xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 19d286bca00ac15be780fe9886aa0a6b6ebbee3d)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanCFG.h"
21 #include "VPlanDominatorTree.h"
22 #include "llvm/ADT/DepthFirstIterator.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/LoopVersioning.h"
44 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
45 #include <cassert>
46 #include <string>
47 #include <vector>
48 
49 using namespace llvm;
50 
51 namespace llvm {
52 extern cl::opt<bool> EnableVPlanNativePath;
53 }
54 
55 #define DEBUG_TYPE "vplan"
56 
57 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
58 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
59   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
60   VPSlotTracker SlotTracker(
61       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
62   V.print(OS, SlotTracker);
63   return OS;
64 }
65 #endif
66 
67 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
68                                 const ElementCount &VF) const {
69   switch (LaneKind) {
70   case VPLane::Kind::ScalableLast:
71     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
72     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
73                              Builder.getInt32(VF.getKnownMinValue() - Lane));
74   case VPLane::Kind::First:
75     return Builder.getInt32(Lane);
76   }
77   llvm_unreachable("Unknown lane kind");
78 }
79 
80 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
81     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
82   if (Def)
83     Def->addDefinedValue(this);
84 }
85 
86 VPValue::~VPValue() {
87   assert(Users.empty() && "trying to delete a VPValue with remaining users");
88   if (Def)
89     Def->removeDefinedValue(this);
90 }
91 
92 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
93 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
94   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
95     R->print(OS, "", SlotTracker);
96   else
97     printAsOperand(OS, SlotTracker);
98 }
99 
100 void VPValue::dump() const {
101   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
102   VPSlotTracker SlotTracker(
103       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
104   print(dbgs(), SlotTracker);
105   dbgs() << "\n";
106 }
107 
108 void VPDef::dump() const {
109   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
110   VPSlotTracker SlotTracker(
111       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
112   print(dbgs(), "", SlotTracker);
113   dbgs() << "\n";
114 }
115 #endif
116 
117 VPRecipeBase *VPValue::getDefiningRecipe() {
118   return cast_or_null<VPRecipeBase>(Def);
119 }
120 
121 const VPRecipeBase *VPValue::getDefiningRecipe() const {
122   return cast_or_null<VPRecipeBase>(Def);
123 }
124 
125 // Get the top-most entry block of \p Start. This is the entry block of the
126 // containing VPlan. This function is templated to support both const and non-const blocks
127 template <typename T> static T *getPlanEntry(T *Start) {
128   T *Next = Start;
129   T *Current = Start;
130   while ((Next = Next->getParent()))
131     Current = Next;
132 
133   SmallSetVector<T *, 8> WorkList;
134   WorkList.insert(Current);
135 
136   for (unsigned i = 0; i < WorkList.size(); i++) {
137     T *Current = WorkList[i];
138     if (Current->getNumPredecessors() == 0)
139       return Current;
140     auto &Predecessors = Current->getPredecessors();
141     WorkList.insert(Predecessors.begin(), Predecessors.end());
142   }
143 
144   llvm_unreachable("VPlan without any entry node without predecessors");
145 }
146 
147 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
148 
149 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
150 
151 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
152 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
153   const VPBlockBase *Block = this;
154   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
155     Block = Region->getEntry();
156   return cast<VPBasicBlock>(Block);
157 }
158 
159 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
160   VPBlockBase *Block = this;
161   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
162     Block = Region->getEntry();
163   return cast<VPBasicBlock>(Block);
164 }
165 
166 void VPBlockBase::setPlan(VPlan *ParentPlan) {
167   assert(
168       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
169       "Can only set plan on its entry or preheader block.");
170   Plan = ParentPlan;
171 }
172 
173 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
174 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
175   const VPBlockBase *Block = this;
176   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
177     Block = Region->getExiting();
178   return cast<VPBasicBlock>(Block);
179 }
180 
181 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
182   VPBlockBase *Block = this;
183   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
184     Block = Region->getExiting();
185   return cast<VPBasicBlock>(Block);
186 }
187 
188 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
189   if (!Successors.empty() || !Parent)
190     return this;
191   assert(Parent->getExiting() == this &&
192          "Block w/o successors not the exiting block of its parent.");
193   return Parent->getEnclosingBlockWithSuccessors();
194 }
195 
196 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
197   if (!Predecessors.empty() || !Parent)
198     return this;
199   assert(Parent->getEntry() == this &&
200          "Block w/o predecessors not the entry of its parent.");
201   return Parent->getEnclosingBlockWithPredecessors();
202 }
203 
204 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
205   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
206     delete Block;
207 }
208 
209 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
210   iterator It = begin();
211   while (It != end() && It->isPhi())
212     It++;
213   return It;
214 }
215 
216 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
217   if (Def->isLiveIn())
218     return Def->getLiveInIRValue();
219 
220   if (hasScalarValue(Def, Instance)) {
221     return Data
222         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
223   }
224 
225   assert(hasVectorValue(Def, Instance.Part));
226   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
227   if (!VecPart->getType()->isVectorTy()) {
228     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
229     return VecPart;
230   }
231   // TODO: Cache created scalar values.
