1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanDominatorTree.h" 23 #include "VPlanPatternMatch.h" 24 #include "VPlanTransforms.h" 25 #include "VPlanUtils.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/DomTreeUpdater.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/GraphWriter.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopVersioning.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 #include <cassert> 49 #include <string> 50 #include <vector> 51 52 using namespace llvm; 53 using namespace llvm::VPlanPatternMatch; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableVPlanNativePath; 57 } 58 extern cl::opt<unsigned> ForceTargetInstructionCost; 59 60 static cl::opt<bool> PrintVPlansInDotFormat( 61 "vplan-print-in-dot-format", cl::Hidden, 62 cl::desc("Use dot format instead of plain text when dumping VPlans")); 63 64 #define DEBUG_TYPE "vplan" 65 66 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 67 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 68 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 69 VPSlotTracker SlotTracker( 70 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 71 V.print(OS, SlotTracker); 72 return OS; 73 } 74 #endif 75 76 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 77 const ElementCount &VF) const { 78 switch (LaneKind) { 79 case VPLane::Kind::ScalableLast: 80 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 81 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 82 Builder.getInt32(VF.getKnownMinValue() - Lane)); 83 case VPLane::Kind::First: 84 return Builder.getInt32(Lane); 85 } 86 llvm_unreachable("Unknown lane kind"); 87 } 88 89 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 90 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 91 if (Def) 92 Def->addDefinedValue(this); 93 } 94 95 VPValue::~VPValue() { 96 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 97 if (Def) 98 Def->removeDefinedValue(this); 99 } 100 101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 102 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 103 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 104 R->print(OS, "", SlotTracker); 105 else 106 printAsOperand(OS, SlotTracker); 107 } 108 109 void VPValue::dump() const { 110 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 111 VPSlotTracker SlotTracker( 112 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 113 print(dbgs(), SlotTracker); 114 dbgs() << "\n"; 115 } 116 117 void VPDef::dump() const { 118 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 119 VPSlotTracker SlotTracker( 120 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 121 print(dbgs(), "", SlotTracker); 122 dbgs() << "\n"; 123 } 124 #endif 125 126 VPRecipeBase *VPValue::getDefiningRecipe() { 127 return cast_or_null<VPRecipeBase>(Def); 128 } 129 130 const VPRecipeBase *VPValue::getDefiningRecipe() const { 131 return cast_or_null<VPRecipeBase>(Def); 132 } 133 134 // Get the top-most entry block of \p Start. This is the entry block of the 135 // containing VPlan. This function is templated to support both const and non-const blocks 136 template <typename T> static T *getPlanEntry(T *Start) { 137 T *Next = Start; 138 T *Current = Start; 139 while ((Next = Next->getParent())) 140 Current = Next; 141 142 SmallSetVector<T *, 8> WorkList; 143 WorkList.insert(Current); 144 145 for (unsigned i = 0; i < WorkList.size(); i++) { 146 T *Current = WorkList[i]; 147 if (Current->getNumPredecessors() == 0) 148 return Current; 149 auto &Predecessors = Current->getPredecessors(); 150 WorkList.insert(Predecessors.begin(), Predecessors.end()); 151 } 152 153 llvm_unreachable("VPlan without any entry node without predecessors"); 154 } 155 156 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 157 158 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 159 160 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getEntry(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getEntry(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 void VPBlockBase::setPlan(VPlan *ParentPlan) { 176 assert( 177 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 178 "Can only set plan on its entry or preheader block."); 179 Plan = ParentPlan; 180 } 181 182 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 183 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 184 const VPBlockBase *Block = this; 185 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 186 Block = Region->getExiting(); 187 return cast<VPBasicBlock>(Block); 188 } 189 190 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 191 VPBlockBase *Block = this; 192 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 193 Block = Region->getExiting(); 194 return cast<VPBasicBlock>(Block); 195 } 196 197 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 198 if (!Successors.empty() || !Parent) 199 return this; 200 assert(Parent->getExiting() == this && 201 "Block w/o successors not the exiting block of its parent."); 202 return Parent->getEnclosingBlockWithSuccessors(); 203 } 204 205 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 206 if (!Predecessors.empty() || !Parent) 207 return this; 208 assert(Parent->getEntry() == this && 209 "Block w/o predecessors not the entry of its parent."); 210 return Parent->getEnclosingBlockWithPredecessors(); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 215 delete Block; 216 } 217 218 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 219 iterator It = begin(); 220 while (It != end() && It->isPhi()) 221 It++; 222 return It; 223 } 224 225 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 226 DominatorTree *DT, IRBuilderBase &Builder, 227 InnerLoopVectorizer *ILV, VPlan *Plan) 228 : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 229 LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {} 230 231 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 232 if (Def->isLiveIn()) 233 return Def->getLiveInIRValue(); 234 235 if (hasScalarValue(Def, Instance)) { 236 return Data 237 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 238 } 239 if (!Instance.Lane.isFirstLane() && 240 vputils::isUniformAfterVectorization(Def) && 241 hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) { 242 return Data.PerPartScalars[Def][Instance.Part][0]; 243 } 244 245 assert(hasVectorValue(Def, Instance.Part)); 246 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 247 if (!VecPart->getType()->isVectorTy()) { 248 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 249 return VecPart; 250 } 251 // TODO: Cache created scalar values. 252 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 253 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 254 // set(Def, Extract, Instance); 255 return Extract; 256 } 257 258 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { 259 if (NeedsScalar) { 260 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || 261 !vputils::onlyFirstLaneUsed(Def) || 262 (hasScalarValue(Def, VPIteration(Part, 0)) && 263 Data.PerPartScalars[Def][Part].size() == 1)) && 264 "Trying to access a single scalar per part but has multiple scalars " 265 "per part."); 266 return get(Def, VPIteration(Part, 0)); 267 } 268 269 // If Values have been set for this Def return the one relevant for \p Part. 270 if (hasVectorValue(Def, Part)) 271 return Data.PerPartOutput[Def][Part]; 272 273 auto GetBroadcastInstrs = [this, Def](Value *V) { 274 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 275 if (VF.isScalar()) 276 return V; 277 // Place the code for broadcasting invariant variables in the new preheader. 