xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 1ff022e21b56427b56f104fcdf4d137e7b1318cd)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExit();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExit();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExit() == this &&
179          "Block w/o successors not the exit of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 VPValue *VPBlockBase::getCondBit() {
192   return CondBitUser.getSingleOperandOrNull();
193 }
194 
195 const VPValue *VPBlockBase::getCondBit() const {
196   return CondBitUser.getSingleOperandOrNull();
197 }
198 
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
200 
201 VPValue *VPBlockBase::getPredicate() {
202   return PredicateUser.getSingleOperandOrNull();
203 }
204 
205 const VPValue *VPBlockBase::getPredicate() const {
206   return PredicateUser.getSingleOperandOrNull();
207 }
208 
209 void VPBlockBase::setPredicate(VPValue *CV) {
210   PredicateUser.resetSingleOpUser(CV);
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
215 
216   for (VPBlockBase *Block : Blocks)
217     delete Block;
218 }
219 
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221   iterator It = begin();
222   while (It != end() && It->isPhi())
223     It++;
224   return It;
225 }
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (!Def->getDef())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235 
236   assert(hasVectorValue(Def, Instance.Part));
237   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 BasicBlock *
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
251   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253   BasicBlock *PrevBB = CFG.PrevBB;
254   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
255                                          PrevBB->getParent(), CFG.ExitBB);
256   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
257 
258   // Hook up the new basic block to its predecessors.
259   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
260     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
261     auto &PredVPSuccessors = PredVPBB->getSuccessors();
262     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
263 
264     // In outer loop vectorization scenario, the predecessor BBlock may not yet
265     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266     // vectorization. We do not encounter this case in inner loop vectorization
267     // as we start out by building a loop skeleton with the vector loop header
268     // and latch blocks. As a result, we never enter this function for the
269     // header block in the non VPlan-native path.
270     if (!PredBB) {
271       assert(EnableVPlanNativePath &&
272              "Unexpected null predecessor in non VPlan-native path");
273       CFG.VPBBsToFix.push_back(PredVPBB);
274       continue;
275     }
276 
277     assert(PredBB && "Predecessor basic-block not found building successor.");
278     auto *PredBBTerminator = PredBB->getTerminator();
279     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
280     if (isa<UnreachableInst>(PredBBTerminator)) {
281       assert(PredVPSuccessors.size() == 1 &&
282              "Predecessor ending w/o branch must have single successor.");
283       PredBBTerminator->eraseFromParent();
284       BranchInst::Create(NewBB, PredBB);
285     } else {
286       assert(PredVPSuccessors.size() == 2 &&
287              "Predecessor ending with branch must have two successors.");
288       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
289       assert(!PredBBTerminator->getSuccessor(idx) &&
290              "Trying to reset an existing successor block.");
291       PredBBTerminator->setSuccessor(idx, NewBB);
292     }
293   }
294   return NewBB;
295 }
296 
297 void VPBasicBlock::execute(VPTransformState *State) {
298   bool Replica = State->Instance && !State->Instance->isFirstIteration();
299   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
300   VPBlockBase *SingleHPred = nullptr;
301   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
302 
303   // 1. Create an IR basic block, or reuse the last one if possible.
304   // The last IR basic block is reused, as an optimization, in three cases:
305   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
306   // B. when the current VPBB has a single (hierarchical) predecessor which
307   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
308   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
309   //    is the exit of this region from a previous instance, or the predecessor
310   //    of this region.
311   if (PrevVPBB && /* A */
312       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
313         SingleHPred->getExitBasicBlock() == PrevVPBB &&
314         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
315       !(Replica && getPredecessors().empty())) {       /* C */
316     NewBB = createEmptyBasicBlock(State->CFG);
317     State->Builder.SetInsertPoint(NewBB);
318     // Temporarily terminate with unreachable until CFG is rewired.
319     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
320     // Register NewBB in its loop. In innermost loops its the same for all BB's.
321     State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
322     State->Builder.SetInsertPoint(Terminator);
323     State->CFG.PrevBB = NewBB;
324   } else {
325     // If the current VPBB is re-using the header block from skeleton creation,
326     // move it to the new vector loop.
327     VPBasicBlock *HeaderVPBB =
328         getPlan()->getVectorLoopRegion()->getEntryBasicBlock();
329     if (EnableVPlanNativePath)
330       HeaderVPBB = cast<VPBasicBlock>(HeaderVPBB->getSingleSuccessor());
331     if (this == HeaderVPBB) {
332       assert(State->CurrentVectorLoop);
333       State->LI->removeBlock(State->CFG.PrevBB);
334       State->CurrentVectorLoop->addBasicBlockToLoop(State->CFG.PrevBB,
335                                                     *State->LI);
336     }
337   }
338 
339   // 2. Fill the IR basic block with IR instructions.
340   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
341                     << " in BB:" << NewBB->getName() << '\n');
342 
343   State->CFG.VPBB2IRBB[this] = NewBB;
344   State->CFG.PrevVPBB = this;
345 
346   for (VPRecipeBase &Recipe : Recipes)
347     Recipe.execute(*State);
348 
349   VPValue *CBV;
350   if (EnableVPlanNativePath && (CBV = getCondBit())) {
351     assert(CBV->getUnderlyingValue() &&
352            "Unexpected null underlying value for condition bit");
353 
354     // Condition bit value in a VPBasicBlock is used as the branch selector. In
355     // the VPlan-native path case, since all branches are uniform we generate a
356     // branch instruction using the condition value from vector lane 0 and dummy
357     // successors. The successors are fixed later when the successor blocks are
358     // visited.
359     Value *NewCond = State->get(CBV, {0, 0});
360 
361     // Replace the temporary unreachable terminator with the new conditional
362     // branch.
363     auto *CurrentTerminator = NewBB->getTerminator();
364     assert(isa<UnreachableInst>(CurrentTerminator) &&
365            "Expected to replace unreachable terminator with conditional "
366            "branch.");
367     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
368     CondBr->setSuccessor(0, nullptr);
369     ReplaceInstWithInst(CurrentTerminator, CondBr);
370   }
371 
372   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
373 }
374 
375 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
376   for (VPRecipeBase &R : Recipes) {
377     for (auto *Def : R.definedValues())
378       Def->replaceAllUsesWith(NewValue);
379 
380     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
381       R.setOperand(I, NewValue);
382   }
383 }
384 
385 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
386   assert((SplitAt == end() || SplitAt->getParent() == this) &&
387          "can only split at a position in the same block");
388 
389   SmallVector<VPBlockBase *, 2> Succs(successors());
390   // First, disconnect the current block from its successors.