232   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
233   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
234   // set(Def, Extract, Instance);
235   return Extract;
236 }
237 
238 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
239   // If Values have been set for this Def return the one relevant for \p Part.
240   if (hasVectorValue(Def, Part))
241     return Data.PerPartOutput[Def][Part];
242 
243   auto GetBroadcastInstrs = [this, Def](Value *V) {
244     bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
245     if (VF.isScalar())
246       return V;
247     // Place the code for broadcasting invariant variables in the new preheader.
248     IRBuilder<>::InsertPointGuard Guard(Builder);
249     if (SafeToHoist) {
250       BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
251           Plan->getVectorLoopRegion()->getSinglePredecessor())];
252       if (LoopVectorPreHeader)
253         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
254     }
255 
256     // Place the code for broadcasting invariant variables in the new preheader.
257     // Broadcast the scalar into all locations in the vector.
258     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
259 
260     return Shuf;
261   };
262 
263   if (!hasScalarValue(Def, {Part, 0})) {
264     assert(Def->isLiveIn() && "expected a live-in");
265     if (Part != 0)
266       return get(Def, 0);
267     Value *IRV = Def->getLiveInIRValue();
268     Value *B = GetBroadcastInstrs(IRV);
269     set(Def, B, Part);
270     return B;
271   }
272 
273   Value *ScalarValue = get(Def, {Part, 0});
274   // If we aren't vectorizing, we can just copy the scalar map values over
275   // to the vector map.
276   if (VF.isScalar()) {
277     set(Def, ScalarValue, Part);
278     return ScalarValue;
279   }
280 
281   bool IsUniform = vputils::isUniformAfterVectorization(Def);
282 
283   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
284   // Check if there is a scalar value for the selected lane.
285   if (!hasScalarValue(Def, {Part, LastLane})) {
286     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
287     // VPExpandSCEVRecipes can also be uniform.
288     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
289             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
290             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
291            "unexpected recipe found to be invariant");
292     IsUniform = true;
293     LastLane = 0;
294   }
295 
296   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
297   // Set the insert point after the last scalarized instruction or after the
298   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
299   // will directly follow the scalar definitions.
300   auto OldIP = Builder.saveIP();
301   auto NewIP =
302       isa<PHINode>(LastInst)
303           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
304           : std::next(BasicBlock::iterator(LastInst));
305   Builder.SetInsertPoint(&*NewIP);
306 
307   // However, if we are vectorizing, we need to construct the vector values.
308   // If the value is known to be uniform after vectorization, we can just
309   // broadcast the scalar value corresponding to lane zero for each unroll
310   // iteration. Otherwise, we construct the vector values using
311   // insertelement instructions. Since the resulting vectors are stored in
312   // State, we will only generate the insertelements once.
313   Value *VectorValue = nullptr;
314   if (IsUniform) {
315     VectorValue = GetBroadcastInstrs(ScalarValue);
316     set(Def, VectorValue, Part);
317   } else {
318     // Initialize packing with insertelements to start from undef.
319     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
320     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
321     set(Def, Undef, Part);
322     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
323       packScalarIntoVectorValue(Def, {Part, Lane});
324     VectorValue = get(Def, Part);
325   }
326   Builder.restoreIP(OldIP);
327   return VectorValue;
328 }
329 
330 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
331   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
332   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
333 }
334 
335 void VPTransformState::addNewMetadata(Instruction *To,
336                                       const Instruction *Orig) {
337   // If the loop was versioned with memchecks, add the corresponding no-alias
338   // metadata.
339   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
340     LVer->annotateInstWithNoAlias(To, Orig);
341 }
342 
343 void VPTransformState::addMetadata(Instruction *To, Instruction *From) {
344   // No source instruction to transfer metadata from?
345   if (!From)
346     return;
347 
348   propagateMetadata(To, From);
349   addNewMetadata(To, From);
350 }
351 
352 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) {
353   // No source instruction to transfer metadata from?
354   if (!From)
355     return;
356 
357   for (Value *V : To) {
358     if (Instruction *I = dyn_cast<Instruction>(V))
359       addMetadata(I, From);
360   }
361 }
362 
363 void VPTransformState::setDebugLocFromInst(const Value *V) {
364   const Instruction *Inst = dyn_cast<Instruction>(V);
365   if (!Inst) {
366     Builder.SetCurrentDebugLocation(DebugLoc());
367     return;
368   }
369 
370   const DILocation *DIL = Inst->getDebugLoc();
371   // When a FSDiscriminator is enabled, we don't need to add the multiply
372   // factors to the discriminators.
