1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanPatternMatch.h" 23 #include "VPlanTransforms.h" 24 #include "VPlanUtils.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/GraphWriter.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopVersioning.h" 46 #include <cassert> 47 #include <string> 48 49 using namespace llvm; 50 using namespace llvm::VPlanPatternMatch; 51 52 namespace llvm { 53 extern cl::opt<bool> EnableVPlanNativePath; 54 } 55 extern cl::opt<unsigned> ForceTargetInstructionCost; 56 57 static cl::opt<bool> PrintVPlansInDotFormat( 58 "vplan-print-in-dot-format", cl::Hidden, 59 cl::desc("Use dot format instead of plain text when dumping VPlans")); 60 61 #define DEBUG_TYPE "loop-vectorize" 62 63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 65 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 66 VPSlotTracker SlotTracker( 67 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 68 V.print(OS, SlotTracker); 69 return OS; 70 } 71 #endif 72 73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 74 const ElementCount &VF) const { 75 switch (LaneKind) { 76 case VPLane::Kind::ScalableLast: 77 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 78 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 79 Builder.getInt32(VF.getKnownMinValue() - Lane)); 80 case VPLane::Kind::First: 81 return Builder.getInt32(Lane); 82 } 83 llvm_unreachable("Unknown lane kind"); 84 } 85 86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 87 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 88 if (Def) 89 Def->addDefinedValue(this); 90 } 91 92 VPValue::~VPValue() { 93 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 94 if (Def) 95 Def->removeDefinedValue(this); 96 } 97 98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 100 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 101 R->print(OS, "", SlotTracker); 102 else 103 printAsOperand(OS, SlotTracker); 104 } 105 106 void VPValue::dump() const { 107 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 108 VPSlotTracker SlotTracker( 109 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 110 print(dbgs(), SlotTracker); 111 dbgs() << "\n"; 112 } 113 114 void VPDef::dump() const { 115 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 116 VPSlotTracker SlotTracker( 117 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 118 print(dbgs(), "", SlotTracker); 119 dbgs() << "\n"; 120 } 121 #endif 122 123 VPRecipeBase *VPValue::getDefiningRecipe() { 124 return cast_or_null<VPRecipeBase>(Def); 125 } 126 127 const VPRecipeBase *VPValue::getDefiningRecipe() const { 128 return cast_or_null<VPRecipeBase>(Def); 129 } 130 131 // Get the top-most entry block of \p Start. This is the entry block of the 132 // containing VPlan. This function is templated to support both const and non-const blocks 133 template <typename T> static T *getPlanEntry(T *Start) { 134 T *Next = Start; 135 T *Current = Start; 136 while ((Next = Next->getParent())) 137 Current = Next; 138 139 SmallSetVector<T *, 8> WorkList; 140 WorkList.insert(Current); 141 142 for (unsigned i = 0; i < WorkList.size(); i++) { 143 T *Current = WorkList[i]; 144 if (Current->getNumPredecessors() == 0) 145 return Current; 146 auto &Predecessors = Current->getPredecessors(); 147 WorkList.insert(Predecessors.begin(), Predecessors.end()); 148 } 149 150 llvm_unreachable("VPlan without any entry node without predecessors"); 151 } 152 153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 154 155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 156 157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 159 const VPBlockBase *Block = this; 160 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 166 VPBlockBase *Block = this; 167 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 168 Block = Region->getEntry(); 169 return cast<VPBasicBlock>(Block); 170 } 171 172 void VPBlockBase::setPlan(VPlan *ParentPlan) { 173 assert( 174 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 175 "Can only set plan on its entry or preheader block."); 176 Plan = ParentPlan; 177 } 178 179 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 180 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 181 const VPBlockBase *Block = this; 182 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 183 Block = Region->getExiting(); 184 return cast<VPBasicBlock>(Block); 185 } 186 187 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 188 VPBlockBase *Block = this; 189 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 190 Block = Region->getExiting(); 191 return cast<VPBasicBlock>(Block); 192 } 193 194 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 195 if (!Successors.empty() || !Parent) 196 return this; 197 assert(Parent->getExiting() == this && 198 "Block w/o successors not the exiting block of its parent."); 199 return Parent->getEnclosingBlockWithSuccessors(); 200 } 201 202 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 203 if (!Predecessors.empty() || !Parent) 204 return this; 205 assert(Parent->getEntry() == this && 206 "Block w/o predecessors not the entry of its parent."); 207 return Parent->getEnclosingBlockWithPredecessors(); 208 } 209 210 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 211 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 212 delete Block; 213 } 214 215 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 216 iterator It = begin(); 217 while (It != end() && It->isPhi()) 218 It++; 219 return It; 220 } 221 222 VPTransformState::VPTransformState(const TargetTransformInfo *TTI, 223 ElementCount VF, unsigned UF, LoopInfo *LI, 224 DominatorTree *DT, IRBuilderBase &Builder, 225 InnerLoopVectorizer *ILV, VPlan *Plan) 226 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 227 LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {} 228 229 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) { 230 if (Def->isLiveIn()) 231 return Def->getLiveInIRValue(); 232 233 if (hasScalarValue(Def, Lane)) 234 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)]; 235 236 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) && 237 hasScalarValue(Def, VPLane::getFirstLane())) { 238 return Data.VPV2Scalars[Def][0]; 239 } 240 241 assert(hasVectorValue(Def)); 242 auto *VecPart = Data.VPV2Vector[Def]; 243 if (!VecPart->getType()->isVectorTy()) { 244 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 245 return VecPart; 246 } 247 // TODO: Cache created scalar values. 248 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF); 249 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV); 250 // set(Def, Extract, Instance); 251 return Extract; 252 } 253 254 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) { 255 if (NeedsScalar) { 256 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) || 257 !vputils::onlyFirstLaneUsed(Def) || 258 (hasScalarValue(Def, VPLane(0)) && 259 Data.VPV2Scalars[Def].size() == 1)) && 260 "Trying to access a single scalar per part but has multiple scalars " 261 "per part."); 262 return get(Def, VPLane(0)); 263 } 264 265 // If Values have been set for this Def return the one relevant for \p Part. 266 if (hasVectorValue(Def)) 267 return Data.VPV2Vector[Def]; 268 269 auto GetBroadcastInstrs = [this, Def](Value *V) { 270 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 271 if (VF.isScalar()) 272 return V; 273 // Place the code for broadcasting invariant variables in the new preheader. 