391   for (VPBlockBase *Succ : Succs)
392     VPBlockUtils::disconnectBlocks(this, Succ);
393 
394   // Create new empty block after the block to split.
395   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
396   VPBlockUtils::insertBlockAfter(SplitBlock, this);
397 
398   // Add successors for block to split to new block.
399   for (VPBlockBase *Succ : Succs)
400     VPBlockUtils::connectBlocks(SplitBlock, Succ);
401 
402   // Finally, move the recipes starting at SplitAt to new block.
403   for (VPRecipeBase &ToMove :
404        make_early_inc_range(make_range(SplitAt, this->end())))
405     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
406 
407   return SplitBlock;
408 }
409 
410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
411 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
412   if (getSuccessors().empty()) {
413     O << Indent << "No successors\n";
414   } else {
415     O << Indent << "Successor(s): ";
416     ListSeparator LS;
417     for (auto *Succ : getSuccessors())
418       O << LS << Succ->getName();
419     O << '\n';
420   }
421 }
422 
423 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
424                          VPSlotTracker &SlotTracker) const {
425   O << Indent << getName() << ":\n";
426   if (const VPValue *Pred = getPredicate()) {
427     O << Indent << "BlockPredicate:";
428     Pred->printAsOperand(O, SlotTracker);
429     if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
430       O << " (" << PredInst->getParent()->getName() << ")";
431     O << '\n';
432   }
433 
434   auto RecipeIndent = Indent + "  ";
435   for (const VPRecipeBase &Recipe : *this) {
436     Recipe.print(O, RecipeIndent, SlotTracker);
437     O << '\n';
438   }
439 
440   printSuccessors(O, Indent);
441 
442   if (const VPValue *CBV = getCondBit()) {
443     O << Indent << "CondBit: ";
444     CBV->printAsOperand(O, SlotTracker);
445     if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
446       O << " (" << CBI->getParent()->getName() << ")";
447     O << '\n';
448   }
449 }
450 #endif
451 
452 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
453   for (VPBlockBase *Block : depth_first(Entry))
454     // Drop all references in VPBasicBlocks and replace all uses with
455     // DummyValue.
456     Block->dropAllReferences(NewValue);
457 }
458 
459 void VPRegionBlock::execute(VPTransformState *State) {
460   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
461 
462   if (!isReplicator()) {
463     // Create and register the new vector loop.
464     Loop *PrevLoop = State->CurrentVectorLoop;
465     State->CurrentVectorLoop = State->LI->AllocateLoop();
466     Loop *ParentLoop = State->LI->getLoopFor(State->CFG.VectorPreHeader);
467 
468     // Insert the new loop into the loop nest and register the new basic blocks
469     // before calling any utilities such as SCEV that require valid LoopInfo.
470     if (ParentLoop)
471       ParentLoop->addChildLoop(State->CurrentVectorLoop);
472     else
473       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
474 
475     // Visit the VPBlocks connected to "this", starting from it.
476     for (VPBlockBase *Block : RPOT) {
477       if (EnableVPlanNativePath) {
478         // The inner loop vectorization path does not represent loop preheader
479         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
480         // vectorizing loop preheader block. In future, we may replace this
481         // check with the check for loop preheader.
482         if (Block->getNumPredecessors() == 0)
483           continue;
484 
485         // Skip vectorizing loop exit block. In future, we may replace this
486         // check with the check for loop exit.
487         if (Block->getNumSuccessors() == 0)
488           continue;
489       }
490 
491       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
492       Block->execute(State);
493     }
494 
495     State->CurrentVectorLoop = PrevLoop;
496     return;
497   }
498 
499   assert(!State->Instance && "Replicating a Region with non-null instance.");
500 
501   // Enter replicating mode.
502   State->Instance = VPIteration(0, 0);
503 
504   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
505     State->Instance->Part = Part;
506     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
507     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
508          ++Lane) {
509       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
510       // Visit the VPBlocks connected to \p this, starting from it.
511       for (VPBlockBase *Block : RPOT) {
512         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
513         Block->execute(State);
514       }
515     }
516   }
517 
518   // Exit replicating mode.
519   State->Instance.reset();
520 }
521 
522 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
523 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
524                           VPSlotTracker &SlotTracker) const {
525   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
526   auto NewIndent = Indent + "  ";
527   for (auto *BlockBase : depth_first(Entry)) {
528     O << '\n';
529     BlockBase->print(O, NewIndent, SlotTracker);
530   }
531   O << Indent << "}\n";
532 
533   printSuccessors(O, Indent);
534 }
535 #endif
536 
537 bool VPRecipeBase::mayWriteToMemory() const {
538   switch (getVPDefID()) {
539   case VPWidenMemoryInstructionSC: {
540     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
541   }
542   case VPReplicateSC:
543   case VPWidenCallSC:
544     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
545         ->mayWriteToMemory();
546   case VPBranchOnMaskSC:
547     return false;
548   case VPWidenIntOrFpInductionSC:
549   case VPWidenCanonicalIVSC:
550   case VPWidenPHISC:
551   case VPBlendSC:
552   case VPWidenSC:
553   case VPWidenGEPSC:
554   case VPReductionSC:
555   case VPWidenSelectSC: {
556     const Instruction *I =
557         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
558     (void)I;
559     assert((!I || !I->mayWriteToMemory()) &&
560            "underlying instruction may write to memory");
561     return false;
562   }
563   default:
564     return true;
565   }
566 }
567 
568 bool VPRecipeBase::mayReadFromMemory() const {
569   switch (getVPDefID()) {
570   case VPWidenMemoryInstructionSC: {
571     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
572   }
573   case VPReplicateSC:
574   case VPWidenCallSC:
575     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
576         ->mayReadFromMemory();
577   case VPBranchOnMaskSC:
578     return false;
579   case VPWidenIntOrFpInductionSC:
580   case VPWidenCanonicalIVSC:
581   case VPWidenPHISC:
582   case VPBlendSC:
583   case VPWidenSC:
584   case VPWidenGEPSC:
585   case VPReductionSC:
