1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanCFG.h" 21 #include "VPlanDominatorTree.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GenericDomTreeConstruction.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/LoopVersioning.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 50 namespace llvm { 51 extern cl::opt<bool> EnableVPlanNativePath; 52 } 53 54 #define DEBUG_TYPE "vplan" 55 56 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 57 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 58 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 59 VPSlotTracker SlotTracker( 60 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 61 V.print(OS, SlotTracker); 62 return OS; 63 } 64 #endif 65 66 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 67 const ElementCount &VF) const { 68 switch (LaneKind) { 69 case VPLane::Kind::ScalableLast: 70 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 71 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 72 Builder.getInt32(VF.getKnownMinValue() - Lane)); 73 case VPLane::Kind::First: 74 return Builder.getInt32(Lane); 75 } 76 llvm_unreachable("Unknown lane kind"); 77 } 78 79 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 80 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 81 if (Def) 82 Def->addDefinedValue(this); 83 } 84 85 VPValue::~VPValue() { 86 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 87 if (Def) 88 Def->removeDefinedValue(this); 89 } 90 91 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 92 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 93 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 94 R->print(OS, "", SlotTracker); 95 else 96 printAsOperand(OS, SlotTracker); 97 } 98 99 void VPValue::dump() const { 100 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 101 VPSlotTracker SlotTracker( 102 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 103 print(dbgs(), SlotTracker); 104 dbgs() << "\n"; 105 } 106 107 void VPDef::dump() const { 108 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 109 VPSlotTracker SlotTracker( 110 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 111 print(dbgs(), "", SlotTracker); 112 dbgs() << "\n"; 113 } 114 #endif 115 116 VPRecipeBase *VPValue::getDefiningRecipe() { 117 return cast_or_null<VPRecipeBase>(Def); 118 } 119 120 const VPRecipeBase *VPValue::getDefiningRecipe() const { 121 return cast_or_null<VPRecipeBase>(Def); 122 } 123 124 // Get the top-most entry block of \p Start. This is the entry block of the 125 // containing VPlan. This function is templated to support both const and non-const blocks 126 template <typename T> static T *getPlanEntry(T *Start) { 127 T *Next = Start; 128 T *Current = Start; 129 while ((Next = Next->getParent())) 130 Current = Next; 131 132 SmallSetVector<T *, 8> WorkList; 133 WorkList.insert(Current); 134 135 for (unsigned i = 0; i < WorkList.size(); i++) { 136 T *Current = WorkList[i]; 137 if (Current->getNumPredecessors() == 0) 138 return Current; 139 auto &Predecessors = Current->getPredecessors(); 140 WorkList.insert(Predecessors.begin(), Predecessors.end()); 141 } 142 143 llvm_unreachable("VPlan without any entry node without predecessors"); 144 } 145 146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 147 148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 149 150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 152 const VPBlockBase *Block = this; 153 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 154 Block = Region->getEntry(); 155 return cast<VPBasicBlock>(Block); 156 } 157 158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 159 VPBlockBase *Block = this; 160 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 void VPBlockBase::setPlan(VPlan *ParentPlan) { 166 assert( 167 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 168 "Can only set plan on its entry or preheader block."); 169 Plan = ParentPlan; 170 } 171 172 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 173 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 174 const VPBlockBase *Block = this; 175 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 176 Block = Region->getExiting(); 177 return cast<VPBasicBlock>(Block); 178 } 179 180 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 181 VPBlockBase *Block = this; 182 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 183 Block = Region->getExiting(); 184 return cast<VPBasicBlock>(Block); 185 } 186 187 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 188 if (!Successors.empty() || !Parent) 189 return this; 190 assert(Parent->getExiting() == this && 191 "Block w/o successors not the exiting block of its parent."); 192 return Parent->getEnclosingBlockWithSuccessors(); 193 } 194 195 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 196 if (!Predecessors.empty() || !Parent) 197 return this; 198 assert(Parent->getEntry() == this && 199 "Block w/o predecessors not the entry of its parent."); 200 return Parent->getEnclosingBlockWithPredecessors(); 201 } 202 203 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 204 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 205 delete Block; 206 } 207 208 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 209 iterator It = begin(); 210 while (It != end() && It->isPhi()) 211 It++; 212 return It; 213 } 214 215 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 216 if (Def->isLiveIn()) 217 return Def->getLiveInIRValue(); 218 219 if (hasScalarValue(Def, Instance)) { 220 return Data 221 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 222 } 223 224 assert(hasVectorValue(Def, Instance.Part)); 225 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 226 if (!VecPart->getType()->isVectorTy()) { 227 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 228 return VecPart; 229 } 230 // TODO: Cache created scalar values. 