278 IRBuilder<>::InsertPointGuard Guard(Builder); 279 if (SafeToHoist) { 280 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 281 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 282 if (LoopVectorPreHeader) 283 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 284 } 285 286 // Place the code for broadcasting invariant variables in the new preheader. 287 // Broadcast the scalar into all locations in the vector. 288 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 289 290 return Shuf; 291 }; 292 293 if (!hasScalarValue(Def, {Part, 0})) { 294 assert(Def->isLiveIn() && "expected a live-in"); 295 if (Part != 0) 296 return get(Def, 0); 297 Value *IRV = Def->getLiveInIRValue(); 298 Value *B = GetBroadcastInstrs(IRV); 299 set(Def, B, Part); 300 return B; 301 } 302 303 Value *ScalarValue = get(Def, {Part, 0}); 304 // If we aren't vectorizing, we can just copy the scalar map values over 305 // to the vector map. 306 if (VF.isScalar()) { 307 set(Def, ScalarValue, Part); 308 return ScalarValue; 309 } 310 311 bool IsUniform = vputils::isUniformAfterVectorization(Def); 312 313 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 314 // Check if there is a scalar value for the selected lane. 315 if (!hasScalarValue(Def, {Part, LastLane})) { 316 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 317 // VPExpandSCEVRecipes can also be uniform. 318 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 319 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 320 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 321 "unexpected recipe found to be invariant"); 322 IsUniform = true; 323 LastLane = 0; 324 } 325 326 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 327 // Set the insert point after the last scalarized instruction or after the 328 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 329 // will directly follow the scalar definitions. 330 auto OldIP = Builder.saveIP(); 331 auto NewIP = 332 isa<PHINode>(LastInst) 333 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 334 : std::next(BasicBlock::iterator(LastInst)); 335 Builder.SetInsertPoint(&*NewIP); 336 337 // However, if we are vectorizing, we need to construct the vector values. 338 // If the value is known to be uniform after vectorization, we can just 339 // broadcast the scalar value corresponding to lane zero for each unroll 340 // iteration. Otherwise, we construct the vector values using 341 // insertelement instructions. Since the resulting vectors are stored in 342 // State, we will only generate the insertelements once. 343 Value *VectorValue = nullptr; 344 if (IsUniform) { 345 VectorValue = GetBroadcastInstrs(ScalarValue); 346 set(Def, VectorValue, Part); 347 } else { 348 // Initialize packing with insertelements to start from undef. 349 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 350 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 351 set(Def, Undef, Part); 352 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 353 packScalarIntoVectorValue(Def, {Part, Lane}); 354 VectorValue = get(Def, Part); 355 } 356 Builder.restoreIP(OldIP); 357 return VectorValue; 358 } 359 360 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 361 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 362 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 363 } 364 365 void VPTransformState::addNewMetadata(Instruction *To, 366 const Instruction *Orig) { 367 // If the loop was versioned with memchecks, add the corresponding no-alias 368 // metadata. 369 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 370 LVer->annotateInstWithNoAlias(To, Orig); 371 } 372 373 void VPTransformState::addMetadata(Value *To, Instruction *From) { 374 // No source instruction to transfer metadata from? 375 if (!From) 376 return; 377 378 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 379 propagateMetadata(ToI, From); 380 addNewMetadata(ToI, From); 381 } 382 } 383 384 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 385 const DILocation *DIL = DL; 386 // When a FSDiscriminator is enabled, we don't need to add the multiply 387 // factors to the discriminators. 388 if (DIL && 389 Builder.GetInsertBlock() 390 ->getParent() 391 ->shouldEmitDebugInfoForProfiling() && 392 !EnableFSDiscriminator) { 393 // FIXME: For scalable vectors, assume vscale=1. 394 auto NewDIL = 395 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 396 if (NewDIL) 397 Builder.SetCurrentDebugLocation(*NewDIL); 398 else 399 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 400 << DIL->getFilename() << " Line: " << DIL->getLine()); 401 } else 402 Builder.SetCurrentDebugLocation(DIL); 403 } 404 405 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 406 const VPIteration &Instance) { 407 Value *ScalarInst = get(Def, Instance); 408 Value *VectorValue = get(Def, Instance.Part); 409 VectorValue = Builder.CreateInsertElement( 410 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 411 set(Def, VectorValue, Instance.Part); 412 } 413 414 BasicBlock * 415 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 416 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 417 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 418 BasicBlock *PrevBB = CFG.PrevBB; 419 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 420 PrevBB->getParent(), CFG.ExitBB); 421 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 422 423 // Hook up the new basic block to its predecessors. 424 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 425 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 426 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 427 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 428 429 assert(PredBB && "Predecessor basic-block not found building successor."); 430 auto *PredBBTerminator = PredBB->getTerminator(); 431 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 432 433 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 434 if (isa<UnreachableInst>(PredBBTerminator)) { 435 assert(PredVPSuccessors.size() == 1 && 436 "Predecessor ending w/o branch must have single successor."); 437 DebugLoc DL = PredBBTerminator->getDebugLoc(); 438 PredBBTerminator->eraseFromParent(); 439 auto *Br = BranchInst::Create(NewBB, PredBB); 440 Br->setDebugLoc(DL); 441 } else if (TermBr && !TermBr->isConditional()) { 442 TermBr->setSuccessor(0, NewBB); 443 } else { 444 // Set each forward successor here when it is created, excluding 445 // backedges. A backward successor is set when the branch is created. 446 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 447 assert(!TermBr->getSuccessor(idx) && 448 "Trying to reset an existing successor block."); 449 TermBr->setSuccessor(idx, NewBB); 450 } 451 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 452 } 453 return NewBB; 454 } 455 456 void VPIRBasicBlock::execute(VPTransformState *State) { 457 assert(getHierarchicalSuccessors().size() <= 2 && 458 "VPIRBasicBlock can have at most two successors at the moment!"); 459 State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); 460 executeRecipes(State, getIRBasicBlock()); 461 if (getSingleSuccessor()) { 462 assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator())); 463 auto *Br = State->Builder.CreateBr(getIRBasicBlock()); 464 Br->setOperand(0, nullptr); 465 getIRBasicBlock()->getTerminator()->eraseFromParent(); 466 } 467 468 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 469 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 470 BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; 471 assert(PredBB && "Predecessor basic-block not found building successor."); 472 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 473 474 auto *PredBBTerminator = PredBB->getTerminator(); 475 auto *TermBr = cast<BranchInst>(PredBBTerminator); 476 // Set each forward successor here when it is created, excluding 477 // backedges. A backward successor is set when the branch is created. 