274 IRBuilder<>::InsertPointGuard Guard(Builder); 275 if (SafeToHoist) { 276 BasicBlock *LoopVectorPreHeader = 277 CFG.VPBB2IRBB[Plan->getVectorPreheader()]; 278 if (LoopVectorPreHeader) 279 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 280 } 281 282 // Place the code for broadcasting invariant variables in the new preheader. 283 // Broadcast the scalar into all locations in the vector. 284 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 285 286 return Shuf; 287 }; 288 289 if (!hasScalarValue(Def, {0})) { 290 assert(Def->isLiveIn() && "expected a live-in"); 291 Value *IRV = Def->getLiveInIRValue(); 292 Value *B = GetBroadcastInstrs(IRV); 293 set(Def, B); 294 return B; 295 } 296 297 Value *ScalarValue = get(Def, VPLane(0)); 298 // If we aren't vectorizing, we can just copy the scalar map values over 299 // to the vector map. 300 if (VF.isScalar()) { 301 set(Def, ScalarValue); 302 return ScalarValue; 303 } 304 305 bool IsUniform = vputils::isUniformAfterVectorization(Def); 306 307 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1); 308 // Check if there is a scalar value for the selected lane. 309 if (!hasScalarValue(Def, LastLane)) { 310 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 311 // VPExpandSCEVRecipes can also be uniform. 312 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 313 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 314 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 315 "unexpected recipe found to be invariant"); 316 IsUniform = true; 317 LastLane = 0; 318 } 319 320 auto *LastInst = cast<Instruction>(get(Def, LastLane)); 321 // Set the insert point after the last scalarized instruction or after the 322 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 323 // will directly follow the scalar definitions. 324 auto OldIP = Builder.saveIP(); 325 auto NewIP = 326 isa<PHINode>(LastInst) 327 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 328 : std::next(BasicBlock::iterator(LastInst)); 329 Builder.SetInsertPoint(&*NewIP); 330 331 // However, if we are vectorizing, we need to construct the vector values. 332 // If the value is known to be uniform after vectorization, we can just 333 // broadcast the scalar value corresponding to lane zero. Otherwise, we 334 // construct the vector values using insertelement instructions. Since the 335 // resulting vectors are stored in State, we will only generate the 336 // insertelements once. 337 Value *VectorValue = nullptr; 338 if (IsUniform) { 339 VectorValue = GetBroadcastInstrs(ScalarValue); 340 set(Def, VectorValue); 341 } else { 342 // Initialize packing with insertelements to start from undef. 343 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 344 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 345 set(Def, Undef); 346 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 347 packScalarIntoVectorValue(Def, Lane); 348 VectorValue = get(Def); 349 } 350 Builder.restoreIP(OldIP); 351 return VectorValue; 352 } 353 354 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 355 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 356 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 357 } 358 359 void VPTransformState::addNewMetadata(Instruction *To, 360 const Instruction *Orig) { 361 // If the loop was versioned with memchecks, add the corresponding no-alias 362 // metadata. 363 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 364 LVer->annotateInstWithNoAlias(To, Orig); 365 } 366 367 void VPTransformState::addMetadata(Value *To, Instruction *From) { 368 // No source instruction to transfer metadata from? 369 if (!From) 370 return; 371 372 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 373 propagateMetadata(ToI, From); 374 addNewMetadata(ToI, From); 375 } 376 } 377 378 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 379 const DILocation *DIL = DL; 380 // When a FSDiscriminator is enabled, we don't need to add the multiply 381 // factors to the discriminators. 382 if (DIL && 383 Builder.GetInsertBlock() 384 ->getParent() 385 ->shouldEmitDebugInfoForProfiling() && 386 !EnableFSDiscriminator) { 387 // FIXME: For scalable vectors, assume vscale=1. 388 unsigned UF = Plan->getUF(); 389 auto NewDIL = 390 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 391 if (NewDIL) 392 Builder.SetCurrentDebugLocation(*NewDIL); 393 else 394 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 395 << DIL->getFilename() << " Line: " << DIL->getLine()); 396 } else 397 Builder.SetCurrentDebugLocation(DIL); 398 } 399 400 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 401 const VPLane &Lane) { 402 Value *ScalarInst = get(Def, Lane); 403 Value *VectorValue = get(Def); 404 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 405 Lane.getAsRuntimeExpr(Builder, VF)); 406 set(Def, VectorValue); 407 } 408 409 BasicBlock * 410 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 411 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 412 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 413 BasicBlock *PrevBB = CFG.PrevBB; 414 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 415 PrevBB->getParent(), CFG.ExitBB); 416 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 417 418 return NewBB; 419 } 420 421 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) { 422 BasicBlock *NewBB = CFG.VPBB2IRBB[this]; 423 // Hook up the new basic block to its predecessors. 424 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 425 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 426 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 427 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 428 429 assert(PredBB && "Predecessor basic-block not found building successor."); 430 auto *PredBBTerminator = PredBB->getTerminator(); 431 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 432 433 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 434 if (isa<UnreachableInst>(PredBBTerminator)) { 435 assert(PredVPSuccessors.size() == 1 && 436 "Predecessor ending w/o branch must have single successor."); 437 DebugLoc DL = PredBBTerminator->getDebugLoc(); 438 PredBBTerminator->eraseFromParent(); 439 auto *Br = BranchInst::Create(NewBB, PredBB); 440 Br->setDebugLoc(DL); 441 } else if (TermBr && !TermBr->isConditional()) { 442 TermBr->setSuccessor(0, NewBB); 443 } else { 444 // Set each forward successor here when it is created, excluding 445 // backedges. A backward successor is set when the branch is created. 446 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 447 assert( 448 (!TermBr->getSuccessor(idx) || 449 (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) && 450 "Trying to reset an existing successor block."); 451 TermBr->setSuccessor(idx, NewBB); 452 } 453 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 454 } 455 } 456 457 void VPIRBasicBlock::execute(VPTransformState *State) { 458 assert(getHierarchicalSuccessors().size() <= 2 && 459 "VPIRBasicBlock can have at most two successors at the moment!"); 460 State->Builder.SetInsertPoint(IRBB->getTerminator()); 461 State->CFG.PrevBB = IRBB; 462 State->CFG.VPBB2IRBB[this] = IRBB; 463 executeRecipes(State, IRBB); 464 // Create a branch instruction to terminate IRBB if one was not created yet 465 // and is needed. 