1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExit(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExit() == this && 179 "Block w/o successors not the exit of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 VPValue *VPBlockBase::getCondBit() { 192 return CondBitUser.getSingleOperandOrNull(); 193 } 194 195 const VPValue *VPBlockBase::getCondBit() const { 196 return CondBitUser.getSingleOperandOrNull(); 197 } 198 199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); } 200 201 VPValue *VPBlockBase::getPredicate() { 202 return PredicateUser.getSingleOperandOrNull(); 203 } 204 205 const VPValue *VPBlockBase::getPredicate() const { 206 return PredicateUser.getSingleOperandOrNull(); 207 } 208 209 void VPBlockBase::setPredicate(VPValue *CV) { 210 PredicateUser.resetSingleOpUser(CV); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 215 216 for (VPBlockBase *Block : Blocks) 217 delete Block; 218 } 219 220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 221 iterator It = begin(); 222 while (It != end() && It->isPhi()) 223 It++; 224 return It; 225 } 226 227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 228 if (!Def->getDef()) 229 return Def->getLiveInIRValue(); 230 231 if (hasScalarValue(Def, Instance)) { 232 return Data 233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 234 } 235 236 assert(hasVectorValue(Def, Instance.Part)); 237 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 238 if (!VecPart->getType()->isVectorTy()) { 239 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 240 return VecPart; 241 } 242 // TODO: Cache created scalar values. 243 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 244 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 245 // set(Def, Extract, Instance); 246 return Extract; 247 } 248 249 BasicBlock * 250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 251 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 252 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 253 BasicBlock *PrevBB = CFG.PrevBB; 254 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 255 PrevBB->getParent(), CFG.LastBB); 256 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 257 258 // Hook up the new basic block to its predecessors. 259 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 260 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 261 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 262 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 263 264 // In outer loop vectorization scenario, the predecessor BBlock may not yet 265 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 266 // vectorization. We do not encounter this case in inner loop vectorization 267 // as we start out by building a loop skeleton with the vector loop header 268 // and latch blocks. As a result, we never enter this function for the 269 // header block in the non VPlan-native path. 270 if (!PredBB) { 271 assert(EnableVPlanNativePath && 272 "Unexpected null predecessor in non VPlan-native path"); 273 CFG.VPBBsToFix.push_back(PredVPBB); 274 continue; 275 } 276 277 assert(PredBB && "Predecessor basic-block not found building successor."); 278 auto *PredBBTerminator = PredBB->getTerminator(); 279 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 280 if (isa<UnreachableInst>(PredBBTerminator)) { 281 assert(PredVPSuccessors.size() == 1 && 282 "Predecessor ending w/o branch must have single successor."); 283 PredBBTerminator->eraseFromParent(); 284 BranchInst::Create(NewBB, PredBB); 285 } else { 286 assert(PredVPSuccessors.size() == 2 && 287 "Predecessor ending with branch must have two successors."); 288 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 289 assert(!PredBBTerminator->getSuccessor(idx) && 290 "Trying to reset an existing successor block."); 291 PredBBTerminator->setSuccessor(idx, NewBB); 292 } 293 } 294 return NewBB; 295 } 296 297 void VPBasicBlock::execute(VPTransformState *State) { 298 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 299 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 300 VPBlockBase *SingleHPred = nullptr; 301 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 302 303 // 1. Create an IR basic block, or reuse the last one if possible. 304 // The last IR basic block is reused, as an optimization, in three cases: 305 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 306 // B. when the current VPBB has a single (hierarchical) predecessor which 307 // is PrevVPBB and the latter has a single (hierarchical) successor; and 308 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 309 // is the exit of this region from a previous instance, or the predecessor 310 // of this region. 311 if (PrevVPBB && /* A */ 312 !((SingleHPred = getSingleHierarchicalPredecessor()) && 313 SingleHPred->getExitBasicBlock() == PrevVPBB && 314 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 315 !(Replica && getPredecessors().empty())) { /* C */ 316 NewBB = createEmptyBasicBlock(State->CFG); 317 State->Builder.SetInsertPoint(NewBB); 318 // Temporarily terminate with unreachable until CFG is rewired. 319 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 320 State->Builder.SetInsertPoint(Terminator); 321 // Register NewBB in its loop. In innermost loops its the same for all BB's. 322 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 323 L->addBasicBlockToLoop(NewBB, *State->LI); 324 State->CFG.PrevBB = NewBB; 325 } 326 327 // 2. Fill the IR basic block with IR instructions. 328 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 329 << " in BB:" << NewBB->getName() << '\n'); 330 331 State->CFG.VPBB2IRBB[this] = NewBB; 332 State->CFG.PrevVPBB = this; 333 334 for (VPRecipeBase &Recipe : Recipes) 335 Recipe.execute(*State); 336 337 VPValue *CBV; 338 if (EnableVPlanNativePath && (CBV = getCondBit())) { 339 assert(CBV->getUnderlyingValue() && 340 "Unexpected null underlying value for condition bit"); 341 342 // Condition bit value in a VPBasicBlock is used as the branch selector. In 343 // the VPlan-native path case, since all branches are uniform we generate a 344 // branch instruction using the condition value from vector lane 0 and dummy 345 // successors. The successors are fixed later when the successor blocks are 346 // visited. 347 Value *NewCond = State->get(CBV, {0, 0}); 348 349 // Replace the temporary unreachable terminator with the new conditional 350 // branch. 