478 const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 479 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 480 assert(!TermBr->getSuccessor(idx) && 481 "Trying to reset an existing successor block."); 482 TermBr->setSuccessor(idx, IRBB); 483 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); 484 } 485 } 486 487 void VPBasicBlock::execute(VPTransformState *State) { 488 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 489 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 490 VPBlockBase *SingleHPred = nullptr; 491 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 492 493 auto IsLoopRegion = [](VPBlockBase *BB) { 494 auto *R = dyn_cast<VPRegionBlock>(BB); 495 return R && !R->isReplicator(); 496 }; 497 498 // 1. Create an IR basic block. 499 if (PrevVPBB && /* A */ 500 !((SingleHPred = getSingleHierarchicalPredecessor()) && 501 SingleHPred->getExitingBasicBlock() == PrevVPBB && 502 PrevVPBB->getSingleHierarchicalSuccessor() && 503 (SingleHPred->getParent() == getEnclosingLoopRegion() && 504 !IsLoopRegion(SingleHPred))) && /* B */ 505 !(Replica && getPredecessors().empty())) { /* C */ 506 // The last IR basic block is reused, as an optimization, in three cases: 507 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 508 // B. when the current VPBB has a single (hierarchical) predecessor which 509 // is PrevVPBB and the latter has a single (hierarchical) successor which 510 // both are in the same non-replicator region; and 511 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 512 // is the exiting VPBB of this region from a previous instance, or the 513 // predecessor of this region. 514 515 NewBB = createEmptyBasicBlock(State->CFG); 516 State->Builder.SetInsertPoint(NewBB); 517 // Temporarily terminate with unreachable until CFG is rewired. 518 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 519 // Register NewBB in its loop. In innermost loops its the same for all 520 // BB's. 521 if (State->CurrentVectorLoop) 522 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 523 State->Builder.SetInsertPoint(Terminator); 524 State->CFG.PrevBB = NewBB; 525 } 526 527 // 2. Fill the IR basic block with IR instructions. 528 executeRecipes(State, NewBB); 529 } 530 531 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 532 for (VPRecipeBase &R : Recipes) { 533 for (auto *Def : R.definedValues()) 534 Def->replaceAllUsesWith(NewValue); 535 536 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 537 R.setOperand(I, NewValue); 538 } 539 } 540 541 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 542 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 543 << " in BB:" << BB->getName() << '\n'); 544 545 State->CFG.VPBB2IRBB[this] = BB; 546 State->CFG.PrevVPBB = this; 547 548 for (VPRecipeBase &Recipe : Recipes) 549 Recipe.execute(*State); 550 551 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 552 } 553 554 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 555 assert((SplitAt == end() || SplitAt->getParent() == this) && 556 "can only split at a position in the same block"); 557 558 SmallVector<VPBlockBase *, 2> Succs(successors()); 559 // First, disconnect the current block from its successors. 560 for (VPBlockBase *Succ : Succs) 561 VPBlockUtils::disconnectBlocks(this, Succ); 562 563 // Create new empty block after the block to split. 564 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 565 VPBlockUtils::insertBlockAfter(SplitBlock, this); 566 567 // Add successors for block to split to new block. 568 for (VPBlockBase *Succ : Succs) 569 VPBlockUtils::connectBlocks(SplitBlock, Succ); 570 571 // Finally, move the recipes starting at SplitAt to new block. 572 for (VPRecipeBase &ToMove : 573 make_early_inc_range(make_range(SplitAt, this->end()))) 574 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 575 576 return SplitBlock; 577 } 578 579 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 580 VPRegionBlock *P = getParent(); 581 if (P && P->isReplicator()) { 582 P = P->getParent(); 583 assert(!cast<VPRegionBlock>(P)->isReplicator() && 584 "unexpected nested replicate regions"); 585 } 586 return P; 587 } 588 589 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 590 if (VPBB->empty()) { 591 assert( 592 VPBB->getNumSuccessors() < 2 && 593 "block with multiple successors doesn't have a recipe as terminator"); 594 return false; 595 } 596 597 const VPRecipeBase *R = &VPBB->back(); 598 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 599 match(R, m_BranchOnCond(m_VPValue())) || 600 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 601 (void)IsCondBranch; 602 603 if (VPBB->getNumSuccessors() >= 2 || 604 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 605 assert(IsCondBranch && "block with multiple successors not terminated by " 606 "conditional branch recipe"); 607 608 return true; 609 } 610 611 assert( 612 !IsCondBranch && 613 "block with 0 or 1 successors terminated by conditional branch recipe"); 614 return false; 615 } 616 617 VPRecipeBase *VPBasicBlock::getTerminator() { 618 if (hasConditionalTerminator(this)) 619 return &back(); 620 return nullptr; 621 } 622 623 const VPRecipeBase *VPBasicBlock::getTerminator() const { 624 if (hasConditionalTerminator(this)) 625 return &back(); 626 return nullptr; 627 } 628 629 bool VPBasicBlock::isExiting() const { 630 return getParent() && getParent()->getExitingBasicBlock() == this; 631 } 632 633 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 634 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 635 if (getSuccessors().empty()) { 636 O << Indent << "No successors\n"; 637 } else { 638 O << Indent << "Successor(s): "; 639 ListSeparator LS; 640 for (auto *Succ : getSuccessors()) 641 O << LS << Succ->getName(); 642 O << '\n'; 643 } 644 } 645 646 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 647 VPSlotTracker &SlotTracker) const { 648 O << Indent << getName() << ":\n"; 649 650 auto RecipeIndent = Indent + " "; 651 for (const VPRecipeBase &Recipe : *this) { 652 Recipe.print(O, RecipeIndent, SlotTracker); 653 O << '\n'; 654 } 655 656 printSuccessors(O, Indent); 657 } 658 #endif 659 660 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 661 662 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 663 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 664 // Remapping of operands must be done separately. Returns a pair with the new 665 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 666 // region, return nullptr for the exiting block. 667 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 668 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 669 VPBlockBase *Exiting = nullptr; 670 bool InRegion = Entry->getParent(); 671 // First, clone blocks reachable from Entry. 