xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 1b89c83254e533d92fcd9ad03c3695ddf5572f7a)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExit();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExit();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExit() == this &&
179          "Block w/o successors not the exit of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 VPValue *VPBlockBase::getCondBit() {
192   return CondBitUser.getSingleOperandOrNull();
193 }
194 
195 const VPValue *VPBlockBase::getCondBit() const {
196   return CondBitUser.getSingleOperandOrNull();
197 }
198 
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
200 
201 VPValue *VPBlockBase::getPredicate() {
202   return PredicateUser.getSingleOperandOrNull();
203 }
204 
205 const VPValue *VPBlockBase::getPredicate() const {
206   return PredicateUser.getSingleOperandOrNull();
207 }
208 
209 void VPBlockBase::setPredicate(VPValue *CV) {
210   PredicateUser.resetSingleOpUser(CV);
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
215 
216   for (VPBlockBase *Block : Blocks)
217     delete Block;
218 }
219 
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221   iterator It = begin();
222   while (It != end() && It->isPhi())
223     It++;
224   return It;
225 }
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (!Def->getDef())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235 
236   assert(hasVectorValue(Def, Instance.Part));
237   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 BasicBlock *
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
251   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253   BasicBlock *PrevBB = CFG.PrevBB;
254   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
255                                          PrevBB->getParent(), CFG.LastBB);
256   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
257 
258   // Hook up the new basic block to its predecessors.
259   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
260     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
261     auto &PredVPSuccessors = PredVPBB->getSuccessors();
262     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
263 
264     // In outer loop vectorization scenario, the predecessor BBlock may not yet
265     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266     // vectorization. We do not encounter this case in inner loop vectorization
267     // as we start out by building a loop skeleton with the vector loop header
268     // and latch blocks. As a result, we never enter this function for the
269     // header block in the non VPlan-native path.
270     if (!PredBB) {
271       assert(EnableVPlanNativePath &&
272              "Unexpected null predecessor in non VPlan-native path");
273       CFG.VPBBsToFix.push_back(PredVPBB);
274       continue;
275     }
276 
277     assert(PredBB && "Predecessor basic-block not found building successor.");
278     auto *PredBBTerminator = PredBB->getTerminator();
279     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
280     if (isa<UnreachableInst>(PredBBTerminator)) {
281       assert(PredVPSuccessors.size() == 1 &&
282              "Predecessor ending w/o branch must have single successor.");
283       PredBBTerminator->eraseFromParent();
284       BranchInst::Create(NewBB, PredBB);
285     } else {
286       assert(PredVPSuccessors.size() == 2 &&
287              "Predecessor ending with branch must have two successors.");
288       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
289       assert(!PredBBTerminator->getSuccessor(idx) &&
290              "Trying to reset an existing successor block.");
291       PredBBTerminator->setSuccessor(idx, NewBB);
292     }
293   }
294   return NewBB;
295 }
296 
297 void VPBasicBlock::execute(VPTransformState *State) {
298   bool Replica = State->Instance && !State->Instance->isFirstIteration();
299   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
300   VPBlockBase *SingleHPred = nullptr;
301   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
302 
303   // 1. Create an IR basic block, or reuse the last one if possible.
304   // The last IR basic block is reused, as an optimization, in three cases:
305   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
306   // B. when the current VPBB has a single (hierarchical) predecessor which
307   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
308   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
309   //    is the exit of this region from a previous instance, or the predecessor
310   //    of this region.
311   if (PrevVPBB && /* A */
312       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
313         SingleHPred->getExitBasicBlock() == PrevVPBB &&
314         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
315       !(Replica && getPredecessors().empty())) {       /* C */
316     NewBB = createEmptyBasicBlock(State->CFG);
317     State->Builder.SetInsertPoint(NewBB);
318     // Temporarily terminate with unreachable until CFG is rewired.
319     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
320     State->Builder.SetInsertPoint(Terminator);
321     // Register NewBB in its loop. In innermost loops its the same for all BB's.
322     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
323     L->addBasicBlockToLoop(NewBB, *State->LI);
324     State->CFG.PrevBB = NewBB;
325   }
326 
327   // 2. Fill the IR basic block with IR instructions.
328   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
329                     << " in BB:" << NewBB->getName() << '\n');
330 
331   State->CFG.VPBB2IRBB[this] = NewBB;
332   State->CFG.PrevVPBB = this;
333 
334   for (VPRecipeBase &Recipe : Recipes)
335     Recipe.execute(*State);
336 
337   VPValue *CBV;
338   if (EnableVPlanNativePath && (CBV = getCondBit())) {
339     assert(CBV->getUnderlyingValue() &&
340            "Unexpected null underlying value for condition bit");
341 
342     // Condition bit value in a VPBasicBlock is used as the branch selector. In
343     // the VPlan-native path case, since all branches are uniform we generate a
344     // branch instruction using the condition value from vector lane 0 and dummy
345     // successors. The successors are fixed later when the successor blocks are
346     // visited.
347     Value *NewCond = State->get(CBV, {0, 0});
348 
349     // Replace the temporary unreachable terminator with the new conditional
350     // branch.
351     auto *CurrentTerminator = NewBB->getTerminator();
352     assert(isa<UnreachableInst>(CurrentTerminator) &&
353            "Expected to replace unreachable terminator with conditional "
354            "branch.");
355     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
356     CondBr->setSuccessor(0, nullptr);
357     ReplaceInstWithInst(CurrentTerminator, CondBr);
358   }
359 
360   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
361 }
362 
363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
364   for (VPRecipeBase &R : Recipes) {
365     for (auto *Def : R.definedValues())
366       Def->replaceAllUsesWith(NewValue);
367 
368     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
369       R.setOperand(I, NewValue);
370   }
371 }
372 
373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
374   assert((SplitAt == end() || SplitAt->getParent() == this) &&
375          "can only split at a position in the same block");
376 
377   SmallVector<VPBlockBase *, 2> Succs(successors());
378   // First, disconnect the current block from its successors.
379   for (VPBlockBase *Succ : Succs)
380     VPBlockUtils::disconnectBlocks(this, Succ);
381 
382   // Create new empty block after the block to split.
383   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
384   VPBlockUtils::insertBlockAfter(SplitBlock, this);
385 
386   // Add successors for block to split to new block.
