xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 2946cd701067404b99c39fb29dc9c74bd7193eb3)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/GenericDomTreeConstruction.h"
37 #include "llvm/Support/GraphWriter.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include <cassert>
41 #include <iterator>
42 #include <string>
43 #include <vector>
44 
45 using namespace llvm;
46 extern cl::opt<bool> EnableVPlanNativePath;
47 
48 #define DEBUG_TYPE "vplan"
49 
50 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
51   if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V))
52     Instr->print(OS);
53   else
54     V.printAsOperand(OS);
55   return OS;
56 }
57 
58 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
59 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
60   const VPBlockBase *Block = this;
61   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
62     Block = Region->getEntry();
63   return cast<VPBasicBlock>(Block);
64 }
65 
66 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
67   VPBlockBase *Block = this;
68   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
69     Block = Region->getEntry();
70   return cast<VPBasicBlock>(Block);
71 }
72 
73 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
74 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
75   const VPBlockBase *Block = this;
76   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
77     Block = Region->getExit();
78   return cast<VPBasicBlock>(Block);
79 }
80 
81 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
82   VPBlockBase *Block = this;
83   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
84     Block = Region->getExit();
85   return cast<VPBasicBlock>(Block);
86 }
87 
88 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
89   if (!Successors.empty() || !Parent)
90     return this;
91   assert(Parent->getExit() == this &&
92          "Block w/o successors not the exit of its parent.");
93   return Parent->getEnclosingBlockWithSuccessors();
94 }
95 
96 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
97   if (!Predecessors.empty() || !Parent)
98     return this;
99   assert(Parent->getEntry() == this &&
100          "Block w/o predecessors not the entry of its parent.");
101   return Parent->getEnclosingBlockWithPredecessors();
102 }
103 
104 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
105   SmallVector<VPBlockBase *, 8> Blocks;
106   for (VPBlockBase *Block : depth_first(Entry))
107     Blocks.push_back(Block);
108 
109   for (VPBlockBase *Block : Blocks)
110     delete Block;
111 }
112 
113 BasicBlock *
114 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
115   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
116   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
117   BasicBlock *PrevBB = CFG.PrevBB;
118   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
119                                          PrevBB->getParent(), CFG.LastBB);
120   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
121 
122   // Hook up the new basic block to its predecessors.
123   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
124     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
125     auto &PredVPSuccessors = PredVPBB->getSuccessors();
126     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
127 
128     // In outer loop vectorization scenario, the predecessor BBlock may not yet
129     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
130     // vectorization. We do not encounter this case in inner loop vectorization
131     // as we start out by building a loop skeleton with the vector loop header
132     // and latch blocks. As a result, we never enter this function for the
133     // header block in the non VPlan-native path.
134     if (!PredBB) {
135       assert(EnableVPlanNativePath &&
136              "Unexpected null predecessor in non VPlan-native path");
137       CFG.VPBBsToFix.push_back(PredVPBB);
138       continue;
139     }
140 
141     assert(PredBB && "Predecessor basic-block not found building successor.");
142     auto *PredBBTerminator = PredBB->getTerminator();
143     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
144     if (isa<UnreachableInst>(PredBBTerminator)) {
145       assert(PredVPSuccessors.size() == 1 &&
146              "Predecessor ending w/o branch must have single successor.");
147       PredBBTerminator->eraseFromParent();
148       BranchInst::Create(NewBB, PredBB);
149     } else {
150       assert(PredVPSuccessors.size() == 2 &&
151              "Predecessor ending with branch must have two successors.");
152       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
153       assert(!PredBBTerminator->getSuccessor(idx) &&
154              "Trying to reset an existing successor block.");
155       PredBBTerminator->setSuccessor(idx, NewBB);
156     }
157   }
158   return NewBB;
159 }
160 
161 void VPBasicBlock::execute(VPTransformState *State) {
162   bool Replica = State->Instance &&
163                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
164   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
165   VPBlockBase *SingleHPred = nullptr;
166   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
167 
168   // 1. Create an IR basic block, or reuse the last one if possible.
169   // The last IR basic block is reused, as an optimization, in three cases:
170   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
171   // B. when the current VPBB has a single (hierarchical) predecessor which
172   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
173   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
174   //    is the exit of this region from a previous instance, or the predecessor
175   //    of this region.
176   if (PrevVPBB && /* A */
177       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
178         SingleHPred->getExitBasicBlock() == PrevVPBB &&
179         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
180       !(Replica && getPredecessors().empty())) {       /* C */
181     NewBB = createEmptyBasicBlock(State->CFG);
182     State->Builder.SetInsertPoint(NewBB);
183     // Temporarily terminate with unreachable until CFG is rewired.