466 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) { 467 auto *Br = State->Builder.CreateBr(IRBB); 468 Br->setOperand(0, nullptr); 469 IRBB->getTerminator()->eraseFromParent(); 470 } else { 471 assert( 472 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) && 473 "other blocks must be terminated by a branch"); 474 } 475 476 connectToPredecessors(State->CFG); 477 } 478 479 void VPBasicBlock::execute(VPTransformState *State) { 480 bool Replica = bool(State->Lane); 481 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 482 483 auto IsReplicateRegion = [](VPBlockBase *BB) { 484 auto *R = dyn_cast_or_null<VPRegionBlock>(BB); 485 return R && R->isReplicator(); 486 }; 487 488 // 1. Create an IR basic block. 489 if (this == getPlan()->getVectorPreheader() || 490 (Replica && this == getParent()->getEntry()) || 491 IsReplicateRegion(getSingleHierarchicalPredecessor())) { 492 // Reuse the previous basic block if the current VPBB is either 493 // * the vector preheader, 494 // * the entry to a replicate region, or 495 // * the exit of a replicate region. 496 State->CFG.VPBB2IRBB[this] = NewBB; 497 } else { 498 NewBB = createEmptyBasicBlock(State->CFG); 499 500 State->Builder.SetInsertPoint(NewBB); 501 // Temporarily terminate with unreachable until CFG is rewired. 502 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 503 // Register NewBB in its loop. In innermost loops its the same for all 504 // BB's. 505 if (State->CurrentVectorLoop) 506 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 507 State->Builder.SetInsertPoint(Terminator); 508 509 State->CFG.PrevBB = NewBB; 510 State->CFG.VPBB2IRBB[this] = NewBB; 511 connectToPredecessors(State->CFG); 512 } 513 514 // 2. Fill the IR basic block with IR instructions. 515 executeRecipes(State, NewBB); 516 } 517 518 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 519 for (VPRecipeBase &R : Recipes) { 520 for (auto *Def : R.definedValues()) 521 Def->replaceAllUsesWith(NewValue); 522 523 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 524 R.setOperand(I, NewValue); 525 } 526 } 527 528 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 529 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 530 << " in BB:" << BB->getName() << '\n'); 531 532 State->CFG.PrevVPBB = this; 533 534 for (VPRecipeBase &Recipe : Recipes) 535 Recipe.execute(*State); 536 537 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 538 } 539 540 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 541 assert((SplitAt == end() || SplitAt->getParent() == this) && 542 "can only split at a position in the same block"); 543 544 SmallVector<VPBlockBase *, 2> Succs(successors()); 545 // Create new empty block after the block to split. 546 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 547 VPBlockUtils::insertBlockAfter(SplitBlock, this); 548 549 // Finally, move the recipes starting at SplitAt to new block. 550 for (VPRecipeBase &ToMove : 551 make_early_inc_range(make_range(SplitAt, this->end()))) 552 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 553 554 return SplitBlock; 555 } 556 557 /// Return the enclosing loop region for region \p P. The templated version is 558 /// used to support both const and non-const block arguments. 559 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { 560 if (P && P->isReplicator()) { 561 P = P->getParent(); 562 assert(!cast<VPRegionBlock>(P)->isReplicator() && 563 "unexpected nested replicate regions"); 564 } 565 return P; 566 } 567 568 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 569 return getEnclosingLoopRegionForRegion(getParent()); 570 } 571 572 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { 573 return getEnclosingLoopRegionForRegion(getParent()); 574 } 575 576 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 577 if (VPBB->empty()) { 578 assert( 579 VPBB->getNumSuccessors() < 2 && 580 "block with multiple successors doesn't have a recipe as terminator"); 581 return false; 582 } 583 584 const VPRecipeBase *R = &VPBB->back(); 585 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 586 match(R, m_BranchOnCond(m_VPValue())) || 587 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 588 (void)IsCondBranch; 589 590 if (VPBB->getNumSuccessors() >= 2 || 591 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 592 assert(IsCondBranch && "block with multiple successors not terminated by " 593 "conditional branch recipe"); 594 595 return true; 596 } 597 598 assert( 599 !IsCondBranch && 600 "block with 0 or 1 successors terminated by conditional branch recipe"); 601 return false; 602 } 603 604 VPRecipeBase *VPBasicBlock::getTerminator() { 605 if (hasConditionalTerminator(this)) 606 return &back(); 607 return nullptr; 608 } 609 610 const VPRecipeBase *VPBasicBlock::getTerminator() const { 611 if (hasConditionalTerminator(this)) 612 return &back(); 613 return nullptr; 614 } 615 616 bool VPBasicBlock::isExiting() const { 617 return getParent() && getParent()->getExitingBasicBlock() == this; 618 } 619 620 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 621 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 622 if (getSuccessors().empty()) { 623 O << Indent << "No successors\n"; 624 } else { 625 O << Indent << "Successor(s): "; 626 ListSeparator LS; 627 for (auto *Succ : getSuccessors()) 628 O << LS << Succ->getName(); 629 O << '\n'; 630 } 631 } 632 633 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 634 VPSlotTracker &SlotTracker) const { 635 O << Indent << getName() << ":\n"; 636 637 auto RecipeIndent = Indent + " "; 638 for (const VPRecipeBase &Recipe : *this) { 639 Recipe.print(O, RecipeIndent, SlotTracker); 640 O << '\n'; 641 } 642 643 printSuccessors(O, Indent); 644 } 645 #endif 646 647 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 648 649 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 650 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 651 // Remapping of operands must be done separately. Returns a pair with the new 652 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 653 // region, return nullptr for the exiting block. 654 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 655 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 656 VPBlockBase *Exiting = nullptr; 657 bool InRegion = Entry->getParent(); 658 // First, clone blocks reachable from Entry. 659 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 660 VPBlockBase *NewBB = BB->clone(); 661 Old2NewVPBlocks[BB] = NewBB; 662 if (InRegion && BB->getNumSuccessors() == 0) { 663 assert(!Exiting && "Multiple exiting blocks?"); 664 Exiting = BB; 665 } 666 } 667 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 668 669 // Second, update the predecessors & successors of the cloned blocks. 