586   case VPWidenSelectSC: {
587     const Instruction *I =
588         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
589     (void)I;
590     assert((!I || !I->mayReadFromMemory()) &&
591            "underlying instruction may read from memory");
592     return false;
593   }
594   default:
595     return true;
596   }
597 }
598 
599 bool VPRecipeBase::mayHaveSideEffects() const {
600   switch (getVPDefID()) {
601   case VPBranchOnMaskSC:
602     return false;
603   case VPWidenIntOrFpInductionSC:
604   case VPWidenPointerInductionSC:
605   case VPWidenCanonicalIVSC:
606   case VPWidenPHISC:
607   case VPBlendSC:
608   case VPWidenSC:
609   case VPWidenGEPSC:
610   case VPReductionSC:
611   case VPWidenSelectSC:
612   case VPScalarIVStepsSC: {
613     const Instruction *I =
614         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
615     (void)I;
616     assert((!I || !I->mayHaveSideEffects()) &&
617            "underlying instruction has side-effects");
618     return false;
619   }
620   case VPReplicateSC: {
621     auto *R = cast<VPReplicateRecipe>(this);
622     return R->getUnderlyingInstr()->mayHaveSideEffects();
623   }
624   default:
625     return true;
626   }
627 }
628 
629 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
630   assert(!Parent && "Recipe already in some VPBasicBlock");
631   assert(InsertPos->getParent() &&
632          "Insertion position not in any VPBasicBlock");
633   Parent = InsertPos->getParent();
634   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
635 }
636 
637 void VPRecipeBase::insertBefore(VPBasicBlock &BB,
638                                 iplist<VPRecipeBase>::iterator I) {
639   assert(!Parent && "Recipe already in some VPBasicBlock");
640   assert(I == BB.end() || I->getParent() == &BB);
641   Parent = &BB;
642   BB.getRecipeList().insert(I, this);
643 }
644 
645 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
646   assert(!Parent && "Recipe already in some VPBasicBlock");
647   assert(InsertPos->getParent() &&
648          "Insertion position not in any VPBasicBlock");
649   Parent = InsertPos->getParent();
650   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
651 }
652 
653 void VPRecipeBase::removeFromParent() {
654   assert(getParent() && "Recipe not in any VPBasicBlock");
655   getParent()->getRecipeList().remove(getIterator());
656   Parent = nullptr;
657 }
658 
659 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
660   assert(getParent() && "Recipe not in any VPBasicBlock");
661   return getParent()->getRecipeList().erase(getIterator());
662 }
663 
664 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
665   removeFromParent();
666   insertAfter(InsertPos);
667 }
668 
669 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
670                               iplist<VPRecipeBase>::iterator I) {
671   removeFromParent();
672   insertBefore(BB, I);
673 }
674 
675 void VPInstruction::generateInstruction(VPTransformState &State,
676                                         unsigned Part) {
677   IRBuilderBase &Builder = State.Builder;
678   Builder.SetCurrentDebugLocation(DL);
679 
680   if (Instruction::isBinaryOp(getOpcode())) {
681     Value *A = State.get(getOperand(0), Part);
682     Value *B = State.get(getOperand(1), Part);
683     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
684     State.set(this, V, Part);
685     return;
686   }
687 
688   switch (getOpcode()) {
689   case VPInstruction::Not: {
690     Value *A = State.get(getOperand(0), Part);
691     Value *V = Builder.CreateNot(A);
692     State.set(this, V, Part);
693     break;
694   }
695   case VPInstruction::ICmpULE: {
696     Value *IV = State.get(getOperand(0), Part);
697     Value *TC = State.get(getOperand(1), Part);
698     Value *V = Builder.CreateICmpULE(IV, TC);
699     State.set(this, V, Part);
700     break;
701   }
702   case Instruction::Select: {
703     Value *Cond = State.get(getOperand(0), Part);
704     Value *Op1 = State.get(getOperand(1), Part);
705     Value *Op2 = State.get(getOperand(2), Part);
706     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
707     State.set(this, V, Part);
708     break;
709   }
710   case VPInstruction::ActiveLaneMask: {
711     // Get first lane of vector induction variable.
712     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
713     // Get the original loop tripcount.
714     Value *ScalarTC = State.get(getOperand(1), Part);
715 
716     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
717     auto *PredTy = VectorType::get(Int1Ty, State.VF);
718     Instruction *Call = Builder.CreateIntrinsic(
719         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
720         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
721     State.set(this, Call, Part);
722     break;
723   }
724   case VPInstruction::FirstOrderRecurrenceSplice: {
725     // Generate code to combine the previous and current values in vector v3.
726     //
727     //   vector.ph:
728     //     v_init = vector(..., ..., ..., a[-1])
729     //     br vector.body
730     //
731     //   vector.body
732     //     i = phi [0, vector.ph], [i+4, vector.body]
733     //     v1 = phi [v_init, vector.ph], [v2, vector.body]
734     //     v2 = a[i, i+1, i+2, i+3];
735     //     v3 = vector(v1(3), v2(0, 1, 2))
736 
737     // For the first part, use the recurrence phi (v1), otherwise v2.
738     auto *V1 = State.get(getOperand(0), 0);
739     Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
740     if (!PartMinus1->getType()->isVectorTy()) {
741       State.set(this, PartMinus1, Part);
742     } else {
743       Value *V2 = State.get(getOperand(1), Part);
744       State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
745     }
746     break;
747   }
748 
749   case VPInstruction::CanonicalIVIncrement:
750   case VPInstruction::CanonicalIVIncrementNUW: {
751     Value *Next = nullptr;
752     if (Part == 0) {
753       bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW;
754       auto *Phi = State.get(getOperand(0), 0);
755       // The loop step is equal to the vectorization factor (num of SIMD
756       // elements) times the unroll factor (num of SIMD instructions).
757       Value *Step =
758           createStepForVF(Builder, Phi->getType(), State.VF, State.UF);
759       Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false);
760     } else {
761       Next = State.get(this, 0);
762     }
763 
764     State.set(this, Next, Part);
765     break;
766   }
767   case VPInstruction::BranchOnCount: {
768     if (Part != 0)
769       break;
770     // First create the compare.
771     Value *IV = State.get(getOperand(0), Part);
772     Value *TC = State.get(getOperand(1), Part);
773     Value *Cond = Builder.CreateICmpEQ(IV, TC);
774 
775     // Now create the branch.