231 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 232 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 233 // set(Def, Extract, Instance); 234 return Extract; 235 } 236 237 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 238 // If Values have been set for this Def return the one relevant for \p Part. 239 if (hasVectorValue(Def, Part)) 240 return Data.PerPartOutput[Def][Part]; 241 242 auto GetBroadcastInstrs = [this, Def](Value *V) { 243 bool SafeToHoist = Def->isDefinedOutsideVectorRegions(); 244 if (VF.isScalar()) 245 return V; 246 // Place the code for broadcasting invariant variables in the new preheader. 247 IRBuilder<>::InsertPointGuard Guard(Builder); 248 if (SafeToHoist) { 249 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 250 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 251 if (LoopVectorPreHeader) 252 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 253 } 254 255 // Place the code for broadcasting invariant variables in the new preheader. 256 // Broadcast the scalar into all locations in the vector. 257 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 258 259 return Shuf; 260 }; 261 262 if (!hasScalarValue(Def, {Part, 0})) { 263 assert(Def->isLiveIn() && "expected a live-in"); 264 if (Part != 0) 265 return get(Def, 0); 266 Value *IRV = Def->getLiveInIRValue(); 267 Value *B = GetBroadcastInstrs(IRV); 268 set(Def, B, Part); 269 return B; 270 } 271 272 Value *ScalarValue = get(Def, {Part, 0}); 273 // If we aren't vectorizing, we can just copy the scalar map values over 274 // to the vector map. 275 if (VF.isScalar()) { 276 set(Def, ScalarValue, Part); 277 return ScalarValue; 278 } 279 280 bool IsUniform = vputils::isUniformAfterVectorization(Def); 281 282 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 283 // Check if there is a scalar value for the selected lane. 284 if (!hasScalarValue(Def, {Part, LastLane})) { 285 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 286 // VPExpandSCEVRecipes can also be uniform. 287 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 288 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 289 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 290 "unexpected recipe found to be invariant"); 291 IsUniform = true; 292 LastLane = 0; 293 } 294 295 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 296 // Set the insert point after the last scalarized instruction or after the 297 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 298 // will directly follow the scalar definitions. 299 auto OldIP = Builder.saveIP(); 300 auto NewIP = 301 isa<PHINode>(LastInst) 302 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 303 : std::next(BasicBlock::iterator(LastInst)); 304 Builder.SetInsertPoint(&*NewIP); 305 306 // However, if we are vectorizing, we need to construct the vector values. 307 // If the value is known to be uniform after vectorization, we can just 308 // broadcast the scalar value corresponding to lane zero for each unroll 309 // iteration. Otherwise, we construct the vector values using 310 // insertelement instructions. Since the resulting vectors are stored in 311 // State, we will only generate the insertelements once. 312 Value *VectorValue = nullptr; 313 if (IsUniform) { 314 VectorValue = GetBroadcastInstrs(ScalarValue); 315 set(Def, VectorValue, Part); 316 } else { 317 // Initialize packing with insertelements to start from undef. 318 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 319 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 320 set(Def, Undef, Part); 321 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 322 packScalarIntoVectorValue(Def, {Part, Lane}); 323 VectorValue = get(Def, Part); 324 } 325 Builder.restoreIP(OldIP); 326 return VectorValue; 327 } 328 329 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 330 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 331 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 332 } 333 334 void VPTransformState::addNewMetadata(Instruction *To, 335 const Instruction *Orig) { 336 // If the loop was versioned with memchecks, add the corresponding no-alias 337 // metadata. 338 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 339 LVer->annotateInstWithNoAlias(To, Orig); 340 } 341 342 void VPTransformState::addMetadata(Instruction *To, Instruction *From) { 343 // No source instruction to transfer metadata from? 344 if (!From) 345 return; 346 347 propagateMetadata(To, From); 348 addNewMetadata(To, From); 349 } 350 351 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) { 352 // No source instruction to transfer metadata from? 353 if (!From) 354 return; 355 356 for (Value *V : To) { 357 if (Instruction *I = dyn_cast<Instruction>(V)) 358 addMetadata(I, From); 359 } 360 } 361 362 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 363 const DILocation *DIL = DL; 364 // When a FSDiscriminator is enabled, we don't need to add the multiply 365 // factors to the discriminators. 366 if (DIL && 367 Builder.GetInsertBlock() 368 ->getParent() 369 ->shouldEmitDebugInfoForProfiling() && 370 !EnableFSDiscriminator) { 371 // FIXME: For scalable vectors, assume vscale=1. 372 auto NewDIL = 373 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 374 if (NewDIL) 375 Builder.SetCurrentDebugLocation(*NewDIL); 376 else 377 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 378 << DIL->getFilename() << " Line: " << DIL->getLine()); 379 } else 380 Builder.SetCurrentDebugLocation(DIL); 381 } 382 383 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 384 const VPIteration &Instance) { 385 Value *ScalarInst = get(Def, Instance); 386 Value *VectorValue = get(Def, Instance.Part); 387 VectorValue = Builder.CreateInsertElement( 388 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 389 set(Def, VectorValue, Instance.Part); 390 } 391 392 BasicBlock * 393 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 394 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 395 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 396 BasicBlock *PrevBB = CFG.PrevBB; 397 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 398 PrevBB->getParent(), CFG.ExitBB); 399 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 400 401 // Hook up the new basic block to its predecessors. 