387   for (VPBlockBase *Succ : Succs)
388     VPBlockUtils::connectBlocks(SplitBlock, Succ);
389 
390   // Finally, move the recipes starting at SplitAt to new block.
391   for (VPRecipeBase &ToMove :
392        make_early_inc_range(make_range(SplitAt, this->end())))
393     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
394 
395   return SplitBlock;
396 }
397 
398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
399 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
400   if (getSuccessors().empty()) {
401     O << Indent << "No successors\n";
402   } else {
403     O << Indent << "Successor(s): ";
404     ListSeparator LS;
405     for (auto *Succ : getSuccessors())
406       O << LS << Succ->getName();
407     O << '\n';
408   }
409 }
410 
411 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
412                          VPSlotTracker &SlotTracker) const {
413   O << Indent << getName() << ":\n";
414   if (const VPValue *Pred = getPredicate()) {
415     O << Indent << "BlockPredicate:";
416     Pred->printAsOperand(O, SlotTracker);
417     if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
418       O << " (" << PredInst->getParent()->getName() << ")";
419     O << '\n';
420   }
421 
422   auto RecipeIndent = Indent + "  ";
423   for (const VPRecipeBase &Recipe : *this) {
424     Recipe.print(O, RecipeIndent, SlotTracker);
425     O << '\n';
426   }
427 
428   printSuccessors(O, Indent);
429 
430   if (const VPValue *CBV = getCondBit()) {
431     O << Indent << "CondBit: ";
432     CBV->printAsOperand(O, SlotTracker);
433     if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
434       O << " (" << CBI->getParent()->getName() << ")";
435     O << '\n';
436   }
437 }
438 #endif
439 
440 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
441   for (VPBlockBase *Block : depth_first(Entry))
442     // Drop all references in VPBasicBlocks and replace all uses with
443     // DummyValue.
444     Block->dropAllReferences(NewValue);
445 }
446 
447 void VPRegionBlock::execute(VPTransformState *State) {
448   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
449 
450   if (!isReplicator()) {
451     // Visit the VPBlocks connected to "this", starting from it.
452     for (VPBlockBase *Block : RPOT) {
453       if (EnableVPlanNativePath) {
454         // The inner loop vectorization path does not represent loop preheader
455         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
456         // vectorizing loop preheader block. In future, we may replace this
457         // check with the check for loop preheader.
458         if (Block->getNumPredecessors() == 0)
459           continue;
460 
461         // Skip vectorizing loop exit block. In future, we may replace this
462         // check with the check for loop exit.
463         if (Block->getNumSuccessors() == 0)
464           continue;
465       }
466 
467       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
468       Block->execute(State);
469     }
470     return;
471   }
472 
473   assert(!State->Instance && "Replicating a Region with non-null instance.");
474 
475   // Enter replicating mode.
476   State->Instance = VPIteration(0, 0);
477 
478   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
479     State->Instance->Part = Part;
480     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
481     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
482          ++Lane) {
483       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
484       // Visit the VPBlocks connected to \p this, starting from it.
485       for (VPBlockBase *Block : RPOT) {
486         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
487         Block->execute(State);
488       }
489     }
490   }
491 
492   // Exit replicating mode.
493   State->Instance.reset();
494 }
495 
496 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
497 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
498                           VPSlotTracker &SlotTracker) const {
499   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
500   auto NewIndent = Indent + "  ";
501   for (auto *BlockBase : depth_first(Entry)) {
502     O << '\n';
503     BlockBase->print(O, NewIndent, SlotTracker);
504   }
505   O << Indent << "}\n";
506 
507   printSuccessors(O, Indent);
508 }
509 #endif
510 
511 bool VPRecipeBase::mayWriteToMemory() const {
512   switch (getVPDefID()) {
513   case VPWidenMemoryInstructionSC: {
514     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
515   }
516   case VPReplicateSC:
517   case VPWidenCallSC:
518     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
519         ->mayWriteToMemory();
520   case VPBranchOnMaskSC:
521     return false;
522   case VPWidenIntOrFpInductionSC:
523   case VPWidenCanonicalIVSC:
524   case VPWidenPHISC:
525   case VPBlendSC:
526   case VPWidenSC:
527   case VPWidenGEPSC:
528   case VPReductionSC:
529   case VPWidenSelectSC: {
530     const Instruction *I =
531         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
532     (void)I;
533     assert((!I || !I->mayWriteToMemory()) &&
534            "underlying instruction may write to memory");
535     return false;
536   }
537   default:
538     return true;
539   }
540 }
541 
542 bool VPRecipeBase::mayReadFromMemory() const {
543   switch (getVPDefID()) {
544   case VPWidenMemoryInstructionSC: {
545     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
546   }
547   case VPReplicateSC:
548   case VPWidenCallSC:
549     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
550         ->mayReadFromMemory();
551   case VPBranchOnMaskSC:
552     return false;
553   case VPWidenIntOrFpInductionSC:
554   case VPWidenCanonicalIVSC:
555   case VPWidenPHISC:
556   case VPBlendSC:
557   case VPWidenSC:
558   case VPWidenGEPSC:
559   case VPReductionSC:
560   case VPWidenSelectSC: {
561     const Instruction *I =
562         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
563     (void)I;
564     assert((!I || !I->mayReadFromMemory()) &&
565            "underlying instruction may read from memory");
566     return false;
567   }
568   default:
569     return true;
570   }
571 }
572 
573 bool VPRecipeBase::mayHaveSideEffects() const {
574   switch (getVPDefID()) {
575   case VPBranchOnMaskSC:
576     return false;
577   case VPWidenIntOrFpInductionSC:
578   case VPWidenCanonicalIVSC:
579   case VPWidenPHISC:
580   case VPBlendSC:
581   case VPWidenSC:
582   case VPWidenGEPSC:
583   case VPReductionSC:
584   case VPWidenSelectSC:
585   case VPScalarIVStepsSC: {