776     auto *Plan = getParent()->getPlan();
777     VPRegionBlock *TopRegion = Plan->getVectorLoopRegion();
778     VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock();
779     if (Header->empty()) {
780       assert(EnableVPlanNativePath &&
781              "empty entry block only expected in VPlanNativePath");
782       Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
783     }
784     // TODO: Once the exit block is modeled in VPlan, use it instead of going
785     // through State.CFG.ExitBB.
786     BasicBlock *Exit = State.CFG.ExitBB;
787 
788     Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]);
789     Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
790     break;
791   }
792   default:
793     llvm_unreachable("Unsupported opcode for instruction");
794   }
795 }
796 
797 void VPInstruction::execute(VPTransformState &State) {
798   assert(!State.Instance && "VPInstruction executing an Instance");
799   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
800   State.Builder.setFastMathFlags(FMF);
801   for (unsigned Part = 0; Part < State.UF; ++Part)
802     generateInstruction(State, Part);
803 }
804 
805 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
806 void VPInstruction::dump() const {
807   VPSlotTracker SlotTracker(getParent()->getPlan());
808   print(dbgs(), "", SlotTracker);
809 }
810 
811 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
812                           VPSlotTracker &SlotTracker) const {
813   O << Indent << "EMIT ";
814 
815   if (hasResult()) {
816     printAsOperand(O, SlotTracker);
817     O << " = ";
818   }
819 
820   switch (getOpcode()) {
821   case VPInstruction::Not:
822     O << "not";
823     break;
824   case VPInstruction::ICmpULE:
825     O << "icmp ule";
826     break;
827   case VPInstruction::SLPLoad:
828     O << "combined load";
829     break;
830   case VPInstruction::SLPStore:
831     O << "combined store";
832     break;
833   case VPInstruction::ActiveLaneMask:
834     O << "active lane mask";
835     break;
836   case VPInstruction::FirstOrderRecurrenceSplice:
837     O << "first-order splice";
838     break;
839   case VPInstruction::CanonicalIVIncrement:
840     O << "VF * UF + ";
841     break;
842   case VPInstruction::CanonicalIVIncrementNUW:
843     O << "VF * UF +(nuw) ";
844     break;
845   case VPInstruction::BranchOnCount:
846     O << "branch-on-count ";
847     break;
848   default:
849     O << Instruction::getOpcodeName(getOpcode());
850   }
851 
852   O << FMF;
853 
854   for (const VPValue *Operand : operands()) {
855     O << " ";
856     Operand->printAsOperand(O, SlotTracker);
857   }
858 
859   if (DL) {
860     O << ", !dbg ";
861     DL.print(O);
862   }
863 }
864 #endif
865 
866 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) {
867   // Make sure the VPInstruction is a floating-point operation.
868   assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
869           Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
870           Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
871           Opcode == Instruction::FCmp) &&
872          "this op can't take fast-math flags");
873   FMF = FMFNew;
874 }
875 
876 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
877                              Value *CanonicalIVStartValue,
878                              VPTransformState &State) {
879   // Check if the trip count is needed, and if so build it.
880   if (TripCount && TripCount->getNumUsers()) {
881     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
882       State.set(TripCount, TripCountV, Part);
883   }
884 
885   // Check if the backedge taken count is needed, and if so build it.
886   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
887     IRBuilder<> Builder(State.CFG.VectorPreHeader->getTerminator());
888     auto *TCMO = Builder.CreateSub(TripCountV,
889                                    ConstantInt::get(TripCountV->getType(), 1),
890                                    "trip.count.minus.1");
891     auto VF = State.VF;
892     Value *VTCMO =
893         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
894     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
895       State.set(BackedgeTakenCount, VTCMO, Part);
896   }
897 
898   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
899     State.set(&VectorTripCount, VectorTripCountV, Part);
900 
901   // When vectorizing the epilogue loop, the canonical induction start value
902   // needs to be changed from zero to the value after the main vector loop.
903   if (CanonicalIVStartValue) {
904     VPValue *VPV = new VPValue(CanonicalIVStartValue);
905     addExternalDef(VPV);
906     auto *IV = getCanonicalIV();
907     assert(all_of(IV->users(),
908                   [](const VPUser *U) {
909                     if (isa<VPScalarIVStepsRecipe>(U))
910                       return true;
911                     auto *VPI = cast<VPInstruction>(U);
912                     return VPI->getOpcode() ==
913                                VPInstruction::CanonicalIVIncrement ||
914                            VPI->getOpcode() ==
915                                VPInstruction::CanonicalIVIncrementNUW;
916                   }) &&
917            "the canonical IV should only be used by its increments or "
918            "ScalarIVSteps when "
919            "resetting the start value");
920     IV->setOperand(0, VPV);
921   }
922 }
923 
924 /// Generate the code inside the body of the vectorized loop. Assumes a single
925 /// LoopVectorBody basic-block was created for this. Introduce additional
926 /// basic-blocks as needed, and fill them all.
927 void VPlan::execute(VPTransformState *State) {
928   // Set the reverse mapping from VPValues to Values for code generation.
929   for (auto &Entry : Value2VPValue)
930     State->VPValue2Value[Entry.second] = Entry.first;
931 
932   // Initialize CFG state.
933   State->CFG.PrevVPBB = nullptr;
934   BasicBlock *VectorHeaderBB = State->CFG.VectorPreHeader->getSingleSuccessor();
935   State->CFG.PrevBB = VectorHeaderBB;
936   State->CFG.ExitBB = VectorHeaderBB->getSingleSuccessor();
937   State->CurrentVectorLoop = State->LI->getLoopFor(VectorHeaderBB);
938 
939   // Remove the edge between Header and Latch to allow other connections.
940   // Temporarily terminate with unreachable until CFG is rewired.
941   // Note: this asserts the generated code's assumption that
942   // getFirstInsertionPt() can be dereferenced into an Instruction.
943   VectorHeaderBB->getTerminator()->eraseFromParent();
944   State->Builder.SetInsertPoint(VectorHeaderBB);
945   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
946   State->Builder.SetInsertPoint(Terminator);
947 
948   // Generate code in loop body.
949   for (VPBlockBase *Block : depth_first(Entry))
950     Block->execute(State);
951 
952   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
953   // VPBB's successors.
954   for (auto VPBB : State->CFG.VPBBsToFix) {
955     assert(EnableVPlanNativePath &&
956            "Unexpected VPBBsToFix in non VPlan-native path");
957     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
958     assert(BB && "Unexpected null basic block for VPBB");
959 
960     unsigned Idx = 0;
961     auto *BBTerminator = BB->getTerminator();
962 
963     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
964       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
965       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
966       ++Idx;
967     }
968   }
969 
970   BasicBlock *VectorLatchBB = State->CFG.PrevBB;
971 
972   // Fix the latch value of canonical, reduction and first-order recurrences
973   // phis in the vector loop.