402 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 403 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 404 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 405 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 406 407 assert(PredBB && "Predecessor basic-block not found building successor."); 408 auto *PredBBTerminator = PredBB->getTerminator(); 409 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 410 411 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 412 if (isa<UnreachableInst>(PredBBTerminator)) { 413 assert(PredVPSuccessors.size() == 1 && 414 "Predecessor ending w/o branch must have single successor."); 415 DebugLoc DL = PredBBTerminator->getDebugLoc(); 416 PredBBTerminator->eraseFromParent(); 417 auto *Br = BranchInst::Create(NewBB, PredBB); 418 Br->setDebugLoc(DL); 419 } else if (TermBr && !TermBr->isConditional()) { 420 TermBr->setSuccessor(0, NewBB); 421 } else { 422 // Set each forward successor here when it is created, excluding 423 // backedges. A backward successor is set when the branch is created. 424 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 425 assert(!TermBr->getSuccessor(idx) && 426 "Trying to reset an existing successor block."); 427 TermBr->setSuccessor(idx, NewBB); 428 } 429 } 430 return NewBB; 431 } 432 433 void VPBasicBlock::execute(VPTransformState *State) { 434 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 435 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 436 VPBlockBase *SingleHPred = nullptr; 437 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 438 439 auto IsLoopRegion = [](VPBlockBase *BB) { 440 auto *R = dyn_cast<VPRegionBlock>(BB); 441 return R && !R->isReplicator(); 442 }; 443 444 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 445 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 446 // ExitBB can be re-used for the exit block of the Plan. 447 NewBB = State->CFG.ExitBB; 448 State->CFG.PrevBB = NewBB; 449 State->Builder.SetInsertPoint(NewBB->getFirstNonPHI()); 450 451 // Update the branch instruction in the predecessor to branch to ExitBB. 452 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 453 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 454 assert(PredVPB->getSingleSuccessor() == this && 455 "predecessor must have the current block as only successor"); 456 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 457 // The Exit block of a loop is always set to be successor 0 of the Exiting 458 // block. 459 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 460 } else if (PrevVPBB && /* A */ 461 !((SingleHPred = getSingleHierarchicalPredecessor()) && 462 SingleHPred->getExitingBasicBlock() == PrevVPBB && 463 PrevVPBB->getSingleHierarchicalSuccessor() && 464 (SingleHPred->getParent() == getEnclosingLoopRegion() && 465 !IsLoopRegion(SingleHPred))) && /* B */ 466 !(Replica && getPredecessors().empty())) { /* C */ 467 // The last IR basic block is reused, as an optimization, in three cases: 468 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 469 // B. when the current VPBB has a single (hierarchical) predecessor which 470 // is PrevVPBB and the latter has a single (hierarchical) successor which 471 // both are in the same non-replicator region; and 472 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 473 // is the exiting VPBB of this region from a previous instance, or the 474 // predecessor of this region. 475 476 NewBB = createEmptyBasicBlock(State->CFG); 477 State->Builder.SetInsertPoint(NewBB); 478 // Temporarily terminate with unreachable until CFG is rewired. 479 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 480 // Register NewBB in its loop. In innermost loops its the same for all 481 // BB's. 482 if (State->CurrentVectorLoop) 483 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 484 State->Builder.SetInsertPoint(Terminator); 485 State->CFG.PrevBB = NewBB; 486 } 487 488 // 2. Fill the IR basic block with IR instructions. 489 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 490 << " in BB:" << NewBB->getName() << '\n'); 491 492 State->CFG.VPBB2IRBB[this] = NewBB; 493 State->CFG.PrevVPBB = this; 494 495 for (VPRecipeBase &Recipe : Recipes) 496 Recipe.execute(*State); 497 498 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 499 } 500 501 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 502 for (VPRecipeBase &R : Recipes) { 503 for (auto *Def : R.definedValues()) 504 Def->replaceAllUsesWith(NewValue); 505 506 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 507 R.setOperand(I, NewValue); 508 } 509 } 510 511 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 512 assert((SplitAt == end() || SplitAt->getParent() == this) && 513 "can only split at a position in the same block"); 514 515 SmallVector<VPBlockBase *, 2> Succs(successors()); 516 // First, disconnect the current block from its successors. 517 for (VPBlockBase *Succ : Succs) 518 VPBlockUtils::disconnectBlocks(this, Succ); 519 520 // Create new empty block after the block to split. 521 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 522 VPBlockUtils::insertBlockAfter(SplitBlock, this); 523 524 // Add successors for block to split to new block. 525 for (VPBlockBase *Succ : Succs) 526 VPBlockUtils::connectBlocks(SplitBlock, Succ); 527 528 // Finally, move the recipes starting at SplitAt to new block. 