1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 62 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 63 if (Def) 64 Def->addDefinedValue(this); 65 } 66 67 VPValue::~VPValue() { 68 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 69 if (Def) 70 Def->removeDefinedValue(this); 71 } 72 73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 74 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 75 R->print(OS, "", SlotTracker); 76 else 77 printAsOperand(OS, SlotTracker); 78 } 79 80 void VPValue::dump() const { 81 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 82 VPSlotTracker SlotTracker( 83 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 84 print(dbgs(), SlotTracker); 85 dbgs() << "\n"; 86 } 87 88 void VPDef::dump() const { 89 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 90 VPSlotTracker SlotTracker( 91 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 92 print(dbgs(), "", SlotTracker); 93 dbgs() << "\n"; 94 } 95 96 VPUser *VPRecipeBase::toVPUser() { 97 if (auto *U = dyn_cast<VPInstruction>(this)) 98 return U; 99 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 100 return U; 101 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 102 return U; 103 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 104 return U; 105 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 106 return U; 107 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 108 return U; 109 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 110 return U; 111 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 112 return U; 113 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 114 return U; 115 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 116 return U; 117 if (auto *U = dyn_cast<VPReductionRecipe>(this)) 118 return U; 119 if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this)) 120 return U; 121 return nullptr; 122 } 123 124 // Get the top-most entry block of \p Start. This is the entry block of the 125 // containing VPlan. This function is templated to support both const and non-const blocks 126 template <typename T> static T *getPlanEntry(T *Start) { 127 T *Next = Start; 128 T *Current = Start; 129 while ((Next = Next->getParent())) 130 Current = Next; 131 132 SmallSetVector<T *, 8> WorkList; 133 WorkList.insert(Current); 134 135 for (unsigned i = 0; i < WorkList.size(); i++) { 136 T *Current = WorkList[i]; 137 if (Current->getNumPredecessors() == 0) 138 return Current; 139 auto &Predecessors = Current->getPredecessors(); 140 WorkList.insert(Predecessors.begin(), Predecessors.end()); 141 } 142 143 llvm_unreachable("VPlan without any entry node without predecessors"); 144 } 145 146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 147 148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 149 150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 152 const VPBlockBase *Block = this; 153 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 154 Block = Region->getEntry(); 155 return cast<VPBasicBlock>(Block); 156 } 157 158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 159 VPBlockBase *Block = this; 160 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 void VPBlockBase::setPlan(VPlan *ParentPlan) { 166 assert(ParentPlan->getEntry() == this && 167 "Can only set plan on its entry block."); 168 Plan = ParentPlan; 169 } 170 171 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 172 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 173 const VPBlockBase *Block = this; 174 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 175 Block = Region->getExit(); 176 return cast<VPBasicBlock>(Block); 177 } 178 179 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 180 VPBlockBase *Block = this; 181 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 182 Block = Region->getExit(); 183 return cast<VPBasicBlock>(Block); 184 } 185 186 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 187 if (!Successors.empty() || !Parent) 188 return this; 189 assert(Parent->getExit() == this && 190 "Block w/o successors not the exit of its parent."); 191 return Parent->getEnclosingBlockWithSuccessors(); 192 } 193 194 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 195 if (!Predecessors.empty() || !Parent) 196 return this; 197 assert(Parent->getEntry() == this && 198 "Block w/o predecessors not the entry of its parent."); 199 return Parent->getEnclosingBlockWithPredecessors(); 200 } 201 202 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 203 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 204 205 for (VPBlockBase *Block : Blocks) 206 delete Block; 207 } 208 209 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 210 iterator It = begin(); 211 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 212 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 213 isa<VPPredInstPHIRecipe>(&*It) || 214 isa<VPWidenCanonicalIVRecipe>(&*It))) 215 It++; 216 return It; 217 } 218 219 BasicBlock * 220 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 221 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 222 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 223 BasicBlock *PrevBB = CFG.PrevBB; 224 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 225 PrevBB->getParent(), CFG.LastBB); 226 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 227 228 // Hook up the new basic block to its predecessors. 229 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 230 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 231 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 232 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 233 234 // In outer loop vectorization scenario, the predecessor BBlock may not yet 235 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 236 // vectorization. We do not encounter this case in inner loop vectorization 237 // as we start out by building a loop skeleton with the vector loop header 238 // and latch blocks. As a result, we never enter this function for the 239 // header block in the non VPlan-native path. 240 if (!PredBB) { 241 assert(EnableVPlanNativePath && 242 "Unexpected null predecessor in non VPlan-native path"); 243 CFG.VPBBsToFix.push_back(PredVPBB); 244 continue; 245 } 246 247 assert(PredBB && "Predecessor basic-block not found building successor."); 248 auto *PredBBTerminator = PredBB->getTerminator(); 249 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 250 if (isa<UnreachableInst>(PredBBTerminator)) { 251 assert(PredVPSuccessors.size() == 1 && 252 "Predecessor ending w/o branch must have single successor."); 253 PredBBTerminator->eraseFromParent(); 254 BranchInst::Create(NewBB, PredBB); 255 } else { 256 assert(PredVPSuccessors.size() == 2 && 257 "Predecessor ending with branch must have two successors."); 258 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 259 assert(!PredBBTerminator->getSuccessor(idx) && 260 "Trying to reset an existing successor block."); 261 PredBBTerminator->setSuccessor(idx, NewBB); 262 } 263 } 264 return NewBB; 265 } 266 267 void VPBasicBlock::execute(VPTransformState *State) { 268 bool Replica = State->Instance && 269 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 270 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 271 VPBlockBase *SingleHPred = nullptr; 272 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 273 274 // 1. Create an IR basic block, or reuse the last one if possible. 275 // The last IR basic block is reused, as an optimization, in three cases: 276 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 277 // B. when the current VPBB has a single (hierarchical) predecessor which 278 // is PrevVPBB and the latter has a single (hierarchical) successor; and 279 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 280 // is the exit of this region from a previous instance, or the predecessor 281 // of this region. 282 if (PrevVPBB && /* A */ 283 !((SingleHPred = getSingleHierarchicalPredecessor()) && 284 SingleHPred->getExitBasicBlock() == PrevVPBB && 285 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 286 !(Replica && getPredecessors().empty())) { /* C */ 287 NewBB = createEmptyBasicBlock(State->CFG); 288 State->Builder.SetInsertPoint(NewBB); 289 // Temporarily terminate with unreachable until CFG is rewired. 290 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 291 State->Builder.SetInsertPoint(Terminator); 292 // Register NewBB in its loop. In innermost loops its the same for all BB's. 293 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 294 L->addBasicBlockToLoop(NewBB, *State->LI); 295 State->CFG.PrevBB = NewBB; 296 } 297 298 // 2. Fill the IR basic block with IR instructions. 299 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 300 << " in BB:" << NewBB->getName() << '\n'); 301 302 State->CFG.VPBB2IRBB[this] = NewBB; 303 State->CFG.PrevVPBB = this; 304 305 for (VPRecipeBase &Recipe : Recipes) 306 Recipe.execute(*State); 307 308 VPValue *CBV; 309 if (EnableVPlanNativePath && (CBV = getCondBit())) { 310 Value *IRCBV = CBV->getUnderlyingValue(); 311 assert(IRCBV && "Unexpected null underlying value for condition bit"); 312 313 // Condition bit value in a VPBasicBlock is used as the branch selector. In 314 // the VPlan-native path case, since all branches are uniform we generate a 315 // branch instruction using the condition value from vector lane 0 and dummy 316 // successors. The successors are fixed later when the successor blocks are 317 // visited. 