672 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 673 VPBlockBase *NewBB = BB->clone(); 674 Old2NewVPBlocks[BB] = NewBB; 675 if (InRegion && BB->getNumSuccessors() == 0) { 676 assert(!Exiting && "Multiple exiting blocks?"); 677 Exiting = BB; 678 } 679 } 680 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 681 682 // Second, update the predecessors & successors of the cloned blocks. 683 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 684 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 685 SmallVector<VPBlockBase *> NewPreds; 686 for (VPBlockBase *Pred : BB->getPredecessors()) { 687 NewPreds.push_back(Old2NewVPBlocks[Pred]); 688 } 689 NewBB->setPredecessors(NewPreds); 690 SmallVector<VPBlockBase *> NewSuccs; 691 for (VPBlockBase *Succ : BB->successors()) { 692 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 693 } 694 NewBB->setSuccessors(NewSuccs); 695 } 696 697 #if !defined(NDEBUG) 698 // Verify that the order of predecessors and successors matches in the cloned 699 // version. 700 for (const auto &[OldBB, NewBB] : 701 zip(vp_depth_first_shallow(Entry), 702 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 703 for (const auto &[OldPred, NewPred] : 704 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 705 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 706 707 for (const auto &[OldSucc, NewSucc] : 708 zip(OldBB->successors(), NewBB->successors())) 709 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 710 } 711 #endif 712 713 return std::make_pair(Old2NewVPBlocks[Entry], 714 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 715 } 716 717 VPRegionBlock *VPRegionBlock::clone() { 718 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 719 auto *NewRegion = 720 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 721 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 722 Block->setParent(NewRegion); 723 return NewRegion; 724 } 725 726 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 727 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 728 // Drop all references in VPBasicBlocks and replace all uses with 729 // DummyValue. 730 Block->dropAllReferences(NewValue); 731 } 732 733 void VPRegionBlock::execute(VPTransformState *State) { 734 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 735 RPOT(Entry); 736 737 if (!isReplicator()) { 738 // Create and register the new vector loop. 739 Loop *PrevLoop = State->CurrentVectorLoop; 740 State->CurrentVectorLoop = State->LI->AllocateLoop(); 741 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 742 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 743 744 // Insert the new loop into the loop nest and register the new basic blocks 745 // before calling any utilities such as SCEV that require valid LoopInfo. 746 if (ParentLoop) 747 ParentLoop->addChildLoop(State->CurrentVectorLoop); 748 else 749 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 750 751 // Visit the VPBlocks connected to "this", starting from it. 752 for (VPBlockBase *Block : RPOT) { 753 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 754 Block->execute(State); 755 } 756 757 State->CurrentVectorLoop = PrevLoop; 758 return; 759 } 760 761 assert(!State->Instance && "Replicating a Region with non-null instance."); 762 763 // Enter replicating mode. 764 State->Instance = VPIteration(0, 0); 765 766 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 767 State->Instance->Part = Part; 768 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 769 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 770 ++Lane) { 771 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 772 // Visit the VPBlocks connected to \p this, starting from it. 773 for (VPBlockBase *Block : RPOT) { 774 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 775 Block->execute(State); 776 } 777 } 778 } 779 780 // Exit replicating mode. 781 State->Instance.reset(); 782 } 783 784 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 785 InstructionCost Cost = 0; 786 for (VPRecipeBase &R : Recipes) 787 Cost += R.cost(VF, Ctx); 788 return Cost; 789 } 790 791 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 792 if (!isReplicator()) { 793 InstructionCost Cost = 0; 794 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 795 Cost += Block->cost(VF, Ctx); 796 InstructionCost BackedgeCost = 797 ForceTargetInstructionCost.getNumOccurrences() 798 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 799 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 800 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 801 << ": vector loop backedge\n"); 802 Cost += BackedgeCost; 803 return Cost; 804 } 805 806 // Compute the cost of a replicate region. Replicating isn't supported for 807 // scalable vectors, return an invalid cost for them. 808 // TODO: Discard scalable VPlans with replicate recipes earlier after 809 // construction. 810 if (VF.isScalable()) 811 return InstructionCost::getInvalid(); 812 813 // First compute the cost of the conditionally executed recipes, followed by 814 // account for the branching cost, except if the mask is a header mask or 815 // uniform condition. 816 using namespace llvm::VPlanPatternMatch; 817 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 818 InstructionCost ThenCost = Then->cost(VF, Ctx); 819 820 // For the scalar case, we may not always execute the original predicated 821 // block, Thus, scale the block's cost by the probability of executing it. 822 if (VF.isScalar()) 823 return ThenCost / getReciprocalPredBlockProb(); 824 825 return ThenCost; 826 } 827 828 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 829 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 830 VPSlotTracker &SlotTracker) const { 831 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 832 auto NewIndent = Indent + " "; 833 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 834 O << '\n'; 835 BlockBase->print(O, NewIndent, SlotTracker); 836 } 837 O << Indent << "}\n"; 838 839 printSuccessors(O, Indent); 840 } 841 #endif 842 843 VPlan::~VPlan() { 844 for (auto &KV : LiveOuts) 845 delete KV.second; 846 LiveOuts.clear(); 847 848 if (Entry) { 849 VPValue DummyValue; 850 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 851 Block->dropAllReferences(&DummyValue); 852 853 VPBlockBase::deleteCFG(Entry); 854 855 Preheader->dropAllReferences(&DummyValue); 856 delete Preheader; 857 } 858 for (VPValue *VPV : VPLiveInsToFree) 859 delete VPV; 860 if (BackedgeTakenCount) 861 delete BackedgeTakenCount; 862 } 863 864 static VPIRBasicBlock *createVPIRBasicBlockFor(BasicBlock *BB) { 865 auto *VPIRBB = new VPIRBasicBlock(BB); 866 for (Instruction &I : 867 make_range(BB->begin(), BB->getTerminator()->getIterator())) 868 VPIRBB->appendRecipe(new VPIRInstruction(I)); 869 return VPIRBB; 870 } 871 872 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 873 PredicatedScalarEvolution &PSE, 874 bool RequiresScalarEpilogueCheck, 875 bool TailFolded, Loop *TheLoop) { 876 VPIRBasicBlock *Entry = createVPIRBasicBlockFor(TheLoop->getLoopPreheader()); 877 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 878 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader); 879 880 // Create SCEV and VPValue for the trip count. 