351 auto *CurrentTerminator = NewBB->getTerminator(); 352 assert(isa<UnreachableInst>(CurrentTerminator) && 353 "Expected to replace unreachable terminator with conditional " 354 "branch."); 355 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 356 CondBr->setSuccessor(0, nullptr); 357 ReplaceInstWithInst(CurrentTerminator, CondBr); 358 } 359 360 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 361 } 362 363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 364 for (VPRecipeBase &R : Recipes) { 365 for (auto *Def : R.definedValues()) 366 Def->replaceAllUsesWith(NewValue); 367 368 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 369 R.setOperand(I, NewValue); 370 } 371 } 372 373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 374 assert((SplitAt == end() || SplitAt->getParent() == this) && 375 "can only split at a position in the same block"); 376 377 SmallVector<VPBlockBase *, 2> Succs(successors()); 378 // First, disconnect the current block from its successors. 379 for (VPBlockBase *Succ : Succs) 380 VPBlockUtils::disconnectBlocks(this, Succ); 381 382 // Create new empty block after the block to split. 383 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 384 VPBlockUtils::insertBlockAfter(SplitBlock, this); 385 386 // Add successors for block to split to new block. 387 for (VPBlockBase *Succ : Succs) 388 VPBlockUtils::connectBlocks(SplitBlock, Succ); 389 390 // Finally, move the recipes starting at SplitAt to new block. 391 for (VPRecipeBase &ToMove : 392 make_early_inc_range(make_range(SplitAt, this->end()))) 393 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 394 395 return SplitBlock; 396 } 397 398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 399 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 400 if (getSuccessors().empty()) { 401 O << Indent << "No successors\n"; 402 } else { 403 O << Indent << "Successor(s): "; 404 ListSeparator LS; 405 for (auto *Succ : getSuccessors()) 406 O << LS << Succ->getName(); 407 O << '\n'; 408 } 409 } 410 411 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 412 VPSlotTracker &SlotTracker) const { 413 O << Indent << getName() << ":\n"; 414 if (const VPValue *Pred = getPredicate()) { 415 O << Indent << "BlockPredicate:"; 416 Pred->printAsOperand(O, SlotTracker); 417 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 418 O << " (" << PredInst->getParent()->getName() << ")"; 419 O << '\n'; 420 } 421 422 auto RecipeIndent = Indent + " "; 423 for (const VPRecipeBase &Recipe : *this) { 424 Recipe.print(O, RecipeIndent, SlotTracker); 425 O << '\n'; 426 } 427 428 printSuccessors(O, Indent); 429 430 if (const VPValue *CBV = getCondBit()) { 431 O << Indent << "CondBit: "; 432 CBV->printAsOperand(O, SlotTracker); 433 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 434 O << " (" << CBI->getParent()->getName() << ")"; 435 O << '\n'; 436 } 437 } 438 #endif 439 440 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 441 for (VPBlockBase *Block : depth_first(Entry)) 442 // Drop all references in VPBasicBlocks and replace all uses with 443 // DummyValue. 444 Block->dropAllReferences(NewValue); 445 } 446 447 void VPRegionBlock::execute(VPTransformState *State) { 448 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 449 450 if (!isReplicator()) { 451 // Visit the VPBlocks connected to "this", starting from it. 452 for (VPBlockBase *Block : RPOT) { 453 if (EnableVPlanNativePath) { 454 // The inner loop vectorization path does not represent loop preheader 455 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 456 // vectorizing loop preheader block. In future, we may replace this 457 // check with the check for loop preheader. 458 if (Block->getNumPredecessors() == 0) 459 continue; 460 461 // Skip vectorizing loop exit block. In future, we may replace this 462 // check with the check for loop exit. 463 if (Block->getNumSuccessors() == 0) 464 continue; 465 } 466 467 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 468 Block->execute(State); 469 } 470 return; 471 } 472 473 assert(!State->Instance && "Replicating a Region with non-null instance."); 474 475 // Enter replicating mode. 476 State->Instance = VPIteration(0, 0); 477 478 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 479 State->Instance->Part = Part; 480 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 481 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 482 ++Lane) { 483 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 484 // Visit the VPBlocks connected to \p this, starting from it. 485 for (VPBlockBase *Block : RPOT) { 486 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 487 Block->execute(State); 488 } 489 } 490 } 491 492 // Exit replicating mode. 493 State->Instance.reset(); 494 } 495 496 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 497 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 498 VPSlotTracker &SlotTracker) const { 499 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 500 auto NewIndent = Indent + " "; 501 for (auto *BlockBase : depth_first(Entry)) { 502 O << '\n'; 503 BlockBase->print(O, NewIndent, SlotTracker); 504 } 505 O << Indent << "}\n"; 506 507 printSuccessors(O, Indent); 508 } 509 #endif 510 511 bool VPRecipeBase::mayWriteToMemory() const { 512 switch (getVPDefID()) { 513 case VPWidenMemoryInstructionSC: { 514 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 515 } 516 case VPReplicateSC: 517 case VPWidenCallSC: 518 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 519 ->mayWriteToMemory(); 520 case VPBranchOnMaskSC: 521 return false; 522 case VPWidenIntOrFpInductionSC: 523 case VPWidenCanonicalIVSC: 524 case VPWidenPHISC: 525 case VPBlendSC: 526 case VPWidenSC: 527 case VPWidenGEPSC: 528 case VPReductionSC: 529 case VPWidenSelectSC: { 530 const Instruction *I = 531 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 532 (void)I; 533 assert((!I || !I->mayWriteToMemory()) && 534 "underlying instruction may write to memory"); 535 return false; 536 } 537 default: 538 return true; 539 } 540 } 541 542 bool VPRecipeBase::mayReadFromMemory() const { 543 switch (getVPDefID()) { 544 case VPWidenMemoryInstructionSC: { 545 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 546 } 547 case VPReplicateSC: 548 case VPWidenCallSC: 549 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 550 ->mayReadFromMemory(); 551 case VPBranchOnMaskSC: 552 return false; 553 case VPWidenIntOrFpInductionSC: 554 case VPWidenCanonicalIVSC: 555 case VPWidenPHISC: 556 case VPBlendSC: 557 case VPWidenSC: 558 case VPWidenGEPSC: 559 case VPReductionSC: 560 case VPWidenSelectSC: { 561 const Instruction *I = 562 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 563 (void)I; 564 assert((!I || !I->mayReadFromMemory()) && 565 "underlying instruction may read from memory"); 566 return false; 567 } 568 default: 569 return true; 570 } 571 } 572 573 bool VPRecipeBase::mayHaveSideEffects() const { 574 switch (getVPDefID()) { 575 case VPBranchOnMaskSC: 576 return false; 577 case VPWidenIntOrFpInductionSC: 578 case VPWidenCanonicalIVSC: 579 case VPWidenPHISC: 580 case VPBlendSC: 581 case VPWidenSC: 582 case VPWidenGEPSC: 583 case VPReductionSC: 584 case VPWidenSelectSC: 585 case VPScalarIVStepsSC: { 586 const Instruction *I = 587 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 588 (void)I; 589 assert((!I || !I->mayHaveSideEffects()) && 590 "underlying instruction has side-effects"); 591 return false; 592 } 593 case VPReplicateSC: { 594 auto *R = cast<VPReplicateRecipe>(this); 595 return R->getUnderlyingInstr()->mayHaveSideEffects(); 596 } 597 default: 598 return true; 599 } 600 } 601 602 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 603 assert(!Parent && "Recipe already in some VPBasicBlock"); 604 assert(InsertPos->getParent() && 605 "Insertion position not in any VPBasicBlock"); 606 Parent = InsertPos->getParent(); 607 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 608 } 609 610 void VPRecipeBase::insertBefore(VPBasicBlock &BB, 611 iplist<VPRecipeBase>::iterator I) { 612 assert(!Parent && "Recipe already in some VPBasicBlock"); 613 assert(I == BB.end() || I->getParent() == &BB); 614 Parent = &BB; 615 BB.getRecipeList().insert(I, this); 616 } 617 618 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 619 assert(!Parent && "Recipe already in some VPBasicBlock"); 620 assert(InsertPos->getParent() && 621 "Insertion position not in any VPBasicBlock"); 622 Parent = InsertPos->getParent(); 623 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 624 } 625 626 void VPRecipeBase::removeFromParent() { 627 assert(getParent() && "Recipe not in any VPBasicBlock"); 628 getParent()->getRecipeList().remove(getIterator()); 629 Parent = nullptr; 630 } 631 632 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 633 assert(getParent() && "Recipe not in any VPBasicBlock"); 634 return getParent()->getRecipeList().erase(getIterator()); 635 } 636 637 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 638 removeFromParent(); 639 insertAfter(InsertPos); 640 } 641 642 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 643 iplist<VPRecipeBase>::iterator I) { 644 removeFromParent(); 645 insertBefore(BB, I); 646 } 647 648 void VPInstruction::generateInstruction(VPTransformState &State, 649 unsigned Part) { 650 IRBuilderBase &Builder = State.Builder; 651 Builder.SetCurrentDebugLocation(DL); 652 653 if (Instruction::isBinaryOp(getOpcode())) { 654 Value *A = State.get(getOperand(0), Part); 655 Value *B = State.get(getOperand(1), Part); 656 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 657 State.set(this, V, Part); 658 return; 659 } 660 661 switch (getOpcode()) { 662 case VPInstruction::Not: { 663 Value *A = State.get(getOperand(0), Part); 664 Value *V = Builder.CreateNot(A); 665 State.set(this, V, Part); 666 break; 667 } 668 case VPInstruction::ICmpULE: { 669 Value *IV = State.get(getOperand(0), Part); 670 Value *TC = State.get(getOperand(1), Part); 671 Value *V = Builder.CreateICmpULE(IV, TC); 672 State.set(this, V, Part); 673 break; 674 } 675 case Instruction::Select: { 676 Value *Cond = State.get(getOperand(0), Part); 677 Value *Op1 = State.get(getOperand(1), Part); 678 Value *Op2 = State.get(getOperand(2), Part); 679 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 680 State.set(this, V, Part); 681 break; 682 } 683 case VPInstruction::ActiveLaneMask: { 684 // Get first lane of vector induction variable. 685 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 686 // Get the original loop tripcount. 687 Value *ScalarTC = State.get(getOperand(1), Part); 688 689 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 690 auto *PredTy = VectorType::get(Int1Ty, State.VF); 691 Instruction *Call = Builder.CreateIntrinsic( 692 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 693 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 694 State.set(this, Call, Part); 695 break; 696 } 697 case VPInstruction::FirstOrderRecurrenceSplice: { 698 // Generate code to combine the previous and current values in vector v3. 699 // 700 // vector.ph: 701 // v_init = vector(..., ..., ..., a[-1]) 702 // br vector.body 703 // 704 // vector.body 705 // i = phi [0, vector.ph], [i+4, vector.body] 706 // v1 = phi [v_init, vector.ph], [v2, vector.body] 707 // v2 = a[i, i+1, i+2, i+3]; 708 // v3 = vector(v1(3), v2(0, 1, 2)) 709 710 // For the first part, use the recurrence phi (v1), otherwise v2. 711 auto *V1 = State.get(getOperand(0), 0); 712 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 713 if (!PartMinus1->getType()->isVectorTy()) { 714 State.set(this, PartMinus1, Part); 715 } else { 716 Value *V2 = State.get(getOperand(1), Part); 717 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 718 } 719 break; 720 } 721 722 case VPInstruction::CanonicalIVIncrement: 723 case VPInstruction::CanonicalIVIncrementNUW: { 724 Value *Next = nullptr; 725 if (Part == 0) { 726 bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; 727 auto *Phi = State.get(getOperand(0), 0); 728 // The loop step is equal to the vectorization factor (num of SIMD 729 // elements) times the unroll factor (num of SIMD instructions). 730 Value *Step = 731 createStepForVF(Builder, Phi->getType(), State.VF, State.UF); 732 Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); 733 } else { 734 Next = State.get(this, 0); 735 } 736 737 State.set(this, Next, Part); 738 break; 739 } 740 case VPInstruction::BranchOnCount: { 741 if (Part != 0) 742 break; 743 // First create the compare. 744 Value *IV = State.get(getOperand(0), Part); 745 Value *TC = State.get(getOperand(1), Part); 746 Value *Cond = Builder.CreateICmpEQ(IV, TC); 747 748 // Now create the branch. 749 auto *Plan = getParent()->getPlan(); 750 VPRegionBlock *TopRegion = Plan->getVectorLoopRegion(); 751 VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock(); 752 if (Header->empty()) { 753 assert(EnableVPlanNativePath && 754 "empty entry block only expected in VPlanNativePath"); 755 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 756 } 757 // TODO: Once the exit block is modeled in VPlan, use it instead of going 758 // through State.CFG.LastBB. 