529 for (VPRecipeBase &ToMove : 530 make_early_inc_range(make_range(SplitAt, this->end()))) 531 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 532 533 return SplitBlock; 534 } 535 536 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 537 VPRegionBlock *P = getParent(); 538 if (P && P->isReplicator()) { 539 P = P->getParent(); 540 assert(!cast<VPRegionBlock>(P)->isReplicator() && 541 "unexpected nested replicate regions"); 542 } 543 return P; 544 } 545 546 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 547 if (VPBB->empty()) { 548 assert( 549 VPBB->getNumSuccessors() < 2 && 550 "block with multiple successors doesn't have a recipe as terminator"); 551 return false; 552 } 553 554 const VPRecipeBase *R = &VPBB->back(); 555 auto *VPI = dyn_cast<VPInstruction>(R); 556 bool IsCondBranch = 557 isa<VPBranchOnMaskRecipe>(R) || 558 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 559 VPI->getOpcode() == VPInstruction::BranchOnCount)); 560 (void)IsCondBranch; 561 562 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 563 assert(IsCondBranch && "block with multiple successors not terminated by " 564 "conditional branch recipe"); 565 566 return true; 567 } 568 569 assert( 570 !IsCondBranch && 571 "block with 0 or 1 successors terminated by conditional branch recipe"); 572 return false; 573 } 574 575 VPRecipeBase *VPBasicBlock::getTerminator() { 576 if (hasConditionalTerminator(this)) 577 return &back(); 578 return nullptr; 579 } 580 581 const VPRecipeBase *VPBasicBlock::getTerminator() const { 582 if (hasConditionalTerminator(this)) 583 return &back(); 584 return nullptr; 585 } 586 587 bool VPBasicBlock::isExiting() const { 588 return getParent()->getExitingBasicBlock() == this; 589 } 590 591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 592 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 593 if (getSuccessors().empty()) { 594 O << Indent << "No successors\n"; 595 } else { 596 O << Indent << "Successor(s): "; 597 ListSeparator LS; 598 for (auto *Succ : getSuccessors()) 599 O << LS << Succ->getName(); 600 O << '\n'; 601 } 602 } 603 604 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 605 VPSlotTracker &SlotTracker) const { 606 O << Indent << getName() << ":\n"; 607 608 auto RecipeIndent = Indent + " "; 609 for (const VPRecipeBase &Recipe : *this) { 610 Recipe.print(O, RecipeIndent, SlotTracker); 611 O << '\n'; 612 } 613 614 printSuccessors(O, Indent); 615 } 616 #endif 617 618 static std::pair<VPBlockBase *, VPBlockBase *> cloneSESE(VPBlockBase *Entry); 619 620 // Clone the CFG for all nodes in the single-entry-single-exit region reachable 621 // from \p Entry, this includes cloning the blocks and their recipes. Operands 622 // of cloned recipes will NOT be updated. Remapping of operands must be done 623 // separately. Returns a pair with the the new entry and exiting blocks of the 624 // cloned region. 625 static std::pair<VPBlockBase *, VPBlockBase *> cloneSESE(VPBlockBase *Entry) { 626 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 627 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( 628 Entry); 629 for (VPBlockBase *BB : RPOT) { 630 VPBlockBase *NewBB = BB->clone(); 631 for (VPBlockBase *Pred : BB->getPredecessors()) 632 VPBlockUtils::connectBlocks(Old2NewVPBlocks[Pred], NewBB); 633 634 Old2NewVPBlocks[BB] = NewBB; 635 } 636 637 #if !defined(NDEBUG) 638 // Verify that the order of predecessors and successors matches in the cloned 639 // version. 640 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 641 NewRPOT(Old2NewVPBlocks[Entry]); 642 for (const auto &[OldBB, NewBB] : zip(RPOT, NewRPOT)) { 643 for (const auto &[OldPred, NewPred] : 644 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 645 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 646 647 for (const auto &[OldSucc, NewSucc] : 648 zip(OldBB->successors(), NewBB->successors())) 649 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 650 } 651 #endif 652 653 return std::make_pair(Old2NewVPBlocks[Entry], 654 Old2NewVPBlocks[*reverse(RPOT).begin()]); 655 } 656 657 VPRegionBlock *VPRegionBlock::clone() { 658 const auto &[NewEntry, NewExiting] = cloneSESE(getEntry()); 659 auto *NewRegion = 660 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 661 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 662 Block->setParent(NewRegion); 663 return NewRegion; 664 } 665 666 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 667 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 668 // Drop all references in VPBasicBlocks and replace all uses with 669 // DummyValue. 670 Block->dropAllReferences(NewValue); 671 } 672 673 void VPRegionBlock::execute(VPTransformState *State) { 674 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 675 RPOT(Entry); 676 677 if (!isReplicator()) { 678 // Create and register the new vector loop. 679 Loop *PrevLoop = State->CurrentVectorLoop; 680 State->CurrentVectorLoop = State->LI->AllocateLoop(); 681 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 682 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 683 684 // Insert the new loop into the loop nest and register the new basic blocks 685 // before calling any utilities such as SCEV that require valid LoopInfo. 686 if (ParentLoop) 687 ParentLoop->addChildLoop(State->CurrentVectorLoop); 688 else 689 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 690 691 // Visit the VPBlocks connected to "this", starting from it. 692 for (VPBlockBase *Block : RPOT) { 693 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 694 Block->execute(State); 695 } 696 697 State->CurrentVectorLoop = PrevLoop; 698 return; 699 } 700 701 assert(!State->Instance && "Replicating a Region with non-null instance."); 702 703 // Enter replicating mode. 704 State->Instance = VPIteration(0, 0); 705 706 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 707 State->Instance->Part = Part; 708 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 709 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 710 ++Lane) { 711 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 712 // Visit the VPBlocks connected to \p this, starting from it. 713 for (VPBlockBase *Block : RPOT) { 714 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 715 Block->execute(State); 716 } 717 } 718 } 719 720 // Exit replicating mode. 721 State->Instance.reset(); 722 } 723 724 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 725 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 726 VPSlotTracker &SlotTracker) const { 727 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 728 auto NewIndent = Indent + " "; 729 