1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanDominatorTree.h" 23 #include "VPlanPatternMatch.h" 24 #include "VPlanTransforms.h" 25 #include "VPlanUtils.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/DomTreeUpdater.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/GraphWriter.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopVersioning.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 #include <cassert> 49 #include <string> 50 #include <vector> 51 52 using namespace llvm; 53 using namespace llvm::VPlanPatternMatch; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableVPlanNativePath; 57 } 58 59 static cl::opt<bool> PrintVPlansInDotFormat( 60 "vplan-print-in-dot-format", cl::Hidden, 61 cl::desc("Use dot format instead of plain text when dumping VPlans")); 62 63 #define DEBUG_TYPE "vplan" 64 65 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 66 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 67 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 68 VPSlotTracker SlotTracker( 69 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 70 V.print(OS, SlotTracker); 71 return OS; 72 } 73 #endif 74 75 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 76 const ElementCount &VF) const { 77 switch (LaneKind) { 78 case VPLane::Kind::ScalableLast: 79 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 80 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 81 Builder.getInt32(VF.getKnownMinValue() - Lane)); 82 case VPLane::Kind::First: 83 return Builder.getInt32(Lane); 84 } 85 llvm_unreachable("Unknown lane kind"); 86 } 87 88 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 89 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 90 if (Def) 91 Def->addDefinedValue(this); 92 } 93 94 VPValue::~VPValue() { 95 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 96 if (Def) 97 Def->removeDefinedValue(this); 98 } 99 100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 101 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 102 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 103 R->print(OS, "", SlotTracker); 104 else 105 printAsOperand(OS, SlotTracker); 106 } 107 108 void VPValue::dump() const { 109 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 110 VPSlotTracker SlotTracker( 111 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 112 print(dbgs(), SlotTracker); 113 dbgs() << "\n"; 114 } 115 116 void VPDef::dump() const { 117 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 118 VPSlotTracker SlotTracker( 119 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 120 print(dbgs(), "", SlotTracker); 121 dbgs() << "\n"; 122 } 123 #endif 124 125 VPRecipeBase *VPValue::getDefiningRecipe() { 126 return cast_or_null<VPRecipeBase>(Def); 127 } 128 129 const VPRecipeBase *VPValue::getDefiningRecipe() const { 130 return cast_or_null<VPRecipeBase>(Def); 131 } 132 133 // Get the top-most entry block of \p Start. This is the entry block of the 134 // containing VPlan. This function is templated to support both const and non-const blocks 135 template <typename T> static T *getPlanEntry(T *Start) { 136 T *Next = Start; 137 T *Current = Start; 138 while ((Next = Next->getParent())) 139 Current = Next; 140 141 SmallSetVector<T *, 8> WorkList; 142 WorkList.insert(Current); 143 144 for (unsigned i = 0; i < WorkList.size(); i++) { 145 T *Current = WorkList[i]; 146 if (Current->getNumPredecessors() == 0) 147 return Current; 148 auto &Predecessors = Current->getPredecessors(); 149 WorkList.insert(Predecessors.begin(), Predecessors.end()); 150 } 151 152 llvm_unreachable("VPlan without any entry node without predecessors"); 153 } 154 155 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 156 157 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 158 159 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 160 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 161 const VPBlockBase *Block = this; 162 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 163 Block = Region->getEntry(); 164 return cast<VPBasicBlock>(Block); 165 } 166 167 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 168 VPBlockBase *Block = this; 169 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 170 Block = Region->getEntry(); 171 return cast<VPBasicBlock>(Block); 172 } 173 174 void VPBlockBase::setPlan(VPlan *ParentPlan) { 175 assert( 176 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 177 "Can only set plan on its entry or preheader block."); 178 Plan = ParentPlan; 179 } 180 181 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 182 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 183 const VPBlockBase *Block = this; 184 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 185 Block = Region->getExiting(); 186 return cast<VPBasicBlock>(Block); 187 } 188 189 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 190 VPBlockBase *Block = this; 191 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 192 Block = Region->getExiting(); 193 return cast<VPBasicBlock>(Block); 194 } 195 196 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 197 if (!Successors.empty() || !Parent) 198 return this; 199 assert(Parent->getExiting() == this && 200 "Block w/o successors not the exiting block of its parent."); 201 return Parent->getEnclosingBlockWithSuccessors(); 202 } 203 204 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 205 if (!Predecessors.empty() || !Parent) 206 return this; 207 assert(Parent->getEntry() == this && 208 "Block w/o predecessors not the entry of its parent."); 209 return Parent->getEnclosingBlockWithPredecessors(); 210 } 211 212 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 213 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 214 delete Block; 215 } 216 217 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 218 iterator It = begin(); 219 while (It != end() && It->isPhi()) 220 It++; 221 return It; 222 } 223 224 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 225 DominatorTree *DT, IRBuilderBase &Builder, 226 InnerLoopVectorizer *ILV, VPlan *Plan, 227 LLVMContext &Ctx) 228 : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 229 LVer(nullptr), 230 TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {} 231 232 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 233 if (Def->isLiveIn()) 234 return Def->getLiveInIRValue(); 235 236 if (hasScalarValue(Def, Instance)) { 237 return Data 238 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 239 } 240 if (!Instance.Lane.isFirstLane() && 241 vputils::isUniformAfterVectorization(Def) && 242 hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) { 243 return Data.PerPartScalars[Def][Instance.Part][0]; 244 } 245 246 assert(hasVectorValue(Def, Instance.Part)); 247 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 248 if (!VecPart->getType()->isVectorTy()) { 249 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 250 return VecPart; 251 } 252 // TODO: Cache created scalar values. 