881 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 882 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count"); 883 ScalarEvolution &SE = *PSE.getSE(); 884 const SCEV *TripCount = 885 SE.getTripCountFromExitCount(BackedgeTakenCount, InductionTy, TheLoop); 886 Plan->TripCount = 887 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 888 889 // Create VPRegionBlock, with empty header and latch blocks, to be filled 890 // during processing later. 891 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 892 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 893 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 894 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 895 false /*isReplicator*/); 896 897 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 898 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 899 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 900 901 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 902 if (!RequiresScalarEpilogueCheck) { 903 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 904 return Plan; 905 } 906 907 // If needed, add a check in the middle block to see if we have completed 908 // all of the iterations in the first vector loop. Three cases: 909 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 910 // Thus if tail is to be folded, we know we don't need to run the 911 // remainder and we can set the condition to true. 912 // 2) If we require a scalar epilogue, there is no conditional branch as 913 // we unconditionally branch to the scalar preheader. Do nothing. 914 // 3) Otherwise, construct a runtime check. 915 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 916 auto *VPExitBlock = createVPIRBasicBlockFor(IRExitBlock); 917 // The connection order corresponds to the operands of the conditional branch. 918 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 919 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 920 921 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 922 // Here we use the same DebugLoc as the scalar loop latch terminator instead 923 // of the corresponding compare because they may have ended up with 924 // different line numbers and we want to avoid awkward line stepping while 925 // debugging. Eg. if the compare has got a line number inside the loop. 926 VPBuilder Builder(MiddleVPBB); 927 VPValue *Cmp = 928 TailFolded 929 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 930 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 931 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 932 &Plan->getVectorTripCount(), 933 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 934 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 935 ScalarLatchTerm->getDebugLoc()); 936 return Plan; 937 } 938 939 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 940 Value *CanonicalIVStartValue, 941 VPTransformState &State) { 942 Type *TCTy = TripCountV->getType(); 943 // Check if the backedge taken count is needed, and if so build it. 944 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 945 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 946 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 947 "trip.count.minus.1"); 948 BackedgeTakenCount->setUnderlyingValue(TCMO); 949 } 950 951 VectorTripCount.setUnderlyingValue(VectorTripCountV); 952 953 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 954 // FIXME: Model VF * UF computation completely in VPlan. 955 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 956 if (VF.getNumUsers()) { 957 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 958 VF.setUnderlyingValue(RuntimeVF); 959 VFxUF.setUnderlyingValue( 960 State.UF > 1 961 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, State.UF)) 962 : RuntimeVF); 963 } else { 964 VFxUF.setUnderlyingValue( 965 createStepForVF(Builder, TCTy, State.VF, State.UF)); 966 } 967 968 // When vectorizing the epilogue loop, the canonical induction start value 969 // needs to be changed from zero to the value after the main vector loop. 970 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 971 if (CanonicalIVStartValue) { 972 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 973 auto *IV = getCanonicalIV(); 974 assert(all_of(IV->users(), 975 [](const VPUser *U) { 976 return isa<VPScalarIVStepsRecipe>(U) || 977 isa<VPScalarCastRecipe>(U) || 978 isa<VPDerivedIVRecipe>(U) || 979 cast<VPInstruction>(U)->getOpcode() == 980 Instruction::Add; 981 }) && 982 "the canonical IV should only be used by its increment or " 983 "ScalarIVSteps when resetting the start value"); 984 IV->setOperand(0, VPV); 985 } 986 } 987 988 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 989 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 990 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 991 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 992 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 993 VPIRBasicBlock *IRVPBB = createVPIRBasicBlockFor(IRBB); 994 for (auto &R : make_early_inc_range(*VPBB)) { 995 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 996 R.moveBefore(*IRVPBB, IRVPBB->end()); 997 } 998 VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); 999 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 1000 VPBlockUtils::connectBlocks(PredVPBB, IRVPBB); 1001 for (auto *Succ : to_vector(VPBB->getSuccessors())) { 1002 VPBlockUtils::connectBlocks(IRVPBB, Succ); 1003 VPBlockUtils::disconnectBlocks(VPBB, Succ); 1004 } 1005 delete VPBB; 1006 } 1007 1008 /// Generate the code inside the preheader and body of the vectorized loop. 1009 /// Assumes a single pre-header basic-block was created for this. Introduce 1010 /// additional basic-blocks as needed, and fill them all. 1011 void VPlan::execute(VPTransformState *State) { 1012 // Initialize CFG state. 1013 State->CFG.PrevVPBB = nullptr; 1014 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 1015 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 1016 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 1017 1018 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 1019 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 1020 State->CFG.DTU.applyUpdates( 1021 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 1022 1023 // Replace regular VPBB's for the middle and scalar preheader blocks with 1024 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 1025 // skeleton creation, so we can only create the VPIRBasicBlocks now during 1026 // VPlan execution rather than earlier during VPlan construction. 1027 BasicBlock *MiddleBB = State->CFG.ExitBB; 1028 VPBasicBlock *MiddleVPBB = 1029 cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor()); 1030 // Find the VPBB for the scalar preheader, relying on the current structure 1031 // when creating the middle block and its successrs: if there's a single 1032 // predecessor, it must be the scalar preheader. Otherwise, the second 1033 // successor is the scalar preheader. 1034 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1035 auto &MiddleSuccs = MiddleVPBB->getSuccessors(); 1036 assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && 1037 "middle block has unexpected successors"); 1038 VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>( 1039 MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); 1040 assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) && 1041 "scalar preheader cannot be wrapped already"); 1042 replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh); 1043 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1044 1045 // Disconnect the middle block from its single successor (the scalar loop 1046 // header) in both the CFG and DT. The branch will be recreated during VPlan 1047 // execution. 