586     const Instruction *I =
587         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
588     (void)I;
589     assert((!I || !I->mayHaveSideEffects()) &&
590            "underlying instruction has side-effects");
591     return false;
592   }
593   case VPReplicateSC: {
594     auto *R = cast<VPReplicateRecipe>(this);
595     return R->getUnderlyingInstr()->mayHaveSideEffects();
596   }
597   default:
598     return true;
599   }
600 }
601 
602 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
603   assert(!Parent && "Recipe already in some VPBasicBlock");
604   assert(InsertPos->getParent() &&
605          "Insertion position not in any VPBasicBlock");
606   Parent = InsertPos->getParent();
607   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
608 }
609 
610 void VPRecipeBase::insertBefore(VPBasicBlock &BB,
611                                 iplist<VPRecipeBase>::iterator I) {
612   assert(!Parent && "Recipe already in some VPBasicBlock");
613   assert(I == BB.end() || I->getParent() == &BB);
614   Parent = &BB;
615   BB.getRecipeList().insert(I, this);
616 }
617 
618 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
619   assert(!Parent && "Recipe already in some VPBasicBlock");
620   assert(InsertPos->getParent() &&
621          "Insertion position not in any VPBasicBlock");
622   Parent = InsertPos->getParent();
623   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
624 }
625 
626 void VPRecipeBase::removeFromParent() {
627   assert(getParent() && "Recipe not in any VPBasicBlock");
628   getParent()->getRecipeList().remove(getIterator());
629   Parent = nullptr;
630 }
631 
632 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
633   assert(getParent() && "Recipe not in any VPBasicBlock");
634   return getParent()->getRecipeList().erase(getIterator());
635 }
636 
637 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
638   removeFromParent();
639   insertAfter(InsertPos);
640 }
641 
642 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
643                               iplist<VPRecipeBase>::iterator I) {
644   removeFromParent();
645   insertBefore(BB, I);
646 }
647 
648 void VPInstruction::generateInstruction(VPTransformState &State,
649                                         unsigned Part) {
650   IRBuilderBase &Builder = State.Builder;
651   Builder.SetCurrentDebugLocation(DL);
652 
653   if (Instruction::isBinaryOp(getOpcode())) {
654     Value *A = State.get(getOperand(0), Part);
655     Value *B = State.get(getOperand(1), Part);
656     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
657     State.set(this, V, Part);
658     return;
659   }
660 
661   switch (getOpcode()) {
662   case VPInstruction::Not: {
663     Value *A = State.get(getOperand(0), Part);
664     Value *V = Builder.CreateNot(A);
665     State.set(this, V, Part);
666     break;
667   }
668   case VPInstruction::ICmpULE: {
669     Value *IV = State.get(getOperand(0), Part);
670     Value *TC = State.get(getOperand(1), Part);
671     Value *V = Builder.CreateICmpULE(IV, TC);
672     State.set(this, V, Part);
673     break;
674   }
675   case Instruction::Select: {
676     Value *Cond = State.get(getOperand(0), Part);
677     Value *Op1 = State.get(getOperand(1), Part);
678     Value *Op2 = State.get(getOperand(2), Part);
679     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
680     State.set(this, V, Part);
681     break;
682   }
683   case VPInstruction::ActiveLaneMask: {
684     // Get first lane of vector induction variable.
685     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
686     // Get the original loop tripcount.
687     Value *ScalarTC = State.get(getOperand(1), Part);
688 
689     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
690     auto *PredTy = VectorType::get(Int1Ty, State.VF);
691     Instruction *Call = Builder.CreateIntrinsic(
692         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
693         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
694     State.set(this, Call, Part);
695     break;
696   }
697   case VPInstruction::FirstOrderRecurrenceSplice: {
698     // Generate code to combine the previous and current values in vector v3.
699     //
700     //   vector.ph:
701     //     v_init = vector(..., ..., ..., a[-1])
702     //     br vector.body
703     //
704     //   vector.body
705     //     i = phi [0, vector.ph], [i+4, vector.body]
706     //     v1 = phi [v_init, vector.ph], [v2, vector.body]
707     //     v2 = a[i, i+1, i+2, i+3];
708     //     v3 = vector(v1(3), v2(0, 1, 2))
709 
710     // For the first part, use the recurrence phi (v1), otherwise v2.
711     auto *V1 = State.get(getOperand(0), 0);
712     Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
713     if (!PartMinus1->getType()->isVectorTy()) {
714       State.set(this, PartMinus1, Part);
715     } else {
716       Value *V2 = State.get(getOperand(1), Part);
717       State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
718     }
719     break;
720   }
721 
722   case VPInstruction::CanonicalIVIncrement:
723   case VPInstruction::CanonicalIVIncrementNUW: {
724     Value *Next = nullptr;
725     if (Part == 0) {
726       bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW;
727       auto *Phi = State.get(getOperand(0), 0);
728       // The loop step is equal to the vectorization factor (num of SIMD
729       // elements) times the unroll factor (num of SIMD instructions).
730       Value *Step =
731           createStepForVF(Builder, Phi->getType(), State.VF, State.UF);
732       Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false);
733     } else {
734       Next = State.get(this, 0);
735     }
736 
737     State.set(this, Next, Part);
738     break;
739   }
740   case VPInstruction::BranchOnCount: {
741     if (Part != 0)
742       break;
743     // First create the compare.
744     Value *IV = State.get(getOperand(0), Part);
745     Value *TC = State.get(getOperand(1), Part);
746     Value *Cond = Builder.CreateICmpEQ(IV, TC);
747 
748     // Now create the branch.
749     auto *Plan = getParent()->getPlan();
750     VPRegionBlock *TopRegion = Plan->getVectorLoopRegion();
751     VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock();
752     if (Header->empty()) {
753       assert(EnableVPlanNativePath &&
754              "empty entry block only expected in VPlanNativePath");
755       Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
756     }
757     // TODO: Once the exit block is modeled in VPlan, use it instead of going
758     // through State.CFG.LastBB.