253 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 254 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 255 // set(Def, Extract, Instance); 256 return Extract; 257 } 258 259 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { 260 if (NeedsScalar) { 261 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || 262 !vputils::onlyFirstLaneUsed(Def) || 263 (hasScalarValue(Def, VPIteration(Part, 0)) && 264 Data.PerPartScalars[Def][Part].size() == 1)) && 265 "Trying to access a single scalar per part but has multiple scalars " 266 "per part."); 267 return get(Def, VPIteration(Part, 0)); 268 } 269 270 // If Values have been set for this Def return the one relevant for \p Part. 271 if (hasVectorValue(Def, Part)) 272 return Data.PerPartOutput[Def][Part]; 273 274 auto GetBroadcastInstrs = [this, Def](Value *V) { 275 bool SafeToHoist = Def->isDefinedOutsideVectorRegions(); 276 if (VF.isScalar()) 277 return V; 278 // Place the code for broadcasting invariant variables in the new preheader. 279 IRBuilder<>::InsertPointGuard Guard(Builder); 280 if (SafeToHoist) { 281 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 282 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 283 if (LoopVectorPreHeader) 284 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 285 } 286 287 // Place the code for broadcasting invariant variables in the new preheader. 288 // Broadcast the scalar into all locations in the vector. 289 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 290 291 return Shuf; 292 }; 293 294 if (!hasScalarValue(Def, {Part, 0})) { 295 assert(Def->isLiveIn() && "expected a live-in"); 296 if (Part != 0) 297 return get(Def, 0); 298 Value *IRV = Def->getLiveInIRValue(); 299 Value *B = GetBroadcastInstrs(IRV); 300 set(Def, B, Part); 301 return B; 302 } 303 304 Value *ScalarValue = get(Def, {Part, 0}); 305 // If we aren't vectorizing, we can just copy the scalar map values over 306 // to the vector map. 307 if (VF.isScalar()) { 308 set(Def, ScalarValue, Part); 309 return ScalarValue; 310 } 311 312 bool IsUniform = vputils::isUniformAfterVectorization(Def); 313 314 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 315 // Check if there is a scalar value for the selected lane. 316 if (!hasScalarValue(Def, {Part, LastLane})) { 317 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 318 // VPExpandSCEVRecipes can also be uniform. 319 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 320 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 321 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 322 "unexpected recipe found to be invariant"); 323 IsUniform = true; 324 LastLane = 0; 325 } 326 327 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 328 // Set the insert point after the last scalarized instruction or after the 329 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 330 // will directly follow the scalar definitions. 331 auto OldIP = Builder.saveIP(); 332 auto NewIP = 333 isa<PHINode>(LastInst) 334 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 335 : std::next(BasicBlock::iterator(LastInst)); 336 Builder.SetInsertPoint(&*NewIP); 337 338 // However, if we are vectorizing, we need to construct the vector values. 339 // If the value is known to be uniform after vectorization, we can just 340 // broadcast the scalar value corresponding to lane zero for each unroll 341 // iteration. Otherwise, we construct the vector values using 342 // insertelement instructions. Since the resulting vectors are stored in 343 // State, we will only generate the insertelements once. 344 Value *VectorValue = nullptr; 345 if (IsUniform) { 346 VectorValue = GetBroadcastInstrs(ScalarValue); 347 set(Def, VectorValue, Part); 348 } else { 349 // Initialize packing with insertelements to start from undef. 350 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 351 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 352 set(Def, Undef, Part); 353 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 354 packScalarIntoVectorValue(Def, {Part, Lane}); 355 VectorValue = get(Def, Part); 356 } 357 Builder.restoreIP(OldIP); 358 return VectorValue; 359 } 360 361 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 362 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 363 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 364 } 365 366 void VPTransformState::addNewMetadata(Instruction *To, 367 const Instruction *Orig) { 368 // If the loop was versioned with memchecks, add the corresponding no-alias 369 // metadata. 370 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 371 LVer->annotateInstWithNoAlias(To, Orig); 372 } 373 374 void VPTransformState::addMetadata(Value *To, Instruction *From) { 375 // No source instruction to transfer metadata from? 376 if (!From) 377 return; 378 379 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 380 propagateMetadata(ToI, From); 381 addNewMetadata(ToI, From); 382 } 383 } 384 385 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 386 const DILocation *DIL = DL; 387 // When a FSDiscriminator is enabled, we don't need to add the multiply 388 // factors to the discriminators. 389 if (DIL && 390 Builder.GetInsertBlock() 391 ->getParent() 392 ->shouldEmitDebugInfoForProfiling() && 393 !EnableFSDiscriminator) { 394 // FIXME: For scalable vectors, assume vscale=1. 395 auto NewDIL = 396 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 397 if (NewDIL) 398 Builder.SetCurrentDebugLocation(*NewDIL); 399 else 400 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 401 << DIL->getFilename() << " Line: " << DIL->getLine()); 402 } else 403 Builder.SetCurrentDebugLocation(DIL); 404 } 405 406 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 407 const VPIteration &Instance) { 408 Value *ScalarInst = get(Def, Instance); 409 Value *VectorValue = get(Def, Instance.Part); 410 VectorValue = Builder.CreateInsertElement( 411 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 412 set(Def, VectorValue, Instance.Part); 413 } 414 415 BasicBlock * 416 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 417 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 418 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 419 BasicBlock *PrevBB = CFG.PrevBB; 420 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 421 PrevBB->getParent(), CFG.ExitBB); 422 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 423 424 // Hook up the new basic block to its predecessors. 425 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 426 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 427 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 428 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 429 430 assert(PredBB && "Predecessor basic-block not found building successor."); 431 auto *PredBBTerminator = PredBB->getTerminator(); 432 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 433 434 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 435 if (isa<UnreachableInst>(PredBBTerminator)) { 436 assert(PredVPSuccessors.size() == 1 && 437 "Predecessor ending w/o branch must have single successor."); 438 DebugLoc DL = PredBBTerminator->getDebugLoc(); 439 PredBBTerminator->eraseFromParent(); 440 auto *Br = BranchInst::Create(NewBB, PredBB); 441 Br->setDebugLoc(DL); 442 } else if (TermBr && !TermBr->isConditional()) { 443 TermBr->setSuccessor(0, NewBB); 444 } else { 445 // Set each forward successor here when it is created, excluding 446 // backedges. A backward successor is set when the branch is created. 