373   if (DIL && Inst->getFunction()->shouldEmitDebugInfoForProfiling() &&
374       !EnableFSDiscriminator) {
375     assert(!Inst->isDebugOrPseudoInst() &&
376            "debug and pseudo instruction aren't part of VPlan");
377     // FIXME: For scalable vectors, assume vscale=1.
378     auto NewDIL =
379         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
380     if (NewDIL)
381       Builder.SetCurrentDebugLocation(*NewDIL);
382     else
383       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
384                         << DIL->getFilename() << " Line: " << DIL->getLine());
385   } else
386     Builder.SetCurrentDebugLocation(DIL);
387 }
388 
389 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
390                                                  const VPIteration &Instance) {
391   Value *ScalarInst = get(Def, Instance);
392   Value *VectorValue = get(Def, Instance.Part);
393   VectorValue = Builder.CreateInsertElement(
394       VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
395   set(Def, VectorValue, Instance.Part);
396 }
397 
398 BasicBlock *
399 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
400   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
401   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
402   BasicBlock *PrevBB = CFG.PrevBB;
403   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
404                                          PrevBB->getParent(), CFG.ExitBB);
405   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
406 
407   // Hook up the new basic block to its predecessors.
408   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
409     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
410     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
411     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
412 
413     assert(PredBB && "Predecessor basic-block not found building successor.");
414     auto *PredBBTerminator = PredBB->getTerminator();
415     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
416 
417     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
418     if (isa<UnreachableInst>(PredBBTerminator)) {
419       assert(PredVPSuccessors.size() == 1 &&
420              "Predecessor ending w/o branch must have single successor.");
421       DebugLoc DL = PredBBTerminator->getDebugLoc();
422       PredBBTerminator->eraseFromParent();
423       auto *Br = BranchInst::Create(NewBB, PredBB);
424       Br->setDebugLoc(DL);
425     } else if (TermBr && !TermBr->isConditional()) {
426       TermBr->setSuccessor(0, NewBB);
427     } else {
428       // Set each forward successor here when it is created, excluding
429       // backedges. A backward successor is set when the branch is created.
430       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
431       assert(!TermBr->getSuccessor(idx) &&
432              "Trying to reset an existing successor block.");
433       TermBr->setSuccessor(idx, NewBB);
434     }
435   }
436   return NewBB;
437 }
438 
439 void VPBasicBlock::execute(VPTransformState *State) {
440   bool Replica = State->Instance && !State->Instance->isFirstIteration();
441   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
442   VPBlockBase *SingleHPred = nullptr;
443   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
444 
445   auto IsLoopRegion = [](VPBlockBase *BB) {
446     auto *R = dyn_cast<VPRegionBlock>(BB);
447     return R && !R->isReplicator();
448   };
449 
450   // 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
451   if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
452     // ExitBB can be re-used for the exit block of the Plan.
453     NewBB = State->CFG.ExitBB;
454     State->CFG.PrevBB = NewBB;
455 
456     // Update the branch instruction in the predecessor to branch to ExitBB.
457     VPBlockBase *PredVPB = getSingleHierarchicalPredecessor();
458     VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock();
459     assert(PredVPB->getSingleSuccessor() == this &&
460            "predecessor must have the current block as only successor");
461     BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB];
462     // The Exit block of a loop is always set to be successor 0 of the Exiting
463     // block.
464     cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB);
465   } else if (PrevVPBB && /* A */
466              !((SingleHPred = getSingleHierarchicalPredecessor()) &&
467                SingleHPred->getExitingBasicBlock() == PrevVPBB &&
468                PrevVPBB->getSingleHierarchicalSuccessor() &&
469                (SingleHPred->getParent() == getEnclosingLoopRegion() &&
470                 !IsLoopRegion(SingleHPred))) &&         /* B */
471              !(Replica && getPredecessors().empty())) { /* C */
472     // The last IR basic block is reused, as an optimization, in three cases:
473     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
474     // B. when the current VPBB has a single (hierarchical) predecessor which
475     //    is PrevVPBB and the latter has a single (hierarchical) successor which
476     //    both are in the same non-replicator region; and
477     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
478     //    is the exiting VPBB of this region from a previous instance, or the
479     //    predecessor of this region.
480 
481     NewBB = createEmptyBasicBlock(State->CFG);
482     State->Builder.SetInsertPoint(NewBB);
483     // Temporarily terminate with unreachable until CFG is rewired.
484     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
485     // Register NewBB in its loop. In innermost loops its the same for all
486     // BB's.
487     if (State->CurrentVectorLoop)
488       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
489     State->Builder.SetInsertPoint(Terminator);
490     State->CFG.PrevBB = NewBB;
491   }
492 
493   // 2. Fill the IR basic block with IR instructions.