759     BasicBlock *Exit =
760         cast<BranchInst>(State.CFG.LastBB->getTerminator())->getSuccessor(0);
761 
762     Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]);
763     Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
764     break;
765   }
766   default:
767     llvm_unreachable("Unsupported opcode for instruction");
768   }
769 }
770 
771 void VPInstruction::execute(VPTransformState &State) {
772   assert(!State.Instance && "VPInstruction executing an Instance");
773   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
774   State.Builder.setFastMathFlags(FMF);
775   for (unsigned Part = 0; Part < State.UF; ++Part)
776     generateInstruction(State, Part);
777 }
778 
779 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
780 void VPInstruction::dump() const {
781   VPSlotTracker SlotTracker(getParent()->getPlan());
782   print(dbgs(), "", SlotTracker);
783 }
784 
785 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
786                           VPSlotTracker &SlotTracker) const {
787   O << Indent << "EMIT ";
788 
789   if (hasResult()) {
790     printAsOperand(O, SlotTracker);
791     O << " = ";
792   }
793 
794   switch (getOpcode()) {
795   case VPInstruction::Not:
796     O << "not";
797     break;
798   case VPInstruction::ICmpULE:
799     O << "icmp ule";
800     break;
801   case VPInstruction::SLPLoad:
802     O << "combined load";
803     break;
804   case VPInstruction::SLPStore:
805     O << "combined store";
806     break;
807   case VPInstruction::ActiveLaneMask:
808     O << "active lane mask";
809     break;
810   case VPInstruction::FirstOrderRecurrenceSplice:
811     O << "first-order splice";
812     break;
813   case VPInstruction::CanonicalIVIncrement:
814     O << "VF * UF + ";
815     break;
816   case VPInstruction::CanonicalIVIncrementNUW:
817     O << "VF * UF +(nuw) ";
818     break;
819   case VPInstruction::BranchOnCount:
820     O << "branch-on-count ";
821     break;
822   default:
823     O << Instruction::getOpcodeName(getOpcode());
824   }
825 
826   O << FMF;
827 
828   for (const VPValue *Operand : operands()) {
829     O << " ";
830     Operand->printAsOperand(O, SlotTracker);
831   }
832 
833   if (DL) {
834     O << ", !dbg ";
835     DL.print(O);
836   }
837 }
838 #endif
839 
840 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) {
841   // Make sure the VPInstruction is a floating-point operation.
842   assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
843           Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
844           Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
845           Opcode == Instruction::FCmp) &&
846          "this op can't take fast-math flags");
847   FMF = FMFNew;
848 }
849 
850 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
851                              Value *CanonicalIVStartValue,
852                              VPTransformState &State) {
853   // Check if the trip count is needed, and if so build it.
854   if (TripCount && TripCount->getNumUsers()) {
855     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
856       State.set(TripCount, TripCountV, Part);
857   }
858 
859   // Check if the backedge taken count is needed, and if so build it.
860   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
861     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
862     auto *TCMO = Builder.CreateSub(TripCountV,
863                                    ConstantInt::get(TripCountV->getType(), 1),
864                                    "trip.count.minus.1");
865     auto VF = State.VF;
866     Value *VTCMO =
867         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
868     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
869       State.set(BackedgeTakenCount, VTCMO, Part);
870   }
871 
872   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
873     State.set(&VectorTripCount, VectorTripCountV, Part);
874 
875   // When vectorizing the epilogue loop, the canonical induction start value
876   // needs to be changed from zero to the value after the main vector loop.
877   if (CanonicalIVStartValue) {
878     VPValue *VPV = new VPValue(CanonicalIVStartValue);
879     addExternalDef(VPV);
880     auto *IV = getCanonicalIV();
881     assert(all_of(IV->users(),
882                   [](const VPUser *U) {
883                     if (isa<VPScalarIVStepsRecipe>(U))
884                       return true;
885                     auto *VPI = cast<VPInstruction>(U);
886                     return VPI->getOpcode() ==
887                                VPInstruction::CanonicalIVIncrement ||
888                            VPI->getOpcode() ==
889                                VPInstruction::CanonicalIVIncrementNUW;
890                   }) &&
891            "the canonical IV should only be used by its increments or "
892            "ScalarIVSteps when "
893            "resetting the start value");
894     IV->setOperand(0, VPV);
895   }
896 }
897 
898 /// Generate the code inside the body of the vectorized loop. Assumes a single
899 /// LoopVectorBody basic-block was created for this. Introduce additional
900 /// basic-blocks as needed, and fill them all.
901 void VPlan::execute(VPTransformState *State) {
902   // 0. Set the reverse mapping from VPValues to Values for code generation.
903   for (auto &Entry : Value2VPValue)
904     State->VPValue2Value[Entry.second] = Entry.first;
905 
906   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
907   State->CFG.VectorPreHeader = VectorPreHeaderBB;
908   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
909   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
910 
911   // 1. Make room to generate basic-blocks inside loop body if needed.
912   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
913       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
914   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
915   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
916   // Remove the edge between Header and Latch to allow other connections.
917   // Temporarily terminate with unreachable until CFG is rewired.
918   // Note: this asserts the generated code's assumption that
919   // getFirstInsertionPt() can be dereferenced into an Instruction.
920   VectorHeaderBB->getTerminator()->eraseFromParent();
921   State->Builder.SetInsertPoint(VectorHeaderBB);
922   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
923   State->Builder.SetInsertPoint(Terminator);
924 
925   // 2. Generate code in loop body.
926   State->CFG.PrevVPBB = nullptr;
927   State->CFG.PrevBB = VectorHeaderBB;
928   State->CFG.LastBB = VectorLatchBB;
929 
930   for (VPBlockBase *Block : depth_first(Entry))
931     Block->execute(State);
932 
933   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
934   // VPBB's successors.
935   for (auto VPBB : State->CFG.VPBBsToFix) {
936     assert(EnableVPlanNativePath &&
937            "Unexpected VPBBsToFix in non VPlan-native path");
938     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
939     assert(BB && "Unexpected null basic block for VPBB");
940 
941     unsigned Idx = 0;
942     auto *BBTerminator = BB->getTerminator();
943 
944     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
945       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
946       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
947       ++Idx;
948     }
949   }
950 
951   // 3. Merge the temporary latch created with the last basic-block filled.
952   BasicBlock *LastBB = State->CFG.PrevBB;
953   assert(isa<BranchInst>(LastBB->getTerminator()) &&
954          "Expected VPlan CFG to terminate with branch");
955 
956   // Move both the branch and check from LastBB to VectorLatchBB.
957   auto *LastBranch = cast<BranchInst>(LastBB->getTerminator());
958   LastBranch->moveBefore(VectorLatchBB->getTerminator());
959   VectorLatchBB->getTerminator()->eraseFromParent();
960   // Move condition so it is guaranteed to be next to branch. This is only done
961   // to avoid excessive test updates.