184     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
185     State->Builder.SetInsertPoint(Terminator);
186     // Register NewBB in its loop. In innermost loops its the same for all BB's.
187     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
188     L->addBasicBlockToLoop(NewBB, *State->LI);
189     State->CFG.PrevBB = NewBB;
190   }
191 
192   // 2. Fill the IR basic block with IR instructions.
193   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
194                     << " in BB:" << NewBB->getName() << '\n');
195 
196   State->CFG.VPBB2IRBB[this] = NewBB;
197   State->CFG.PrevVPBB = this;
198 
199   for (VPRecipeBase &Recipe : Recipes)
200     Recipe.execute(*State);
201 
202   VPValue *CBV;
203   if (EnableVPlanNativePath && (CBV = getCondBit())) {
204     Value *IRCBV = CBV->getUnderlyingValue();
205     assert(IRCBV && "Unexpected null underlying value for condition bit");
206 
207     // Condition bit value in a VPBasicBlock is used as the branch selector. In
208     // the VPlan-native path case, since all branches are uniform we generate a
209     // branch instruction using the condition value from vector lane 0 and dummy
210     // successors. The successors are fixed later when the successor blocks are
211     // visited.
212     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
213     NewCond = State->Builder.CreateExtractElement(NewCond,
214                                                   State->Builder.getInt32(0));
215 
216     // Replace the temporary unreachable terminator with the new conditional
217     // branch.
218     auto *CurrentTerminator = NewBB->getTerminator();
219     assert(isa<UnreachableInst>(CurrentTerminator) &&
220            "Expected to replace unreachable terminator with conditional "
221            "branch.");
222     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
223     CondBr->setSuccessor(0, nullptr);
224     ReplaceInstWithInst(CurrentTerminator, CondBr);
225   }
226 
227   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
228 }
229 
230 void VPRegionBlock::execute(VPTransformState *State) {
231   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
232 
233   if (!isReplicator()) {
234     // Visit the VPBlocks connected to "this", starting from it.
235     for (VPBlockBase *Block : RPOT) {
236       if (EnableVPlanNativePath) {
237         // The inner loop vectorization path does not represent loop preheader
238         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
239         // vectorizing loop preheader block. In future, we may replace this
240         // check with the check for loop preheader.
241         if (Block->getNumPredecessors() == 0)
242           continue;
243 
244         // Skip vectorizing loop exit block. In future, we may replace this
245         // check with the check for loop exit.
246         if (Block->getNumSuccessors() == 0)
247           continue;
248       }
249 
250       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
251       Block->execute(State);
252     }
253     return;
254   }
255 
256   assert(!State->Instance && "Replicating a Region with non-null instance.");
257 
258   // Enter replicating mode.
259   State->Instance = {0, 0};
260 
261   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
262     State->Instance->Part = Part;
263     for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
264       State->Instance->Lane = Lane;
265       // Visit the VPBlocks connected to \p this, starting from it.
266       for (VPBlockBase *Block : RPOT) {
267         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
268         Block->execute(State);
269       }
270     }
271   }
272 
273   // Exit replicating mode.
274   State->Instance.reset();
275 }
276 
277 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
278   Parent = InsertPos->getParent();
279   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
280 }
281 
282 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
283   return getParent()->getRecipeList().erase(getIterator());
284 }
285 
286 void VPInstruction::generateInstruction(VPTransformState &State,
287                                         unsigned Part) {
288   IRBuilder<> &Builder = State.Builder;
289 
290   if (Instruction::isBinaryOp(getOpcode())) {
291     Value *A = State.get(getOperand(0), Part);
292     Value *B = State.get(getOperand(1), Part);
293     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
294     State.set(this, V, Part);
295     return;
296   }
297 
298   switch (getOpcode()) {
299   case VPInstruction::Not: {
300     Value *A = State.get(getOperand(0), Part);
301     Value *V = Builder.CreateNot(A);
302     State.set(this, V, Part);
303     break;
304   }
305   case VPInstruction::ICmpULE: {
306     Value *IV = State.get(getOperand(0), Part);
307     Value *TC = State.get(getOperand(1), Part);
308     Value *V = Builder.CreateICmpULE(IV, TC);
309     State.set(this, V, Part);
310     break;
311   }
312   default:
313     llvm_unreachable("Unsupported opcode for instruction");
314   }
315 }
316 
317 void VPInstruction::execute(VPTransformState &State) {
318   assert(!State.Instance && "VPInstruction executing an Instance");
319   for (unsigned Part = 0; Part < State.UF; ++Part)
320     generateInstruction(State, Part);
321 }
322 
323 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const {
324   O << " +\n" << Indent << "\"EMIT ";
325   print(O);
326   O << "\\l\"";
327 }
328 
329 void VPInstruction::print(raw_ostream &O) const {
330   printAsOperand(O);
331   O << " = ";
332 
333   switch (getOpcode()) {
334   case VPInstruction::Not:
335     O << "not";
336     break;
337   case VPInstruction::ICmpULE:
338     O << "icmp ule";
339     break;
340   case VPInstruction::SLPLoad:
341     O << "combined load";
342     break;
343   case VPInstruction::SLPStore:
344     O << "combined store";
345     break;
346   default:
347     O << Instruction::getOpcodeName(getOpcode());
348   }
349 
350   for (const VPValue *Operand : operands()) {
351     O << " ";
352     Operand->printAsOperand(O);
353   }
354 }
355 
356 /// Generate the code inside the body of the vectorized loop. Assumes a single
357 /// LoopVectorBody basic-block was created for this. Introduce additional
358 /// basic-blocks as needed, and fill them all.