1048 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1049 BrInst->insertBefore(MiddleBB->getTerminator()); 1050 MiddleBB->getTerminator()->eraseFromParent(); 1051 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1052 1053 // Generate code in the loop pre-header and body. 1054 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1055 Block->execute(State); 1056 1057 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1058 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1059 1060 // Fix the latch value of canonical, reduction and first-order recurrences 1061 // phis in the vector loop. 1062 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1063 for (VPRecipeBase &R : Header->phis()) { 1064 // Skip phi-like recipes that generate their backedege values themselves. 1065 if (isa<VPWidenPHIRecipe>(&R)) 1066 continue; 1067 1068 if (isa<VPWidenPointerInductionRecipe>(&R) || 1069 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1070 PHINode *Phi = nullptr; 1071 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1072 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 1073 } else { 1074 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1075 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1076 "recipe generating only scalars should have been replaced"); 1077 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1078 Phi = cast<PHINode>(GEP->getPointerOperand()); 1079 } 1080 1081 Phi->setIncomingBlock(1, VectorLatchBB); 1082 1083 // Move the last step to the end of the latch block. This ensures 1084 // consistent placement of all induction updates. 1085 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1086 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1087 continue; 1088 } 1089 1090 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1091 // For canonical IV, first-order recurrences and in-order reduction phis, 1092 // only a single part is generated, which provides the last part from the 1093 // previous iteration. For non-ordered reductions all UF parts are 1094 // generated. 1095 bool SinglePartNeeded = 1096 isa<VPCanonicalIVPHIRecipe>(PhiR) || 1097 isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1098 (isa<VPReductionPHIRecipe>(PhiR) && 1099 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 1100 bool NeedsScalar = 1101 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1102 (isa<VPReductionPHIRecipe>(PhiR) && 1103 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1104 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1105 1106 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1107 Value *Phi = State->get(PhiR, Part, NeedsScalar); 1108 Value *Val = 1109 State->get(PhiR->getBackedgeValue(), 1110 SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); 1111 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1112 } 1113 } 1114 1115 State->CFG.DTU.flush(); 1116 assert(State->CFG.DTU.getDomTree().verify( 1117 DominatorTree::VerificationLevel::Fast) && 1118 "DT not preserved correctly"); 1119 } 1120 1121 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1122 // For now only return the cost of the vector loop region, ignoring any other 1123 // blocks, like the preheader or middle blocks. 1124 return getVectorLoopRegion()->cost(VF, Ctx); 1125 } 1126 1127 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1128 void VPlan::printLiveIns(raw_ostream &O) const { 1129 VPSlotTracker SlotTracker(this); 1130 1131 if (VF.getNumUsers() > 0) { 1132 O << "\nLive-in "; 1133 VF.printAsOperand(O, SlotTracker); 1134 O << " = VF"; 1135 } 1136 1137 if (VFxUF.getNumUsers() > 0) { 1138 O << "\nLive-in "; 1139 VFxUF.printAsOperand(O, SlotTracker); 1140 O << " = VF * UF"; 1141 } 1142 1143 if (VectorTripCount.getNumUsers() > 0) { 1144 O << "\nLive-in "; 1145 VectorTripCount.printAsOperand(O, SlotTracker); 1146 O << " = vector-trip-count"; 1147 } 1148 1149 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1150 O << "\nLive-in "; 1151 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1152 O << " = backedge-taken count"; 1153 } 1154 1155 O << "\n"; 1156 if (TripCount->isLiveIn()) 1157 O << "Live-in "; 1158 TripCount->printAsOperand(O, SlotTracker); 1159 O << " = original trip-count"; 1160 O << "\n"; 1161 } 1162 1163 LLVM_DUMP_METHOD 1164 void VPlan::print(raw_ostream &O) const { 1165 VPSlotTracker SlotTracker(this); 1166 1167 O << "VPlan '" << getName() << "' {"; 1168 1169 printLiveIns(O); 1170 1171 if (!getPreheader()->empty()) { 1172 O << "\n"; 1173 getPreheader()->print(O, "", SlotTracker); 1174 } 1175 1176 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1177 O << '\n'; 1178 Block->print(O, "", SlotTracker); 1179 } 1180 1181 if (!LiveOuts.empty()) 1182 O << "\n"; 1183 for (const auto &KV : LiveOuts) { 1184 KV.second->print(O, SlotTracker); 1185 } 1186 1187 O << "}\n"; 1188 } 1189 1190 std::string VPlan::getName() const { 1191 std::string Out; 1192 raw_string_ostream RSO(Out); 1193 RSO << Name << " for "; 1194 if (!VFs.empty()) { 1195 RSO << "VF={" << VFs[0]; 1196 for (ElementCount VF : drop_begin(VFs)) 1197 RSO << "," << VF; 1198 RSO << "},"; 1199 } 1200 1201 if (UFs.empty()) { 1202 RSO << "UF>=1"; 1203 } else { 1204 RSO << "UF={" << UFs[0]; 1205 for (unsigned UF : drop_begin(UFs)) 1206 RSO << "," << UF; 1207 RSO << "}"; 1208 } 1209 1210 return Out; 1211 } 1212 1213 LLVM_DUMP_METHOD 1214 void VPlan::printDOT(raw_ostream &O) const { 1215 VPlanPrinter Printer(O, *this); 1216 Printer.dump(); 1217 } 1218 1219 LLVM_DUMP_METHOD 1220 void VPlan::dump() const { print(dbgs()); } 1221 #endif 1222 1223 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1224 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1225 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1226 } 1227 1228 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1229 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1230 // Update the operands of all cloned recipes starting at NewEntry. This 1231 // traverses all reachable blocks. This is done in two steps, to handle cycles 1232 // in PHI recipes. 1233 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1234 OldDeepRPOT(Entry); 1235 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1236 NewDeepRPOT(NewEntry); 1237 // First, collect all mappings from old to new VPValues defined by cloned 1238 // recipes. 1239 for (const auto &[OldBB, NewBB] : 1240 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1241 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1242 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1243 "blocks must have the same number of recipes"); 1244 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1245 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1246 "recipes must have the same number of operands"); 1247 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1248 "recipes must define the same number of operands"); 1249 for (const auto &[OldV, NewV] : 1250 zip(OldR.definedValues(), NewR.definedValues())) 1251 Old2NewVPValues[OldV] = NewV; 1252 } 1253 } 1254 1255 // Update all operands to use cloned VPValues. 1256 for (VPBasicBlock *NewBB : 1257 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1258 for (VPRecipeBase &NewR : *NewBB) 1259 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1260 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1261 NewR.setOperand(I, NewOp); 1262 } 1263 } 1264 } 1265 1266 VPlan *VPlan::duplicate() { 1267 // Clone blocks. 