974   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
975   if (Header->empty()) {
976     assert(EnableVPlanNativePath);
977     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
978   }
979   for (VPRecipeBase &R : Header->phis()) {
980     // Skip phi-like recipes that generate their backedege values themselves.
981     if (isa<VPWidenPHIRecipe>(&R))
982       continue;
983 
984     if (isa<VPWidenPointerInductionRecipe>(&R) ||
985         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
986       PHINode *Phi = nullptr;
987       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
988         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
989       } else {
990         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
991         // TODO: Split off the case that all users of a pointer phi are scalar
992         // from the VPWidenPointerInductionRecipe.
993         if (all_of(WidenPhi->users(), [WidenPhi](const VPUser *U) {
994               return cast<VPRecipeBase>(U)->usesScalars(WidenPhi);
995             }))
996           continue;
997 
998         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
999         Phi = cast<PHINode>(GEP->getPointerOperand());
1000       }
1001 
1002       Phi->setIncomingBlock(1, VectorLatchBB);
1003 
1004       // Move the last step to the end of the latch block. This ensures
1005       // consistent placement of all induction updates.
1006       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1007       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1008       continue;
1009     }
1010 
1011     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1012     // For  canonical IV, first-order recurrences and in-order reduction phis,
1013     // only a single part is generated, which provides the last part from the
1014     // previous iteration. For non-ordered reductions all UF parts are
1015     // generated.
1016     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
1017                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
1018                             cast<VPReductionPHIRecipe>(PhiR)->isOrdered();
1019     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
1020 
1021     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1022       Value *Phi = State->get(PhiR, Part);
1023       Value *Val = State->get(PhiR->getBackedgeValue(),
1024                               SinglePartNeeded ? State->UF - 1 : Part);
1025       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1026     }
1027   }
1028 
1029   // We do not attempt to preserve DT for outer loop vectorization currently.
1030   if (!EnableVPlanNativePath)
1031     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
1032                         State->CFG.ExitBB);
1033 }
1034 
1035 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1036 LLVM_DUMP_METHOD
1037 void VPlan::print(raw_ostream &O) const {
1038   VPSlotTracker SlotTracker(this);
1039 
1040   O << "VPlan '" << Name << "' {";
1041 
1042   if (VectorTripCount.getNumUsers() > 0) {
1043     O << "\nLive-in ";
1044     VectorTripCount.printAsOperand(O, SlotTracker);
1045     O << " = vector-trip-count\n";
1046   }
1047 
1048   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1049     O << "\nLive-in ";
1050     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1051     O << " = backedge-taken count\n";
1052   }
1053 
1054   for (const VPBlockBase *Block : depth_first(getEntry())) {
1055     O << '\n';
1056     Block->print(O, "", SlotTracker);
1057   }
1058   O << "}\n";
1059 }
1060 
1061 LLVM_DUMP_METHOD
1062 void VPlan::printDOT(raw_ostream &O) const {
1063   VPlanPrinter Printer(O, *this);
1064   Printer.dump();
1065 }
1066 
1067 LLVM_DUMP_METHOD
1068 void VPlan::dump() const { print(dbgs()); }
1069 #endif
1070 
1071 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
1072                                 BasicBlock *LoopLatchBB,
1073                                 BasicBlock *LoopExitBB) {
1074   // The vector body may be more than a single basic-block by this point.
1075   // Update the dominator tree information inside the vector body by propagating
1076   // it from header to latch, expecting only triangular control-flow, if any.
1077   BasicBlock *PostDomSucc = nullptr;
1078   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
1079     // Get the list of successors of this block.
1080     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
1081     assert(Succs.size() <= 2 &&
1082            "Basic block in vector loop has more than 2 successors.");
1083     PostDomSucc = Succs[0];
1084     if (Succs.size() == 1) {
1085       assert(PostDomSucc->getSinglePredecessor() &&
1086              "PostDom successor has more than one predecessor.");
1087       DT->addNewBlock(PostDomSucc, BB);
1088       continue;
1089     }
1090     BasicBlock *InterimSucc = Succs[1];
1091     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
1092       PostDomSucc = Succs[1];
1093       InterimSucc = Succs[0];
1094     }
1095     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
1096            "One successor of a basic block does not lead to the other.");
1097     assert(InterimSucc->getSinglePredecessor() &&
1098            "Interim successor has more than one predecessor.");
1099     assert(PostDomSucc->hasNPredecessors(2) &&
1100            "PostDom successor has more than two predecessors.");
1101     DT->addNewBlock(InterimSucc, BB);
1102     DT->addNewBlock(PostDomSucc, BB);
1103   }
1104   // Latch block is a new dominator for the loop exit.
1105   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
1106   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1107 }
1108 
1109 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1110 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1111   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1112          Twine(getOrCreateBID(Block));
1113 }
1114 
1115 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1116   const std::string &Name = Block->getName();
1117   if (!Name.empty())
1118     return Name;
1119   return "VPB" + Twine(getOrCreateBID(Block));
1120 }
1121 
1122 void VPlanPrinter::dump() {
1123   Depth = 1;
1124   bumpIndent(0);
1125   OS << "digraph VPlan {\n";
1126   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1127   if (!Plan.getName().empty())
1128     OS << "\\n" << DOT::EscapeString(Plan.getName());
1129   if (Plan.BackedgeTakenCount) {
1130     OS << ", where:\\n";
1131     Plan.BackedgeTakenCount->print(OS, SlotTracker);
1132     OS << " := BackedgeTakenCount";
1133   }
1134   OS << "\"]\n";
1135   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1136   OS << "edge [fontname=Courier, fontsize=30]\n";
1137   OS << "compound=true\n";
1138 
1139   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
1140     dumpBlock(Block);
1141 
1142   OS << "}\n";
1143 }
1144 
1145 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1146   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1147     dumpBasicBlock(BasicBlock);
1148   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1149     dumpRegion(Region);
1150   else
1151     llvm_unreachable("Unsupported kind of VPBlock.");
1152 }
1153 
1154 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1155                             bool Hidden, const Twine &Label) {
1156   // Due to "dot" we print an edge between two regions as an edge between the
1157   // exit basic block and the entry basic of the respective regions.