670 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 671 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 672 SmallVector<VPBlockBase *> NewPreds; 673 for (VPBlockBase *Pred : BB->getPredecessors()) { 674 NewPreds.push_back(Old2NewVPBlocks[Pred]); 675 } 676 NewBB->setPredecessors(NewPreds); 677 SmallVector<VPBlockBase *> NewSuccs; 678 for (VPBlockBase *Succ : BB->successors()) { 679 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 680 } 681 NewBB->setSuccessors(NewSuccs); 682 } 683 684 #if !defined(NDEBUG) 685 // Verify that the order of predecessors and successors matches in the cloned 686 // version. 687 for (const auto &[OldBB, NewBB] : 688 zip(vp_depth_first_shallow(Entry), 689 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 690 for (const auto &[OldPred, NewPred] : 691 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 692 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 693 694 for (const auto &[OldSucc, NewSucc] : 695 zip(OldBB->successors(), NewBB->successors())) 696 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 697 } 698 #endif 699 700 return std::make_pair(Old2NewVPBlocks[Entry], 701 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 702 } 703 704 VPRegionBlock *VPRegionBlock::clone() { 705 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 706 auto *NewRegion = 707 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 708 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 709 Block->setParent(NewRegion); 710 return NewRegion; 711 } 712 713 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 714 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 715 // Drop all references in VPBasicBlocks and replace all uses with 716 // DummyValue. 717 Block->dropAllReferences(NewValue); 718 } 719 720 void VPRegionBlock::execute(VPTransformState *State) { 721 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 722 RPOT(Entry); 723 724 if (!isReplicator()) { 725 // Create and register the new vector loop. 726 Loop *PrevLoop = State->CurrentVectorLoop; 727 State->CurrentVectorLoop = State->LI->AllocateLoop(); 728 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 729 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 730 731 // Insert the new loop into the loop nest and register the new basic blocks 732 // before calling any utilities such as SCEV that require valid LoopInfo. 733 if (ParentLoop) 734 ParentLoop->addChildLoop(State->CurrentVectorLoop); 735 else 736 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 737 738 // Visit the VPBlocks connected to "this", starting from it. 739 for (VPBlockBase *Block : RPOT) { 740 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 741 Block->execute(State); 742 } 743 744 State->CurrentVectorLoop = PrevLoop; 745 return; 746 } 747 748 assert(!State->Lane && "Replicating a Region with non-null instance."); 749 750 // Enter replicating mode. 751 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 752 State->Lane = VPLane(0); 753 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 754 ++Lane) { 755 State->Lane = VPLane(Lane, VPLane::Kind::First); 756 // Visit the VPBlocks connected to \p this, starting from it. 757 for (VPBlockBase *Block : RPOT) { 758 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 759 Block->execute(State); 760 } 761 } 762 763 // Exit replicating mode. 764 State->Lane.reset(); 765 } 766 767 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 768 InstructionCost Cost = 0; 769 for (VPRecipeBase &R : Recipes) 770 Cost += R.cost(VF, Ctx); 771 return Cost; 772 } 773 774 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 775 if (!isReplicator()) { 776 InstructionCost Cost = 0; 777 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 778 Cost += Block->cost(VF, Ctx); 779 InstructionCost BackedgeCost = 780 ForceTargetInstructionCost.getNumOccurrences() 781 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 782 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 783 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 784 << ": vector loop backedge\n"); 785 Cost += BackedgeCost; 786 return Cost; 787 } 788 789 // Compute the cost of a replicate region. Replicating isn't supported for 790 // scalable vectors, return an invalid cost for them. 791 // TODO: Discard scalable VPlans with replicate recipes earlier after 792 // construction. 793 if (VF.isScalable()) 794 return InstructionCost::getInvalid(); 795 796 // First compute the cost of the conditionally executed recipes, followed by 797 // account for the branching cost, except if the mask is a header mask or 798 // uniform condition. 799 using namespace llvm::VPlanPatternMatch; 800 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 801 InstructionCost ThenCost = Then->cost(VF, Ctx); 802 803 // For the scalar case, we may not always execute the original predicated 804 // block, Thus, scale the block's cost by the probability of executing it. 805 if (VF.isScalar()) 806 return ThenCost / getReciprocalPredBlockProb(); 807 808 return ThenCost; 809 } 810 811 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 812 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 813 VPSlotTracker &SlotTracker) const { 814 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 815 auto NewIndent = Indent + " "; 816 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 817 O << '\n'; 818 BlockBase->print(O, NewIndent, SlotTracker); 819 } 820 O << Indent << "}\n"; 821 822 printSuccessors(O, Indent); 823 } 824 #endif 825 826 VPlan::~VPlan() { 827 if (Entry) { 828 VPValue DummyValue; 829 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 830 Block->dropAllReferences(&DummyValue); 831 832 VPBlockBase::deleteCFG(Entry); 833 834 Preheader->dropAllReferences(&DummyValue); 835 delete Preheader; 836 } 837 for (VPValue *VPV : VPLiveInsToFree) 838 delete VPV; 839 if (BackedgeTakenCount) 840 delete BackedgeTakenCount; 841 } 842 843 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) { 844 auto *VPIRBB = new VPIRBasicBlock(IRBB); 845 for (Instruction &I : 846 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator())) 847 VPIRBB->appendRecipe(new VPIRInstruction(I)); 848 return VPIRBB; 849 } 850 851 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 852 PredicatedScalarEvolution &PSE, 853 bool RequiresScalarEpilogueCheck, 854 bool TailFolded, Loop *TheLoop) { 855 VPIRBasicBlock *Entry = 856 VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader()); 857 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 858 VPIRBasicBlock *ScalarHeader = 859 VPIRBasicBlock::fromBasicBlock(TheLoop->getHeader()); 860 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader, ScalarHeader); 861 862 // Create SCEV and VPValue for the trip count. 863 864 // Currently only loops with countable exits are vectorized, but calling 865 // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with 866 // uncountable exits whilst also ensuring the symbolic maximum and known 867 // back-edge taken count remain identical for loops with countable exits. 868 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount(); 869 assert((!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) && 870 BackedgeTakenCountSCEV == PSE.getBackedgeTakenCount()) && 871 "Invalid loop count"); 872 ScalarEvolution &SE = *PSE.getSE(); 873 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV, 874 InductionTy, TheLoop); 875 Plan->TripCount = 876 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 877 878 // Create VPRegionBlock, with empty header and latch blocks, to be filled 879 // during processing later. 