318 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 319 NewCond = State->Builder.CreateExtractElement(NewCond, 320 State->Builder.getInt32(0)); 321 322 // Replace the temporary unreachable terminator with the new conditional 323 // branch. 324 auto *CurrentTerminator = NewBB->getTerminator(); 325 assert(isa<UnreachableInst>(CurrentTerminator) && 326 "Expected to replace unreachable terminator with conditional " 327 "branch."); 328 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 329 CondBr->setSuccessor(0, nullptr); 330 ReplaceInstWithInst(CurrentTerminator, CondBr); 331 } 332 333 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 334 } 335 336 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 337 for (VPRecipeBase &R : Recipes) { 338 for (auto *Def : R.definedValues()) 339 Def->replaceAllUsesWith(NewValue); 340 341 if (auto *User = R.toVPUser()) 342 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 343 User->setOperand(I, NewValue); 344 } 345 } 346 347 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 348 for (VPBlockBase *Block : depth_first(Entry)) 349 // Drop all references in VPBasicBlocks and replace all uses with 350 // DummyValue. 351 Block->dropAllReferences(NewValue); 352 } 353 354 void VPRegionBlock::execute(VPTransformState *State) { 355 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 356 357 if (!isReplicator()) { 358 // Visit the VPBlocks connected to "this", starting from it. 359 for (VPBlockBase *Block : RPOT) { 360 if (EnableVPlanNativePath) { 361 // The inner loop vectorization path does not represent loop preheader 362 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 363 // vectorizing loop preheader block. In future, we may replace this 364 // check with the check for loop preheader. 365 if (Block->getNumPredecessors() == 0) 366 continue; 367 368 // Skip vectorizing loop exit block. In future, we may replace this 369 // check with the check for loop exit. 370 if (Block->getNumSuccessors() == 0) 371 continue; 372 } 373 374 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 375 Block->execute(State); 376 } 377 return; 378 } 379 380 assert(!State->Instance && "Replicating a Region with non-null instance."); 381 382 // Enter replicating mode. 383 State->Instance = {0, 0}; 384 385 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 386 State->Instance->Part = Part; 387 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 388 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 389 ++Lane) { 390 State->Instance->Lane = Lane; 391 // Visit the VPBlocks connected to \p this, starting from it. 392 for (VPBlockBase *Block : RPOT) { 393 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 394 Block->execute(State); 395 } 396 } 397 } 398 399 // Exit replicating mode. 400 State->Instance.reset(); 401 } 402 403 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 404 assert(!Parent && "Recipe already in some VPBasicBlock"); 405 assert(InsertPos->getParent() && 406 "Insertion position not in any VPBasicBlock"); 407 Parent = InsertPos->getParent(); 408 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 409 } 410 411 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 412 assert(!Parent && "Recipe already in some VPBasicBlock"); 413 assert(InsertPos->getParent() && 414 "Insertion position not in any VPBasicBlock"); 415 Parent = InsertPos->getParent(); 416 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 417 } 418 419 void VPRecipeBase::removeFromParent() { 420 assert(getParent() && "Recipe not in any VPBasicBlock"); 421 getParent()->getRecipeList().remove(getIterator()); 422 Parent = nullptr; 423 } 424 425 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 426 assert(getParent() && "Recipe not in any VPBasicBlock"); 427 return getParent()->getRecipeList().erase(getIterator()); 428 } 429 430 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 431 removeFromParent(); 432 insertAfter(InsertPos); 433 } 434 435 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 436 iplist<VPRecipeBase>::iterator I) { 437 assert(I == BB.end() || I->getParent() == &BB); 438 removeFromParent(); 439 Parent = &BB; 440 BB.getRecipeList().insert(I, this); 441 } 442 443 void VPInstruction::generateInstruction(VPTransformState &State, 