494   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
495                     << " in BB:" << NewBB->getName() << '\n');
496 
497   State->CFG.VPBB2IRBB[this] = NewBB;
498   State->CFG.PrevVPBB = this;
499 
500   for (VPRecipeBase &Recipe : Recipes)
501     Recipe.execute(*State);
502 
503   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
504 }
505 
506 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
507   for (VPRecipeBase &R : Recipes) {
508     for (auto *Def : R.definedValues())
509       Def->replaceAllUsesWith(NewValue);
510 
511     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
512       R.setOperand(I, NewValue);
513   }
514 }
515 
516 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
517   assert((SplitAt == end() || SplitAt->getParent() == this) &&
518          "can only split at a position in the same block");
519 
520   SmallVector<VPBlockBase *, 2> Succs(successors());
521   // First, disconnect the current block from its successors.
522   for (VPBlockBase *Succ : Succs)
523     VPBlockUtils::disconnectBlocks(this, Succ);
524 
525   // Create new empty block after the block to split.
526   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
527   VPBlockUtils::insertBlockAfter(SplitBlock, this);
528 
529   // Add successors for block to split to new block.
530   for (VPBlockBase *Succ : Succs)
531     VPBlockUtils::connectBlocks(SplitBlock, Succ);
532 
533   // Finally, move the recipes starting at SplitAt to new block.
534   for (VPRecipeBase &ToMove :
535        make_early_inc_range(make_range(SplitAt, this->end())))
536     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
537 
538   return SplitBlock;
539 }
540 
541 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
542   VPRegionBlock *P = getParent();
543   if (P && P->isReplicator()) {
544     P = P->getParent();
545     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
546            "unexpected nested replicate regions");
547   }
548   return P;
549 }
550 
551 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
552   if (VPBB->empty()) {
553     assert(
554         VPBB->getNumSuccessors() < 2 &&
555         "block with multiple successors doesn't have a recipe as terminator");
556     return false;
557   }
558 
559   const VPRecipeBase *R = &VPBB->back();
560   auto *VPI = dyn_cast<VPInstruction>(R);
561   bool IsCondBranch =
562       isa<VPBranchOnMaskRecipe>(R) ||
563       (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond ||
564                VPI->getOpcode() == VPInstruction::BranchOnCount));
565   (void)IsCondBranch;
566 
567   if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) {
568     assert(IsCondBranch && "block with multiple successors not terminated by "
569                            "conditional branch recipe");
570 
571     return true;
572   }
573 
574   assert(
575       !IsCondBranch &&
576       "block with 0 or 1 successors terminated by conditional branch recipe");
577   return false;
578 }
579 
580 VPRecipeBase *VPBasicBlock::getTerminator() {
581   if (hasConditionalTerminator(this))
582     return &back();
583   return nullptr;
584 }
585 
586 const VPRecipeBase *VPBasicBlock::getTerminator() const {
587   if (hasConditionalTerminator(this))
588     return &back();
589   return nullptr;
590 }
591 
592 bool VPBasicBlock::isExiting() const {
593   return getParent()->getExitingBasicBlock() == this;
594 }
595 
596 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
597 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
598   if (getSuccessors().empty()) {
599     O << Indent << "No successors\n";
600   } else {
601     O << Indent << "Successor(s): ";
602     ListSeparator LS;
603     for (auto *Succ : getSuccessors())
604       O << LS << Succ->getName();
605     O << '\n';
606   }
607 }
608 
609 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
610                          VPSlotTracker &SlotTracker) const {
611   O << Indent << getName() << ":\n";
612 
613   auto RecipeIndent = Indent + "  ";
614   for (const VPRecipeBase &Recipe : *this) {
615     Recipe.print(O, RecipeIndent, SlotTracker);
616     O << '\n';
617   }
618 
619   printSuccessors(O, Indent);
620 }
621 #endif
622 
623 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
624   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
625     // Drop all references in VPBasicBlocks and replace all uses with
626     // DummyValue.
627     Block->dropAllReferences(NewValue);
628 }
629 
630 void VPRegionBlock::execute(VPTransformState *State) {
631   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
632       RPOT(Entry);
633 
634   if (!isReplicator()) {
635     // Create and register the new vector loop.
636     Loop *PrevLoop = State->CurrentVectorLoop;
637     State->CurrentVectorLoop = State->LI->AllocateLoop();
638     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
639     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
640 
641     // Insert the new loop into the loop nest and register the new basic blocks
642     // before calling any utilities such as SCEV that require valid LoopInfo.
643     if (ParentLoop)
644       ParentLoop->addChildLoop(State->CurrentVectorLoop);
645     else
646       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
647 
648     // Visit the VPBlocks connected to "this", starting from it.
