printAsOperand(O); 284 } 285 } 286 287 /// Generate the code inside the body of the vectorized loop. Assumes a single 288 /// LoopVectorBody basic-block was created for this. Introduce additional 289 /// basic-blocks as needed, and fill them all. 290 void VPlan::execute(VPTransformState *State) { 291 // 0. Set the reverse mapping from VPValues to Values for code generation. 292 for (auto &Entry : Value2VPValue) 293 State->VPValue2Value[Entry.second] = Entry.first; 294 295 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 296 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 297 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 298 BasicBlock *VectorLatchBB = VectorHeaderBB; 299 300 // 1. Make room to generate basic-blocks inside loop body if needed. 301 VectorLatchBB = VectorHeaderBB->splitBasicBlock( 302 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 303 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 304 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 305 // Remove the edge between Header and Latch to allow other connections. 306 // Temporarily terminate with unreachable until CFG is rewired. 307 // Note: this asserts the generated code's assumption that 308 // getFirstInsertionPt() can be dereferenced into an Instruction. 309 VectorHeaderBB->getTerminator()->eraseFromParent(); 310 State->Builder.SetInsertPoint(VectorHeaderBB); 311 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 312 State->Builder.SetInsertPoint(Terminator); 313 314 // 2. Generate code in loop body. 315 State->CFG.PrevVPBB = nullptr; 316 State->CFG.PrevBB = VectorHeaderBB; 317 State->CFG.LastBB = VectorLatchBB; 318 319 for (VPBlockBase *Block : depth_first(Entry)) 320 Block->execute(State); 321 322 // 3. Merge the temporary latch created with the last basic-block filled. 323 BasicBlock *LastBB = State->CFG.PrevBB; 324 // Connect LastBB to VectorLatchBB to facilitate their merge. 325 assert(isa<UnreachableInst>(LastBB->getTerminator()) && 326 "Expected VPlan CFG to terminate with unreachable"); 327 LastBB->getTerminator()->eraseFromParent(); 328 BranchInst::Create(VectorLatchBB, LastBB); 329 330 // Merge LastBB with Latch. 331 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 332 (void)Merged; 333 assert(Merged && "Could not merge last basic block with latch."); 334 VectorLatchBB = LastBB; 335 336 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB); 337 } 338 339 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 340 BasicBlock *LoopLatchBB) { 341 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 342 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 343 DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB); 344 // The vector body may be more than a single basic-block by this point. 345 // Update the dominator tree information inside the vector body by propagating 346 // it from header to latch, expecting only triangular control-flow, if any. 347 BasicBlock *PostDomSucc = nullptr; 348 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 349 // Get the list of successors of this block. 350 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 351 assert(Succs.size() <= 2 && 352 "Basic block in vector loop has more than 2 successors."); 353 PostDomSucc = Succs[0]; 354 if (Succs.size() == 1) { 355 assert(PostDomSucc->getSinglePredecessor() && 356 "PostDom successor has more than one predecessor."); 357 DT->addNewBlock(PostDomSucc, BB); 358 continue; 359 } 360 BasicBlock *InterimSucc = Succs[1]; 361 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 362 PostDomSucc = Succs[1]; 363 InterimSucc = Succs[0]; 364 } 365 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 366 "One successor of a basic block does not lead to the other."); 367 assert(InterimSucc->getSinglePredecessor() && 368 "Interim successor has more than one predecessor."); 369 assert(pred_size(PostDomSucc) == 2 && 370 "PostDom successor has more than two predecessors."); 371 DT->addNewBlock(InterimSucc, BB); 372 DT->addNewBlock(PostDomSucc, BB); 373 } 374 } 375 376 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 377 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 378 Twine(getOrCreateBID(Block)); 379 } 380 381 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 382 const std::string &Name = Block->getName(); 383 if (!Name.empty()) 384 return Name; 385 return "VPB" + Twine(getOrCreateBID(Block)); 386 } 387 388 void VPlanPrinter::dump() { 389 Depth = 1; 390 bumpIndent(0); 391 OS << "digraph VPlan {\n"; 392 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 393 if (!Plan.getName().empty()) 394 OS << "\\n" << DOT::EscapeString(Plan.getName()); 395 if (!Plan.Value2VPValue.empty()) { 396 OS << ", where:"; 397 for (auto Entry : Plan.Value2VPValue) { 398 OS << "\\n" << *Entry.second; 399 OS << DOT::EscapeString(" := "); 400 Entry.first->printAsOperand(OS, false); 401 } 402 } 403 OS << "\"]\n"; 404 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 405 OS << "edge [fontname=Courier, fontsize=30]\n"; 406 OS << "compound=true\n"; 407 408 for (VPBlockBase *Block : depth_first(Plan.getEntry())) 409 dumpBlock(Block); 410 411 OS << "}\n"; 412 } 413 414 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 415 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 416 dumpBasicBlock(BasicBlock); 417 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 418 dumpRegion(Region); 419 else 420 llvm_unreachable("Unsupported kind of VPBlock."); 421 } 422 423 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 424 bool Hidden, const Twine &Label) { 425 // Due to "dot" we print an edge between two regions as an edge between the 426 // exit basic block and the entry basic of the respective regions. 