359 void VPlan::execute(VPTransformState *State) {
360   // -1. Check if the backedge taken count is needed, and if so build it.
361   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
362     Value *TC = State->TripCount;
363     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
364     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
365                                    "trip.count.minus.1");
366     Value2VPValue[TCMO] = BackedgeTakenCount;
367   }
368 
369   // 0. Set the reverse mapping from VPValues to Values for code generation.
370   for (auto &Entry : Value2VPValue)
371     State->VPValue2Value[Entry.second] = Entry.first;
372 
373   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
374   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
375   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
376   BasicBlock *VectorLatchBB = VectorHeaderBB;
377 
378   // 1. Make room to generate basic-blocks inside loop body if needed.
379   VectorLatchBB = VectorHeaderBB->splitBasicBlock(
380       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
381   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
382   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
383   // Remove the edge between Header and Latch to allow other connections.
384   // Temporarily terminate with unreachable until CFG is rewired.
385   // Note: this asserts the generated code's assumption that
386   // getFirstInsertionPt() can be dereferenced into an Instruction.
387   VectorHeaderBB->getTerminator()->eraseFromParent();
388   State->Builder.SetInsertPoint(VectorHeaderBB);
389   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
390   State->Builder.SetInsertPoint(Terminator);
391 
392   // 2. Generate code in loop body.
393   State->CFG.PrevVPBB = nullptr;
394   State->CFG.PrevBB = VectorHeaderBB;
395   State->CFG.LastBB = VectorLatchBB;
396 
397   for (VPBlockBase *Block : depth_first(Entry))
398     Block->execute(State);
399 
400   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
401   // VPBB's successors.
402   for (auto VPBB : State->CFG.VPBBsToFix) {
403     assert(EnableVPlanNativePath &&
404            "Unexpected VPBBsToFix in non VPlan-native path");
405     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
406     assert(BB && "Unexpected null basic block for VPBB");
407 
408     unsigned Idx = 0;
409     auto *BBTerminator = BB->getTerminator();
410 
411     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
412       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
413       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
414       ++Idx;
415     }
416   }
417 
418   // 3. Merge the temporary latch created with the last basic-block filled.
419   BasicBlock *LastBB = State->CFG.PrevBB;
420   // Connect LastBB to VectorLatchBB to facilitate their merge.
421   assert((EnableVPlanNativePath ||
422           isa<UnreachableInst>(LastBB->getTerminator())) &&
423          "Expected InnerLoop VPlan CFG to terminate with unreachable");
424   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
425          "Expected VPlan CFG to terminate with branch in NativePath");
426   LastBB->getTerminator()->eraseFromParent();
427   BranchInst::Create(VectorLatchBB, LastBB);
428 
429   // Merge LastBB with Latch.
430   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
431   (void)Merged;
432   assert(Merged && "Could not merge last basic block with latch.");
433   VectorLatchBB = LastBB;
434 
435   // We do not attempt to preserve DT for outer loop vectorization currently.
436   if (!EnableVPlanNativePath)
437     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB);
438 }
439 
440 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
441                                 BasicBlock *LoopLatchBB) {
442   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
443   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
444   DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB);
445   // The vector body may be more than a single basic-block by this point.
446   // Update the dominator tree information inside the vector body by propagating
447   // it from header to latch, expecting only triangular control-flow, if any.
448   BasicBlock *PostDomSucc = nullptr;
449   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
450     // Get the list of successors of this block.