444 unsigned Part) { 445 IRBuilder<> &Builder = State.Builder; 446 447 if (Instruction::isBinaryOp(getOpcode())) { 448 Value *A = State.get(getOperand(0), Part); 449 Value *B = State.get(getOperand(1), Part); 450 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 451 State.set(this, V, Part); 452 return; 453 } 454 455 switch (getOpcode()) { 456 case VPInstruction::Not: { 457 Value *A = State.get(getOperand(0), Part); 458 Value *V = Builder.CreateNot(A); 459 State.set(this, V, Part); 460 break; 461 } 462 case VPInstruction::ICmpULE: { 463 Value *IV = State.get(getOperand(0), Part); 464 Value *TC = State.get(getOperand(1), Part); 465 Value *V = Builder.CreateICmpULE(IV, TC); 466 State.set(this, V, Part); 467 break; 468 } 469 case Instruction::Select: { 470 Value *Cond = State.get(getOperand(0), Part); 471 Value *Op1 = State.get(getOperand(1), Part); 472 Value *Op2 = State.get(getOperand(2), Part); 473 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 474 State.set(this, V, Part); 475 break; 476 } 477 case VPInstruction::ActiveLaneMask: { 478 // Get first lane of vector induction variable. 479 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 480 // Get the original loop tripcount. 481 Value *ScalarTC = State.TripCount; 482 483 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 484 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 485 Instruction *Call = Builder.CreateIntrinsic( 486 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 487 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 488 State.set(this, Call, Part); 489 break; 490 } 491 default: 492 llvm_unreachable("Unsupported opcode for instruction"); 493 } 494 } 495 496 void VPInstruction::execute(VPTransformState &State) { 497 assert(!State.Instance && "VPInstruction executing an Instance"); 498 for (unsigned Part = 0; Part < State.UF; ++Part) 499 generateInstruction(State, Part); 500 } 501 502 void VPInstruction::dump() const { 503 VPSlotTracker SlotTracker(getParent()->getPlan()); 504 print(dbgs(), "", SlotTracker); 505 } 506 507 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 508 VPSlotTracker &SlotTracker) const { 509 O << "EMIT "; 510 511 if (hasResult()) { 512 printAsOperand(O, SlotTracker); 513 O << " = "; 514 } 515 516 switch (getOpcode()) { 517 case VPInstruction::Not: 518 O << "not"; 519 break; 520 case VPInstruction::ICmpULE: 521 O << "icmp ule"; 522 break; 523 case VPInstruction::SLPLoad: 524 O << "combined load"; 525 break; 526 case VPInstruction::SLPStore: 527 O << "combined store"; 528 break; 529 case VPInstruction::ActiveLaneMask: 530 O << "active lane mask"; 531 break; 532 533 default: 534 O << Instruction::getOpcodeName(getOpcode()); 535 } 536 537 for (const VPValue *Operand : operands()) { 538 O << " "; 539 Operand->printAsOperand(O, SlotTracker); 540 } 541 } 542 543 /// Generate the code inside the body of the vectorized loop. Assumes a single 544 /// LoopVectorBody basic-block was created for this. Introduce additional 545 /// basic-blocks as needed, and fill them all. 546 void VPlan::execute(VPTransformState *State) { 547 // -1. Check if the backedge taken count is needed, and if so build it. 548 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 549 Value *TC = State->TripCount; 550 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 551 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 552 "trip.count.minus.1"); 553 auto VF = State->VF; 554 Value *VTCMO = 555 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 556 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 557 State->set(BackedgeTakenCount, VTCMO, Part); 558 } 559 560 // 0. Set the reverse mapping from VPValues to Values for code generation. 561 for (auto &Entry : Value2VPValue) 562 State->VPValue2Value[Entry.second] = Entry.first; 563 564 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 565 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 566 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 567 568 // 1. Make room to generate basic-blocks inside loop body if needed. 569 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 570 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 571 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 572 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 573 // Remove the edge between Header and Latch to allow other connections. 574 // Temporarily terminate with unreachable until CFG is rewired. 575 // Note: this asserts the generated code's assumption that 576 // getFirstInsertionPt() can be dereferenced into an Instruction. 