649     for (VPBlockBase *Block : RPOT) {
650       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
651       Block->execute(State);
652     }
653 
654     State->CurrentVectorLoop = PrevLoop;
655     return;
656   }
657 
658   assert(!State->Instance && "Replicating a Region with non-null instance.");
659 
660   // Enter replicating mode.
661   State->Instance = VPIteration(0, 0);
662 
663   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
664     State->Instance->Part = Part;
665     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
666     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
667          ++Lane) {
668       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
669       // Visit the VPBlocks connected to \p this, starting from it.
670       for (VPBlockBase *Block : RPOT) {
671         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
672         Block->execute(State);
673       }
674     }
675   }
676 
677   // Exit replicating mode.
678   State->Instance.reset();
679 }
680 
681 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
682 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
683                           VPSlotTracker &SlotTracker) const {
684   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
685   auto NewIndent = Indent + "  ";
686   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
687     O << '\n';
688     BlockBase->print(O, NewIndent, SlotTracker);
689   }
690   O << Indent << "}\n";
691 
692   printSuccessors(O, Indent);
693 }
694 #endif
695 
696 VPlan::~VPlan() {
697   for (auto &KV : LiveOuts)
698     delete KV.second;
699   LiveOuts.clear();
700 
701   if (Entry) {
702     VPValue DummyValue;
703     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
704       Block->dropAllReferences(&DummyValue);
705 
706     VPBlockBase::deleteCFG(Entry);
707 
708     Preheader->dropAllReferences(&DummyValue);
709     delete Preheader;
710   }
711   for (VPValue *VPV : VPLiveInsToFree)
712     delete VPV;
713   if (BackedgeTakenCount)
714     delete BackedgeTakenCount;
715 }
716 
717 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) {
718   VPBasicBlock *Preheader = new VPBasicBlock("ph");
719   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
720   auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader);
721   Plan->TripCount =
722       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
723   return Plan;
724 }
725 
726 VPActiveLaneMaskPHIRecipe *VPlan::getActiveLaneMaskPhi() {
727   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
728   for (VPRecipeBase &R : Header->phis()) {
729     if (isa<VPActiveLaneMaskPHIRecipe>(&R))
730       return cast<VPActiveLaneMaskPHIRecipe>(&R);
731   }
732   return nullptr;
733 }
734 
735 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
736                              Value *CanonicalIVStartValue,
737                              VPTransformState &State,
738                              bool IsEpilogueVectorization) {
739   // Check if the backedge taken count is needed, and if so build it.
740   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
741     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
742     auto *TCMO = Builder.CreateSub(TripCountV,
743                                    ConstantInt::get(TripCountV->getType(), 1),
744                                    "trip.count.minus.1");
745     auto VF = State.VF;
746     Value *VTCMO =
747         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
748     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
749       State.set(BackedgeTakenCount, VTCMO, Part);
750   }
751 
752   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
753     State.set(&VectorTripCount, VectorTripCountV, Part);
754 
755   // When vectorizing the epilogue loop, the canonical induction start value
756   // needs to be changed from zero to the value after the main vector loop.
757   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
758   if (CanonicalIVStartValue) {
759     VPValue *VPV = getVPValueOrAddLiveIn(CanonicalIVStartValue);
760     auto *IV = getCanonicalIV();
761     assert(all_of(IV->users(),
762                   [](const VPUser *U) {
763                     return isa<VPScalarIVStepsRecipe>(U) ||
764                            isa<VPDerivedIVRecipe>(U) ||
765                            cast<VPInstruction>(U)->getOpcode() ==
766                                VPInstruction::CanonicalIVIncrement;
767                   }) &&
768            "the canonical IV should only be used by its increment or "
769            "ScalarIVSteps when resetting the start value");
770     IV->setOperand(0, VPV);
771   }
772 }
773 
774 /// Generate the code inside the preheader and body of the vectorized loop.
775 /// Assumes a single pre-header basic-block was created for this. Introduce
776 /// additional basic-blocks as needed, and fill them all.
777 void VPlan::execute(VPTransformState *State) {
778   // Set the reverse mapping from VPValues to Values for code generation.
779   for (auto &Entry : Value2VPValue)
780     State->VPValue2Value[Entry.second] = Entry.first;
781 
782   // Initialize CFG state.
783   State->CFG.PrevVPBB = nullptr;
784   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
785   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
786   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
787 
788   // Generate code in the loop pre-header and body.
789   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
790     Block->execute(State);
791 
792   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
793   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
794 
795   // Fix the latch value of canonical, reduction and first-order recurrences
796   // phis in the vector loop.
797   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
798   for (VPRecipeBase &R : Header->phis()) {
799     // Skip phi-like recipes that generate their backedege values themselves.
800     if (isa<VPWidenPHIRecipe>(&R))
801       continue;
802 
803     if (isa<VPWidenPointerInductionRecipe>(&R) ||
804         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
805       PHINode *Phi = nullptr;
806       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
807         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
808       } else {
809         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
810         // TODO: Split off the case that all users of a pointer phi are scalar
811         // from the VPWidenPointerInductionRecipe.