759 BasicBlock *Exit = 760 cast<BranchInst>(State.CFG.LastBB->getTerminator())->getSuccessor(0); 761 762 Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]); 763 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 764 break; 765 } 766 default: 767 llvm_unreachable("Unsupported opcode for instruction"); 768 } 769 } 770 771 void VPInstruction::execute(VPTransformState &State) { 772 assert(!State.Instance && "VPInstruction executing an Instance"); 773 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 774 State.Builder.setFastMathFlags(FMF); 775 for (unsigned Part = 0; Part < State.UF; ++Part) 776 generateInstruction(State, Part); 777 } 778 779 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 780 void VPInstruction::dump() const { 781 VPSlotTracker SlotTracker(getParent()->getPlan()); 782 print(dbgs(), "", SlotTracker); 783 } 784 785 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 786 VPSlotTracker &SlotTracker) const { 787 O << Indent << "EMIT "; 788 789 if (hasResult()) { 790 printAsOperand(O, SlotTracker); 791 O << " = "; 792 } 793 794 switch (getOpcode()) { 795 case VPInstruction::Not: 796 O << "not"; 797 break; 798 case VPInstruction::ICmpULE: 799 O << "icmp ule"; 800 break; 801 case VPInstruction::SLPLoad: 802 O << "combined load"; 803 break; 804 case VPInstruction::SLPStore: 805 O << "combined store"; 806 break; 807 case VPInstruction::ActiveLaneMask: 808 O << "active lane mask"; 809 break; 810 case VPInstruction::FirstOrderRecurrenceSplice: 811 O << "first-order splice"; 812 break; 813 case VPInstruction::CanonicalIVIncrement: 814 O << "VF * UF + "; 815 break; 816 case VPInstruction::CanonicalIVIncrementNUW: 817 O << "VF * UF +(nuw) "; 818 break; 819 case VPInstruction::BranchOnCount: 820 O << "branch-on-count "; 821 break; 822 default: 823 O << Instruction::getOpcodeName(getOpcode()); 824 } 825 826 O << FMF; 827 828 for (const VPValue *Operand : operands()) { 829 O << " "; 830 Operand->printAsOperand(O, SlotTracker); 831 } 832 833 if (DL) { 834 O << ", !dbg "; 835 DL.print(O); 836 } 837 } 838 #endif 839 840 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 841 // Make sure the VPInstruction is a floating-point operation. 842 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 843 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 844 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 845 Opcode == Instruction::FCmp) && 846 "this op can't take fast-math flags"); 847 FMF = FMFNew; 848 } 849 850 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 851 Value *CanonicalIVStartValue, 852 VPTransformState &State) { 853 // Check if the trip count is needed, and if so build it. 854 if (TripCount && TripCount->getNumUsers()) { 855 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 856 State.set(TripCount, TripCountV, Part); 857 } 858 859 // Check if the backedge taken count is needed, and if so build it. 860 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 861 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 862 auto *TCMO = Builder.CreateSub(TripCountV, 863 ConstantInt::get(TripCountV->getType(), 1), 864 "trip.count.minus.1"); 865 auto VF = State.VF; 866 Value *VTCMO = 867 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 868 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 869 State.set(BackedgeTakenCount, VTCMO, Part); 870 } 871 872 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 873 State.set(&VectorTripCount, VectorTripCountV, Part); 874 875 // When vectorizing the epilogue loop, the canonical induction start value 876 // needs to be changed from zero to the value after the main vector loop. 877 if (CanonicalIVStartValue) { 878 VPValue *VPV = new VPValue(CanonicalIVStartValue); 879 addExternalDef(VPV); 880 auto *IV = getCanonicalIV(); 881 assert(all_of(IV->users(), 882 [](const VPUser *U) { 883 if (isa<VPScalarIVStepsRecipe>(U)) 884 return true; 885 auto *VPI = cast<VPInstruction>(U); 886 return VPI->getOpcode() == 887 VPInstruction::CanonicalIVIncrement || 888 VPI->getOpcode() == 889 VPInstruction::CanonicalIVIncrementNUW; 890 }) && 891 "the canonical IV should only be used by its increments or " 892 "ScalarIVSteps when " 893 "resetting the start value"); 894 IV->setOperand(0, VPV); 895 } 896 } 897 898 /// Generate the code inside the body of the vectorized loop. Assumes a single 899 /// LoopVectorBody basic-block was created for this. Introduce additional 900 /// basic-blocks as needed, and fill them all. 901 void VPlan::execute(VPTransformState *State) { 902 // 0. Set the reverse mapping from VPValues to Values for code generation. 903 for (auto &Entry : Value2VPValue) 904 State->VPValue2Value[Entry.second] = Entry.first; 905 906 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 907 State->CFG.VectorPreHeader = VectorPreHeaderBB; 908 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 909 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 910 911 // 1. Make room to generate basic-blocks inside loop body if needed. 912 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 913 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 914 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 915 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 916 // Remove the edge between Header and Latch to allow other connections. 917 // Temporarily terminate with unreachable until CFG is rewired. 918 // Note: this asserts the generated code's assumption that 919 // getFirstInsertionPt() can be dereferenced into an Instruction. 920 VectorHeaderBB->getTerminator()->eraseFromParent(); 921 State->Builder.SetInsertPoint(VectorHeaderBB); 922 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 923 State->Builder.SetInsertPoint(Terminator); 924 925 // 2. Generate code in loop body. 926 State->CFG.PrevVPBB = nullptr; 927 State->CFG.PrevBB = VectorHeaderBB; 928 State->CFG.LastBB = VectorLatchBB; 929 930 for (VPBlockBase *Block : depth_first(Entry)) 931 Block->execute(State); 932 933 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 934 // VPBB's successors. 935 for (auto VPBB : State->CFG.VPBBsToFix) { 936 assert(EnableVPlanNativePath && 937 "Unexpected VPBBsToFix in non VPlan-native path"); 938 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 939 assert(BB && "Unexpected null basic block for VPBB"); 940 941 unsigned Idx = 0; 942 auto *BBTerminator = BB->getTerminator(); 943 944 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 945 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 946 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 947 ++Idx; 948 } 949 } 950 951 // 3. Merge the temporary latch created with the last basic-block filled. 952 BasicBlock *LastBB = State->CFG.PrevBB; 953 assert(isa<BranchInst>(LastBB->getTerminator()) && 954 "Expected VPlan CFG to terminate with branch"); 955 956 // Move both the branch and check from LastBB to VectorLatchBB. 957 auto *LastBranch = cast<BranchInst>(LastBB->getTerminator()); 958 LastBranch->moveBefore(VectorLatchBB->getTerminator()); 959 VectorLatchBB->getTerminator()->eraseFromParent(); 960 // Move condition so it is guaranteed to be next to branch. This is only done 961 // to avoid excessive test updates. 