962   // TODO: Remove special handling once the increments for all inductions are
963   // modeled explicitly in VPlan.
964   cast<Instruction>(LastBranch->getCondition())->moveBefore(LastBranch);
965   // Connect LastBB to VectorLatchBB to facilitate their merge.
966   BranchInst::Create(VectorLatchBB, LastBB);
967 
968   // Merge LastBB with Latch.
969   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
970   (void)Merged;
971   assert(Merged && "Could not merge last basic block with latch.");
972   VectorLatchBB = LastBB;
973 
974   // Fix the latch value of canonical, reduction and first-order recurrences
975   // phis in the vector loop.
976   VPBasicBlock *Header = Entry->getEntryBasicBlock();
977   if (Header->empty()) {
978     assert(EnableVPlanNativePath);
979     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
980   }
981   for (VPRecipeBase &R : Header->phis()) {
982     // Skip phi-like recipes that generate their backedege values themselves.
983     // TODO: Model their backedge values explicitly.
984     if (isa<VPWidenIntOrFpInductionRecipe>(&R) || isa<VPWidenPHIRecipe>(&R))
985       continue;
986 
987     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
988     // For  canonical IV, first-order recurrences and in-order reduction phis,
989     // only a single part is generated, which provides the last part from the
990     // previous iteration. For non-ordered reductions all UF parts are
991     // generated.
992     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
993                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
994                             cast<VPReductionPHIRecipe>(PhiR)->isOrdered();
995     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
996 
997     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
998       Value *Phi = State->get(PhiR, Part);
999       Value *Val = State->get(PhiR->getBackedgeValue(),
1000                               SinglePartNeeded ? State->UF - 1 : Part);
1001       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1002     }
1003   }
1004 
1005   // We do not attempt to preserve DT for outer loop vectorization currently.
1006   if (!EnableVPlanNativePath)
1007     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
1008                         L->getExitBlock());
1009 }
1010 
1011 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1012 LLVM_DUMP_METHOD
1013 void VPlan::print(raw_ostream &O) const {
1014   VPSlotTracker SlotTracker(this);
1015 
1016   O << "VPlan '" << Name << "' {";
1017 
1018   if (VectorTripCount.getNumUsers() > 0) {
1019     O << "\nLive-in ";
1020     VectorTripCount.printAsOperand(O, SlotTracker);
1021     O << " = vector-trip-count\n";
1022   }
1023 
1024   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1025     O << "\nLive-in ";
1026     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1027     O << " = backedge-taken count\n";
1028   }
1029 
1030   for (const VPBlockBase *Block : depth_first(getEntry())) {
1031     O << '\n';
1032     Block->print(O, "", SlotTracker);
1033   }
1034   O << "}\n";
1035 }
1036 
1037 LLVM_DUMP_METHOD
1038 void VPlan::printDOT(raw_ostream &O) const {
1039   VPlanPrinter Printer(O, *this);
1040   Printer.dump();
1041 }
1042 
1043 LLVM_DUMP_METHOD
1044 void VPlan::dump() const { print(dbgs()); }
1045 #endif
1046 
1047 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
1048                                 BasicBlock *LoopLatchBB,
1049                                 BasicBlock *LoopExitBB) {
1050   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
1051   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
1052   // The vector body may be more than a single basic-block by this point.
1053   // Update the dominator tree information inside the vector body by propagating
1054   // it from header to latch, expecting only triangular control-flow, if any.
1055   BasicBlock *PostDomSucc = nullptr;
1056   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
1057     // Get the list of successors of this block.
1058     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
1059     assert(Succs.size() <= 2 &&
1060            "Basic block in vector loop has more than 2 successors.");
1061     PostDomSucc = Succs[0];
1062     if (Succs.size() == 1) {
1063       assert(PostDomSucc->getSinglePredecessor() &&
1064              "PostDom successor has more than one predecessor.");
1065       DT->addNewBlock(PostDomSucc, BB);
1066       continue;
1067     }
1068     BasicBlock *InterimSucc = Succs[1];
1069     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
1070       PostDomSucc = Succs[1];
1071       InterimSucc = Succs[0];
1072     }
1073     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
1074            "One successor of a basic block does not lead to the other.");
1075     assert(InterimSucc->getSinglePredecessor() &&
1076            "Interim successor has more than one predecessor.");
1077     assert(PostDomSucc->hasNPredecessors(2) &&
1078            "PostDom successor has more than two predecessors.");
1079     DT->addNewBlock(InterimSucc, BB);
1080     DT->addNewBlock(PostDomSucc, BB);
1081   }
1082   // Latch block is a new dominator for the loop exit.
1083   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
1084   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1085 }
1086 
1087 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1088 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1089   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1090          Twine(getOrCreateBID(Block));
1091 }
1092 
1093 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1094   const std::string &Name = Block->getName();
1095   if (!Name.empty())
1096     return Name;
1097   return "VPB" + Twine(getOrCreateBID(Block));
1098 }
1099 
1100 void VPlanPrinter::dump() {
1101   Depth = 1;
1102   bumpIndent(0);
1103   OS << "digraph VPlan {\n";
1104   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1105   if (!Plan.getName().empty())
1106     OS << "\\n" << DOT::EscapeString(Plan.getName());
1107   if (Plan.BackedgeTakenCount) {
1108     OS << ", where:\\n";
1109     Plan.BackedgeTakenCount->print(OS, SlotTracker);
1110     OS << " := BackedgeTakenCount";
1111   }
1112   OS << "\"]\n";
1113   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1114   OS << "edge [fontname=Courier, fontsize=30]\n";
1115   OS << "compound=true\n";
1116 
1117   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
1118     dumpBlock(Block);
1119 
1120   OS << "}\n";
1121 }
1122 
1123 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1124   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1125     dumpBasicBlock(BasicBlock);
1126   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1127     dumpRegion(Region);
1128   else
1129     llvm_unreachable("Unsupported kind of VPBlock.");
1130 }
1131 
1132 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1133                             bool Hidden, const Twine &Label) {
1134   // Due to "dot" we print an edge between two regions as an edge between the
1135   // exit basic block and the entry basic of the respective regions.