447 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 448 assert(!TermBr->getSuccessor(idx) && 449 "Trying to reset an existing successor block."); 450 TermBr->setSuccessor(idx, NewBB); 451 } 452 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 453 } 454 return NewBB; 455 } 456 457 void VPIRBasicBlock::execute(VPTransformState *State) { 458 assert(getHierarchicalSuccessors().size() <= 2 && 459 "VPIRBasicBlock can have at most two successors at the moment!"); 460 State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); 461 executeRecipes(State, getIRBasicBlock()); 462 if (getSingleSuccessor()) { 463 assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator())); 464 auto *Br = State->Builder.CreateBr(getIRBasicBlock()); 465 Br->setOperand(0, nullptr); 466 getIRBasicBlock()->getTerminator()->eraseFromParent(); 467 } 468 469 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 470 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 471 BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; 472 assert(PredBB && "Predecessor basic-block not found building successor."); 473 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 474 475 auto *PredBBTerminator = PredBB->getTerminator(); 476 auto *TermBr = cast<BranchInst>(PredBBTerminator); 477 // Set each forward successor here when it is created, excluding 478 // backedges. A backward successor is set when the branch is created. 479 const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 480 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 481 assert(!TermBr->getSuccessor(idx) && 482 "Trying to reset an existing successor block."); 483 TermBr->setSuccessor(idx, IRBB); 484 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); 485 } 486 } 487 488 void VPBasicBlock::execute(VPTransformState *State) { 489 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 490 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 491 VPBlockBase *SingleHPred = nullptr; 492 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 493 494 auto IsLoopRegion = [](VPBlockBase *BB) { 495 auto *R = dyn_cast<VPRegionBlock>(BB); 496 return R && !R->isReplicator(); 497 }; 498 499 // 1. Create an IR basic block. 500 if (PrevVPBB && /* A */ 501 !((SingleHPred = getSingleHierarchicalPredecessor()) && 502 SingleHPred->getExitingBasicBlock() == PrevVPBB && 503 PrevVPBB->getSingleHierarchicalSuccessor() && 504 (SingleHPred->getParent() == getEnclosingLoopRegion() && 505 !IsLoopRegion(SingleHPred))) && /* B */ 506 !(Replica && getPredecessors().empty())) { /* C */ 507 // The last IR basic block is reused, as an optimization, in three cases: 508 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 509 // B. when the current VPBB has a single (hierarchical) predecessor which 510 // is PrevVPBB and the latter has a single (hierarchical) successor which 511 // both are in the same non-replicator region; and 512 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 513 // is the exiting VPBB of this region from a previous instance, or the 514 // predecessor of this region. 515 516 NewBB = createEmptyBasicBlock(State->CFG); 517 State->Builder.SetInsertPoint(NewBB); 518 // Temporarily terminate with unreachable until CFG is rewired. 519 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 520 // Register NewBB in its loop. In innermost loops its the same for all 521 // BB's. 522 if (State->CurrentVectorLoop) 523 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 524 State->Builder.SetInsertPoint(Terminator); 525 State->CFG.PrevBB = NewBB; 526 } 527 528 // 2. Fill the IR basic block with IR instructions. 529 executeRecipes(State, NewBB); 530 } 531 532 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 533 for (VPRecipeBase &R : Recipes) { 534 for (auto *Def : R.definedValues()) 535 Def->replaceAllUsesWith(NewValue); 536 537 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 538 R.setOperand(I, NewValue); 539 } 540 } 541 542 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 543 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 544 << " in BB:" << BB->getName() << '\n'); 545 546 State->CFG.VPBB2IRBB[this] = BB; 547 State->CFG.PrevVPBB = this; 548 549 for (VPRecipeBase &Recipe : Recipes) 550 Recipe.execute(*State); 551 552 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 553 } 554 555 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 556 assert((SplitAt == end() || SplitAt->getParent() == this) && 557 "can only split at a position in the same block"); 558 559 SmallVector<VPBlockBase *, 2> Succs(successors()); 560 // First, disconnect the current block from its successors. 561 for (VPBlockBase *Succ : Succs) 562 VPBlockUtils::disconnectBlocks(this, Succ); 563 564 // Create new empty block after the block to split. 565 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 566 VPBlockUtils::insertBlockAfter(SplitBlock, this); 567 568 // Add successors for block to split to new block. 569 for (VPBlockBase *Succ : Succs) 570 VPBlockUtils::connectBlocks(SplitBlock, Succ); 571 572 // Finally, move the recipes starting at SplitAt to new block. 573 for (VPRecipeBase &ToMove : 574 make_early_inc_range(make_range(SplitAt, this->end()))) 575 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 576 577 return SplitBlock; 578 } 579 580 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 581 VPRegionBlock *P = getParent(); 582 if (P && P->isReplicator()) { 583 P = P->getParent(); 584 assert(!cast<VPRegionBlock>(P)->isReplicator() && 585 "unexpected nested replicate regions"); 586 } 587 return P; 588 } 589 590 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 591 if (VPBB->empty()) { 592 assert( 593 VPBB->getNumSuccessors() < 2 && 594 "block with multiple successors doesn't have a recipe as terminator"); 595 return false; 596 } 597 598 const VPRecipeBase *R = &VPBB->back(); 599 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 600 match(R, m_BranchOnCond(m_VPValue())) || 601 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 602 (void)IsCondBranch; 603 604 if (VPBB->getNumSuccessors() >= 2 || 605 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 606 assert(IsCondBranch && "block with multiple successors not terminated by " 607 "conditional branch recipe"); 608 609 return true; 610 } 611 612 assert( 613 !IsCondBranch && 614 "block with 0 or 1 successors terminated by conditional branch recipe"); 615 return false; 616 } 617 618 VPRecipeBase *VPBasicBlock::getTerminator() { 619 if (hasConditionalTerminator(this)) 620 return &back(); 621 return nullptr; 622 } 623 624 const VPRecipeBase *VPBasicBlock::getTerminator() const { 625 if (hasConditionalTerminator(this)) 626 return &back(); 627 return nullptr; 628 } 629 630 bool VPBasicBlock::isExiting() const { 631 return getParent() && getParent()->getExitingBasicBlock() == this; 632 } 633 634 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 635 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 636 if (getSuccessors().empty()) { 637 O << Indent << "No successors\n"; 638 } else { 639 O << Indent << "Successor(s): "; 640 ListSeparator LS; 641 for (auto *Succ : getSuccessors()) 642 O << LS << Succ->getName(); 643 O << '\n'; 644 } 645 } 646 647 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 648 VPSlotTracker &SlotTracker) const { 649 O << Indent << getName() << ":\n"; 650 651 auto RecipeIndent = Indent + " "; 652 for (const VPRecipeBase &Recipe : *this) { 653 Recipe.print(O, RecipeIndent, SlotTracker); 654 O << '\n'; 655 } 656 657 printSuccessors(O, Indent); 658 } 659 #endif 660 661 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 662 663 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 664 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 665 // Remapping of operands must be done separately. Returns a pair with the new 666 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 667 // region, return nullptr for the exiting block. 