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 730 O << '\n'; 731 BlockBase->print(O, NewIndent, SlotTracker); 732 } 733 O << Indent << "}\n"; 734 735 printSuccessors(O, Indent); 736 } 737 #endif 738 739 VPlan::~VPlan() { 740 for (auto &KV : LiveOuts) 741 delete KV.second; 742 LiveOuts.clear(); 743 744 if (Entry) { 745 VPValue DummyValue; 746 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 747 Block->dropAllReferences(&DummyValue); 748 749 VPBlockBase::deleteCFG(Entry); 750 751 Preheader->dropAllReferences(&DummyValue); 752 delete Preheader; 753 } 754 for (VPValue *VPV : VPLiveInsToFree) 755 delete VPV; 756 if (BackedgeTakenCount) 757 delete BackedgeTakenCount; 758 } 759 760 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) { 761 VPBasicBlock *Preheader = new VPBasicBlock("ph"); 762 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 763 auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader); 764 Plan->TripCount = 765 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 766 // Create empty VPRegionBlock, to be filled during processing later. 767 auto *TopRegion = new VPRegionBlock("vector loop", false /*isReplicator*/); 768 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 769 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 770 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 771 return Plan; 772 } 773 774 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 775 Value *CanonicalIVStartValue, 776 VPTransformState &State) { 777 // Check if the backedge taken count is needed, and if so build it. 778 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 779 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 780 auto *TCMO = Builder.CreateSub(TripCountV, 781 ConstantInt::get(TripCountV->getType(), 1), 782 "trip.count.minus.1"); 783 auto VF = State.VF; 784 Value *VTCMO = 785 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 786 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 787 State.set(BackedgeTakenCount, VTCMO, Part); 788 } 789 790 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 791 State.set(&VectorTripCount, VectorTripCountV, Part); 792 793 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 794 // FIXME: Model VF * UF computation completely in VPlan. 795 State.set(&VFxUF, 796 createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF), 797 0); 798 799 // When vectorizing the epilogue loop, the canonical induction start value 800 // needs to be changed from zero to the value after the main vector loop. 801 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 802 if (CanonicalIVStartValue) { 803 VPValue *VPV = getVPValueOrAddLiveIn(CanonicalIVStartValue); 804 auto *IV = getCanonicalIV(); 805 assert(all_of(IV->users(), 806 [](const VPUser *U) { 807 return isa<VPScalarIVStepsRecipe>(U) || 808 isa<VPScalarCastRecipe>(U) || 809 isa<VPDerivedIVRecipe>(U) || 810 cast<VPInstruction>(U)->getOpcode() == 811 Instruction::Add; 812 }) && 813 "the canonical IV should only be used by its increment or " 814 "ScalarIVSteps when resetting the start value"); 815 IV->setOperand(0, VPV); 816 } 817 } 818 819 /// Generate the code inside the preheader and body of the vectorized loop. 820 /// Assumes a single pre-header basic-block was created for this. Introduce 821 /// additional basic-blocks as needed, and fill them all. 822 void VPlan::execute(VPTransformState *State) { 823 // Set the reverse mapping from VPValues to Values for code generation. 824 for (auto &Entry : Value2VPValue) 825 State->VPValue2Value[Entry.second] = Entry.first; 826 827 // Initialize CFG state. 828 State->CFG.PrevVPBB = nullptr; 829 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 830 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 831 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 832 833 // Generate code in the loop pre-header and body. 834 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 835 Block->execute(State); 836 837 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 838 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 839 840 // Fix the latch value of canonical, reduction and first-order recurrences 841 // phis in the vector loop. 842 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 843 for (VPRecipeBase &R : Header->phis()) { 844 // Skip phi-like recipes that generate their backedege values themselves. 845 if (isa<VPWidenPHIRecipe>(&R)) 846 continue; 847 848 if (isa<VPWidenPointerInductionRecipe>(&R) || 849 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 850 PHINode *Phi = nullptr; 851 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 852 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 853 } else { 854 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 855 // TODO: Split off the case that all users of a pointer phi are scalar 856 // from the VPWidenPointerInductionRecipe. 857 if (WidenPhi->onlyScalarsGenerated(State->VF)) 858 continue; 859 860 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 861 Phi = cast<PHINode>(GEP->getPointerOperand()); 862 } 863 864 Phi->setIncomingBlock(1, VectorLatchBB); 865 866 // Move the last step to the end of the latch block. This ensures 867 // consistent placement of all induction updates. 868 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 869 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 870 continue; 871 } 872 873 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 874 // For canonical IV, first-order recurrences and in-order reduction phis, 875 // only a single part is generated, which provides the last part from the 876 // previous iteration. For non-ordered reductions all UF parts are 877 // generated. 878 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 879 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 880 (isa<VPReductionPHIRecipe>(PhiR) && 881 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 882 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 883 884 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 885 Value *Phi = State->get(PhiR, Part); 886 Value *Val = State->get(PhiR->getBackedgeValue(), 887 SinglePartNeeded ? State->UF - 1 : Part); 888 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 889 } 890 } 891 892 // We do not attempt to preserve DT for outer loop vectorization currently. 