577 VectorHeaderBB->getTerminator()->eraseFromParent(); 578 State->Builder.SetInsertPoint(VectorHeaderBB); 579 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 580 State->Builder.SetInsertPoint(Terminator); 581 582 // 2. Generate code in loop body. 583 State->CFG.PrevVPBB = nullptr; 584 State->CFG.PrevBB = VectorHeaderBB; 585 State->CFG.LastBB = VectorLatchBB; 586 587 for (VPBlockBase *Block : depth_first(Entry)) 588 Block->execute(State); 589 590 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 591 // VPBB's successors. 592 for (auto VPBB : State->CFG.VPBBsToFix) { 593 assert(EnableVPlanNativePath && 594 "Unexpected VPBBsToFix in non VPlan-native path"); 595 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 596 assert(BB && "Unexpected null basic block for VPBB"); 597 598 unsigned Idx = 0; 599 auto *BBTerminator = BB->getTerminator(); 600 601 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 602 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 603 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 604 ++Idx; 605 } 606 } 607 608 // 3. Merge the temporary latch created with the last basic-block filled. 609 BasicBlock *LastBB = State->CFG.PrevBB; 610 // Connect LastBB to VectorLatchBB to facilitate their merge. 611 assert((EnableVPlanNativePath || 612 isa<UnreachableInst>(LastBB->getTerminator())) && 613 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 614 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 615 "Expected VPlan CFG to terminate with branch in NativePath"); 616 LastBB->getTerminator()->eraseFromParent(); 617 BranchInst::Create(VectorLatchBB, LastBB); 618 619 // Merge LastBB with Latch. 620 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 621 (void)Merged; 622 assert(Merged && "Could not merge last basic block with latch."); 623 VectorLatchBB = LastBB; 624 625 // We do not attempt to preserve DT for outer loop vectorization currently. 626 if (!EnableVPlanNativePath) 627 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 628 L->getExitBlock()); 629 } 630 631 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 632 LLVM_DUMP_METHOD 633 void VPlan::dump() const { dbgs() << *this << '\n'; } 634 #endif 635 636 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 637 BasicBlock *LoopLatchBB, 638 BasicBlock *LoopExitBB) { 639 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 640 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 641 // The vector body may be more than a single basic-block by this point. 642 // Update the dominator tree information inside the vector body by propagating 643 // it from header to latch, expecting only triangular control-flow, if any. 644 BasicBlock *PostDomSucc = nullptr; 645 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 646 // Get the list of successors of this block. 647 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 648 assert(Succs.size() <= 2 && 649 "Basic block in vector loop has more than 2 successors."); 650 PostDomSucc = Succs[0]; 651 if (Succs.size() == 1) { 652 assert(PostDomSucc->getSinglePredecessor() && 653 "PostDom successor has more than one predecessor."); 654 DT->addNewBlock(PostDomSucc, BB); 655 continue; 656 } 657 BasicBlock *InterimSucc = Succs[1]; 658 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 659 PostDomSucc = Succs[1]; 660 InterimSucc = Succs[0]; 661 } 662 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 663 "One successor of a basic block does not lead to the other."); 664 assert(InterimSucc->getSinglePredecessor() && 665 "Interim successor has more than one predecessor."); 666 assert(PostDomSucc->hasNPredecessors(2) && 667 "PostDom successor has more than two predecessors."); 668 DT->addNewBlock(InterimSucc, BB); 669 DT->addNewBlock(PostDomSucc, BB); 670 } 671 // Latch block is a new dominator for the loop exit. 672 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 673 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 674 } 675 676 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 677 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 678 Twine(getOrCreateBID(Block)); 679 } 680 681 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 682 const std::string &Name = Block->getName(); 683 if (!Name.empty()) 684 return Name; 685 return "VPB" + Twine(getOrCreateBID(Block)); 686 } 687 688 void VPlanPrinter::dump() { 689 Depth = 1; 690 bumpIndent(0); 691 OS << "digraph VPlan {\n"; 692 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 693 if (!Plan.getName().empty()) 694 OS << "\\n" << DOT::EscapeString(Plan.getName()); 695 if (Plan.BackedgeTakenCount) { 696 OS << ", where:\\n"; 697 Plan.BackedgeTakenCount->print(OS, SlotTracker); 698 OS << " := BackedgeTakenCount"; 699 } 700 OS << "\"]\n"; 701 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 702 OS << "edge [fontname=Courier, fontsize=30]\n"; 703 OS << "compound=true\n"; 704 705 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 706 dumpBlock(Block); 707 708 OS << "}\n"; 709 } 710 711 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 712 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 713 dumpBasicBlock(BasicBlock); 714 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 715 dumpRegion(Region); 716 else 717 llvm_unreachable("Unsupported kind of VPBlock."); 718 } 719 720 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 721 bool Hidden, const Twine &Label) { 722 // Due to "dot" we print an edge between two regions as an edge between the 723 // exit basic block and the entry basic of the respective regions. 724 const VPBlockBase *Tail = From->getExitBasicBlock(); 725 const VPBlockBase *Head = To->getEntryBasicBlock(); 726 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 727 OS << " [ label=\"" << Label << '\"'; 728 if (Tail != From) 729 OS << " ltail=" << getUID(From); 730 if (Head != To) 731 OS << " lhead=" << getUID(To); 732 if (Hidden) 733 OS << "; splines=none"; 734 OS << "]\n"; 735 } 736 737 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 738 auto &Successors = Block->getSuccessors(); 739 if (Successors.size() == 1) 740 drawEdge(Block, Successors.front(), false, ""); 741 else if (Successors.size() == 2) { 742 drawEdge(Block, Successors.front(), false, "T"); 743 drawEdge(Block, Successors.back(), false, "F"); 744 } else { 745 unsigned SuccessorNumber = 0; 746 for (auto *Successor : Successors) 747 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 748 } 749 } 750 751 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 752 OS << Indent << getUID(BasicBlock) << " [label =\n"; 753 bumpIndent(1); 754 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 755 bumpIndent(1); 756 757 // Dump the block predicate. 758 const VPValue *Pred = BasicBlock->getPredicate(); 759 if (Pred) { 760 OS << " +\n" << Indent << " \"BlockPredicate: \""; 761 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 762 PredI->printAsOperand(OS, SlotTracker); 763 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 764 << ")\\l\""; 765 } else 766 Pred->printAsOperand(OS, SlotTracker); 767 } 768 769 for (const VPRecipeBase &Recipe : *BasicBlock) { 770 OS << " +\n" << Indent << "\""; 771 Recipe.print(OS, Indent, SlotTracker); 772 OS << "\\l\""; 773 } 774 775 // Dump the condition bit. 776 const VPValue *CBV = BasicBlock->getCondBit(); 777 if (CBV) { 778 OS << " +\n" << Indent << " \"CondBit: "; 779 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 780 CBI->printAsOperand(OS, SlotTracker); 781 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 782 } else { 783 CBV->printAsOperand(OS, SlotTracker); 784 OS << "\""; 785 } 786 } 787 788 bumpIndent(-2); 789 OS << "\n" << Indent << "]\n"; 790 dumpEdges(BasicBlock); 791 } 792 793 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 794 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 795 bumpIndent(1); 796 OS << Indent << "fontname=Courier\n" 797 << Indent << "label=\"" 798 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 799 << DOT::EscapeString(Region->getName()) << "\"\n"; 800 // Dump the blocks of the region. 801 assert(Region->getEntry() && "Region contains no inner blocks."); 802 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 803 dumpBlock(Block); 804 bumpIndent(-1); 805 OS << Indent << "}\n"; 806 dumpEdges(Region); 807 } 808 809 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 810 std::string IngredientString; 811 raw_string_ostream RSO(IngredientString); 812 if (auto *Inst = dyn_cast<Instruction>(V)) { 813 if (!Inst->getType()->isVoidTy()) { 814 Inst->printAsOperand(RSO, false); 815 RSO << " = "; 816 } 817 RSO << Inst->getOpcodeName() << " "; 818 unsigned E = Inst->getNumOperands(); 819 if (E > 0) { 820 Inst->getOperand(0)->printAsOperand(RSO, false); 821 for (unsigned I = 1; I < E; ++I) 822 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 823 } 824 } else // !Inst 825 V->printAsOperand(RSO, false); 826 RSO.flush(); 827 O << DOT::EscapeString(IngredientString); 828 } 829 830 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 831 VPSlotTracker &SlotTracker) const { 832 O << "WIDEN-CALL "; 833 834 auto *CI = cast<CallInst>(getUnderlyingInstr()); 835 