1268 VPBasicBlock *NewPreheader = Preheader->clone(); 1269 const auto &[NewEntry, __] = cloneFrom(Entry); 1270 1271 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1272 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1273 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1274 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1275 Old2NewVPValues[OldLiveIn] = 1276 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1277 } 1278 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1279 Old2NewVPValues[&VF] = &NewPlan->VF; 1280 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1281 if (BackedgeTakenCount) { 1282 NewPlan->BackedgeTakenCount = new VPValue(); 1283 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1284 } 1285 assert(TripCount && "trip count must be set"); 1286 if (TripCount->isLiveIn()) 1287 Old2NewVPValues[TripCount] = 1288 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1289 // else NewTripCount will be created and inserted into Old2NewVPValues when 1290 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1291 1292 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1293 remapOperands(Entry, NewEntry, Old2NewVPValues); 1294 1295 // Clone live-outs. 1296 for (const auto &[_, LO] : LiveOuts) 1297 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1298 1299 // Initialize remaining fields of cloned VPlan. 1300 NewPlan->VFs = VFs; 1301 NewPlan->UFs = UFs; 1302 // TODO: Adjust names. 1303 NewPlan->Name = Name; 1304 assert(Old2NewVPValues.contains(TripCount) && 1305 "TripCount must have been added to Old2NewVPValues"); 1306 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1307 return NewPlan; 1308 } 1309 1310 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1311 1312 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1313 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1314 Twine(getOrCreateBID(Block)); 1315 } 1316 1317 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1318 const std::string &Name = Block->getName(); 1319 if (!Name.empty()) 1320 return Name; 1321 return "VPB" + Twine(getOrCreateBID(Block)); 1322 } 1323 1324 void VPlanPrinter::dump() { 1325 Depth = 1; 1326 bumpIndent(0); 1327 OS << "digraph VPlan {\n"; 1328 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1329 if (!Plan.getName().empty()) 1330 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1331 1332 { 1333 // Print live-ins. 1334 std::string Str; 1335 raw_string_ostream SS(Str); 1336 Plan.printLiveIns(SS); 1337 SmallVector<StringRef, 0> Lines; 1338 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1339 for (auto Line : Lines) 1340 OS << DOT::EscapeString(Line.str()) << "\\n"; 1341 } 1342 1343 OS << "\"]\n"; 1344 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1345 OS << "edge [fontname=Courier, fontsize=30]\n"; 1346 OS << "compound=true\n"; 1347 1348 dumpBlock(Plan.getPreheader()); 1349 1350 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1351 dumpBlock(Block); 1352 1353 OS << "}\n"; 1354 } 1355 1356 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1357 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1358 dumpBasicBlock(BasicBlock); 1359 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1360 dumpRegion(Region); 1361 else 1362 llvm_unreachable("Unsupported kind of VPBlock."); 1363 } 1364 1365 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1366 bool Hidden, const Twine &Label) { 1367 // Due to "dot" we print an edge between two regions as an edge between the 1368 // exiting basic block and the entry basic of the respective regions. 1369 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1370 const VPBlockBase *Head = To->getEntryBasicBlock(); 1371 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1372 OS << " [ label=\"" << Label << '\"'; 1373 if (Tail != From) 1374 OS << " ltail=" << getUID(From); 1375 if (Head != To) 1376 OS << " lhead=" << getUID(To); 1377 if (Hidden) 1378 OS << "; splines=none"; 1379 OS << "]\n"; 1380 } 1381 1382 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1383 auto &Successors = Block->getSuccessors(); 1384 if (Successors.size() == 1) 1385 drawEdge(Block, Successors.front(), false, ""); 1386 else if (Successors.size() == 2) { 1387 drawEdge(Block, Successors.front(), false, "T"); 1388 drawEdge(Block, Successors.back(), false, "F"); 1389 } else { 1390 unsigned SuccessorNumber = 0; 1391 for (auto *Successor : Successors) 1392 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1393 } 1394 } 1395 1396 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1397 // Implement dot-formatted dump by performing plain-text dump into the 1398 // temporary storage followed by some post-processing. 1399 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1400 bumpIndent(1); 1401 std::string Str; 1402 raw_string_ostream SS(Str); 1403 // Use no indentation as we need to wrap the lines into quotes ourselves. 1404 BasicBlock->print(SS, "", SlotTracker); 1405 1406 // We need to process each line of the output separately, so split 1407 // single-string plain-text dump. 1408 SmallVector<StringRef, 0> Lines; 1409 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1410 1411 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1412 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1413 }; 1414 1415 // Don't need the "+" after the last line. 1416 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1417 EmitLine(Line, " +\n"); 1418 EmitLine(Lines.back(), "\n"); 1419 1420 bumpIndent(-1); 1421 OS << Indent << "]\n"; 1422 1423 dumpEdges(BasicBlock); 1424 } 1425 1426 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1427 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1428 bumpIndent(1); 1429 OS << Indent << "fontname=Courier\n" 1430 << Indent << "label=\"" 1431 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1432 << DOT::EscapeString(Region->getName()) << "\"\n"; 1433 // Dump the blocks of the region. 1434 assert(Region->getEntry() && "Region contains no inner blocks."); 1435 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1436 dumpBlock(Block); 1437 bumpIndent(-1); 1438 OS << Indent << "}\n"; 1439 dumpEdges(Region); 1440 } 1441 1442 void VPlanIngredient::print(raw_ostream &O) const { 1443 if (auto *Inst = dyn_cast<Instruction>(V)) { 1444 if (!Inst->getType()->isVoidTy()) { 1445 Inst->printAsOperand(O, false); 1446 O << " = "; 1447 } 1448 O << Inst->getOpcodeName() << " "; 1449 unsigned E = Inst->getNumOperands(); 1450 if (E > 0) { 1451 Inst->getOperand(0)->printAsOperand(O, false); 1452 for (unsigned I = 1; I < E; ++I) 1453 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1454 } 1455 } else // !Inst 1456 V->printAsOperand(O, false); 1457 } 1458 1459 #endif 1460 1461 void VPValue::replaceAllUsesWith(VPValue *New) { 1462 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1463 } 1464 1465 void VPValue::replaceUsesWithIf( 1466 VPValue *New, 1467 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1468 // Note that this early exit is required for correctness; the implementation 1469 // below relies on the number of users for this VPValue to decrease, which 1470 // isn't the case if this == New. 1471 if (this == New) 1472 return; 1473 1474 for (unsigned J = 0; J < getNumUsers();) { 1475 VPUser *User = Users[J]; 1476 bool RemovedUser = false; 1477 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1478 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1479 continue; 1480 1481 RemovedUser = true; 1482 User->setOperand(I, New); 1483 } 1484 // If a user got removed after updating the current user, the next user to 1485 // update will be moved to the current position, so we only need to 1486 // increment the index if the number of users did not change. 