893 if (!EnableVPlanNativePath) { 894 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 895 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 896 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 897 State->CFG.ExitBB); 898 } 899 } 900 901 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 902 void VPlan::printLiveIns(raw_ostream &O) const { 903 VPSlotTracker SlotTracker(this); 904 905 if (VFxUF.getNumUsers() > 0) { 906 O << "\nLive-in "; 907 VFxUF.printAsOperand(O, SlotTracker); 908 O << " = VF * UF"; 909 } 910 911 if (VectorTripCount.getNumUsers() > 0) { 912 O << "\nLive-in "; 913 VectorTripCount.printAsOperand(O, SlotTracker); 914 O << " = vector-trip-count"; 915 } 916 917 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 918 O << "\nLive-in "; 919 BackedgeTakenCount->printAsOperand(O, SlotTracker); 920 O << " = backedge-taken count"; 921 } 922 923 O << "\n"; 924 if (TripCount->isLiveIn()) 925 O << "Live-in "; 926 TripCount->printAsOperand(O, SlotTracker); 927 O << " = original trip-count"; 928 O << "\n"; 929 } 930 931 LLVM_DUMP_METHOD 932 void VPlan::print(raw_ostream &O) const { 933 VPSlotTracker SlotTracker(this); 934 935 O << "VPlan '" << getName() << "' {"; 936 937 printLiveIns(O); 938 939 if (!getPreheader()->empty()) { 940 O << "\n"; 941 getPreheader()->print(O, "", SlotTracker); 942 } 943 944 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 945 O << '\n'; 946 Block->print(O, "", SlotTracker); 947 } 948 949 if (!LiveOuts.empty()) 950 O << "\n"; 951 for (const auto &KV : LiveOuts) { 952 KV.second->print(O, SlotTracker); 953 } 954 955 O << "}\n"; 956 } 957 958 std::string VPlan::getName() const { 959 std::string Out; 960 raw_string_ostream RSO(Out); 961 RSO << Name << " for "; 962 if (!VFs.empty()) { 963 RSO << "VF={" << VFs[0]; 964 for (ElementCount VF : drop_begin(VFs)) 965 RSO << "," << VF; 966 RSO << "},"; 967 } 968 969 if (UFs.empty()) { 970 RSO << "UF>=1"; 971 } else { 972 RSO << "UF={" << UFs[0]; 973 for (unsigned UF : drop_begin(UFs)) 974 RSO << "," << UF; 975 RSO << "}"; 976 } 977 978 return Out; 979 } 980 981 LLVM_DUMP_METHOD 982 void VPlan::printDOT(raw_ostream &O) const { 983 VPlanPrinter Printer(O, *this); 984 Printer.dump(); 985 } 986 987 LLVM_DUMP_METHOD 988 void VPlan::dump() const { print(dbgs()); } 989 #endif 990 991 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 992 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 993 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 994 } 995 996 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 997 BasicBlock *LoopLatchBB, 998 BasicBlock *LoopExitBB) { 999 // The vector body may be more than a single basic-block by this point. 1000 // Update the dominator tree information inside the vector body by propagating 1001 // it from header to latch, expecting only triangular control-flow, if any. 1002 BasicBlock *PostDomSucc = nullptr; 1003 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1004 // Get the list of successors of this block. 1005 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1006 assert(Succs.size() <= 2 && 1007 "Basic block in vector loop has more than 2 successors."); 1008 PostDomSucc = Succs[0]; 1009 if (Succs.size() == 1) { 1010 assert(PostDomSucc->getSinglePredecessor() && 1011 "PostDom successor has more than one predecessor."); 1012 DT->addNewBlock(PostDomSucc, BB); 1013 continue; 1014 } 1015 BasicBlock *InterimSucc = Succs[1]; 1016 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1017 PostDomSucc = Succs[1]; 1018 InterimSucc = Succs[0]; 1019 } 1020 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1021 "One successor of a basic block does not lead to the other."); 1022 assert(InterimSucc->getSinglePredecessor() && 1023 "Interim successor has more than one predecessor."); 1024 assert(PostDomSucc->hasNPredecessors(2) && 1025 "PostDom successor has more than two predecessors."); 1026 DT->addNewBlock(InterimSucc, BB); 1027 DT->addNewBlock(PostDomSucc, BB); 1028 } 1029 // Latch block is a new dominator for the loop exit. 1030 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1031 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1032 } 1033 1034 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1035 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1036 // Update the operands of all cloned recipes starting at NewEntry. This 1037 // traverses all reachable blocks. This is done in two steps, to handle cycles 1038 // in PHI recipes. 1039 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1040 OldDeepRPOT(Entry); 1041 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1042 NewDeepRPOT(NewEntry); 1043 // First, collect all mappings from old to new VPValues defined by cloned 1044 // recipes. 1045 for (const auto &[OldBB, NewBB] : 1046 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1047 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1048 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1049 "blocks must have the same number of recipes"); 1050 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1051 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1052 "recipes must have the same number of operands"); 1053 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1054 "recipes must define the same number of operands"); 1055 for (const auto &[OldV, NewV] : 1056 zip(OldR.definedValues(), NewR.definedValues())) 1057 Old2NewVPValues[OldV] = NewV; 1058 } 1059 } 1060 1061 // Update all operands to use cloned VPValues. 1062 for (VPBasicBlock *NewBB : 1063 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1064 for (VPRecipeBase &NewR : *NewBB) 1065 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1066 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1067 NewR.setOperand(I, NewOp); 1068 } 1069 } 1070 } 1071 1072 VPlan *VPlan::duplicate() { 1073 // Clone blocks. 