668 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 669 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 670 VPBlockBase *Exiting = nullptr; 671 bool InRegion = Entry->getParent(); 672 // First, clone blocks reachable from Entry. 673 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 674 VPBlockBase *NewBB = BB->clone(); 675 Old2NewVPBlocks[BB] = NewBB; 676 if (InRegion && BB->getNumSuccessors() == 0) { 677 assert(!Exiting && "Multiple exiting blocks?"); 678 Exiting = BB; 679 } 680 } 681 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 682 683 // Second, update the predecessors & successors of the cloned blocks. 684 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 685 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 686 SmallVector<VPBlockBase *> NewPreds; 687 for (VPBlockBase *Pred : BB->getPredecessors()) { 688 NewPreds.push_back(Old2NewVPBlocks[Pred]); 689 } 690 NewBB->setPredecessors(NewPreds); 691 SmallVector<VPBlockBase *> NewSuccs; 692 for (VPBlockBase *Succ : BB->successors()) { 693 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 694 } 695 NewBB->setSuccessors(NewSuccs); 696 } 697 698 #if !defined(NDEBUG) 699 // Verify that the order of predecessors and successors matches in the cloned 700 // version. 701 for (const auto &[OldBB, NewBB] : 702 zip(vp_depth_first_shallow(Entry), 703 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 704 for (const auto &[OldPred, NewPred] : 705 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 706 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 707 708 for (const auto &[OldSucc, NewSucc] : 709 zip(OldBB->successors(), NewBB->successors())) 710 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 711 } 712 #endif 713 714 return std::make_pair(Old2NewVPBlocks[Entry], 715 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 716 } 717 718 VPRegionBlock *VPRegionBlock::clone() { 719 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 720 auto *NewRegion = 721 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 722 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 723 Block->setParent(NewRegion); 724 return NewRegion; 725 } 726 727 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 728 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 729 // Drop all references in VPBasicBlocks and replace all uses with 730 // DummyValue. 731 Block->dropAllReferences(NewValue); 732 } 733 734 void VPRegionBlock::execute(VPTransformState *State) { 735 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 736 RPOT(Entry); 737 738 if (!isReplicator()) { 739 // Create and register the new vector loop. 740 Loop *PrevLoop = State->CurrentVectorLoop; 741 State->CurrentVectorLoop = State->LI->AllocateLoop(); 742 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 743 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 744 745 // Insert the new loop into the loop nest and register the new basic blocks 746 // before calling any utilities such as SCEV that require valid LoopInfo. 747 if (ParentLoop) 748 ParentLoop->addChildLoop(State->CurrentVectorLoop); 749 else 750 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 751 752 // Visit the VPBlocks connected to "this", starting from it. 753 for (VPBlockBase *Block : RPOT) { 754 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 755 Block->execute(State); 756 } 757 758 State->CurrentVectorLoop = PrevLoop; 759 return; 760 } 761 762 assert(!State->Instance && "Replicating a Region with non-null instance."); 763 764 // Enter replicating mode. 765 State->Instance = VPIteration(0, 0); 766 767 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 768 State->Instance->Part = Part; 769 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 770 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 771 ++Lane) { 772 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 773 // Visit the VPBlocks connected to \p this, starting from it. 774 for (VPBlockBase *Block : RPOT) { 775 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 776 Block->execute(State); 777 } 778 } 779 } 780 781 // Exit replicating mode. 782 State->Instance.reset(); 783 } 784 785 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 786 InstructionCost Cost = 0; 787 for (VPRecipeBase &R : Recipes) 788 Cost += R.cost(VF, Ctx); 789 return Cost; 790 } 791 792 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 793 if (!isReplicator()) { 794 InstructionCost Cost = 0; 795 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 796 Cost += Block->cost(VF, Ctx); 797 InstructionCost BackedgeCost = 798 Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 799 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 800 << ": vector loop backedge\n"); 801 Cost += BackedgeCost; 802 return Cost; 803 } 804 805 // Compute the cost of a replicate region. Replicating isn't supported for 806 // scalable vectors, return an invalid cost for them. 807 // TODO: Discard scalable VPlans with replicate recipes earlier after 808 // construction. 809 if (VF.isScalable()) 810 return InstructionCost::getInvalid(); 811 812 // First compute the cost of the conditionally executed recipes, followed by 813 // account for the branching cost, except if the mask is a header mask or 814 // uniform condition. 815 using namespace llvm::VPlanPatternMatch; 816 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 817 InstructionCost ThenCost = Then->cost(VF, Ctx); 818 819 // For the scalar case, we may not always execute the original predicated 820 // block, Thus, scale the block's cost by the probability of executing it. 821 if (VF.isScalar()) 822 return ThenCost / getReciprocalPredBlockProb(); 823 824 return ThenCost; 825 } 826 827 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 828 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 829 VPSlotTracker &SlotTracker) const { 830 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 831 auto NewIndent = Indent + " "; 832 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 833 O << '\n'; 834 BlockBase->print(O, NewIndent, SlotTracker); 835 } 836 O << Indent << "}\n"; 837 838 printSuccessors(O, Indent); 839 } 840 #endif 841 842 VPlan::~VPlan() { 843 for (auto &KV : LiveOuts) 844 delete KV.second; 845 LiveOuts.clear(); 846 847 if (Entry) { 848 VPValue DummyValue; 849 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 850 Block->dropAllReferences(&DummyValue); 851 852 VPBlockBase::deleteCFG(Entry); 853 854 Preheader->dropAllReferences(&DummyValue); 855 delete Preheader; 856 } 857 for (VPValue *VPV : VPLiveInsToFree) 858 delete VPV; 859 if (BackedgeTakenCount) 860 delete BackedgeTakenCount; 861 } 862 863 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE, 864 bool RequiresScalarEpilogueCheck, 865 bool TailFolded, Loop *TheLoop) { 866 VPIRBasicBlock *Entry = new VPIRBasicBlock(TheLoop->getLoopPreheader()); 867 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 868 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader); 869 Plan->TripCount = 870 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 871 // Create VPRegionBlock, with empty header and latch blocks, to be filled 872 // during processing later. 