1158   const VPBlockBase *Tail = From->getExitBasicBlock();
1159   const VPBlockBase *Head = To->getEntryBasicBlock();
1160   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1161   OS << " [ label=\"" << Label << '\"';
1162   if (Tail != From)
1163     OS << " ltail=" << getUID(From);
1164   if (Head != To)
1165     OS << " lhead=" << getUID(To);
1166   if (Hidden)
1167     OS << "; splines=none";
1168   OS << "]\n";
1169 }
1170 
1171 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1172   auto &Successors = Block->getSuccessors();
1173   if (Successors.size() == 1)
1174     drawEdge(Block, Successors.front(), false, "");
1175   else if (Successors.size() == 2) {
1176     drawEdge(Block, Successors.front(), false, "T");
1177     drawEdge(Block, Successors.back(), false, "F");
1178   } else {
1179     unsigned SuccessorNumber = 0;
1180     for (auto *Successor : Successors)
1181       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1182   }
1183 }
1184 
1185 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1186   // Implement dot-formatted dump by performing plain-text dump into the
1187   // temporary storage followed by some post-processing.
1188   OS << Indent << getUID(BasicBlock) << " [label =\n";
1189   bumpIndent(1);
1190   std::string Str;
1191   raw_string_ostream SS(Str);
1192   // Use no indentation as we need to wrap the lines into quotes ourselves.
1193   BasicBlock->print(SS, "", SlotTracker);
1194 
1195   // We need to process each line of the output separately, so split
1196   // single-string plain-text dump.
1197   SmallVector<StringRef, 0> Lines;
1198   StringRef(Str).rtrim('\n').split(Lines, "\n");
1199 
1200   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1201     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1202   };
1203 
1204   // Don't need the "+" after the last line.
1205   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1206     EmitLine(Line, " +\n");
1207   EmitLine(Lines.back(), "\n");
1208 
1209   bumpIndent(-1);
1210   OS << Indent << "]\n";
1211 
1212   dumpEdges(BasicBlock);
1213 }
1214 
1215 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1216   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1217   bumpIndent(1);
1218   OS << Indent << "fontname=Courier\n"
1219      << Indent << "label=\""
1220      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1221      << DOT::EscapeString(Region->getName()) << "\"\n";
1222   // Dump the blocks of the region.
1223   assert(Region->getEntry() && "Region contains no inner blocks.");
1224   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1225     dumpBlock(Block);
1226   bumpIndent(-1);
1227   OS << Indent << "}\n";
1228   dumpEdges(Region);
1229 }
1230 
1231 void VPlanIngredient::print(raw_ostream &O) const {
1232   if (auto *Inst = dyn_cast<Instruction>(V)) {
1233     if (!Inst->getType()->isVoidTy()) {
1234       Inst->printAsOperand(O, false);
1235       O << " = ";
1236     }
1237     O << Inst->getOpcodeName() << " ";
1238     unsigned E = Inst->getNumOperands();
1239     if (E > 0) {
1240       Inst->getOperand(0)->printAsOperand(O, false);
1241       for (unsigned I = 1; I < E; ++I)
1242         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1243     }
1244   } else // !Inst
1245     V->printAsOperand(O, false);
1246 }
1247 
1248 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1249                               VPSlotTracker &SlotTracker) const {
1250   O << Indent << "WIDEN-CALL ";
1251 
1252   auto *CI = cast<CallInst>(getUnderlyingInstr());
1253   if (CI->getType()->isVoidTy())
1254     O << "void ";
1255   else {
1256     printAsOperand(O, SlotTracker);
1257     O << " = ";
1258   }
1259 
1260   O << "call @" << CI->getCalledFunction()->getName() << "(";
1261   printOperands(O, SlotTracker);
1262   O << ")";
1263 }
1264 
1265 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1266                                 VPSlotTracker &SlotTracker) const {
1267   O << Indent << "WIDEN-SELECT ";
1268   printAsOperand(O, SlotTracker);
1269   O << " = select ";
1270   getOperand(0)->printAsOperand(O, SlotTracker);
1271   O << ", ";
1272   getOperand(1)->printAsOperand(O, SlotTracker);
1273   O << ", ";
1274   getOperand(2)->printAsOperand(O, SlotTracker);
1275   O << (InvariantCond ? " (condition is loop invariant)" : "");
1276 }
1277 
1278 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1279                           VPSlotTracker &SlotTracker) const {
1280   O << Indent << "WIDEN ";
1281   printAsOperand(O, SlotTracker);
1282   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1283   printOperands(O, SlotTracker);
1284 }
1285 
1286 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1287                                           VPSlotTracker &SlotTracker) const {
1288   O << Indent << "WIDEN-INDUCTION";
1289   if (getTruncInst()) {
1290     O << "\\l\"";
1291     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1292     O << " +\n" << Indent << "\"  ";
1293     getVPValue(0)->printAsOperand(O, SlotTracker);
1294   } else
1295     O << " " << VPlanIngredient(IV);
1296 }
1297 
1298 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1299                                           VPSlotTracker &SlotTracker) const {
1300   O << Indent << "EMIT ";
1301   printAsOperand(O, SlotTracker);
1302   O << " = WIDEN-POINTER-INDUCTION ";
1303   getStartValue()->printAsOperand(O, SlotTracker);
1304   O << ", " << *IndDesc.getStep();
1305 }
1306 
1307 #endif
1308 
1309 bool VPWidenIntOrFpInductionRecipe::isCanonical() const {
1310   auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue());
1311   auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep());
1312   return StartC && StartC->isZero() && StepC && StepC->isOne();
1313 }
1314 
1315 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const {
1316   return cast<VPCanonicalIVPHIRecipe>(getOperand(0));
1317 }
1318 
1319 bool VPScalarIVStepsRecipe::isCanonical() const {
1320   auto *CanIV = getCanonicalIV();
1321   // The start value of the steps-recipe must match the start value of the
1322   // canonical induction and it must step by 1.