880 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 881 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 882 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 883 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 884 false /*isReplicator*/); 885 886 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 887 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 888 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 889 890 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 891 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader); 892 if (!RequiresScalarEpilogueCheck) { 893 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 894 return Plan; 895 } 896 897 // If needed, add a check in the middle block to see if we have completed 898 // all of the iterations in the first vector loop. Three cases: 899 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 900 // Thus if tail is to be folded, we know we don't need to run the 901 // remainder and we can set the condition to true. 902 // 2) If we require a scalar epilogue, there is no conditional branch as 903 // we unconditionally branch to the scalar preheader. Do nothing. 904 // 3) Otherwise, construct a runtime check. 905 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 906 auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock); 907 // The connection order corresponds to the operands of the conditional branch. 908 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 909 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 910 911 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 912 // Here we use the same DebugLoc as the scalar loop latch terminator instead 913 // of the corresponding compare because they may have ended up with 914 // different line numbers and we want to avoid awkward line stepping while 915 // debugging. Eg. if the compare has got a line number inside the loop. 916 VPBuilder Builder(MiddleVPBB); 917 VPValue *Cmp = 918 TailFolded 919 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 920 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 921 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 922 &Plan->getVectorTripCount(), 923 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 924 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 925 ScalarLatchTerm->getDebugLoc()); 926 return Plan; 927 } 928 929 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 930 Value *CanonicalIVStartValue, 931 VPTransformState &State) { 932 Type *TCTy = TripCountV->getType(); 933 // Check if the backedge taken count is needed, and if so build it. 934 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 935 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 936 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 937 "trip.count.minus.1"); 938 BackedgeTakenCount->setUnderlyingValue(TCMO); 939 } 940 941 VectorTripCount.setUnderlyingValue(VectorTripCountV); 942 943 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 944 // FIXME: Model VF * UF computation completely in VPlan. 945 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 946 unsigned UF = getUF(); 947 if (VF.getNumUsers()) { 948 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 949 VF.setUnderlyingValue(RuntimeVF); 950 VFxUF.setUnderlyingValue( 951 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF)) 952 : RuntimeVF); 953 } else { 954 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF)); 955 } 956 957 // When vectorizing the epilogue loop, the canonical induction start value 958 // needs to be changed from zero to the value after the main vector loop. 959 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 960 if (CanonicalIVStartValue) { 961 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 962 auto *IV = getCanonicalIV(); 963 assert(all_of(IV->users(), 964 [](const VPUser *U) { 965 return isa<VPScalarIVStepsRecipe>(U) || 966 isa<VPScalarCastRecipe>(U) || 967 isa<VPDerivedIVRecipe>(U) || 968 cast<VPInstruction>(U)->getOpcode() == 969 Instruction::Add; 970 }) && 971 "the canonical IV should only be used by its increment or " 972 "ScalarIVSteps when resetting the start value"); 973 IV->setOperand(0, VPV); 974 } 975 } 976 977 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 978 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 979 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 980 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 981 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 982 VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB); 983 for (auto &R : make_early_inc_range(*VPBB)) { 984 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 985 R.moveBefore(*IRVPBB, IRVPBB->end()); 986 } 987 988 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB); 989 990 delete VPBB; 991 } 992 993 /// Generate the code inside the preheader and body of the vectorized loop. 994 /// Assumes a single pre-header basic-block was created for this. Introduce 995 /// additional basic-blocks as needed, and fill them all. 996 void VPlan::execute(VPTransformState *State) { 997 // Initialize CFG state. 998 State->CFG.PrevVPBB = nullptr; 999 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 1000 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 1001 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 1002 1003 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 1004 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 1005 State->CFG.DTU.applyUpdates( 1006 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 1007 1008 // Replace regular VPBB's for the middle and scalar preheader blocks with 1009 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 1010 // skeleton creation, so we can only create the VPIRBasicBlocks now during 1011 // VPlan execution rather than earlier during VPlan construction. 1012 BasicBlock *MiddleBB = State->CFG.ExitBB; 1013 VPBasicBlock *MiddleVPBB = getMiddleBlock(); 1014 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1015 replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh); 1016 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1017 1018 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF 1019 << ", UF=" << getUF() << '\n'); 1020 setName("Final VPlan"); 1021 LLVM_DEBUG(dump()); 1022 1023 // Disconnect the middle block from its single successor (the scalar loop 1024 // header) in both the CFG and DT. The branch will be recreated during VPlan 1025 // execution. 1026 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1027 BrInst->insertBefore(MiddleBB->getTerminator()); 1028 MiddleBB->getTerminator()->eraseFromParent(); 1029 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1030 // Disconnect scalar preheader and scalar header, as the dominator tree edge 1031 // will be updated as part of VPlan execution. This allows keeping the DTU 1032 // logic generic during VPlan execution. 