873 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 874 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 875 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 876 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 877 false /*isReplicator*/); 878 879 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 880 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 881 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 882 883 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 884 if (!RequiresScalarEpilogueCheck) { 885 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 886 return Plan; 887 } 888 889 // If needed, add a check in the middle block to see if we have completed 890 // all of the iterations in the first vector loop. Three cases: 891 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 892 // Thus if tail is to be folded, we know we don't need to run the 893 // remainder and we can set the condition to true. 894 // 2) If we require a scalar epilogue, there is no conditional branch as 895 // we unconditionally branch to the scalar preheader. Do nothing. 896 // 3) Otherwise, construct a runtime check. 897 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 898 auto *VPExitBlock = new VPIRBasicBlock(IRExitBlock); 899 // The connection order corresponds to the operands of the conditional branch. 900 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 901 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 902 903 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 904 // Here we use the same DebugLoc as the scalar loop latch terminator instead 905 // of the corresponding compare because they may have ended up with 906 // different line numbers and we want to avoid awkward line stepping while 907 // debugging. Eg. if the compare has got a line number inside the loop. 908 VPBuilder Builder(MiddleVPBB); 909 VPValue *Cmp = 910 TailFolded 911 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 912 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 913 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 914 &Plan->getVectorTripCount(), 915 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 916 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 917 ScalarLatchTerm->getDebugLoc()); 918 return Plan; 919 } 920 921 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 922 Value *CanonicalIVStartValue, 923 VPTransformState &State) { 924 // Check if the backedge taken count is needed, and if so build it. 925 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 926 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 927 auto *TCMO = Builder.CreateSub(TripCountV, 928 ConstantInt::get(TripCountV->getType(), 1), 929 "trip.count.minus.1"); 930 BackedgeTakenCount->setUnderlyingValue(TCMO); 931 } 932 933 VectorTripCount.setUnderlyingValue(VectorTripCountV); 934 935 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 936 // FIXME: Model VF * UF computation completely in VPlan. 937 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 938 VFxUF.setUnderlyingValue( 939 createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF)); 940 941 // When vectorizing the epilogue loop, the canonical induction start value 942 // needs to be changed from zero to the value after the main vector loop. 943 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 944 if (CanonicalIVStartValue) { 945 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 946 auto *IV = getCanonicalIV(); 947 assert(all_of(IV->users(), 948 [](const VPUser *U) { 949 return isa<VPScalarIVStepsRecipe>(U) || 950 isa<VPScalarCastRecipe>(U) || 951 isa<VPDerivedIVRecipe>(U) || 952 cast<VPInstruction>(U)->getOpcode() == 953 Instruction::Add; 954 }) && 955 "the canonical IV should only be used by its increment or " 956 "ScalarIVSteps when resetting the start value"); 957 IV->setOperand(0, VPV); 958 } 959 } 960 961 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 962 /// VPBB are moved to the newly created VPIRBasicBlock. VPBB must have a single 963 /// predecessor, which is rewired to the new VPIRBasicBlock. All successors of 964 /// VPBB, if any, are rewired to the new VPIRBasicBlock. 965 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 966 VPIRBasicBlock *IRMiddleVPBB = new VPIRBasicBlock(IRBB); 967 for (auto &R : make_early_inc_range(*VPBB)) 968 R.moveBefore(*IRMiddleVPBB, IRMiddleVPBB->end()); 969 VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); 970 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 971 VPBlockUtils::connectBlocks(PredVPBB, IRMiddleVPBB); 972 for (auto *Succ : to_vector(VPBB->getSuccessors())) { 973 VPBlockUtils::connectBlocks(IRMiddleVPBB, Succ); 974 VPBlockUtils::disconnectBlocks(VPBB, Succ); 975 } 976 delete VPBB; 977 } 978 979 /// Generate the code inside the preheader and body of the vectorized loop. 980 /// Assumes a single pre-header basic-block was created for this. Introduce 981 /// additional basic-blocks as needed, and fill them all. 982 void VPlan::execute(VPTransformState *State) { 983 // Initialize CFG state. 984 State->CFG.PrevVPBB = nullptr; 985 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 986 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 987 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 988 989 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 990 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 991 State->CFG.DTU.applyUpdates( 992 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 993 994 // Replace regular VPBB's for the middle and scalar preheader blocks with 995 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 996 // skeleton creation, so we can only create the VPIRBasicBlocks now during 997 // VPlan execution rather than earlier during VPlan construction. 998 BasicBlock *MiddleBB = State->CFG.ExitBB; 999 VPBasicBlock *MiddleVPBB = 1000 cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor()); 1001 // Find the VPBB for the scalar preheader, relying on the current structure 1002 // when creating the middle block and its successrs: if there's a single 1003 // predecessor, it must be the scalar preheader. Otherwise, the second 1004 // successor is the scalar preheader. 1005 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1006 auto &MiddleSuccs = MiddleVPBB->getSuccessors(); 1007 assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && 1008 "middle block has unexpected successors"); 1009 VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>( 1010 MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); 1011 assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) && 1012 "scalar preheader cannot be wrapped already"); 1013 replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh); 1014 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1015 1016 // Disconnect the middle block from its single successor (the scalar loop 1017 // header) in both the CFG and DT. The branch will be recreated during VPlan 1018 // execution. 