1136   const VPBlockBase *Tail = From->getExitBasicBlock();
1137   const VPBlockBase *Head = To->getEntryBasicBlock();
1138   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1139   OS << " [ label=\"" << Label << '\"';
1140   if (Tail != From)
1141     OS << " ltail=" << getUID(From);
1142   if (Head != To)
1143     OS << " lhead=" << getUID(To);
1144   if (Hidden)
1145     OS << "; splines=none";
1146   OS << "]\n";
1147 }
1148 
1149 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1150   auto &Successors = Block->getSuccessors();
1151   if (Successors.size() == 1)
1152     drawEdge(Block, Successors.front(), false, "");
1153   else if (Successors.size() == 2) {
1154     drawEdge(Block, Successors.front(), false, "T");
1155     drawEdge(Block, Successors.back(), false, "F");
1156   } else {
1157     unsigned SuccessorNumber = 0;
1158     for (auto *Successor : Successors)
1159       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1160   }
1161 }
1162 
1163 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1164   // Implement dot-formatted dump by performing plain-text dump into the
1165   // temporary storage followed by some post-processing.
1166   OS << Indent << getUID(BasicBlock) << " [label =\n";
1167   bumpIndent(1);
1168   std::string Str;
1169   raw_string_ostream SS(Str);
1170   // Use no indentation as we need to wrap the lines into quotes ourselves.
1171   BasicBlock->print(SS, "", SlotTracker);
1172 
1173   // We need to process each line of the output separately, so split
1174   // single-string plain-text dump.
1175   SmallVector<StringRef, 0> Lines;
1176   StringRef(Str).rtrim('\n').split(Lines, "\n");
1177 
1178   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1179     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1180   };
1181 
1182   // Don't need the "+" after the last line.
1183   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1184     EmitLine(Line, " +\n");
1185   EmitLine(Lines.back(), "\n");
1186 
1187   bumpIndent(-1);
1188   OS << Indent << "]\n";
1189 
1190   dumpEdges(BasicBlock);
1191 }
1192 
1193 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1194   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1195   bumpIndent(1);
1196   OS << Indent << "fontname=Courier\n"
1197      << Indent << "label=\""
1198      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1199      << DOT::EscapeString(Region->getName()) << "\"\n";
1200   // Dump the blocks of the region.
1201   assert(Region->getEntry() && "Region contains no inner blocks.");
1202   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1203     dumpBlock(Block);
1204   bumpIndent(-1);
1205   OS << Indent << "}\n";
1206   dumpEdges(Region);
1207 }
1208 
1209 void VPlanIngredient::print(raw_ostream &O) const {
1210   if (auto *Inst = dyn_cast<Instruction>(V)) {
1211     if (!Inst->getType()->isVoidTy()) {
1212       Inst->printAsOperand(O, false);
1213       O << " = ";
1214     }
1215     O << Inst->getOpcodeName() << " ";
1216     unsigned E = Inst->getNumOperands();
1217     if (E > 0) {
1218       Inst->getOperand(0)->printAsOperand(O, false);
1219       for (unsigned I = 1; I < E; ++I)
1220         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1221     }
1222   } else // !Inst
1223     V->printAsOperand(O, false);
1224 }
1225 
1226 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1227                               VPSlotTracker &SlotTracker) const {
1228   O << Indent << "WIDEN-CALL ";
1229 
1230   auto *CI = cast<CallInst>(getUnderlyingInstr());
1231   if (CI->getType()->isVoidTy())
1232     O << "void ";
1233   else {
1234     printAsOperand(O, SlotTracker);
1235     O << " = ";
1236   }
1237 
1238   O << "call @" << CI->getCalledFunction()->getName() << "(";
1239   printOperands(O, SlotTracker);
1240   O << ")";
1241 }
1242 
1243 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1244                                 VPSlotTracker &SlotTracker) const {
1245   O << Indent << "WIDEN-SELECT ";
1246   printAsOperand(O, SlotTracker);
1247   O << " = select ";
1248   getOperand(0)->printAsOperand(O, SlotTracker);
1249   O << ", ";
1250   getOperand(1)->printAsOperand(O, SlotTracker);
1251   O << ", ";
1252   getOperand(2)->printAsOperand(O, SlotTracker);
1253   O << (InvariantCond ? " (condition is loop invariant)" : "");
1254 }
1255 
1256 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1257                           VPSlotTracker &SlotTracker) const {
1258   O << Indent << "WIDEN ";
1259   printAsOperand(O, SlotTracker);
1260   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1261   printOperands(O, SlotTracker);
1262 }
1263 
1264 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1265                                           VPSlotTracker &SlotTracker) const {
1266   O << Indent << "WIDEN-INDUCTION";
1267   if (getTruncInst()) {
1268     O << "\\l\"";
1269     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1270     O << " +\n" << Indent << "\"  ";
1271     getVPValue(0)->printAsOperand(O, SlotTracker);
1272   } else
1273     O << " " << VPlanIngredient(IV);
1274 }
1275 #endif
1276 
1277 bool VPWidenIntOrFpInductionRecipe::isCanonical() const {
1278   auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue());
1279   auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep());
1280   return StartC && StartC->isZero() && StepC && StepC->isOne();
1281 }
1282 
1283 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const {
1284   return cast<VPCanonicalIVPHIRecipe>(getOperand(0));
1285 }
1286 
1287 bool VPScalarIVStepsRecipe::isCanonical() const {
1288   auto *CanIV = getCanonicalIV();
1289   // The start value of the steps-recipe must match the start value of the
1290   // canonical induction and it must step by 1.
1291   if (CanIV->getStartValue() != getStartValue())
1292     return false;
1293   auto *StepVPV = getStepValue();
1294   if (StepVPV->getDef())
1295     return false;
1296   auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue());
1297   return StepC && StepC->isOne();
1298 }
1299 
1300 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1301 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent,
1302                                   VPSlotTracker &SlotTracker) const {
1303   O << Indent;
1304   printAsOperand(O, SlotTracker);
1305   O << Indent << "= SCALAR-STEPS ";
1306   printOperands(O, SlotTracker);
1307 }
1308 
1309 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1310                              VPSlotTracker &SlotTracker) const {
1311   O << Indent << "WIDEN-GEP ";
1312   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1313   size_t IndicesNumber = IsIndexLoopInvariant.size();
1314   for (size_t I = 0; I < IndicesNumber; ++I)
1315     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1316 
1317   O << " ";
1318   printAsOperand(O, SlotTracker);
1319   O << " = getelementptr ";
1320   printOperands(O, SlotTracker);
1321 }
1322 
1323 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1324                              VPSlotTracker &SlotTracker) const {
1325   O << Indent << "WIDEN-PHI ";
1326 
1327   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1328   // Unless all incoming values are modeled in VPlan  print the original PHI
1329   // directly.