1033 State->CFG.DTU.applyUpdates( 1034 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}}); 1035 1036 // Generate code in the loop pre-header and body. 1037 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1038 Block->execute(State); 1039 1040 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1041 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1042 1043 // Fix the latch value of canonical, reduction and first-order recurrences 1044 // phis in the vector loop. 1045 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1046 for (VPRecipeBase &R : Header->phis()) { 1047 // Skip phi-like recipes that generate their backedege values themselves. 1048 if (isa<VPWidenPHIRecipe>(&R)) 1049 continue; 1050 1051 if (isa<VPWidenPointerInductionRecipe>(&R) || 1052 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1053 PHINode *Phi = nullptr; 1054 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1055 Phi = cast<PHINode>(State->get(R.getVPSingleValue())); 1056 } else { 1057 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1058 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1059 "recipe generating only scalars should have been replaced"); 1060 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi)); 1061 Phi = cast<PHINode>(GEP->getPointerOperand()); 1062 } 1063 1064 Phi->setIncomingBlock(1, VectorLatchBB); 1065 1066 // Move the last step to the end of the latch block. This ensures 1067 // consistent placement of all induction updates. 1068 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1069 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1070 1071 // Use the steps for the last part as backedge value for the induction. 1072 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) 1073 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand())); 1074 continue; 1075 } 1076 1077 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1078 bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) || 1079 (isa<VPReductionPHIRecipe>(PhiR) && 1080 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1081 Value *Phi = State->get(PhiR, NeedsScalar); 1082 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar); 1083 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1084 } 1085 1086 State->CFG.DTU.flush(); 1087 assert(State->CFG.DTU.getDomTree().verify( 1088 DominatorTree::VerificationLevel::Fast) && 1089 "DT not preserved correctly"); 1090 } 1091 1092 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1093 // For now only return the cost of the vector loop region, ignoring any other 1094 // blocks, like the preheader or middle blocks. 1095 return getVectorLoopRegion()->cost(VF, Ctx); 1096 } 1097 1098 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1099 void VPlan::printLiveIns(raw_ostream &O) const { 1100 VPSlotTracker SlotTracker(this); 1101 1102 if (VF.getNumUsers() > 0) { 1103 O << "\nLive-in "; 1104 VF.printAsOperand(O, SlotTracker); 1105 O << " = VF"; 1106 } 1107 1108 if (VFxUF.getNumUsers() > 0) { 1109 O << "\nLive-in "; 1110 VFxUF.printAsOperand(O, SlotTracker); 1111 O << " = VF * UF"; 1112 } 1113 1114 if (VectorTripCount.getNumUsers() > 0) { 1115 O << "\nLive-in "; 1116 VectorTripCount.printAsOperand(O, SlotTracker); 1117 O << " = vector-trip-count"; 1118 } 1119 1120 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1121 O << "\nLive-in "; 1122 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1123 O << " = backedge-taken count"; 1124 } 1125 1126 O << "\n"; 1127 if (TripCount->isLiveIn()) 1128 O << "Live-in "; 1129 TripCount->printAsOperand(O, SlotTracker); 1130 O << " = original trip-count"; 1131 O << "\n"; 1132 } 1133 1134 LLVM_DUMP_METHOD 1135 void VPlan::print(raw_ostream &O) const { 1136 VPSlotTracker SlotTracker(this); 1137 1138 O << "VPlan '" << getName() << "' {"; 1139 1140 printLiveIns(O); 1141 1142 if (!getPreheader()->empty()) { 1143 O << "\n"; 1144 getPreheader()->print(O, "", SlotTracker); 1145 } 1146 1147 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>> 1148 RPOT(getEntry()); 1149 for (const VPBlockBase *Block : RPOT) { 1150 O << '\n'; 1151 Block->print(O, "", SlotTracker); 1152 } 1153 1154 O << "}\n"; 1155 } 1156 1157 std::string VPlan::getName() const { 1158 std::string Out; 1159 raw_string_ostream RSO(Out); 1160 RSO << Name << " for "; 1161 if (!VFs.empty()) { 1162 RSO << "VF={" << VFs[0]; 1163 for (ElementCount VF : drop_begin(VFs)) 1164 RSO << "," << VF; 1165 RSO << "},"; 1166 } 1167 1168 if (UFs.empty()) { 1169 RSO << "UF>=1"; 1170 } else { 1171 RSO << "UF={" << UFs[0]; 1172 for (unsigned UF : drop_begin(UFs)) 1173 RSO << "," << UF; 1174 RSO << "}"; 1175 } 1176 1177 return Out; 1178 } 1179 1180 LLVM_DUMP_METHOD 1181 void VPlan::printDOT(raw_ostream &O) const { 1182 VPlanPrinter Printer(O, *this); 1183 Printer.dump(); 1184 } 1185 1186 LLVM_DUMP_METHOD 1187 void VPlan::dump() const { print(dbgs()); } 1188 #endif 1189 1190 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1191 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1192 // Update the operands of all cloned recipes starting at NewEntry. This 1193 // traverses all reachable blocks. This is done in two steps, to handle cycles 1194 // in PHI recipes. 1195 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1196 OldDeepRPOT(Entry); 1197 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1198 NewDeepRPOT(NewEntry); 1199 // First, collect all mappings from old to new VPValues defined by cloned 1200 // recipes. 1201 for (const auto &[OldBB, NewBB] : 1202 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1203 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1204 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1205 "blocks must have the same number of recipes"); 1206 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1207 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1208 "recipes must have the same number of operands"); 1209 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1210 "recipes must define the same number of operands"); 1211 for (const auto &[OldV, NewV] : 1212 zip(OldR.definedValues(), NewR.definedValues())) 1213 Old2NewVPValues[OldV] = NewV; 1214 } 1215 } 1216 1217 // Update all operands to use cloned VPValues. 1218 for (VPBasicBlock *NewBB : 1219 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1220 for (VPRecipeBase &NewR : *NewBB) 1221 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1222 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1223 NewR.setOperand(I, NewOp); 1224 } 1225 } 1226 } 1227 1228 VPlan *VPlan::duplicate() { 1229 // Clone blocks. 1230 VPBasicBlock *NewPreheader = Preheader->clone(); 1231 const auto &[NewEntry, __] = cloneFrom(Entry); 1232 1233 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock(); 1234 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if( 1235 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) { 1236 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB); 1237 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB; 1238 })); 1239 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1240 auto *NewPlan = 1241 new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry), NewScalarHeader); 1242 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1243 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1244 Old2NewVPValues[OldLiveIn] = 1245 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1246 } 1247 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1248 Old2NewVPValues[&VF] = &NewPlan->VF; 1249 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1250 if (BackedgeTakenCount) { 1251 NewPlan->BackedgeTakenCount = new VPValue(); 1252 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1253 } 1254 assert(TripCount && "trip count must be set"); 1255 if (TripCount->isLiveIn()) 1256 Old2NewVPValues[TripCount] = 1257 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1258 // else NewTripCount will be created and inserted into Old2NewVPValues when 1259 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1260 1261 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1262 remapOperands(Entry, NewEntry, Old2NewVPValues); 1263 1264 // Initialize remaining fields of cloned VPlan. 