1019 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1020 BrInst->insertBefore(MiddleBB->getTerminator()); 1021 MiddleBB->getTerminator()->eraseFromParent(); 1022 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1023 1024 // Generate code in the loop pre-header and body. 1025 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1026 Block->execute(State); 1027 1028 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1029 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1030 1031 // Fix the latch value of canonical, reduction and first-order recurrences 1032 // phis in the vector loop. 1033 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1034 for (VPRecipeBase &R : Header->phis()) { 1035 // Skip phi-like recipes that generate their backedege values themselves. 1036 if (isa<VPWidenPHIRecipe>(&R)) 1037 continue; 1038 1039 if (isa<VPWidenPointerInductionRecipe>(&R) || 1040 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1041 PHINode *Phi = nullptr; 1042 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1043 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 1044 } else { 1045 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1046 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1047 "recipe generating only scalars should have been replaced"); 1048 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1049 Phi = cast<PHINode>(GEP->getPointerOperand()); 1050 } 1051 1052 Phi->setIncomingBlock(1, VectorLatchBB); 1053 1054 // Move the last step to the end of the latch block. This ensures 1055 // consistent placement of all induction updates. 1056 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1057 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1058 continue; 1059 } 1060 1061 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1062 // For canonical IV, first-order recurrences and in-order reduction phis, 1063 // only a single part is generated, which provides the last part from the 1064 // previous iteration. For non-ordered reductions all UF parts are 1065 // generated. 1066 bool SinglePartNeeded = 1067 isa<VPCanonicalIVPHIRecipe>(PhiR) || 1068 isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1069 (isa<VPReductionPHIRecipe>(PhiR) && 1070 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 1071 bool NeedsScalar = 1072 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1073 (isa<VPReductionPHIRecipe>(PhiR) && 1074 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1075 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1076 1077 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1078 Value *Phi = State->get(PhiR, Part, NeedsScalar); 1079 Value *Val = 1080 State->get(PhiR->getBackedgeValue(), 1081 SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); 1082 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1083 } 1084 } 1085 1086 State->CFG.DTU.flush(); 1087 assert(State->CFG.DTU.getDomTree().verify( 1088 DominatorTree::VerificationLevel::Fast) && 1089 "DT not preserved correctly"); 1090 } 1091 1092 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1093 // For now only return the cost of the vector loop region, ignoring any other 1094 // blocks, like the preheader or middle blocks. 1095 return getVectorLoopRegion()->cost(VF, Ctx); 1096 } 1097 1098 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1099 void VPlan::printLiveIns(raw_ostream &O) const { 1100 VPSlotTracker SlotTracker(this); 1101 1102 if (VFxUF.getNumUsers() > 0) { 1103 O << "\nLive-in "; 1104 VFxUF.printAsOperand(O, SlotTracker); 1105 O << " = VF * UF"; 1106 } 1107 1108 if (VectorTripCount.getNumUsers() > 0) { 1109 O << "\nLive-in "; 1110 VectorTripCount.printAsOperand(O, SlotTracker); 1111 O << " = vector-trip-count"; 1112 } 1113 1114 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1115 O << "\nLive-in "; 1116 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1117 O << " = backedge-taken count"; 1118 } 1119 1120 O << "\n"; 1121 if (TripCount->isLiveIn()) 1122 O << "Live-in "; 1123 TripCount->printAsOperand(O, SlotTracker); 1124 O << " = original trip-count"; 1125 O << "\n"; 1126 } 1127 1128 LLVM_DUMP_METHOD 1129 void VPlan::print(raw_ostream &O) const { 1130 VPSlotTracker SlotTracker(this); 1131 1132 O << "VPlan '" << getName() << "' {"; 1133 1134 printLiveIns(O); 1135 1136 if (!getPreheader()->empty()) { 1137 O << "\n"; 1138 getPreheader()->print(O, "", SlotTracker); 1139 } 1140 1141 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1142 O << '\n'; 1143 Block->print(O, "", SlotTracker); 1144 } 1145 1146 if (!LiveOuts.empty()) 1147 O << "\n"; 1148 for (const auto &KV : LiveOuts) { 1149 KV.second->print(O, SlotTracker); 1150 } 1151 1152 O << "}\n"; 1153 } 1154 1155 std::string VPlan::getName() const { 1156 std::string Out; 1157 raw_string_ostream RSO(Out); 1158 RSO << Name << " for "; 1159 if (!VFs.empty()) { 1160 RSO << "VF={" << VFs[0]; 1161 for (ElementCount VF : drop_begin(VFs)) 1162 RSO << "," << VF; 1163 RSO << "},"; 1164 } 1165 1166 if (UFs.empty()) { 1167 RSO << "UF>=1"; 1168 } else { 1169 RSO << "UF={" << UFs[0]; 1170 for (unsigned UF : drop_begin(UFs)) 1171 RSO << "," << UF; 1172 RSO << "}"; 1173 } 1174 1175 return Out; 1176 } 1177 1178 LLVM_DUMP_METHOD 1179 void VPlan::printDOT(raw_ostream &O) const { 1180 VPlanPrinter Printer(O, *this); 1181 Printer.dump(); 1182 } 1183 1184 LLVM_DUMP_METHOD 1185 void VPlan::dump() const { print(dbgs()); } 1186 #endif 1187 1188 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1189 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1190 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1191 } 1192 1193 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1194 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1195 // Update the operands of all cloned recipes starting at NewEntry. This 1196 // traverses all reachable blocks. This is done in two steps, to handle cycles 1197 // in PHI recipes. 1198 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1199 OldDeepRPOT(Entry); 1200 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1201 NewDeepRPOT(NewEntry); 1202 // First, collect all mappings from old to new VPValues defined by cloned 1203 // recipes. 1204 for (const auto &[OldBB, NewBB] : 1205 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1206 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1207 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1208 "blocks must have the same number of recipes"); 1209 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1210 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1211 "recipes must have the same number of operands"); 1212 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1213 "recipes must define the same number of operands"); 1214 for (const auto &[OldV, NewV] : 1215 zip(OldR.definedValues(), NewR.definedValues())) 1216 Old2NewVPValues[OldV] = NewV; 1217 } 1218 } 1219 1220 // Update all operands to use cloned VPValues. 1221 for (VPBasicBlock *NewBB : 1222 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1223 for (VPRecipeBase &NewR : *NewBB) 1224 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1225 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1226 NewR.setOperand(I, NewOp); 1227 } 1228 } 1229 } 1230 1231 VPlan *VPlan::duplicate() { 1232 // Clone blocks. 