962 // TODO: Remove special handling once the increments for all inductions are 963 // modeled explicitly in VPlan. 964 cast<Instruction>(LastBranch->getCondition())->moveBefore(LastBranch); 965 // Connect LastBB to VectorLatchBB to facilitate their merge. 966 BranchInst::Create(VectorLatchBB, LastBB); 967 968 // Merge LastBB with Latch. 969 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 970 (void)Merged; 971 assert(Merged && "Could not merge last basic block with latch."); 972 VectorLatchBB = LastBB; 973 974 // Fix the latch value of canonical, reduction and first-order recurrences 975 // phis in the vector loop. 976 VPBasicBlock *Header = Entry->getEntryBasicBlock(); 977 if (Header->empty()) { 978 assert(EnableVPlanNativePath); 979 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 980 } 981 for (VPRecipeBase &R : Header->phis()) { 982 // Skip phi-like recipes that generate their backedege values themselves. 983 // TODO: Model their backedge values explicitly. 984 if (isa<VPWidenIntOrFpInductionRecipe>(&R) || isa<VPWidenPHIRecipe>(&R)) 985 continue; 986 987 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 988 // For canonical IV, first-order recurrences and in-order reduction phis, 989 // only a single part is generated, which provides the last part from the 990 // previous iteration. For non-ordered reductions all UF parts are 991 // generated. 992 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 993 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 994 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 995 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 996 997 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 998 Value *Phi = State->get(PhiR, Part); 999 Value *Val = State->get(PhiR->getBackedgeValue(), 1000 SinglePartNeeded ? State->UF - 1 : Part); 1001 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1002 } 1003 } 1004 1005 // We do not attempt to preserve DT for outer loop vectorization currently. 1006 if (!EnableVPlanNativePath) 1007 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 1008 L->getExitBlock()); 1009 } 1010 1011 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1012 LLVM_DUMP_METHOD 1013 void VPlan::print(raw_ostream &O) const { 1014 VPSlotTracker SlotTracker(this); 1015 1016 O << "VPlan '" << Name << "' {"; 1017 1018 if (VectorTripCount.getNumUsers() > 0) { 1019 O << "\nLive-in "; 1020 VectorTripCount.printAsOperand(O, SlotTracker); 1021 O << " = vector-trip-count\n"; 1022 } 1023 1024 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1025 O << "\nLive-in "; 1026 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1027 O << " = backedge-taken count\n"; 1028 } 1029 1030 for (const VPBlockBase *Block : depth_first(getEntry())) { 1031 O << '\n'; 1032 Block->print(O, "", SlotTracker); 1033 } 1034 O << "}\n"; 1035 } 1036 1037 LLVM_DUMP_METHOD 1038 void VPlan::printDOT(raw_ostream &O) const { 1039 VPlanPrinter Printer(O, *this); 1040 Printer.dump(); 1041 } 1042 1043 LLVM_DUMP_METHOD 1044 void VPlan::dump() const { print(dbgs()); } 1045 #endif 1046 1047 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 1048 BasicBlock *LoopLatchBB, 1049 BasicBlock *LoopExitBB) { 1050 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 1051 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 1052 // The vector body may be more than a single basic-block by this point. 1053 // Update the dominator tree information inside the vector body by propagating 1054 // it from header to latch, expecting only triangular control-flow, if any. 1055 BasicBlock *PostDomSucc = nullptr; 1056 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1057 // Get the list of successors of this block. 1058 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1059 assert(Succs.size() <= 2 && 1060 "Basic block in vector loop has more than 2 successors."); 1061 PostDomSucc = Succs[0]; 1062 if (Succs.size() == 1) { 1063 assert(PostDomSucc->getSinglePredecessor() && 1064 "PostDom successor has more than one predecessor."); 1065 DT->addNewBlock(PostDomSucc, BB); 1066 continue; 1067 } 1068 BasicBlock *InterimSucc = Succs[1]; 1069 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1070 PostDomSucc = Succs[1]; 1071 InterimSucc = Succs[0]; 1072 } 1073 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1074 "One successor of a basic block does not lead to the other."); 1075 assert(InterimSucc->getSinglePredecessor() && 1076 "Interim successor has more than one predecessor."); 1077 assert(PostDomSucc->hasNPredecessors(2) && 1078 "PostDom successor has more than two predecessors."); 1079 DT->addNewBlock(InterimSucc, BB); 1080 DT->addNewBlock(PostDomSucc, BB); 1081 } 1082 // Latch block is a new dominator for the loop exit. 1083 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1084 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1085 } 1086 1087 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1088 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1089 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1090 Twine(getOrCreateBID(Block)); 1091 } 1092 1093 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1094 const std::string &Name = Block->getName(); 1095 if (!Name.empty()) 1096 return Name; 1097 return "VPB" + Twine(getOrCreateBID(Block)); 1098 } 1099 1100 void VPlanPrinter::dump() { 1101 Depth = 1; 1102 bumpIndent(0); 1103 OS << "digraph VPlan {\n"; 1104 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1105 if (!Plan.getName().empty()) 1106 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1107 if (Plan.BackedgeTakenCount) { 1108 OS << ", where:\\n"; 1109 Plan.BackedgeTakenCount->print(OS, SlotTracker); 1110 OS << " := BackedgeTakenCount"; 1111 } 1112 OS << "\"]\n"; 1113 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1114 OS << "edge [fontname=Courier, fontsize=30]\n"; 1115 OS << "compound=true\n"; 1116 1117 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 1118 dumpBlock(Block); 1119 1120 OS << "}\n"; 1121 } 1122 1123 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1124 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1125 dumpBasicBlock(BasicBlock); 1126 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1127 dumpRegion(Region); 1128 else 1129 llvm_unreachable("Unsupported kind of VPBlock."); 1130 } 1131 1132 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1133 bool Hidden, const Twine &Label) { 1134 // Due to "dot" we print an edge between two regions as an edge between the 1135 // exit basic block and the entry basic of the respective regions. 