1265 NewPlan->VFs = VFs; 1266 NewPlan->UFs = UFs; 1267 // TODO: Adjust names. 1268 NewPlan->Name = Name; 1269 assert(Old2NewVPValues.contains(TripCount) && 1270 "TripCount must have been added to Old2NewVPValues"); 1271 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1272 return NewPlan; 1273 } 1274 1275 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1276 1277 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1278 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1279 Twine(getOrCreateBID(Block)); 1280 } 1281 1282 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1283 const std::string &Name = Block->getName(); 1284 if (!Name.empty()) 1285 return Name; 1286 return "VPB" + Twine(getOrCreateBID(Block)); 1287 } 1288 1289 void VPlanPrinter::dump() { 1290 Depth = 1; 1291 bumpIndent(0); 1292 OS << "digraph VPlan {\n"; 1293 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1294 if (!Plan.getName().empty()) 1295 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1296 1297 { 1298 // Print live-ins. 1299 std::string Str; 1300 raw_string_ostream SS(Str); 1301 Plan.printLiveIns(SS); 1302 SmallVector<StringRef, 0> Lines; 1303 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1304 for (auto Line : Lines) 1305 OS << DOT::EscapeString(Line.str()) << "\\n"; 1306 } 1307 1308 OS << "\"]\n"; 1309 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1310 OS << "edge [fontname=Courier, fontsize=30]\n"; 1311 OS << "compound=true\n"; 1312 1313 dumpBlock(Plan.getPreheader()); 1314 1315 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1316 dumpBlock(Block); 1317 1318 OS << "}\n"; 1319 } 1320 1321 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1322 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1323 dumpBasicBlock(BasicBlock); 1324 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1325 dumpRegion(Region); 1326 else 1327 llvm_unreachable("Unsupported kind of VPBlock."); 1328 } 1329 1330 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1331 bool Hidden, const Twine &Label) { 1332 // Due to "dot" we print an edge between two regions as an edge between the 1333 // exiting basic block and the entry basic of the respective regions. 1334 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1335 const VPBlockBase *Head = To->getEntryBasicBlock(); 1336 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1337 OS << " [ label=\"" << Label << '\"'; 1338 if (Tail != From) 1339 OS << " ltail=" << getUID(From); 1340 if (Head != To) 1341 OS << " lhead=" << getUID(To); 1342 if (Hidden) 1343 OS << "; splines=none"; 1344 OS << "]\n"; 1345 } 1346 1347 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1348 auto &Successors = Block->getSuccessors(); 1349 if (Successors.size() == 1) 1350 drawEdge(Block, Successors.front(), false, ""); 1351 else if (Successors.size() == 2) { 1352 drawEdge(Block, Successors.front(), false, "T"); 1353 drawEdge(Block, Successors.back(), false, "F"); 1354 } else { 1355 unsigned SuccessorNumber = 0; 1356 for (auto *Successor : Successors) 1357 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1358 } 1359 } 1360 1361 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1362 // Implement dot-formatted dump by performing plain-text dump into the 1363 // temporary storage followed by some post-processing. 1364 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1365 bumpIndent(1); 1366 std::string Str; 1367 raw_string_ostream SS(Str); 1368 // Use no indentation as we need to wrap the lines into quotes ourselves. 1369 BasicBlock->print(SS, "", SlotTracker); 1370 1371 // We need to process each line of the output separately, so split 1372 // single-string plain-text dump. 1373 SmallVector<StringRef, 0> Lines; 1374 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1375 1376 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1377 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1378 }; 1379 1380 // Don't need the "+" after the last line. 1381 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1382 EmitLine(Line, " +\n"); 1383 EmitLine(Lines.back(), "\n"); 1384 1385 bumpIndent(-1); 1386 OS << Indent << "]\n"; 1387 1388 dumpEdges(BasicBlock); 1389 } 1390 1391 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1392 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1393 bumpIndent(1); 1394 OS << Indent << "fontname=Courier\n" 1395 << Indent << "label=\"" 1396 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1397 << DOT::EscapeString(Region->getName()) << "\"\n"; 1398 // Dump the blocks of the region. 1399 assert(Region->getEntry() && "Region contains no inner blocks."); 1400 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1401 dumpBlock(Block); 1402 bumpIndent(-1); 1403 OS << Indent << "}\n"; 1404 dumpEdges(Region); 1405 } 1406 1407 void VPlanIngredient::print(raw_ostream &O) const { 1408 if (auto *Inst = dyn_cast<Instruction>(V)) { 1409 if (!Inst->getType()->isVoidTy()) { 1410 Inst->printAsOperand(O, false); 1411 O << " = "; 1412 } 1413 O << Inst->getOpcodeName() << " "; 1414 unsigned E = Inst->getNumOperands(); 1415 if (E > 0) { 1416 Inst->getOperand(0)->printAsOperand(O, false); 1417 for (unsigned I = 1; I < E; ++I) 1418 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1419 } 1420 } else // !Inst 1421 V->printAsOperand(O, false); 1422 } 1423 1424 #endif 1425 1426 bool VPValue::isDefinedOutsideLoopRegions() const { 1427 return !hasDefiningRecipe() || 1428 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion(); 1429 } 1430 1431 void VPValue::replaceAllUsesWith(VPValue *New) { 1432 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1433 } 1434 1435 void VPValue::replaceUsesWithIf( 1436 VPValue *New, 1437 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1438 // Note that this early exit is required for correctness; the implementation 1439 // below relies on the number of users for this VPValue to decrease, which 1440 // isn't the case if this == New. 1441 if (this == New) 1442 return; 1443 1444 for (unsigned J = 0; J < getNumUsers();) { 1445 VPUser *User = Users[J]; 1446 bool RemovedUser = false; 1447 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1448 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1449 continue; 1450 1451 RemovedUser = true; 1452 User->setOperand(I, New); 1453 } 1454 // If a user got removed after updating the current user, the next user to 1455 // update will be moved to the current position, so we only need to 1456 // increment the index if the number of users did not change. 