1487 if (!RemovedUser) 1488 J++; 1489 } 1490 } 1491 1492 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1493 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1494 OS << Tracker.getOrCreateName(this); 1495 } 1496 1497 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1498 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1499 Op->printAsOperand(O, SlotTracker); 1500 }); 1501 } 1502 #endif 1503 1504 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1505 Old2NewTy &Old2New, 1506 InterleavedAccessInfo &IAI) { 1507 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1508 RPOT(Region->getEntry()); 1509 for (VPBlockBase *Base : RPOT) { 1510 visitBlock(Base, Old2New, IAI); 1511 } 1512 } 1513 1514 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1515 InterleavedAccessInfo &IAI) { 1516 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1517 for (VPRecipeBase &VPI : *VPBB) { 1518 if (isa<VPWidenPHIRecipe>(&VPI)) 1519 continue; 1520 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1521 auto *VPInst = cast<VPInstruction>(&VPI); 1522 1523 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1524 if (!Inst) 1525 continue; 1526 auto *IG = IAI.getInterleaveGroup(Inst); 1527 if (!IG) 1528 continue; 1529 1530 auto NewIGIter = Old2New.find(IG); 1531 if (NewIGIter == Old2New.end()) 1532 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1533 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1534 1535 if (Inst == IG->getInsertPos()) 1536 Old2New[IG]->setInsertPos(VPInst); 1537 1538 InterleaveGroupMap[VPInst] = Old2New[IG]; 1539 InterleaveGroupMap[VPInst]->insertMember( 1540 VPInst, IG->getIndex(Inst), 1541 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1542 : IG->getFactor())); 1543 } 1544 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1545 visitRegion(Region, Old2New, IAI); 1546 else 1547 llvm_unreachable("Unsupported kind of VPBlock."); 1548 } 1549 1550 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1551 InterleavedAccessInfo &IAI) { 1552 Old2NewTy Old2New; 1553 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1554 } 1555 1556 void VPSlotTracker::assignName(const VPValue *V) { 1557 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1558 auto *UV = V->getUnderlyingValue(); 1559 if (!UV) { 1560 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1561 NextSlot++; 1562 return; 1563 } 1564 1565 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1566 // appending ".Number" to the name if there are multiple uses. 1567 std::string Name; 1568 raw_string_ostream S(Name); 1569 UV->printAsOperand(S, false); 1570 assert(!Name.empty() && "Name cannot be empty."); 1571 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1572 1573 // First assign the base name for V. 1574 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1575 // Integer or FP constants with different types will result in he same string 1576 // due to stripping types. 1577 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1578 return; 1579 1580 // If it is already used by C > 0 other VPValues, increase the version counter 1581 // C and use it for V. 1582 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1583 if (!UseInserted) { 1584 C->second++; 1585 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1586 } 1587 } 1588 1589 void VPSlotTracker::assignNames(const VPlan &Plan) { 1590 if (Plan.VF.getNumUsers() > 0) 1591 assignName(&Plan.VF); 1592 if (Plan.VFxUF.getNumUsers() > 0) 1593 assignName(&Plan.VFxUF); 1594 assignName(&Plan.VectorTripCount); 1595 if (Plan.BackedgeTakenCount) 1596 assignName(Plan.BackedgeTakenCount); 1597 for (VPValue *LI : Plan.VPLiveInsToFree) 1598 assignName(LI); 1599 assignNames(Plan.getPreheader()); 1600 1601 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1602 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1603 for (const VPBasicBlock *VPBB : 1604 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1605 assignNames(VPBB); 1606 } 1607 1608 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1609 for (const VPRecipeBase &Recipe : *VPBB) 1610 for (VPValue *Def : Recipe.definedValues()) 1611 assignName(Def); 1612 } 1613 1614 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1615 std::string Name = VPValue2Name.lookup(V); 1616 if (!Name.empty()) 1617 return Name; 1618 1619 // If no name was assigned, no VPlan was provided when creating the slot 1620 // tracker or it is not reachable from the provided VPlan. This can happen, 1621 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1622 // in a debugger. 1623 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1624 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1625 // here. 1626 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1627 (void)DefR; 1628 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1629 "VPValue defined by a recipe in a VPlan?"); 1630 1631 // Use the underlying value's name, if there is one. 1632 if (auto *UV = V->getUnderlyingValue()) { 1633 std::string Name; 1634 raw_string_ostream S(Name); 1635 UV->printAsOperand(S, false); 1636 return (Twine("ir<") + Name + ">").str(); 1637 } 1638 1639 return "<badref>"; 1640 } 1641 1642 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1643 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1644 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1645 bool PredicateAtRangeStart = Predicate(Range.Start); 1646 1647 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1648 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1649 Range.End = TmpVF; 1650 break; 1651 } 1652 1653 return PredicateAtRangeStart; 1654 } 1655 1656 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1657 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1658 /// of VF's starting at a given VF and extending it as much as possible. Each 1659 /// vectorization decision can potentially shorten this sub-range during 1660 /// buildVPlan(). 1661 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1662 ElementCount MaxVF) { 1663 auto MaxVFTimes2 = MaxVF * 2; 1664 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1665 VFRange SubRange = {VF, MaxVFTimes2}; 1666 auto Plan = buildVPlan(SubRange); 1667 VPlanTransforms::optimize(*Plan); 1668 VPlans.push_back(std::move(Plan)); 1669 VF = SubRange.End; 1670 } 1671 } 1672 1673 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1674 assert(count_if(VPlans, 1675 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1676 1 && 1677 "Multiple VPlans for VF."); 1678 1679 for (const VPlanPtr &Plan : VPlans) { 1680 if (Plan->hasVF(VF)) 1681 return *Plan.get(); 1682 } 1683 llvm_unreachable("No plan found!"); 1684 } 1685 1686 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1687 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1688 if (VPlans.empty()) { 1689 O << "LV: No VPlans built.\n"; 1690 return; 1691 } 1692 for (const auto &Plan : VPlans) 1693 if (PrintVPlansInDotFormat) 1694 Plan->printDOT(O); 1695 else 1696 Plan->print(O); 1697 } 1698 #endif 1699