1136 const VPBlockBase *Tail = From->getExitBasicBlock(); 1137 const VPBlockBase *Head = To->getEntryBasicBlock(); 1138 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1139 OS << " [ label=\"" << Label << '\"'; 1140 if (Tail != From) 1141 OS << " ltail=" << getUID(From); 1142 if (Head != To) 1143 OS << " lhead=" << getUID(To); 1144 if (Hidden) 1145 OS << "; splines=none"; 1146 OS << "]\n"; 1147 } 1148 1149 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1150 auto &Successors = Block->getSuccessors(); 1151 if (Successors.size() == 1) 1152 drawEdge(Block, Successors.front(), false, ""); 1153 else if (Successors.size() == 2) { 1154 drawEdge(Block, Successors.front(), false, "T"); 1155 drawEdge(Block, Successors.back(), false, "F"); 1156 } else { 1157 unsigned SuccessorNumber = 0; 1158 for (auto *Successor : Successors) 1159 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1160 } 1161 } 1162 1163 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1164 // Implement dot-formatted dump by performing plain-text dump into the 1165 // temporary storage followed by some post-processing. 1166 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1167 bumpIndent(1); 1168 std::string Str; 1169 raw_string_ostream SS(Str); 1170 // Use no indentation as we need to wrap the lines into quotes ourselves. 1171 BasicBlock->print(SS, "", SlotTracker); 1172 1173 // We need to process each line of the output separately, so split 1174 // single-string plain-text dump. 1175 SmallVector<StringRef, 0> Lines; 1176 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1177 1178 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1179 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1180 }; 1181 1182 // Don't need the "+" after the last line. 1183 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1184 EmitLine(Line, " +\n"); 1185 EmitLine(Lines.back(), "\n"); 1186 1187 bumpIndent(-1); 1188 OS << Indent << "]\n"; 1189 1190 dumpEdges(BasicBlock); 1191 } 1192 1193 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1194 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1195 bumpIndent(1); 1196 OS << Indent << "fontname=Courier\n" 1197 << Indent << "label=\"" 1198 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1199 << DOT::EscapeString(Region->getName()) << "\"\n"; 1200 // Dump the blocks of the region. 1201 assert(Region->getEntry() && "Region contains no inner blocks."); 1202 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1203 dumpBlock(Block); 1204 bumpIndent(-1); 1205 OS << Indent << "}\n"; 1206 dumpEdges(Region); 1207 } 1208 1209 void VPlanIngredient::print(raw_ostream &O) const { 1210 if (auto *Inst = dyn_cast<Instruction>(V)) { 1211 if (!Inst->getType()->isVoidTy()) { 1212 Inst->printAsOperand(O, false); 1213 O << " = "; 1214 } 1215 O << Inst->getOpcodeName() << " "; 1216 unsigned E = Inst->getNumOperands(); 1217 if (E > 0) { 1218 Inst->getOperand(0)->printAsOperand(O, false); 1219 for (unsigned I = 1; I < E; ++I) 1220 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1221 } 1222 } else // !Inst 1223 V->printAsOperand(O, false); 1224 } 1225 1226 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1227 VPSlotTracker &SlotTracker) const { 1228 O << Indent << "WIDEN-CALL "; 1229 1230 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1231 if (CI->getType()->isVoidTy()) 1232 O << "void "; 1233 else { 1234 printAsOperand(O, SlotTracker); 1235 O << " = "; 1236 } 1237 1238 O << "call @" << CI->getCalledFunction()->getName() << "("; 1239 printOperands(O, SlotTracker); 1240 O << ")"; 1241 } 1242 1243 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1244 VPSlotTracker &SlotTracker) const { 1245 O << Indent << "WIDEN-SELECT "; 1246 printAsOperand(O, SlotTracker); 1247 O << " = select "; 1248 getOperand(0)->printAsOperand(O, SlotTracker); 1249 O << ", "; 1250 getOperand(1)->printAsOperand(O, SlotTracker); 1251 O << ", "; 1252 getOperand(2)->printAsOperand(O, SlotTracker); 1253 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1254 } 1255 1256 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1257 VPSlotTracker &SlotTracker) const { 1258 O << Indent << "WIDEN "; 1259 printAsOperand(O, SlotTracker); 1260 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1261 printOperands(O, SlotTracker); 1262 } 1263 1264 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1265 VPSlotTracker &SlotTracker) const { 1266 O << Indent << "WIDEN-INDUCTION"; 1267 if (getTruncInst()) { 1268 O << "\\l\""; 1269 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1270 O << " +\n" << Indent << "\" "; 1271 getVPValue(0)->printAsOperand(O, SlotTracker); 1272 } else 1273 O << " " << VPlanIngredient(IV); 1274 } 1275 #endif 1276 1277 bool VPWidenIntOrFpInductionRecipe::isCanonical() const { 1278 auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue()); 1279 auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep()); 1280 return StartC && StartC->isZero() && StepC && StepC->isOne(); 1281 } 1282 1283 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const { 1284 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)); 1285 } 1286 1287 bool VPScalarIVStepsRecipe::isCanonical() const { 1288 auto *CanIV = getCanonicalIV(); 1289 // The start value of the steps-recipe must match the start value of the 1290 // canonical induction and it must step by 1. 1291 if (CanIV->getStartValue() != getStartValue()) 1292 return false; 1293 auto *StepVPV = getStepValue(); 1294 if (StepVPV->getDef()) 1295 return false; 1296 auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue()); 1297 return StepC && StepC->isOne(); 1298 } 1299 1300 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1301 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent, 1302 VPSlotTracker &SlotTracker) const { 1303 O << Indent; 1304 printAsOperand(O, SlotTracker); 1305 O << Indent << "= SCALAR-STEPS "; 1306 printOperands(O, SlotTracker); 1307 } 1308 1309 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1310 VPSlotTracker &SlotTracker) const { 1311 O << Indent << "WIDEN-GEP "; 1312 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1313 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1314 for (size_t I = 0; I < IndicesNumber; ++I) 1315 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1316 1317 O << " "; 1318 printAsOperand(O, SlotTracker); 1319 O << " = getelementptr "; 1320 printOperands(O, SlotTracker); 1321 } 1322 1323 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1324 VPSlotTracker &SlotTracker) const { 1325 O << Indent << "WIDEN-PHI "; 1326 1327 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1328 // Unless all incoming values are modeled in VPlan print the original PHI 1329 // directly. 