451     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
452     assert(Succs.size() <= 2 &&
453            "Basic block in vector loop has more than 2 successors.");
454     PostDomSucc = Succs[0];
455     if (Succs.size() == 1) {
456       assert(PostDomSucc->getSinglePredecessor() &&
457              "PostDom successor has more than one predecessor.");
458       DT->addNewBlock(PostDomSucc, BB);
459       continue;
460     }
461     BasicBlock *InterimSucc = Succs[1];
462     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
463       PostDomSucc = Succs[1];
464       InterimSucc = Succs[0];
465     }
466     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
467            "One successor of a basic block does not lead to the other.");
468     assert(InterimSucc->getSinglePredecessor() &&
469            "Interim successor has more than one predecessor.");
470     assert(PostDomSucc->hasNPredecessors(2) &&
471            "PostDom successor has more than two predecessors.");
472     DT->addNewBlock(InterimSucc, BB);
473     DT->addNewBlock(PostDomSucc, BB);
474   }
475 }
476 
477 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
478   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
479          Twine(getOrCreateBID(Block));
480 }
481 
482 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
483   const std::string &Name = Block->getName();
484   if (!Name.empty())
485     return Name;
486   return "VPB" + Twine(getOrCreateBID(Block));
487 }
488 
489 void VPlanPrinter::dump() {
490   Depth = 1;
491   bumpIndent(0);
492   OS << "digraph VPlan {\n";
493   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
494   if (!Plan.getName().empty())
495     OS << "\\n" << DOT::EscapeString(Plan.getName());
496   if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) {
497     OS << ", where:";
498     if (Plan.BackedgeTakenCount)
499       OS << "\\n"
500          << *Plan.getOrCreateBackedgeTakenCount() << " := BackedgeTakenCount";
501     for (auto Entry : Plan.Value2VPValue) {
502       OS << "\\n" << *Entry.second;
503       OS << DOT::EscapeString(" := ");
504       Entry.first->printAsOperand(OS, false);
505     }
506   }
507   OS << "\"]\n";
508   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
509   OS << "edge [fontname=Courier, fontsize=30]\n";
510   OS << "compound=true\n";
511 
512   for (VPBlockBase *Block : depth_first(Plan.getEntry()))
513     dumpBlock(Block);
514 
515   OS << "}\n";
516 }
517 
518 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
519   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
520     dumpBasicBlock(BasicBlock);
521   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
522     dumpRegion(Region);
523   else
524     llvm_unreachable("Unsupported kind of VPBlock.");
525 }
526 
527 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
528                             bool Hidden, const Twine &Label) {
529   // Due to "dot" we print an edge between two regions as an edge between the
530   // exit basic block and the entry basic of the respective regions.
531   const VPBlockBase *Tail = From->getExitBasicBlock();
532   const VPBlockBase *Head = To->getEntryBasicBlock();
533   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
534   OS << " [ label=\"" << Label << '\"';
535   if (Tail != From)
536     OS << " ltail=" << getUID(From);
537   if (Head != To)
538     OS << " lhead=" << getUID(To);
539   if (Hidden)
540     OS << "; splines=none";
541   OS << "]\n";
542 }
543 
544 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
545   auto &Successors = Block->getSuccessors();
546   if (Successors.size() == 1)
547     drawEdge(Block, Successors.front(), false, "");
548   else if (Successors.size() == 2) {
549     drawEdge(Block, Successors.front(), false, "T");
550     drawEdge(Block, Successors.back(), false, "F");
551   } else {
552     unsigned SuccessorNumber = 0;
553     for (auto *Successor : Successors)
554       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
555   }
556 }
557 
558 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
559   OS << Indent << getUID(BasicBlock) << " [label =\n";
560   bumpIndent(1);
561   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
562   bumpIndent(1);
563   for (const VPRecipeBase &Recipe : *BasicBlock)
564     Recipe.print(OS, Indent);
565 
566   // Dump the condition bit.
567   const VPValue *CBV = BasicBlock->getCondBit();
568   if (CBV) {
569     OS << " +\n" << Indent << " \"CondBit: ";
570     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
571       CBI->printAsOperand(OS);
572       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
573     } else {
574       CBV->printAsOperand(OS);
575       OS << "\"";
576     }
577   }
578 
579   bumpIndent(-2);
580   OS << "\n" << Indent << "]\n";
581   dumpEdges(BasicBlock);
582 }
583 
584 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
585   OS << Indent << "subgraph " << getUID(Region) << " {\n";
586   bumpIndent(1);
587   OS << Indent << "fontname=Courier\n"
588      << Indent << "label=\""
589      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
590      << DOT::EscapeString(Region->getName()) << "\"\n";
591   // Dump the blocks of the region.