1330   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1331   // values as VPValues.
1332   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1333     O << VPlanIngredient(OriginalPhi);
1334     return;
1335   }
1336 
1337   printAsOperand(O, SlotTracker);
1338   O << " = phi ";
1339   printOperands(O, SlotTracker);
1340 }
1341 
1342 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1343                           VPSlotTracker &SlotTracker) const {
1344   O << Indent << "BLEND ";
1345   Phi->printAsOperand(O, false);
1346   O << " =";
1347   if (getNumIncomingValues() == 1) {
1348     // Not a User of any mask: not really blending, this is a
1349     // single-predecessor phi.
1350     O << " ";
1351     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1352   } else {
1353     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1354       O << " ";
1355       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1356       O << "/";
1357       getMask(I)->printAsOperand(O, SlotTracker);
1358     }
1359   }
1360 }
1361 
1362 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1363                               VPSlotTracker &SlotTracker) const {
1364   O << Indent << "REDUCE ";
1365   printAsOperand(O, SlotTracker);
1366   O << " = ";
1367   getChainOp()->printAsOperand(O, SlotTracker);
1368   O << " +";
1369   if (isa<FPMathOperator>(getUnderlyingInstr()))
1370     O << getUnderlyingInstr()->getFastMathFlags();
1371   O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " (";
1372   getVecOp()->printAsOperand(O, SlotTracker);
1373   if (getCondOp()) {
1374     O << ", ";
1375     getCondOp()->printAsOperand(O, SlotTracker);
1376   }
1377   O << ")";
1378 }
1379 
1380 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1381                               VPSlotTracker &SlotTracker) const {
1382   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1383 
1384   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1385     printAsOperand(O, SlotTracker);
1386     O << " = ";
1387   }
1388   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1389   printOperands(O, SlotTracker);
1390 
1391   if (AlsoPack)
1392     O << " (S->V)";
1393 }
1394 
1395 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1396                                 VPSlotTracker &SlotTracker) const {
1397   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1398   printAsOperand(O, SlotTracker);
1399   O << " = ";
1400   printOperands(O, SlotTracker);
1401 }
1402 
1403 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1404                                            VPSlotTracker &SlotTracker) const {
1405   O << Indent << "WIDEN ";
1406 
1407   if (!isStore()) {
1408     printAsOperand(O, SlotTracker);
1409     O << " = ";
1410   }
1411   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1412 
1413   printOperands(O, SlotTracker);
1414 }
1415 #endif
1416 
1417 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) {
1418   Value *Start = getStartValue()->getLiveInIRValue();
1419   PHINode *EntryPart = PHINode::Create(
1420       Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt());
1421   EntryPart->addIncoming(Start, State.CFG.VectorPreHeader);
1422   EntryPart->setDebugLoc(DL);
1423   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1424     State.set(this, EntryPart, Part);
1425 }
1426 
1427 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1428 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1429                                    VPSlotTracker &SlotTracker) const {
1430   O << Indent << "EMIT ";
1431   printAsOperand(O, SlotTracker);
1432   O << " = CANONICAL-INDUCTION";
1433 }
1434 #endif
1435 
1436 void VPExpandSCEVRecipe::execute(VPTransformState &State) {
1437   assert(!State.Instance && "cannot be used in per-lane");
1438   const DataLayout &DL =
1439       State.CFG.VectorPreHeader->getModule()->getDataLayout();
1440   SCEVExpander Exp(SE, DL, "induction");
1441   Value *Res = Exp.expandCodeFor(Expr, Expr->getType(),
1442                                  State.CFG.VectorPreHeader->getTerminator());
1443 
1444   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1445     State.set(this, Res, Part);
1446 }
1447 
1448 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1449 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent,
1450                                VPSlotTracker &SlotTracker) const {
1451   O << Indent << "EMIT ";
1452   getVPSingleValue()->printAsOperand(O, SlotTracker);
1453   O << " = EXPAND SCEV " << *Expr;
1454 }
1455 #endif
1456 
1457 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1458   Value *CanonicalIV = State.get(getOperand(0), 0);
1459   Type *STy = CanonicalIV->getType();
1460   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1461   ElementCount VF = State.VF;
1462   Value *VStart = VF.isScalar()
1463                       ? CanonicalIV
1464                       : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
1465   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1466     Value *VStep = createStepForVF(Builder, STy, VF, Part);
1467     if (VF.isVector()) {
1468       VStep = Builder.CreateVectorSplat(VF, VStep);
1469       VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
1470     }
1471     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1472     State.set(this, CanonicalVectorIV, Part);
1473   }
1474 }
1475 
1476 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1477 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1478                                      VPSlotTracker &SlotTracker) const {
1479   O << Indent << "EMIT ";
1480   printAsOperand(O, SlotTracker);
1481   O << " = WIDEN-CANONICAL-INDUCTION ";
1482   printOperands(O, SlotTracker);
1483 }
1484 #endif
1485 
1486 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1487   auto &Builder = State.Builder;
1488   // Create a vector from the initial value.
1489   auto *VectorInit = getStartValue()->getLiveInIRValue();
1490 
1491   Type *VecTy = State.VF.isScalar()
1492                     ? VectorInit->getType()
1493                     : VectorType::get(VectorInit->getType(), State.VF);
1494 
1495   if (State.VF.isVector()) {
1496     auto *IdxTy = Builder.getInt32Ty();
1497     auto *One = ConstantInt::get(IdxTy, 1);
1498     IRBuilder<>::InsertPointGuard Guard(Builder);
1499     Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1500     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1501     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1502     VectorInit = Builder.CreateInsertElement(
1503         PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1504   }
1505 
1506   // Create a phi node for the new recurrence.