if (CI->getType()->isVoidTy()) 836 O << "void "; 837 else { 838 printAsOperand(O, SlotTracker); 839 O << " = "; 840 } 841 842 O << "call @" << CI->getCalledFunction()->getName() << "("; 843 printOperands(O, SlotTracker); 844 O << ")"; 845 } 846 847 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 848 VPSlotTracker &SlotTracker) const { 849 O << "WIDEN-SELECT "; 850 printAsOperand(O, SlotTracker); 851 O << " = select "; 852 getOperand(0)->printAsOperand(O, SlotTracker); 853 O << ", "; 854 getOperand(1)->printAsOperand(O, SlotTracker); 855 O << ", "; 856 getOperand(2)->printAsOperand(O, SlotTracker); 857 O << (InvariantCond ? " (condition is loop invariant)" : ""); 858 } 859 860 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 861 VPSlotTracker &SlotTracker) const { 862 O << "WIDEN "; 863 printAsOperand(O, SlotTracker); 864 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 865 printOperands(O, SlotTracker); 866 } 867 868 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 869 VPSlotTracker &SlotTracker) const { 870 O << "WIDEN-INDUCTION"; 871 if (Trunc) { 872 O << "\\l\""; 873 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 874 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 875 } else 876 O << " " << VPlanIngredient(IV); 877 } 878 879 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 880 VPSlotTracker &SlotTracker) const { 881 O << "WIDEN-GEP "; 882 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 883 size_t IndicesNumber = IsIndexLoopInvariant.size(); 884 for (size_t I = 0; I < IndicesNumber; ++I) 885 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 886 887 O << " "; 888 printAsOperand(O, SlotTracker); 889 O << " = getelementptr "; 890 printOperands(O, SlotTracker); 891 } 892 893 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 894 VPSlotTracker &SlotTracker) const { 895 O << "WIDEN-PHI " << VPlanIngredient(Phi); 896 } 897 898 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 899 VPSlotTracker &SlotTracker) const { 900 O << "BLEND "; 901 Phi->printAsOperand(O, false); 902 O << " ="; 903 if (getNumIncomingValues() == 1) { 904 // Not a User of any mask: not really blending, this is a 905 // single-predecessor phi. 906 O << " "; 907 getIncomingValue(0)->printAsOperand(O, SlotTracker); 908 } else { 909 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 910 O << " "; 911 getIncomingValue(I)->printAsOperand(O, SlotTracker); 912 O << "/"; 913 getMask(I)->printAsOperand(O, SlotTracker); 914 } 915 } 916 } 917 918 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 919 VPSlotTracker &SlotTracker) const { 920 O << "REDUCE "; 921 printAsOperand(O, SlotTracker); 922 O << " = "; 923 getChainOp()->printAsOperand(O, SlotTracker); 924 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) 925 << " ("; 926 getVecOp()->printAsOperand(O, SlotTracker); 927 if (getCondOp()) { 928 O << ", "; 929 getCondOp()->printAsOperand(O, SlotTracker); 930 } 931 O << ")"; 932 } 933 934 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 935 VPSlotTracker &SlotTracker) const { 936 O << (IsUniform ? "CLONE " : "REPLICATE "); 937 938 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 939 printAsOperand(O, SlotTracker); 940 O << " = "; 941 } 942 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 943 printOperands(O, SlotTracker); 944 945 if (AlsoPack) 946 O << " (S->V)"; 947 } 948 949 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 950 VPSlotTracker &SlotTracker) const { 951 O << "PHI-PREDICATED-INSTRUCTION "; 952 printOperands(O, SlotTracker); 953 } 954 955 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 956 VPSlotTracker &SlotTracker) const { 957 O << "WIDEN "; 958 959 if (!isStore()) { 960 getVPValue()->printAsOperand(O, SlotTracker); 961 O << " = "; 962 } 963 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 964 965 printOperands(O, SlotTracker); 966 } 967 968 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 969 Value *CanonicalIV = State.CanonicalIV; 970 Type *STy = CanonicalIV->getType(); 971 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 972 ElementCount VF = State.VF; 973 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 974 Value *VStart = VF.isScalar() 975 ? CanonicalIV 976 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 977 CanonicalIV, "broadcast"); 978 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 979 SmallVector<Constant *, 8> Indices; 980 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 981 Indices.push_back( 982 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 983 // If VF == 1, there is only one iteration in the loop above, thus the 984 // element pushed back into Indices is ConstantInt::get(STy, Part) 985 Constant *VStep = 986 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 987 // Add the consecutive indices to the vector value. 