1330 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1331 // values as VPValues. 1332 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1333 O << VPlanIngredient(OriginalPhi); 1334 return; 1335 } 1336 1337 printAsOperand(O, SlotTracker); 1338 O << " = phi "; 1339 printOperands(O, SlotTracker); 1340 } 1341 1342 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1343 VPSlotTracker &SlotTracker) const { 1344 O << Indent << "BLEND "; 1345 Phi->printAsOperand(O, false); 1346 O << " ="; 1347 if (getNumIncomingValues() == 1) { 1348 // Not a User of any mask: not really blending, this is a 1349 // single-predecessor phi. 1350 O << " "; 1351 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1352 } else { 1353 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1354 O << " "; 1355 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1356 O << "/"; 1357 getMask(I)->printAsOperand(O, SlotTracker); 1358 } 1359 } 1360 } 1361 1362 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1363 VPSlotTracker &SlotTracker) const { 1364 O << Indent << "REDUCE "; 1365 printAsOperand(O, SlotTracker); 1366 O << " = "; 1367 getChainOp()->printAsOperand(O, SlotTracker); 1368 O << " +"; 1369 if (isa<FPMathOperator>(getUnderlyingInstr())) 1370 O << getUnderlyingInstr()->getFastMathFlags(); 1371 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1372 getVecOp()->printAsOperand(O, SlotTracker); 1373 if (getCondOp()) { 1374 O << ", "; 1375 getCondOp()->printAsOperand(O, SlotTracker); 1376 } 1377 O << ")"; 1378 } 1379 1380 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1381 VPSlotTracker &SlotTracker) const { 1382 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1383 1384 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1385 printAsOperand(O, SlotTracker); 1386 O << " = "; 1387 } 1388 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1389 printOperands(O, SlotTracker); 1390 1391 if (AlsoPack) 1392 O << " (S->V)"; 1393 } 1394 1395 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1396 VPSlotTracker &SlotTracker) const { 1397 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1398 printAsOperand(O, SlotTracker); 1399 O << " = "; 1400 printOperands(O, SlotTracker); 1401 } 1402 1403 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1404 VPSlotTracker &SlotTracker) const { 1405 O << Indent << "WIDEN "; 1406 1407 if (!isStore()) { 1408 printAsOperand(O, SlotTracker); 1409 O << " = "; 1410 } 1411 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1412 1413 printOperands(O, SlotTracker); 1414 } 1415 #endif 1416 1417 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { 1418 Value *Start = getStartValue()->getLiveInIRValue(); 1419 PHINode *EntryPart = PHINode::Create( 1420 Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); 1421 EntryPart->addIncoming(Start, State.CFG.VectorPreHeader); 1422 EntryPart->setDebugLoc(DL); 1423 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1424 State.set(this, EntryPart, Part); 1425 } 1426 1427 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1428 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1429 VPSlotTracker &SlotTracker) const { 1430 O << Indent << "EMIT "; 1431 printAsOperand(O, SlotTracker); 1432 O << " = CANONICAL-INDUCTION"; 1433 } 1434 #endif 1435 1436 void VPExpandSCEVRecipe::execute(VPTransformState &State) { 1437 assert(!State.Instance && "cannot be used in per-lane"); 1438 const DataLayout &DL = 1439 State.CFG.VectorPreHeader->getModule()->getDataLayout(); 1440 SCEVExpander Exp(SE, DL, "induction"); 1441 Value *Res = Exp.expandCodeFor(Expr, Expr->getType(), 1442 State.CFG.VectorPreHeader->getTerminator()); 1443 1444 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1445 State.set(this, Res, Part); 1446 } 1447 1448 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1449 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent, 1450 VPSlotTracker &SlotTracker) const { 1451 O << Indent << "EMIT "; 1452 getVPSingleValue()->printAsOperand(O, SlotTracker); 1453 O << " = EXPAND SCEV " << *Expr; 1454 } 1455 #endif 1456 1457 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1458 Value *CanonicalIV = State.get(getOperand(0), 0); 1459 Type *STy = CanonicalIV->getType(); 1460 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1461 ElementCount VF = State.VF; 1462 Value *VStart = VF.isScalar() 1463 ? CanonicalIV 1464 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 1465 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1466 Value *VStep = createStepForVF(Builder, STy, VF, Part); 1467 if (VF.isVector()) { 1468 VStep = Builder.CreateVectorSplat(VF, VStep); 1469 VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType())); 1470 } 1471 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1472 State.set(this, CanonicalVectorIV, Part); 1473 } 1474 } 1475 1476 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1477 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1478 VPSlotTracker &SlotTracker) const { 1479 O << Indent << "EMIT "; 1480 printAsOperand(O, SlotTracker); 1481 O << " = WIDEN-CANONICAL-INDUCTION "; 1482 printOperands(O, SlotTracker); 1483 } 1484 #endif 1485 1486 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1487 auto &Builder = State.Builder; 1488 // Create a vector from the initial value. 1489 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1490 1491 Type *VecTy = State.VF.isScalar() 1492 ? VectorInit->getType() 1493 : VectorType::get(VectorInit->getType(), State.VF); 1494 1495 if (State.VF.isVector()) { 1496 auto *IdxTy = Builder.getInt32Ty(); 1497 auto *One = ConstantInt::get(IdxTy, 1); 1498 IRBuilder<>::InsertPointGuard Guard(Builder); 1499 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1500 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1501 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1502 VectorInit = Builder.CreateInsertElement( 1503 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1504 } 1505 1506 // Create a phi node for the new recurrence. 1507 PHINode *EntryPart = PHINode::Create( 1508 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1509 EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader); 1510 State.set(this, EntryPart, 0); 1511 } 1512 1513 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1514 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1515 VPSlotTracker &SlotTracker) const { 1516 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1517 printAsOperand(O, SlotTracker); 1518 O << " = phi "; 1519 printOperands(O, SlotTracker); 1520 } 1521 #endif 1522 1523 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1524 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1525 auto &Builder = State.Builder; 1526 1527 // In order to support recurrences we need to be able to vectorize Phi nodes. 