1507   PHINode *EntryPart = PHINode::Create(
1508       VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1509   EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader);
1510   State.set(this, EntryPart, 0);
1511 }
1512 
1513 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1514 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1515                                             VPSlotTracker &SlotTracker) const {
1516   O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1517   printAsOperand(O, SlotTracker);
1518   O << " = phi ";
1519   printOperands(O, SlotTracker);
1520 }
1521 #endif
1522 
1523 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1524   PHINode *PN = cast<PHINode>(getUnderlyingValue());
1525   auto &Builder = State.Builder;
1526 
1527   // In order to support recurrences we need to be able to vectorize Phi nodes.
1528   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1529   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1530   // this value when we vectorize all of the instructions that use the PHI.
1531   bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1532   Type *VecTy =
1533       ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1534 
1535   BasicBlock *HeaderBB = State.CFG.PrevBB;
1536   assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB &&
1537          "recipe must be in the vector loop header");
1538   unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1539   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1540     Value *EntryPart =
1541         PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1542     State.set(this, EntryPart, Part);
1543   }
1544 
1545   // Reductions do not have to start at zero. They can start with
1546   // any loop invariant values.
1547   VPValue *StartVPV = getStartValue();
1548   Value *StartV = StartVPV->getLiveInIRValue();
1549 
1550   Value *Iden = nullptr;
1551   RecurKind RK = RdxDesc.getRecurrenceKind();
1552   if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
1553       RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) {
1554     // MinMax reduction have the start value as their identify.
1555     if (ScalarPHI) {
1556       Iden = StartV;
1557     } else {
1558       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1559       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1560       StartV = Iden =
1561           Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1562     }
1563   } else {
1564     Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
1565                                          RdxDesc.getFastMathFlags());
1566 
1567     if (!ScalarPHI) {
1568       Iden = Builder.CreateVectorSplat(State.VF, Iden);
1569       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1570       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1571       Constant *Zero = Builder.getInt32(0);
1572       StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1573     }
1574   }
1575 
1576   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1577     Value *EntryPart = State.get(this, Part);
1578     // Make sure to add the reduction start value only to the
1579     // first unroll part.
1580     Value *StartVal = (Part == 0) ? StartV : Iden;
1581     cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader);
1582   }
1583 }
1584 
1585 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1586 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1587                                  VPSlotTracker &SlotTracker) const {
1588   O << Indent << "WIDEN-REDUCTION-PHI ";
1589 
1590   printAsOperand(O, SlotTracker);
1591   O << " = phi ";
1592   printOperands(O, SlotTracker);
1593 }
1594 #endif
1595 
1596 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1597 
1598 void VPValue::replaceAllUsesWith(VPValue *New) {
1599   for (unsigned J = 0; J < getNumUsers();) {
1600     VPUser *User = Users[J];
1601     unsigned NumUsers = getNumUsers();
1602     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1603       if (User->getOperand(I) == this)
1604         User->setOperand(I, New);
1605     // If a user got removed after updating the current user, the next user to
1606     // update will be moved to the current position, so we only need to
1607     // increment the index if the number of users did not change.
1608     if (NumUsers == getNumUsers())
1609       J++;
1610   }
1611 }
1612 
1613 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1614 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1615   if (const Value *UV = getUnderlyingValue()) {
1616     OS << "ir<";
1617     UV->printAsOperand(OS, false);
1618     OS << ">";
1619     return;
1620   }
1621 
1622   unsigned Slot = Tracker.getSlot(this);
1623   if (Slot == unsigned(-1))
1624     OS << "<badref>";
1625   else
1626     OS << "vp<%" << Tracker.getSlot(this) << ">";
1627 }
1628 
1629 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1630   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1631     Op->printAsOperand(O, SlotTracker);
1632   });
1633 }
1634 #endif
1635 
1636 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1637                                           Old2NewTy &Old2New,
1638                                           InterleavedAccessInfo &IAI) {
1639   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1640   for (VPBlockBase *Base : RPOT) {
1641     visitBlock(Base, Old2New, IAI);
1642   }
1643 }
1644 
1645 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1646                                          InterleavedAccessInfo &IAI) {
1647   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1648     for (VPRecipeBase &VPI : *VPBB) {
1649       if (isa<VPHeaderPHIRecipe>(&VPI))
1650         continue;
1651       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1652       auto *VPInst = cast<VPInstruction>(&VPI);
1653       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1654       auto *IG = IAI.getInterleaveGroup(Inst);
1655       if (!IG)
1656         continue;
1657 
1658       auto NewIGIter = Old2New.find(IG);
1659       if (NewIGIter == Old2New.end())
1660         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1661             IG->getFactor(), IG->isReverse(), IG->getAlign());
1662 
1663       if (Inst == IG->getInsertPos())
1664         Old2New[IG]->setInsertPos(VPInst);
1665 
1666       InterleaveGroupMap[VPInst] = Old2New[IG];
1667       InterleaveGroupMap[VPInst]->insertMember(
1668           VPInst, IG->getIndex(Inst),
1669           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1670                                 : IG->getFactor()));
1671     }
1672   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1673     visitRegion(Region, Old2New, IAI);
1674   else
1675     llvm_unreachable("Unsupported kind of VPBlock.");
1676 }
1677 
1678 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1679                                                  InterleavedAccessInfo &IAI) {
1680   Old2NewTy Old2New;
1681   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1682 }
1683 
1684 void VPSlotTracker::assignSlot(const VPValue *V) {
1685   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1686   Slots[V] = NextSlot++;
1687 }
1688 
1689 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1690 
1691   for (const VPValue *V : Plan.VPExternalDefs)
1692     assignSlot(V);
1693 
1694   assignSlot(&Plan.VectorTripCount);
1695   if (Plan.BackedgeTakenCount)
1696     assignSlot(Plan.BackedgeTakenCount);
1697 
1698   ReversePostOrderTraversal<
1699       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1700       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1701           Plan.getEntry()));
1702   for (const VPBasicBlock *VPBB :
1703        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1704     for (const VPRecipeBase &Recipe : *VPBB)
1705       for (VPValue *Def : Recipe.definedValues())
1706         assignSlot(Def);
1707 }
1708 
1709 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1710   return all_of(Def->users(), [Def](VPUser *U) {
1711     return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(Def);
1712   });
1713 }
1714