988 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 989 State.set(getVPValue(), CanonicalVectorIV, Part); 990 } 991 } 992 993 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 994 VPSlotTracker &SlotTracker) const { 995 O << "EMIT "; 996 getVPValue()->printAsOperand(O, SlotTracker); 997 O << " = WIDEN-CANONICAL-INDUCTION"; 998 } 999 1000 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1001 1002 void VPValue::replaceAllUsesWith(VPValue *New) { 1003 for (unsigned J = 0; J < getNumUsers();) { 1004 VPUser *User = Users[J]; 1005 unsigned NumUsers = getNumUsers(); 1006 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1007 if (User->getOperand(I) == this) 1008 User->setOperand(I, New); 1009 // If a user got removed after updating the current user, the next user to 1010 // update will be moved to the current position, so we only need to 1011 // increment the index if the number of users did not change. 1012 if (NumUsers == getNumUsers()) 1013 J++; 1014 } 1015 } 1016 1017 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1018 if (const Value *UV = getUnderlyingValue()) { 1019 OS << "ir<"; 1020 UV->printAsOperand(OS, false); 1021 OS << ">"; 1022 return; 1023 } 1024 1025 unsigned Slot = Tracker.getSlot(this); 1026 if (Slot == unsigned(-1)) 1027 OS << "<badref>"; 1028 else 1029 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1030 } 1031 1032 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1033 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1034 Op->printAsOperand(O, SlotTracker); 1035 }); 1036 } 1037 1038 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1039 Old2NewTy &Old2New, 1040 InterleavedAccessInfo &IAI) { 1041 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1042 for (VPBlockBase *Base : RPOT) { 1043 visitBlock(Base, Old2New, IAI); 1044 } 1045 } 1046 1047 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1048 InterleavedAccessInfo &IAI) { 1049 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1050 for (VPRecipeBase &VPI : *VPBB) { 1051 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1052 auto *VPInst = cast<VPInstruction>(&VPI); 1053 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1054 auto *IG = IAI.getInterleaveGroup(Inst); 1055 if (!IG) 1056 continue; 1057 1058 auto NewIGIter = Old2New.find(IG); 1059 if (NewIGIter == Old2New.end()) 1060 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1061 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1062 1063 if (Inst == IG->getInsertPos()) 1064 Old2New[IG]->setInsertPos(VPInst); 1065 1066 InterleaveGroupMap[VPInst] = Old2New[IG]; 1067 InterleaveGroupMap[VPInst]->insertMember( 1068 VPInst, IG->getIndex(Inst), 1069 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1070 : IG->getFactor())); 1071 } 1072 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1073 visitRegion(Region, Old2New, IAI); 1074 else 1075 llvm_unreachable("Unsupported kind of VPBlock."); 1076 } 1077 1078 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1079 InterleavedAccessInfo &IAI) { 1080 Old2NewTy Old2New; 1081 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1082 } 1083 1084 void VPSlotTracker::assignSlot(const VPValue *V) { 1085 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1086 Slots[V] = NextSlot++; 1087 } 1088 1089 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1090 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1091 assignSlots(Region); 1092 else 1093 assignSlots(cast<VPBasicBlock>(VPBB)); 1094 } 1095 1096 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1097 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1098 for (const VPBlockBase *Block : RPOT) 1099 assignSlots(Block); 1100 } 1101 1102 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1103 for (const VPRecipeBase &Recipe : *VPBB) { 1104 for (VPValue *Def : Recipe.definedValues()) 1105 assignSlot(Def); 1106 } 1107 } 1108 1109 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1110 1111 for (const VPValue *V : Plan.VPExternalDefs) 1112 assignSlot(V); 1113 1114 for (const VPValue *V : Plan.VPCBVs) 1115 assignSlot(V); 1116 1117 if (Plan.BackedgeTakenCount) 1118 assignSlot(Plan.BackedgeTakenCount); 1119 1120 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1121 for (const VPBlockBase *Block : RPOT) 1122 assignSlots(Block); 1123 } 1124