1323   if (CanIV->getStartValue() != getStartValue())
1324     return false;
1325   auto *StepVPV = getStepValue();
1326   if (StepVPV->getDef())
1327     return false;
1328   auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue());
1329   return StepC && StepC->isOne();
1330 }
1331 
1332 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1333 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent,
1334                                   VPSlotTracker &SlotTracker) const {
1335   O << Indent;
1336   printAsOperand(O, SlotTracker);
1337   O << Indent << "= SCALAR-STEPS ";
1338   printOperands(O, SlotTracker);
1339 }
1340 
1341 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1342                              VPSlotTracker &SlotTracker) const {
1343   O << Indent << "WIDEN-GEP ";
1344   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1345   size_t IndicesNumber = IsIndexLoopInvariant.size();
1346   for (size_t I = 0; I < IndicesNumber; ++I)
1347     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1348 
1349   O << " ";
1350   printAsOperand(O, SlotTracker);
1351   O << " = getelementptr ";
1352   printOperands(O, SlotTracker);
1353 }
1354 
1355 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1356                              VPSlotTracker &SlotTracker) const {
1357   O << Indent << "WIDEN-PHI ";
1358 
1359   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1360   // Unless all incoming values are modeled in VPlan  print the original PHI
1361   // directly.
1362   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1363   // values as VPValues.
1364   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1365     O << VPlanIngredient(OriginalPhi);
1366     return;
1367   }
1368 
1369   printAsOperand(O, SlotTracker);
1370   O << " = phi ";
1371   printOperands(O, SlotTracker);
1372 }
1373 
1374 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1375                           VPSlotTracker &SlotTracker) const {
1376   O << Indent << "BLEND ";
1377   Phi->printAsOperand(O, false);
1378   O << " =";
1379   if (getNumIncomingValues() == 1) {
1380     // Not a User of any mask: not really blending, this is a
1381     // single-predecessor phi.
1382     O << " ";
1383     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1384   } else {
1385     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1386       O << " ";
1387       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1388       O << "/";
1389       getMask(I)->printAsOperand(O, SlotTracker);
1390     }
1391   }
1392 }
1393 
1394 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1395                               VPSlotTracker &SlotTracker) const {
1396   O << Indent << "REDUCE ";
1397   printAsOperand(O, SlotTracker);
1398   O << " = ";
1399   getChainOp()->printAsOperand(O, SlotTracker);
1400   O << " +";
1401   if (isa<FPMathOperator>(getUnderlyingInstr()))
1402     O << getUnderlyingInstr()->getFastMathFlags();
1403   O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " (";
1404   getVecOp()->printAsOperand(O, SlotTracker);
1405   if (getCondOp()) {
1406     O << ", ";
1407     getCondOp()->printAsOperand(O, SlotTracker);
1408   }
1409   O << ")";
1410 }
1411 
1412 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1413                               VPSlotTracker &SlotTracker) const {
1414   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1415 
1416   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1417     printAsOperand(O, SlotTracker);
1418     O << " = ";
1419   }
1420   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1421   printOperands(O, SlotTracker);
1422 
1423   if (AlsoPack)
1424     O << " (S->V)";
1425 }
1426 
1427 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1428                                 VPSlotTracker &SlotTracker) const {
1429   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1430   printAsOperand(O, SlotTracker);
1431   O << " = ";
1432   printOperands(O, SlotTracker);
1433 }
1434 
1435 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1436                                            VPSlotTracker &SlotTracker) const {
1437   O << Indent << "WIDEN ";
1438 
1439   if (!isStore()) {
1440     printAsOperand(O, SlotTracker);
1441     O << " = ";
1442   }
1443   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1444 
1445   printOperands(O, SlotTracker);
1446 }
1447 #endif
1448 
1449 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) {
1450   Value *Start = getStartValue()->getLiveInIRValue();
1451   PHINode *EntryPart = PHINode::Create(
1452       Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt());
1453   EntryPart->addIncoming(Start, State.CFG.VectorPreHeader);
1454   EntryPart->setDebugLoc(DL);
1455   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1456     State.set(this, EntryPart, Part);
1457 }
1458 
1459 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1460 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1461                                    VPSlotTracker &SlotTracker) const {
1462   O << Indent << "EMIT ";
1463   printAsOperand(O, SlotTracker);
1464   O << " = CANONICAL-INDUCTION";
1465 }
1466 #endif
1467 
1468 void VPExpandSCEVRecipe::execute(VPTransformState &State) {
1469   assert(!State.Instance && "cannot be used in per-lane");
1470   const DataLayout &DL =
1471       State.CFG.VectorPreHeader->getModule()->getDataLayout();
1472   SCEVExpander Exp(SE, DL, "induction");
1473   Value *Res = Exp.expandCodeFor(Expr, Expr->getType(),
1474                                  State.CFG.VectorPreHeader->getTerminator());
1475 
1476   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1477     State.set(this, Res, Part);
1478 }
1479 
1480 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1481 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent,
1482                                VPSlotTracker &SlotTracker) const {
1483   O << Indent << "EMIT ";
1484   getVPSingleValue()->printAsOperand(O, SlotTracker);
1485   O << " = EXPAND SCEV " << *Expr;
1486 }
1487 #endif
1488 
1489 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1490   Value *CanonicalIV = State.get(getOperand(0), 0);
1491   Type *STy = CanonicalIV->getType();
1492   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1493   ElementCount VF = State.VF;
1494   Value *VStart = VF.isScalar()
1495                       ? CanonicalIV
1496                       : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
1497   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1498     Value *VStep = createStepForVF(Builder, STy, VF, Part);
1499     if (VF.isVector()) {
1500       VStep = Builder.CreateVectorSplat(VF, VStep);
1501       VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
1502     }
1503     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1504     State.set(this, CanonicalVectorIV, Part);
1505   }
1506 }
1507 
1508 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1509 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1510                                      VPSlotTracker &SlotTracker) const {
1511   O << Indent << "EMIT ";
1512   printAsOperand(O, SlotTracker);
1513   O << " = WIDEN-CANONICAL-INDUCTION ";
1514   printOperands(O, SlotTracker);
1515 }
1516 #endif
1517 
1518 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1519   auto &Builder = State.Builder;
1520   // Create a vector from the initial value.
1521   auto *VectorInit = getStartValue()->getLiveInIRValue();
1522 
1523   Type *VecTy = State.VF.isScalar()
1524                     ? VectorInit->getType()
1525                     : VectorType::get(VectorInit->getType(), State.VF);
1526 
1527   if (State.VF.isVector()) {
1528     auto *IdxTy = Builder.getInt32Ty();
1529     auto *One = ConstantInt::get(IdxTy, 1);
1530     IRBuilder<>::InsertPointGuard Guard(Builder);
1531     Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1532     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1533     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1534     VectorInit = Builder.CreateInsertElement(
1535         PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1536   }
1537 
1538   // Create a phi node for the new recurrence.