1074 VPBasicBlock *NewPreheader = Preheader->clone(); 1075 const auto &[NewEntry, __] = cloneSESE(Entry); 1076 1077 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1078 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1079 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1080 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1081 Old2NewVPValues[OldLiveIn] = 1082 NewPlan->getVPValueOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1083 } 1084 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1085 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1086 if (BackedgeTakenCount) { 1087 NewPlan->BackedgeTakenCount = new VPValue(); 1088 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1089 } 1090 assert(TripCount && "trip count must be set"); 1091 if (TripCount->isLiveIn()) 1092 Old2NewVPValues[TripCount] = 1093 NewPlan->getVPValueOrAddLiveIn(TripCount->getLiveInIRValue()); 1094 // else NewTripCount will be created and inserted into Old2NewVPValues when 1095 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1096 1097 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1098 remapOperands(Entry, NewEntry, Old2NewVPValues); 1099 1100 // Clone live-outs. 1101 for (const auto &[_, LO] : LiveOuts) 1102 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1103 1104 // Initialize remaining fields of cloned VPlan. 1105 NewPlan->VFs = VFs; 1106 NewPlan->UFs = UFs; 1107 // TODO: Adjust names. 1108 NewPlan->Name = Name; 1109 assert(Old2NewVPValues.contains(TripCount) && 1110 "TripCount must have been added to Old2NewVPValues"); 1111 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1112 return NewPlan; 1113 } 1114 1115 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1116 1117 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1118 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1119 Twine(getOrCreateBID(Block)); 1120 } 1121 1122 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1123 const std::string &Name = Block->getName(); 1124 if (!Name.empty()) 1125 return Name; 1126 return "VPB" + Twine(getOrCreateBID(Block)); 1127 } 1128 1129 void VPlanPrinter::dump() { 1130 Depth = 1; 1131 bumpIndent(0); 1132 OS << "digraph VPlan {\n"; 1133 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1134 if (!Plan.getName().empty()) 1135 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1136 1137 { 1138 // Print live-ins. 1139 std::string Str; 1140 raw_string_ostream SS(Str); 1141 Plan.printLiveIns(SS); 1142 SmallVector<StringRef, 0> Lines; 1143 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1144 for (auto Line : Lines) 1145 OS << DOT::EscapeString(Line.str()) << "\\n"; 1146 } 1147 1148 OS << "\"]\n"; 1149 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1150 OS << "edge [fontname=Courier, fontsize=30]\n"; 1151 OS << "compound=true\n"; 1152 1153 dumpBlock(Plan.getPreheader()); 1154 1155 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1156 dumpBlock(Block); 1157 1158 OS << "}\n"; 1159 } 1160 1161 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1162 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1163 dumpBasicBlock(BasicBlock); 1164 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1165 dumpRegion(Region); 1166 else 1167 llvm_unreachable("Unsupported kind of VPBlock."); 1168 } 1169 1170 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1171 bool Hidden, const Twine &Label) { 1172 // Due to "dot" we print an edge between two regions as an edge between the 1173 // exiting basic block and the entry basic of the respective regions. 1174 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1175 const VPBlockBase *Head = To->getEntryBasicBlock(); 1176 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1177 OS << " [ label=\"" << Label << '\"'; 1178 if (Tail != From) 1179 OS << " ltail=" << getUID(From); 1180 if (Head != To) 1181 OS << " lhead=" << getUID(To); 1182 if (Hidden) 1183 OS << "; splines=none"; 1184 OS << "]\n"; 1185 } 1186 1187 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1188 auto &Successors = Block->getSuccessors(); 1189 if (Successors.size() == 1) 1190 drawEdge(Block, Successors.front(), false, ""); 1191 else if (Successors.size() == 2) { 1192 drawEdge(Block, Successors.front(), false, "T"); 1193 drawEdge(Block, Successors.back(), false, "F"); 1194 } else { 1195 unsigned SuccessorNumber = 0; 1196 for (auto *Successor : Successors) 1197 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1198 } 1199 } 1200 1201 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1202 // Implement dot-formatted dump by performing plain-text dump into the 1203 // temporary storage followed by some post-processing. 1204 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1205 bumpIndent(1); 1206 std::string Str; 1207 raw_string_ostream SS(Str); 1208 // Use no indentation as we need to wrap the lines into quotes ourselves. 1209 BasicBlock->print(SS, "", SlotTracker); 1210 1211 // We need to process each line of the output separately, so split 1212 // single-string plain-text dump. 1213 SmallVector<StringRef, 0> Lines; 1214 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1215 1216 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1217 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1218 }; 1219 1220 // Don't need the "+" after the last line. 1221 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1222 EmitLine(Line, " +\n"); 1223 EmitLine(Lines.back(), "\n"); 1224 1225 bumpIndent(-1); 1226 OS << Indent << "]\n"; 1227 1228 dumpEdges(BasicBlock); 1229 } 1230 1231 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1232 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1233 bumpIndent(1); 1234 OS << Indent << "fontname=Courier\n" 1235 << Indent << "label=\"" 1236 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1237 << DOT::EscapeString(Region->getName()) << "\"\n"; 1238 // Dump the blocks of the region. 