812         if (WidenPhi->onlyScalarsGenerated(State->VF))
813           continue;
814 
815         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
816         Phi = cast<PHINode>(GEP->getPointerOperand());
817       }
818 
819       Phi->setIncomingBlock(1, VectorLatchBB);
820 
821       // Move the last step to the end of the latch block. This ensures
822       // consistent placement of all induction updates.
823       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
824       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
825       continue;
826     }
827 
828     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
829     // For  canonical IV, first-order recurrences and in-order reduction phis,
830     // only a single part is generated, which provides the last part from the
831     // previous iteration. For non-ordered reductions all UF parts are
832     // generated.
833     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
834                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
835                             (isa<VPReductionPHIRecipe>(PhiR) &&
836                              cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
837     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
838 
839     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
840       Value *Phi = State->get(PhiR, Part);
841       Value *Val = State->get(PhiR->getBackedgeValue(),
842                               SinglePartNeeded ? State->UF - 1 : Part);
843       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
844     }
845   }
846 
847   // We do not attempt to preserve DT for outer loop vectorization currently.
848   if (!EnableVPlanNativePath) {
849     BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
850     State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
851     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
852                         State->CFG.ExitBB);
853   }
854 }
855 
856 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
857 LLVM_DUMP_METHOD
858 void VPlan::print(raw_ostream &O) const {
859   VPSlotTracker SlotTracker(this);
860 
861   O << "VPlan '" << getName() << "' {";
862 
863   if (VectorTripCount.getNumUsers() > 0) {
864     O << "\nLive-in ";
865     VectorTripCount.printAsOperand(O, SlotTracker);
866     O << " = vector-trip-count";
867   }
868 
869   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
870     O << "\nLive-in ";
871     BackedgeTakenCount->printAsOperand(O, SlotTracker);
872     O << " = backedge-taken count";
873   }
874 
875   O << "\n";
876   if (TripCount->isLiveIn())
877     O << "Live-in ";
878   TripCount->printAsOperand(O, SlotTracker);
879   O << " = original trip-count";
880   O << "\n";
881 
882   if (!getPreheader()->empty()) {
883     O << "\n";
884     getPreheader()->print(O, "", SlotTracker);
885   }
886 
887   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
888     O << '\n';
889     Block->print(O, "", SlotTracker);
890   }
891 
892   if (!LiveOuts.empty())
893     O << "\n";
894   for (const auto &KV : LiveOuts) {
895     KV.second->print(O, SlotTracker);
896   }
897 
898   O << "}\n";
899 }
900 
901 std::string VPlan::getName() const {
902   std::string Out;
903   raw_string_ostream RSO(Out);
904   RSO << Name << " for ";
905   if (!VFs.empty()) {
906     RSO << "VF={" << VFs[0];
907     for (ElementCount VF : drop_begin(VFs))
908       RSO << "," << VF;
909     RSO << "},";
910   }
911 
912   if (UFs.empty()) {
913     RSO << "UF>=1";
914   } else {
915     RSO << "UF={" << UFs[0];
916     for (unsigned UF : drop_begin(UFs))
917       RSO << "," << UF;
918     RSO << "}";
919   }
920 
921   return Out;
922 }
923 
924 LLVM_DUMP_METHOD
925 void VPlan::printDOT(raw_ostream &O) const {
926   VPlanPrinter Printer(O, *this);
927   Printer.dump();
928 }
929 
930 LLVM_DUMP_METHOD
931 void VPlan::dump() const { print(dbgs()); }
932 #endif
933 
934 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
935   assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
936   LiveOuts.insert({PN, new VPLiveOut(PN, V)});
937 }
938 
939 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
940                                 BasicBlock *LoopLatchBB,
941                                 BasicBlock *LoopExitBB) {
942   // The vector body may be more than a single basic-block by this point.
943   // Update the dominator tree information inside the vector body by propagating
944   // it from header to latch, expecting only triangular control-flow, if any.
945   BasicBlock *PostDomSucc = nullptr;
946   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
947     // Get the list of successors of this block.
948     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
949     assert(Succs.size() <= 2 &&
950            "Basic block in vector loop has more than 2 successors.");
951     PostDomSucc = Succs[0];
952     if (Succs.size() == 1) {
953       assert(PostDomSucc->getSinglePredecessor() &&
954              "PostDom successor has more than one predecessor.");
955       DT->addNewBlock(PostDomSucc, BB);
956       continue;
957     }
958     BasicBlock *InterimSucc = Succs[1];
959     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
960       PostDomSucc = Succs[1];
961       InterimSucc = Succs[0];
962     }
963     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
964            "One successor of a basic block does not lead to the other.");
965     assert(InterimSucc->getSinglePredecessor() &&
966            "Interim successor has more than one predecessor.");
967     assert(PostDomSucc->hasNPredecessors(2) &&
968            "PostDom successor has more than two predecessors.");
969     DT->addNewBlock(InterimSucc, BB);
970     DT->addNewBlock(PostDomSucc, BB);
971   }
972   // Latch block is a new dominator for the loop exit.