1539   PHINode *EntryPart = PHINode::Create(
1540       VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1541   EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader);
1542   State.set(this, EntryPart, 0);
1543 }
1544 
1545 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1546 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1547                                             VPSlotTracker &SlotTracker) const {
1548   O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1549   printAsOperand(O, SlotTracker);
1550   O << " = phi ";
1551   printOperands(O, SlotTracker);
1552 }
1553 #endif
1554 
1555 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1556   PHINode *PN = cast<PHINode>(getUnderlyingValue());
1557   auto &Builder = State.Builder;
1558 
1559   // In order to support recurrences we need to be able to vectorize Phi nodes.
1560   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1561   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1562   // this value when we vectorize all of the instructions that use the PHI.
1563   bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1564   Type *VecTy =
1565       ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1566 
1567   BasicBlock *HeaderBB = State.CFG.PrevBB;
1568   assert(State.CurrentVectorLoop->getHeader() == HeaderBB &&
1569          "recipe must be in the vector loop header");
1570   unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1571   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1572     Value *EntryPart =
1573         PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1574     State.set(this, EntryPart, Part);
1575   }
1576 
1577   // Reductions do not have to start at zero. They can start with
1578   // any loop invariant values.
1579   VPValue *StartVPV = getStartValue();
1580   Value *StartV = StartVPV->getLiveInIRValue();
1581 
1582   Value *Iden = nullptr;
1583   RecurKind RK = RdxDesc.getRecurrenceKind();
1584   if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
1585       RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) {
1586     // MinMax reduction have the start value as their identify.
1587     if (ScalarPHI) {
1588       Iden = StartV;
1589     } else {
1590       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1591       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1592       StartV = Iden =
1593           Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1594     }
1595   } else {
1596     Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
1597                                          RdxDesc.getFastMathFlags());
1598 
1599     if (!ScalarPHI) {
1600       Iden = Builder.CreateVectorSplat(State.VF, Iden);
1601       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1602       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1603       Constant *Zero = Builder.getInt32(0);
1604       StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1605     }
1606   }
1607 
1608   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1609     Value *EntryPart = State.get(this, Part);
1610     // Make sure to add the reduction start value only to the
1611     // first unroll part.
1612     Value *StartVal = (Part == 0) ? StartV : Iden;
1613     cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader);
1614   }
1615 }
1616 
1617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1618 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1619                                  VPSlotTracker &SlotTracker) const {
1620   O << Indent << "WIDEN-REDUCTION-PHI ";
1621 
1622   printAsOperand(O, SlotTracker);
1623   O << " = phi ";
1624   printOperands(O, SlotTracker);
1625 }
1626 #endif
1627 
1628 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1629 
1630 void VPValue::replaceAllUsesWith(VPValue *New) {
1631   for (unsigned J = 0; J < getNumUsers();) {
1632     VPUser *User = Users[J];
1633     unsigned NumUsers = getNumUsers();
1634     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1635       if (User->getOperand(I) == this)
1636         User->setOperand(I, New);
1637     // If a user got removed after updating the current user, the next user to
1638     // update will be moved to the current position, so we only need to
1639     // increment the index if the number of users did not change.
1640     if (NumUsers == getNumUsers())
1641       J++;
1642   }
1643 }
1644 
1645 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1646 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1647   if (const Value *UV = getUnderlyingValue()) {
1648     OS << "ir<";
1649     UV->printAsOperand(OS, false);
1650     OS << ">";
1651     return;
1652   }
1653 
1654   unsigned Slot = Tracker.getSlot(this);
1655   if (Slot == unsigned(-1))
1656     OS << "<badref>";
1657   else
1658     OS << "vp<%" << Tracker.getSlot(this) << ">";
1659 }
1660 
1661 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1662   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1663     Op->printAsOperand(O, SlotTracker);
1664   });
1665 }
1666 #endif
1667 
1668 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1669                                           Old2NewTy &Old2New,
1670                                           InterleavedAccessInfo &IAI) {
1671   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1672   for (VPBlockBase *Base : RPOT) {
1673     visitBlock(Base, Old2New, IAI);
1674   }
1675 }
1676 
1677 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1678                                          InterleavedAccessInfo &IAI) {
1679   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1680     for (VPRecipeBase &VPI : *VPBB) {
1681       if (isa<VPHeaderPHIRecipe>(&VPI))
1682         continue;
1683       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1684       auto *VPInst = cast<VPInstruction>(&VPI);
1685       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1686       auto *IG = IAI.getInterleaveGroup(Inst);
1687       if (!IG)
1688         continue;
1689 
1690       auto NewIGIter = Old2New.find(IG);
1691       if (NewIGIter == Old2New.end())
1692         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1693             IG->getFactor(), IG->isReverse(), IG->getAlign());
1694 
1695       if (Inst == IG->getInsertPos())
1696         Old2New[IG]->setInsertPos(VPInst);
1697 
1698       InterleaveGroupMap[VPInst] = Old2New[IG];
1699       InterleaveGroupMap[VPInst]->insertMember(
1700           VPInst, IG->getIndex(Inst),
1701           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1702                                 : IG->getFactor()));
1703     }
1704   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1705     visitRegion(Region, Old2New, IAI);
1706   else
1707     llvm_unreachable("Unsupported kind of VPBlock.");
1708 }
1709 
1710 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1711                                                  InterleavedAccessInfo &IAI) {
1712   Old2NewTy Old2New;
1713   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1714 }
1715 
1716 void VPSlotTracker::assignSlot(const VPValue *V) {
1717   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1718   Slots[V] = NextSlot++;
1719 }
1720 
1721 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1722 
1723   for (const VPValue *V : Plan.VPExternalDefs)
1724     assignSlot(V);
1725 
1726   assignSlot(&Plan.VectorTripCount);
1727   if (Plan.BackedgeTakenCount)
1728     assignSlot(Plan.BackedgeTakenCount);
1729 
1730   ReversePostOrderTraversal<
1731       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1732       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1733           Plan.getEntry()));
1734   for (const VPBasicBlock *VPBB :
1735        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1736     for (const VPRecipeBase &Recipe : *VPBB)
1737       for (VPValue *Def : Recipe.definedValues())
1738         assignSlot(Def);
1739 }
1740 
1741 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1742   return all_of(Def->users(), [Def](VPUser *U) {
1743     return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(Def);
1744   });
1745 }
1746