1528 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1529 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1530 // this value when we vectorize all of the instructions that use the PHI. 1531 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1532 Type *VecTy = 1533 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1534 1535 BasicBlock *HeaderBB = State.CFG.PrevBB; 1536 assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB && 1537 "recipe must be in the vector loop header"); 1538 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1539 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1540 Value *EntryPart = 1541 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1542 State.set(this, EntryPart, Part); 1543 } 1544 1545 // Reductions do not have to start at zero. They can start with 1546 // any loop invariant values. 1547 VPValue *StartVPV = getStartValue(); 1548 Value *StartV = StartVPV->getLiveInIRValue(); 1549 1550 Value *Iden = nullptr; 1551 RecurKind RK = RdxDesc.getRecurrenceKind(); 1552 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1553 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1554 // MinMax reduction have the start value as their identify. 1555 if (ScalarPHI) { 1556 Iden = StartV; 1557 } else { 1558 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1559 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1560 StartV = Iden = 1561 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1562 } 1563 } else { 1564 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1565 RdxDesc.getFastMathFlags()); 1566 1567 if (!ScalarPHI) { 1568 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1569 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1570 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1571 Constant *Zero = Builder.getInt32(0); 1572 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1573 } 1574 } 1575 1576 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1577 Value *EntryPart = State.get(this, Part); 1578 // Make sure to add the reduction start value only to the 1579 // first unroll part. 1580 Value *StartVal = (Part == 0) ? StartV : Iden; 1581 cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader); 1582 } 1583 } 1584 1585 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1586 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1587 VPSlotTracker &SlotTracker) const { 1588 O << Indent << "WIDEN-REDUCTION-PHI "; 1589 1590 printAsOperand(O, SlotTracker); 1591 O << " = phi "; 1592 printOperands(O, SlotTracker); 1593 } 1594 #endif 1595 1596 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1597 1598 void VPValue::replaceAllUsesWith(VPValue *New) { 1599 for (unsigned J = 0; J < getNumUsers();) { 1600 VPUser *User = Users[J]; 1601 unsigned NumUsers = getNumUsers(); 1602 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1603 if (User->getOperand(I) == this) 1604 User->setOperand(I, New); 1605 // If a user got removed after updating the current user, the next user to 1606 // update will be moved to the current position, so we only need to 1607 // increment the index if the number of users did not change. 1608 if (NumUsers == getNumUsers()) 1609 J++; 1610 } 1611 } 1612 1613 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1614 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1615 if (const Value *UV = getUnderlyingValue()) { 1616 OS << "ir<"; 1617 UV->printAsOperand(OS, false); 1618 OS << ">"; 1619 return; 1620 } 1621 1622 unsigned Slot = Tracker.getSlot(this); 1623 if (Slot == unsigned(-1)) 1624 OS << "<badref>"; 1625 else 1626 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1627 } 1628 1629 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1630 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1631 Op->printAsOperand(O, SlotTracker); 1632 }); 1633 } 1634 #endif 1635 1636 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1637 Old2NewTy &Old2New, 1638 InterleavedAccessInfo &IAI) { 1639 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1640 for (VPBlockBase *Base : RPOT) { 1641 visitBlock(Base, Old2New, IAI); 1642 } 1643 } 1644 1645 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1646 InterleavedAccessInfo &IAI) { 1647 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1648 for (VPRecipeBase &VPI : *VPBB) { 1649 if (isa<VPHeaderPHIRecipe>(&VPI)) 1650 continue; 1651 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1652 auto *VPInst = cast<VPInstruction>(&VPI); 1653 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1654 auto *IG = IAI.getInterleaveGroup(Inst); 1655 if (!IG) 1656 continue; 1657 1658 auto NewIGIter = Old2New.find(IG); 1659 if (NewIGIter == Old2New.end()) 1660 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1661 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1662 1663 if (Inst == IG->getInsertPos()) 1664 Old2New[IG]->setInsertPos(VPInst); 1665 1666 InterleaveGroupMap[VPInst] = Old2New[IG]; 1667 InterleaveGroupMap[VPInst]->insertMember( 1668 VPInst, IG->getIndex(Inst), 1669 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1670 : IG->getFactor())); 1671 } 1672 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1673 visitRegion(Region, Old2New, IAI); 1674 else 1675 llvm_unreachable("Unsupported kind of VPBlock."); 1676 } 1677 1678 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1679 InterleavedAccessInfo &IAI) { 1680 Old2NewTy Old2New; 1681 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1682 } 1683 1684 void VPSlotTracker::assignSlot(const VPValue *V) { 1685 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1686 Slots[V] = NextSlot++; 1687 } 1688 1689 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1690 1691 for (const VPValue *V : Plan.VPExternalDefs) 1692 assignSlot(V); 1693 1694 assignSlot(&Plan.VectorTripCount); 1695 if (Plan.BackedgeTakenCount) 1696 assignSlot(Plan.BackedgeTakenCount); 1697 1698 ReversePostOrderTraversal< 1699 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1700 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1701 Plan.getEntry())); 1702 for (const VPBasicBlock *VPBB : 1703 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1704 for (const VPRecipeBase &Recipe : *VPBB) 1705 for (VPValue *Def : Recipe.definedValues()) 1706 assignSlot(Def); 1707 } 1708 1709 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1710 return all_of(Def->users(), [Def](VPUser *U) { 1711 return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(Def); 1712 }); 1713 } 1714