973   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
974   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
975 }
976 
977 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
978 
979 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
980   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
981          Twine(getOrCreateBID(Block));
982 }
983 
984 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
985   const std::string &Name = Block->getName();
986   if (!Name.empty())
987     return Name;
988   return "VPB" + Twine(getOrCreateBID(Block));
989 }
990 
991 void VPlanPrinter::dump() {
992   Depth = 1;
993   bumpIndent(0);
994   OS << "digraph VPlan {\n";
995   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
996   if (!Plan.getName().empty())
997     OS << "\\n" << DOT::EscapeString(Plan.getName());
998   if (Plan.BackedgeTakenCount) {
999     OS << ", where:\\n";
1000     Plan.BackedgeTakenCount->print(OS, SlotTracker);
1001     OS << " := BackedgeTakenCount";
1002   }
1003   OS << "\"]\n";
1004   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1005   OS << "edge [fontname=Courier, fontsize=30]\n";
1006   OS << "compound=true\n";
1007 
1008   dumpBlock(Plan.getPreheader());
1009 
1010   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1011     dumpBlock(Block);
1012 
1013   OS << "}\n";
1014 }
1015 
1016 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1017   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1018     dumpBasicBlock(BasicBlock);
1019   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1020     dumpRegion(Region);
1021   else
1022     llvm_unreachable("Unsupported kind of VPBlock.");
1023 }
1024 
1025 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1026                             bool Hidden, const Twine &Label) {
1027   // Due to "dot" we print an edge between two regions as an edge between the
1028   // exiting basic block and the entry basic of the respective regions.
1029   const VPBlockBase *Tail = From->getExitingBasicBlock();
1030   const VPBlockBase *Head = To->getEntryBasicBlock();
1031   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1032   OS << " [ label=\"" << Label << '\"';
1033   if (Tail != From)
1034     OS << " ltail=" << getUID(From);
1035   if (Head != To)
1036     OS << " lhead=" << getUID(To);
1037   if (Hidden)
1038     OS << "; splines=none";
1039   OS << "]\n";
1040 }
1041 
1042 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1043   auto &Successors = Block->getSuccessors();
1044   if (Successors.size() == 1)
1045     drawEdge(Block, Successors.front(), false, "");
1046   else if (Successors.size() == 2) {
1047     drawEdge(Block, Successors.front(), false, "T");
1048     drawEdge(Block, Successors.back(), false, "F");
1049   } else {
1050     unsigned SuccessorNumber = 0;
1051     for (auto *Successor : Successors)
1052       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1053   }
1054 }
1055 
1056 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1057   // Implement dot-formatted dump by performing plain-text dump into the
1058   // temporary storage followed by some post-processing.
1059   OS << Indent << getUID(BasicBlock) << " [label =\n";
1060   bumpIndent(1);
1061   std::string Str;
1062   raw_string_ostream SS(Str);
1063   // Use no indentation as we need to wrap the lines into quotes ourselves.
1064   BasicBlock->print(SS, "", SlotTracker);
1065 
1066   // We need to process each line of the output separately, so split
1067   // single-string plain-text dump.
1068   SmallVector<StringRef, 0> Lines;
1069   StringRef(Str).rtrim('\n').split(Lines, "\n");
1070 
1071   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1072     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1073   };
1074 
1075   // Don't need the "+" after the last line.
1076   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1077     EmitLine(Line, " +\n");
1078   EmitLine(Lines.back(), "\n");
1079 
1080   bumpIndent(-1);
1081   OS << Indent << "]\n";
1082 
1083   dumpEdges(BasicBlock);
1084 }
1085 
1086 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1087   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1088   bumpIndent(1);
1089   OS << Indent << "fontname=Courier\n"
1090      << Indent << "label=\""
1091      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1092      << DOT::EscapeString(Region->getName()) << "\"\n";
1093   // Dump the blocks of the region.