592   assert(Region->getEntry() && "Region contains no inner blocks.");
593   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
594     dumpBlock(Block);
595   bumpIndent(-1);
596   OS << Indent << "}\n";
597   dumpEdges(Region);
598 }
599 
600 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
601   std::string IngredientString;
602   raw_string_ostream RSO(IngredientString);
603   if (auto *Inst = dyn_cast<Instruction>(V)) {
604     if (!Inst->getType()->isVoidTy()) {
605       Inst->printAsOperand(RSO, false);
606       RSO << " = ";
607     }
608     RSO << Inst->getOpcodeName() << " ";
609     unsigned E = Inst->getNumOperands();
610     if (E > 0) {
611       Inst->getOperand(0)->printAsOperand(RSO, false);
612       for (unsigned I = 1; I < E; ++I)
613         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
614     }
615   } else // !Inst
616     V->printAsOperand(RSO, false);
617   RSO.flush();
618   O << DOT::EscapeString(IngredientString);
619 }
620 
621 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const {
622   O << " +\n" << Indent << "\"WIDEN\\l\"";
623   for (auto &Instr : make_range(Begin, End))
624     O << " +\n" << Indent << "\"  " << VPlanIngredient(&Instr) << "\\l\"";
625 }
626 
627 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O,
628                                           const Twine &Indent) const {
629   O << " +\n" << Indent << "\"WIDEN-INDUCTION";
630   if (Trunc) {
631     O << "\\l\"";
632     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
633     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc) << "\\l\"";
634   } else
635     O << " " << VPlanIngredient(IV) << "\\l\"";
636 }
637 
638 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
639   O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\"";
640 }
641 
642 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const {
643   O << " +\n" << Indent << "\"BLEND ";
644   Phi->printAsOperand(O, false);
645   O << " =";
646   if (!User) {
647     // Not a User of any mask: not really blending, this is a
648     // single-predecessor phi.
649     O << " ";
650     Phi->getIncomingValue(0)->printAsOperand(O, false);
651   } else {
652     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
653       O << " ";
654       Phi->getIncomingValue(I)->printAsOperand(O, false);
655       O << "/";
656       User->getOperand(I)->printAsOperand(O);
657     }
658   }
659   O << "\\l\"";
660 }
661 
662 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const {
663   O << " +\n"
664     << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
665     << VPlanIngredient(Ingredient);
666   if (AlsoPack)
667     O << " (S->V)";
668   O << "\\l\"";
669 }
670 
671 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
672   O << " +\n"
673     << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst)
674     << "\\l\"";
675 }
676 
677 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O,
678                                            const Twine &Indent) const {
679   O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr);
680   if (User) {
681     O << ", ";
682     User->getOperand(0)->printAsOperand(O);
683   }
684   O << "\\l\"";
685 }
686 
687 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
688 
689 void VPValue::replaceAllUsesWith(VPValue *New) {
690   for (VPUser *User : users())
691     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
692       if (User->getOperand(I) == this)
693         User->setOperand(I, New);
694 }
695 
696 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
697                                           Old2NewTy &Old2New,
698                                           InterleavedAccessInfo &IAI) {
699   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
700   for (VPBlockBase *Base : RPOT) {
701     visitBlock(Base, Old2New, IAI);
702   }
703 }
704 
705 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
706                                          InterleavedAccessInfo &IAI) {
707   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
708     for (VPRecipeBase &VPI : *VPBB) {
709       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
710       auto *VPInst = cast<VPInstruction>(&VPI);
711       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
712       auto *IG = IAI.getInterleaveGroup(Inst);
713       if (!IG)
714         continue;
715 
716       auto NewIGIter = Old2New.find(IG);
717       if (NewIGIter == Old2New.end())
718         Old2New[IG] = new InterleaveGroup<VPInstruction>(
719             IG->getFactor(), IG->isReverse(), IG->getAlignment());
720 
721       if (Inst == IG->getInsertPos())
722         Old2New[IG]->setInsertPos(VPInst);
723 
724       InterleaveGroupMap[VPInst] = Old2New[IG];
725       InterleaveGroupMap[VPInst]->insertMember(
726           VPInst, IG->getIndex(Inst),
727           IG->isReverse() ? (-1) * int(IG->getFactor()) : IG->getFactor());
728     }
729   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
730     visitRegion(Region, Old2New, IAI);
731   else
732     llvm_unreachable("Unsupported kind of VPBlock.");
733 }
734 
735 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
736                                                  InterleavedAccessInfo &IAI) {
737   Old2NewTy Old2New;
738   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
739 }
740