427 const VPBlockBase *Tail = From->getExitBasicBlock(); 428 const VPBlockBase *Head = To->getEntryBasicBlock(); 429 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 430 OS << " [ label=\"" << Label << '\"'; 431 if (Tail != From) 432 OS << " ltail=" << getUID(From); 433 if (Head != To) 434 OS << " lhead=" << getUID(To); 435 if (Hidden) 436 OS << "; splines=none"; 437 OS << "]\n"; 438 } 439 440 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 441 auto &Successors = Block->getSuccessors(); 442 if (Successors.size() == 1) 443 drawEdge(Block, Successors.front(), false, ""); 444 else if (Successors.size() == 2) { 445 drawEdge(Block, Successors.front(), false, "T"); 446 drawEdge(Block, Successors.back(), false, "F"); 447 } else { 448 unsigned SuccessorNumber = 0; 449 for (auto *Successor : Successors) 450 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 451 } 452 } 453 454 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 455 OS << Indent << getUID(BasicBlock) << " [label =\n"; 456 bumpIndent(1); 457 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 458 bumpIndent(1); 459 for (const VPRecipeBase &Recipe : *BasicBlock) 460 Recipe.print(OS, Indent); 461 462 // Dump the condition bit. 463 const VPValue *CBV = BasicBlock->getCondBit(); 464 if (CBV) { 465 OS << " +\n" << Indent << " \"CondBit: "; 466 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 467 CBI->printAsOperand(OS); 468 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 469 } else 470 CBV->printAsOperand(OS); 471 } 472 473 bumpIndent(-2); 474 OS << "\n" << Indent << "]\n"; 475 dumpEdges(BasicBlock); 476 } 477 478 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 479 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 480 bumpIndent(1); 481 OS << Indent << "fontname=Courier\n" 482 << Indent << "label=\"" 483 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 484 << DOT::EscapeString(Region->getName()) << "\"\n"; 485 // Dump the blocks of the region. 486 assert(Region->getEntry() && "Region contains no inner blocks."); 487 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 488 dumpBlock(Block); 489 bumpIndent(-1); 490 OS << Indent << "}\n"; 491 dumpEdges(Region); 492 } 493 494 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 495 std::string IngredientString; 496 raw_string_ostream RSO(IngredientString); 497 if (auto *Inst = dyn_cast<Instruction>(V)) { 498 if (!Inst->getType()->isVoidTy()) { 499 Inst->printAsOperand(RSO, false); 500 RSO << " = "; 501 } 502 RSO << Inst->getOpcodeName() << " "; 503 unsigned E = Inst->getNumOperands(); 504 if (E > 0) { 505 Inst->getOperand(0)->printAsOperand(RSO, false); 506 for (unsigned I = 1; I < E; ++I) 507 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 508 } 509 } else // !Inst 510 V->printAsOperand(RSO, false); 511 RSO.flush(); 512 O << DOT::EscapeString(IngredientString); 513 } 514 515 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const { 516 O << " +\n" << Indent << "\"WIDEN\\l\""; 517 for (auto &Instr : make_range(Begin, End)) 518 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 519 } 520 521 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, 522 const Twine &Indent) const { 523 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 524 if (Trunc) { 525 O << "\\l\""; 526 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 527 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 528 } else 529 O << " " << VPlanIngredient(IV) << "\\l\""; 530 } 531 532 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 533 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 534 } 535 536 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const { 537 O << " +\n" << Indent << "\"BLEND "; 538 Phi->printAsOperand(O, false); 539 O << " ="; 540 if (!User) { 541 // Not a User of any mask: not really blending, this is a 542 // single-predecessor phi. 543 O << " "; 544 Phi->getIncomingValue(0)->printAsOperand(O, false); 545 } else { 546 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 547 O << " "; 548 Phi->getIncomingValue(I)->printAsOperand(O, false); 549 O << "/"; 550 User->getOperand(I)->printAsOperand(O); 551 } 552 } 553 O << "\\l\""; 554 } 555 556 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const { 557 O << " +\n" 558 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 559 << VPlanIngredient(Ingredient); 560 if (AlsoPack) 561 O << " (S->V)"; 562 O << "\\l\""; 563 } 564 565 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 566 O << " +\n" 567 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 568 << "\\l\""; 569 } 570 571 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, 572 const Twine &Indent) const { 573 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 574 if (User) { 575 O << ", "; 576 User->getOperand(0)->printAsOperand(O); 577 } 578 O << "\\l\""; 579 } 580 581 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 582