1094   assert(Region->getEntry() && "Region contains no inner blocks.");
1095   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1096     dumpBlock(Block);
1097   bumpIndent(-1);
1098   OS << Indent << "}\n";
1099   dumpEdges(Region);
1100 }
1101 
1102 void VPlanIngredient::print(raw_ostream &O) const {
1103   if (auto *Inst = dyn_cast<Instruction>(V)) {
1104     if (!Inst->getType()->isVoidTy()) {
1105       Inst->printAsOperand(O, false);
1106       O << " = ";
1107     }
1108     O << Inst->getOpcodeName() << " ";
1109     unsigned E = Inst->getNumOperands();
1110     if (E > 0) {
1111       Inst->getOperand(0)->printAsOperand(O, false);
1112       for (unsigned I = 1; I < E; ++I)
1113         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1114     }
1115   } else // !Inst
1116     V->printAsOperand(O, false);
1117 }
1118 
1119 #endif
1120 
1121 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1122 
1123 void VPValue::replaceAllUsesWith(VPValue *New) {
1124   for (unsigned J = 0; J < getNumUsers();) {
1125     VPUser *User = Users[J];
1126     unsigned NumUsers = getNumUsers();
1127     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1128       if (User->getOperand(I) == this)
1129         User->setOperand(I, New);
1130     // If a user got removed after updating the current user, the next user to
1131     // update will be moved to the current position, so we only need to
1132     // increment the index if the number of users did not change.
1133     if (NumUsers == getNumUsers())
1134       J++;
1135   }
1136 }
1137 
1138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1139 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1140   if (const Value *UV = getUnderlyingValue()) {
1141     OS << "ir<";
1142     UV->printAsOperand(OS, false);
1143     OS << ">";
1144     return;
1145   }
1146 
1147   unsigned Slot = Tracker.getSlot(this);
1148   if (Slot == unsigned(-1))
1149     OS << "<badref>";
1150   else
1151     OS << "vp<%" << Tracker.getSlot(this) << ">";
1152 }
1153 
1154 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1155   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1156     Op->printAsOperand(O, SlotTracker);
1157   });
1158 }
1159 #endif
1160 
1161 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1162                                           Old2NewTy &Old2New,
1163                                           InterleavedAccessInfo &IAI) {
1164   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1165       RPOT(Region->getEntry());
1166   for (VPBlockBase *Base : RPOT) {
1167     visitBlock(Base, Old2New, IAI);
1168   }
1169 }
1170 
1171 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1172                                          InterleavedAccessInfo &IAI) {
1173   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1174     for (VPRecipeBase &VPI : *VPBB) {
1175       if (isa<VPHeaderPHIRecipe>(&VPI))
1176         continue;
1177       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1178       auto *VPInst = cast<VPInstruction>(&VPI);
1179 
1180       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1181       if (!Inst)
1182         continue;
1183       auto *IG = IAI.getInterleaveGroup(Inst);
1184       if (!IG)
1185         continue;
1186 
1187       auto NewIGIter = Old2New.find(IG);
1188       if (NewIGIter == Old2New.end())
1189         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1190             IG->getFactor(), IG->isReverse(), IG->getAlign());
1191 
1192       if (Inst == IG->getInsertPos())
1193         Old2New[IG]->setInsertPos(VPInst);
1194 
1195       InterleaveGroupMap[VPInst] = Old2New[IG];
1196       InterleaveGroupMap[VPInst]->insertMember(
1197           VPInst, IG->getIndex(Inst),
1198           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1199                                 : IG->getFactor()));
1200     }
1201   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1202     visitRegion(Region, Old2New, IAI);
1203   else
1204     llvm_unreachable("Unsupported kind of VPBlock.");
1205 }
1206 
1207 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1208                                                  InterleavedAccessInfo &IAI) {
1209   Old2NewTy Old2New;
1210   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1211 }
1212 
1213 void VPSlotTracker::assignSlot(const VPValue *V) {
1214   assert(!Slots.contains(V) && "VPValue already has a slot!");
1215   Slots[V] = NextSlot++;
1216 }
1217 
1218 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1219   assignSlot(&Plan.VectorTripCount);
1220   if (Plan.BackedgeTakenCount)
1221     assignSlot(Plan.BackedgeTakenCount);
1222   assignSlots(Plan.getPreheader());
1223 
1224   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1225       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1226   for (const VPBasicBlock *VPBB :
1227        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1228     assignSlots(VPBB);
1229 }
1230 
1231 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1232   for (const VPRecipeBase &Recipe : *VPBB)
1233     for (VPValue *Def : Recipe.definedValues())
1234       assignSlot(Def);
1235 }
1236 
1237 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1238   return all_of(Def->users(),
1239                 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1240 }
1241 
1242 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1243                                                 ScalarEvolution &SE) {
1244   if (auto *Expanded = Plan.getSCEVExpansion(Expr))
1245     return Expanded;
1246   VPValue *Expanded = nullptr;
1247   if (auto *E = dyn_cast<SCEVConstant>(Expr))
1248     Expanded = Plan.getVPValueOrAddLiveIn(E->getValue());
1249   else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1250     Expanded = Plan.getVPValueOrAddLiveIn(E->getValue());
1251   else {
1252     Expanded = new VPExpandSCEVRecipe(Expr, SE);
1253     Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
1254   }
1255   Plan.addSCEVExpansion(Expr, Expanded);
1256   return Expanded;
1257 }
1258