1233 VPBasicBlock *NewPreheader = Preheader->clone(); 1234 const auto &[NewEntry, __] = cloneFrom(Entry); 1235 1236 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1237 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1238 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1239 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1240 Old2NewVPValues[OldLiveIn] = 1241 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1242 } 1243 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1244 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1245 if (BackedgeTakenCount) { 1246 NewPlan->BackedgeTakenCount = new VPValue(); 1247 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1248 } 1249 assert(TripCount && "trip count must be set"); 1250 if (TripCount->isLiveIn()) 1251 Old2NewVPValues[TripCount] = 1252 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1253 // else NewTripCount will be created and inserted into Old2NewVPValues when 1254 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1255 1256 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1257 remapOperands(Entry, NewEntry, Old2NewVPValues); 1258 1259 // Clone live-outs. 1260 for (const auto &[_, LO] : LiveOuts) 1261 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1262 1263 // Initialize remaining fields of cloned VPlan. 1264 NewPlan->VFs = VFs; 1265 NewPlan->UFs = UFs; 1266 // TODO: Adjust names. 1267 NewPlan->Name = Name; 1268 assert(Old2NewVPValues.contains(TripCount) && 1269 "TripCount must have been added to Old2NewVPValues"); 1270 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1271 return NewPlan; 1272 } 1273 1274 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1275 1276 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1277 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1278 Twine(getOrCreateBID(Block)); 1279 } 1280 1281 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1282 const std::string &Name = Block->getName(); 1283 if (!Name.empty()) 1284 return Name; 1285 return "VPB" + Twine(getOrCreateBID(Block)); 1286 } 1287 1288 void VPlanPrinter::dump() { 1289 Depth = 1; 1290 bumpIndent(0); 1291 OS << "digraph VPlan {\n"; 1292 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1293 if (!Plan.getName().empty()) 1294 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1295 1296 { 1297 // Print live-ins. 1298 std::string Str; 1299 raw_string_ostream SS(Str); 1300 Plan.printLiveIns(SS); 1301 SmallVector<StringRef, 0> Lines; 1302 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1303 for (auto Line : Lines) 1304 OS << DOT::EscapeString(Line.str()) << "\\n"; 1305 } 1306 1307 OS << "\"]\n"; 1308 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1309 OS << "edge [fontname=Courier, fontsize=30]\n"; 1310 OS << "compound=true\n"; 1311 1312 dumpBlock(Plan.getPreheader()); 1313 1314 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1315 dumpBlock(Block); 1316 1317 OS << "}\n"; 1318 } 1319 1320 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1321 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1322 dumpBasicBlock(BasicBlock); 1323 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1324 dumpRegion(Region); 1325 else 1326 llvm_unreachable("Unsupported kind of VPBlock."); 1327 } 1328 1329 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1330 bool Hidden, const Twine &Label) { 1331 // Due to "dot" we print an edge between two regions as an edge between the 1332 // exiting basic block and the entry basic of the respective regions. 1333 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1334 const VPBlockBase *Head = To->getEntryBasicBlock(); 1335 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1336 OS << " [ label=\"" << Label << '\"'; 1337 if (Tail != From) 1338 OS << " ltail=" << getUID(From); 1339 if (Head != To) 1340 OS << " lhead=" << getUID(To); 1341 if (Hidden) 1342 OS << "; splines=none"; 1343 OS << "]\n"; 1344 } 1345 1346 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1347 auto &Successors = Block->getSuccessors(); 1348 if (Successors.size() == 1) 1349 drawEdge(Block, Successors.front(), false, ""); 1350 else if (Successors.size() == 2) { 1351 drawEdge(Block, Successors.front(), false, "T"); 1352 drawEdge(Block, Successors.back(), false, "F"); 1353 } else { 1354 unsigned SuccessorNumber = 0; 1355 for (auto *Successor : Successors) 1356 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1357 } 1358 } 1359 1360 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1361 // Implement dot-formatted dump by performing plain-text dump into the 1362 // temporary storage followed by some post-processing. 1363 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1364 bumpIndent(1); 1365 std::string Str; 1366 raw_string_ostream SS(Str); 1367 // Use no indentation as we need to wrap the lines into quotes ourselves. 1368 BasicBlock->print(SS, "", SlotTracker); 1369 1370 // We need to process each line of the output separately, so split 1371 // single-string plain-text dump. 1372 SmallVector<StringRef, 0> Lines; 1373 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1374 1375 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1376 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1377 }; 1378 1379 // Don't need the "+" after the last line. 1380 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1381 EmitLine(Line, " +\n"); 1382 EmitLine(Lines.back(), "\n"); 1383 1384 bumpIndent(-1); 1385 OS << Indent << "]\n"; 1386 1387 dumpEdges(BasicBlock); 1388 } 1389 1390 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1391 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1392 bumpIndent(1); 1393 OS << Indent << "fontname=Courier\n" 1394 << Indent << "label=\"" 1395 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1396 << DOT::EscapeString(Region->getName()) << "\"\n"; 1397 // Dump the blocks of the region. 1398 assert(Region->getEntry() && "Region contains no inner blocks."); 1399 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1400 dumpBlock(Block); 1401 bumpIndent(-1); 1402 OS << Indent << "}\n"; 1403 dumpEdges(Region); 1404 } 1405 1406 void VPlanIngredient::print(raw_ostream &O) const { 1407 if (auto *Inst = dyn_cast<Instruction>(V)) { 1408 if (!Inst->getType()->isVoidTy()) { 1409 Inst->printAsOperand(O, false); 1410 O << " = "; 1411 } 1412 O << Inst->getOpcodeName() << " "; 1413 unsigned E = Inst->getNumOperands(); 1414 if (E > 0) { 1415 Inst->getOperand(0)->printAsOperand(O, false); 1416 for (unsigned I = 1; I < E; ++I) 1417 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1418 } 1419 } else // !Inst 1420 V->printAsOperand(O, false); 1421 } 1422 1423 #endif 1424 1425 void VPValue::replaceAllUsesWith(VPValue *New) { 1426 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1427 } 1428 1429 void VPValue::replaceUsesWithIf( 1430 VPValue *New, 1431 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1432 // Note that this early exit is required for correctness; the implementation 1433 // below relies on the number of users for this VPValue to decrease, which 1434 // isn't the case if this == New. 1435 if (this == New) 1436 return; 1437 1438 for (unsigned J = 0; J < getNumUsers();) { 1439 VPUser *User = Users[J]; 1440 bool RemovedUser = false; 1441 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1442 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1443 continue; 1444 1445 RemovedUser = true; 1446 User->setOperand(I, New); 1447 } 1448 // If a user got removed after updating the current user, the next user to 1449 // update will be moved to the current position, so we only need to 1450 // increment the index if the number of users did not change. 