1239 assert(Region->getEntry() && "Region contains no inner blocks."); 1240 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1241 dumpBlock(Block); 1242 bumpIndent(-1); 1243 OS << Indent << "}\n"; 1244 dumpEdges(Region); 1245 } 1246 1247 void VPlanIngredient::print(raw_ostream &O) const { 1248 if (auto *Inst = dyn_cast<Instruction>(V)) { 1249 if (!Inst->getType()->isVoidTy()) { 1250 Inst->printAsOperand(O, false); 1251 O << " = "; 1252 } 1253 O << Inst->getOpcodeName() << " "; 1254 unsigned E = Inst->getNumOperands(); 1255 if (E > 0) { 1256 Inst->getOperand(0)->printAsOperand(O, false); 1257 for (unsigned I = 1; I < E; ++I) 1258 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1259 } 1260 } else // !Inst 1261 V->printAsOperand(O, false); 1262 } 1263 1264 #endif 1265 1266 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1267 1268 void VPValue::replaceAllUsesWith(VPValue *New) { 1269 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1270 } 1271 1272 void VPValue::replaceUsesWithIf( 1273 VPValue *New, 1274 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1275 // Note that this early exit is required for correctness; the implementation 1276 // below relies on the number of users for this VPValue to decrease, which 1277 // isn't the case if this == New. 1278 if (this == New) 1279 return; 1280 1281 for (unsigned J = 0; J < getNumUsers();) { 1282 VPUser *User = Users[J]; 1283 bool RemovedUser = false; 1284 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1285 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1286 continue; 1287 1288 RemovedUser = true; 1289 User->setOperand(I, New); 1290 } 1291 // If a user got removed after updating the current user, the next user to 1292 // update will be moved to the current position, so we only need to 1293 // increment the index if the number of users did not change. 1294 if (!RemovedUser) 1295 J++; 1296 } 1297 } 1298 1299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1300 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1301 if (const Value *UV = getUnderlyingValue()) { 1302 OS << "ir<"; 1303 UV->printAsOperand(OS, false); 1304 OS << ">"; 1305 return; 1306 } 1307 1308 unsigned Slot = Tracker.getSlot(this); 1309 if (Slot == unsigned(-1)) 1310 OS << "<badref>"; 1311 else 1312 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1313 } 1314 1315 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1316 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1317 Op->printAsOperand(O, SlotTracker); 1318 }); 1319 } 1320 #endif 1321 1322 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1323 Old2NewTy &Old2New, 1324 InterleavedAccessInfo &IAI) { 1325 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1326 RPOT(Region->getEntry()); 1327 for (VPBlockBase *Base : RPOT) { 1328 visitBlock(Base, Old2New, IAI); 1329 } 1330 } 1331 1332 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1333 InterleavedAccessInfo &IAI) { 1334 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1335 for (VPRecipeBase &VPI : *VPBB) { 1336 if (isa<VPHeaderPHIRecipe>(&VPI)) 1337 continue; 1338 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1339 auto *VPInst = cast<VPInstruction>(&VPI); 1340 1341 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1342 if (!Inst) 1343 continue; 1344 auto *IG = IAI.getInterleaveGroup(Inst); 1345 if (!IG) 1346 continue; 1347 1348 auto NewIGIter = Old2New.find(IG); 1349 if (NewIGIter == Old2New.end()) 1350 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1351 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1352 1353 if (Inst == IG->getInsertPos()) 1354 Old2New[IG]->setInsertPos(VPInst); 1355 1356 InterleaveGroupMap[VPInst] = Old2New[IG]; 1357 InterleaveGroupMap[VPInst]->insertMember( 1358 VPInst, IG->getIndex(Inst), 1359 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1360 : IG->getFactor())); 1361 } 1362 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1363 visitRegion(Region, Old2New, IAI); 1364 else 1365 llvm_unreachable("Unsupported kind of VPBlock."); 1366 } 1367 1368 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1369 InterleavedAccessInfo &IAI) { 1370 Old2NewTy Old2New; 1371 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1372 } 1373 1374 void VPSlotTracker::assignSlot(const VPValue *V) { 1375 assert(!Slots.contains(V) && "VPValue already has a slot!"); 1376 Slots[V] = NextSlot++; 1377 } 1378 1379 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1380 if (Plan.VFxUF.getNumUsers() > 0) 1381 assignSlot(&Plan.VFxUF); 1382 assignSlot(&Plan.VectorTripCount); 1383 if (Plan.BackedgeTakenCount) 1384 assignSlot(Plan.BackedgeTakenCount); 1385 assignSlots(Plan.getPreheader()); 1386 1387 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1388 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1389 for (const VPBasicBlock *VPBB : 1390 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1391 assignSlots(VPBB); 1392 } 1393 1394 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1395 for (const VPRecipeBase &Recipe : *VPBB) 1396 for (VPValue *Def : Recipe.definedValues()) 1397 assignSlot(Def); 1398 } 1399 1400 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1401 return all_of(Def->users(), 1402 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1403 } 1404 1405 bool vputils::onlyFirstPartUsed(VPValue *Def) { 1406 return all_of(Def->users(), 1407 [Def](VPUser *U) { return U->onlyFirstPartUsed(Def); }); 1408 } 1409 1410 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1411 ScalarEvolution &SE) { 1412 if (auto *Expanded = Plan.getSCEVExpansion(Expr)) 1413 return Expanded; 1414 VPValue *Expanded = nullptr; 1415 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1416 Expanded = Plan.getVPValueOrAddLiveIn(E->getValue()); 1417 else if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1418 Expanded = Plan.getVPValueOrAddLiveIn(E->getValue()); 1419 else { 1420 Expanded = new VPExpandSCEVRecipe(Expr, SE); 1421 Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe()); 1422 } 1423 Plan.addSCEVExpansion(Expr, Expanded); 1424 return Expanded; 1425 } 1426