1451 if (!RemovedUser) 1452 J++; 1453 } 1454 } 1455 1456 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1457 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1458 OS << Tracker.getOrCreateName(this); 1459 } 1460 1461 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1462 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1463 Op->printAsOperand(O, SlotTracker); 1464 }); 1465 } 1466 #endif 1467 1468 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1469 Old2NewTy &Old2New, 1470 InterleavedAccessInfo &IAI) { 1471 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1472 RPOT(Region->getEntry()); 1473 for (VPBlockBase *Base : RPOT) { 1474 visitBlock(Base, Old2New, IAI); 1475 } 1476 } 1477 1478 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1479 InterleavedAccessInfo &IAI) { 1480 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1481 for (VPRecipeBase &VPI : *VPBB) { 1482 if (isa<VPWidenPHIRecipe>(&VPI)) 1483 continue; 1484 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1485 auto *VPInst = cast<VPInstruction>(&VPI); 1486 1487 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1488 if (!Inst) 1489 continue; 1490 auto *IG = IAI.getInterleaveGroup(Inst); 1491 if (!IG) 1492 continue; 1493 1494 auto NewIGIter = Old2New.find(IG); 1495 if (NewIGIter == Old2New.end()) 1496 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1497 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1498 1499 if (Inst == IG->getInsertPos()) 1500 Old2New[IG]->setInsertPos(VPInst); 1501 1502 InterleaveGroupMap[VPInst] = Old2New[IG]; 1503 InterleaveGroupMap[VPInst]->insertMember( 1504 VPInst, IG->getIndex(Inst), 1505 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1506 : IG->getFactor())); 1507 } 1508 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1509 visitRegion(Region, Old2New, IAI); 1510 else 1511 llvm_unreachable("Unsupported kind of VPBlock."); 1512 } 1513 1514 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1515 InterleavedAccessInfo &IAI) { 1516 Old2NewTy Old2New; 1517 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1518 } 1519 1520 void VPSlotTracker::assignName(const VPValue *V) { 1521 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1522 auto *UV = V->getUnderlyingValue(); 1523 if (!UV) { 1524 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1525 NextSlot++; 1526 return; 1527 } 1528 1529 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1530 // appending ".Number" to the name if there are multiple uses. 1531 std::string Name; 1532 raw_string_ostream S(Name); 1533 UV->printAsOperand(S, false); 1534 assert(!Name.empty() && "Name cannot be empty."); 1535 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1536 1537 // First assign the base name for V. 1538 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1539 // Integer or FP constants with different types will result in he same string 1540 // due to stripping types. 1541 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1542 return; 1543 1544 // If it is already used by C > 0 other VPValues, increase the version counter 1545 // C and use it for V. 1546 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1547 if (!UseInserted) { 1548 C->second++; 1549 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1550 } 1551 } 1552 1553 void VPSlotTracker::assignNames(const VPlan &Plan) { 1554 if (Plan.VFxUF.getNumUsers() > 0) 1555 assignName(&Plan.VFxUF); 1556 assignName(&Plan.VectorTripCount); 1557 if (Plan.BackedgeTakenCount) 1558 assignName(Plan.BackedgeTakenCount); 1559 for (VPValue *LI : Plan.VPLiveInsToFree) 1560 assignName(LI); 1561 assignNames(Plan.getPreheader()); 1562 1563 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1564 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1565 for (const VPBasicBlock *VPBB : 1566 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1567 assignNames(VPBB); 1568 } 1569 1570 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1571 for (const VPRecipeBase &Recipe : *VPBB) 1572 for (VPValue *Def : Recipe.definedValues()) 1573 assignName(Def); 1574 } 1575 1576 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1577 std::string Name = VPValue2Name.lookup(V); 1578 if (!Name.empty()) 1579 return Name; 1580 1581 // If no name was assigned, no VPlan was provided when creating the slot 1582 // tracker or it is not reachable from the provided VPlan. This can happen, 1583 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1584 // in a debugger. 1585 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1586 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1587 // here. 1588 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1589 (void)DefR; 1590 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1591 "VPValue defined by a recipe in a VPlan?"); 1592 1593 // Use the underlying value's name, if there is one. 1594 if (auto *UV = V->getUnderlyingValue()) { 1595 std::string Name; 1596 raw_string_ostream S(Name); 1597 UV->printAsOperand(S, false); 1598 return (Twine("ir<") + Name + ">").str(); 1599 } 1600 1601 return "<badref>"; 1602 } 1603 1604 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1605 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1606 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1607 bool PredicateAtRangeStart = Predicate(Range.Start); 1608 1609 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1610 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1611 Range.End = TmpVF; 1612 break; 1613 } 1614 1615 return PredicateAtRangeStart; 1616 } 1617 1618 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1619 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1620 /// of VF's starting at a given VF and extending it as much as possible. Each 1621 /// vectorization decision can potentially shorten this sub-range during 1622 /// buildVPlan(). 1623 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1624 ElementCount MaxVF) { 1625 auto MaxVFTimes2 = MaxVF * 2; 1626 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1627 VFRange SubRange = {VF, MaxVFTimes2}; 1628 auto Plan = buildVPlan(SubRange); 1629 VPlanTransforms::optimize(*Plan, *PSE.getSE()); 1630 VPlans.push_back(std::move(Plan)); 1631 VF = SubRange.End; 1632 } 1633 } 1634 1635 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1636 assert(count_if(VPlans, 1637 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1638 1 && 1639 "Multiple VPlans for VF."); 1640 1641 for (const VPlanPtr &Plan : VPlans) { 1642 if (Plan->hasVF(VF)) 1643 return *Plan.get(); 1644 } 1645 llvm_unreachable("No plan found!"); 1646 } 1647 1648 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1649 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1650 if (VPlans.empty()) { 1651 O << "LV: No VPlans built.\n"; 1652 return; 1653 } 1654 for (const auto &Plan : VPlans) 1655 if (PrintVPlansInDotFormat) 1656 Plan->printDOT(O); 1657 else 1658 Plan->print(O); 1659 } 1660 #endif 1661