1457 if (!RemovedUser) 1458 J++; 1459 } 1460 } 1461 1462 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1463 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1464 OS << Tracker.getOrCreateName(this); 1465 } 1466 1467 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1468 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1469 Op->printAsOperand(O, SlotTracker); 1470 }); 1471 } 1472 #endif 1473 1474 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1475 Old2NewTy &Old2New, 1476 InterleavedAccessInfo &IAI) { 1477 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1478 RPOT(Region->getEntry()); 1479 for (VPBlockBase *Base : RPOT) { 1480 visitBlock(Base, Old2New, IAI); 1481 } 1482 } 1483 1484 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1485 InterleavedAccessInfo &IAI) { 1486 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1487 for (VPRecipeBase &VPI : *VPBB) { 1488 if (isa<VPWidenPHIRecipe>(&VPI)) 1489 continue; 1490 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1491 auto *VPInst = cast<VPInstruction>(&VPI); 1492 1493 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1494 if (!Inst) 1495 continue; 1496 auto *IG = IAI.getInterleaveGroup(Inst); 1497 if (!IG) 1498 continue; 1499 1500 auto NewIGIter = Old2New.find(IG); 1501 if (NewIGIter == Old2New.end()) 1502 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1503 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1504 1505 if (Inst == IG->getInsertPos()) 1506 Old2New[IG]->setInsertPos(VPInst); 1507 1508 InterleaveGroupMap[VPInst] = Old2New[IG]; 1509 InterleaveGroupMap[VPInst]->insertMember( 1510 VPInst, IG->getIndex(Inst), 1511 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1512 : IG->getFactor())); 1513 } 1514 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1515 visitRegion(Region, Old2New, IAI); 1516 else 1517 llvm_unreachable("Unsupported kind of VPBlock."); 1518 } 1519 1520 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1521 InterleavedAccessInfo &IAI) { 1522 Old2NewTy Old2New; 1523 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1524 } 1525 1526 void VPSlotTracker::assignName(const VPValue *V) { 1527 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1528 auto *UV = V->getUnderlyingValue(); 1529 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe()); 1530 if (!UV && !(VPI && !VPI->getName().empty())) { 1531 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1532 NextSlot++; 1533 return; 1534 } 1535 1536 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1537 // appending ".Number" to the name if there are multiple uses. 1538 std::string Name; 1539 if (UV) { 1540 raw_string_ostream S(Name); 1541 UV->printAsOperand(S, false); 1542 } else 1543 Name = VPI->getName(); 1544 1545 assert(!Name.empty() && "Name cannot be empty."); 1546 StringRef Prefix = UV ? "ir<" : "vp<%"; 1547 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str(); 1548 1549 // First assign the base name for V. 1550 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1551 // Integer or FP constants with different types will result in he same string 1552 // due to stripping types. 1553 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1554 return; 1555 1556 // If it is already used by C > 0 other VPValues, increase the version counter 1557 // C and use it for V. 1558 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1559 if (!UseInserted) { 1560 C->second++; 1561 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1562 } 1563 } 1564 1565 void VPSlotTracker::assignNames(const VPlan &Plan) { 1566 if (Plan.VF.getNumUsers() > 0) 1567 assignName(&Plan.VF); 1568 if (Plan.VFxUF.getNumUsers() > 0) 1569 assignName(&Plan.VFxUF); 1570 assignName(&Plan.VectorTripCount); 1571 if (Plan.BackedgeTakenCount) 1572 assignName(Plan.BackedgeTakenCount); 1573 for (VPValue *LI : Plan.VPLiveInsToFree) 1574 assignName(LI); 1575 assignNames(Plan.getPreheader()); 1576 1577 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1578 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1579 for (const VPBasicBlock *VPBB : 1580 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1581 assignNames(VPBB); 1582 } 1583 1584 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1585 for (const VPRecipeBase &Recipe : *VPBB) 1586 for (VPValue *Def : Recipe.definedValues()) 1587 assignName(Def); 1588 } 1589 1590 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1591 std::string Name = VPValue2Name.lookup(V); 1592 if (!Name.empty()) 1593 return Name; 1594 1595 // If no name was assigned, no VPlan was provided when creating the slot 1596 // tracker or it is not reachable from the provided VPlan. This can happen, 1597 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1598 // in a debugger. 1599 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1600 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1601 // here. 1602 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1603 (void)DefR; 1604 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1605 "VPValue defined by a recipe in a VPlan?"); 1606 1607 // Use the underlying value's name, if there is one. 1608 if (auto *UV = V->getUnderlyingValue()) { 1609 std::string Name; 1610 raw_string_ostream S(Name); 1611 UV->printAsOperand(S, false); 1612 return (Twine("ir<") + Name + ">").str(); 1613 } 1614 1615 return "<badref>"; 1616 } 1617 1618 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1619 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1620 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1621 bool PredicateAtRangeStart = Predicate(Range.Start); 1622 1623 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1624 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1625 Range.End = TmpVF; 1626 break; 1627 } 1628 1629 return PredicateAtRangeStart; 1630 } 1631 1632 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1633 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1634 /// of VF's starting at a given VF and extending it as much as possible. Each 1635 /// vectorization decision can potentially shorten this sub-range during 1636 /// buildVPlan(). 1637 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1638 ElementCount MaxVF) { 1639 auto MaxVFTimes2 = MaxVF * 2; 1640 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1641 VFRange SubRange = {VF, MaxVFTimes2}; 1642 auto Plan = buildVPlan(SubRange); 1643 VPlanTransforms::optimize(*Plan); 1644 VPlans.push_back(std::move(Plan)); 1645 VF = SubRange.End; 1646 } 1647 } 1648 1649 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1650 assert(count_if(VPlans, 1651 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1652 1 && 1653 "Multiple VPlans for VF."); 1654 1655 for (const VPlanPtr &Plan : VPlans) { 1656 if (Plan->hasVF(VF)) 1657 return *Plan.get(); 1658 } 1659 llvm_unreachable("No plan found!"); 1660 } 1661 1662 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1663 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1664 if (VPlans.empty()) { 1665 O << "LV: No VPlans built.\n"; 1666 return; 1667 } 1668 for (const auto &Plan : VPlans) 1669 if (PrintVPlansInDotFormat) 1670 Plan->printDOT(O); 1671 else 1672 Plan->print(O); 1673 } 1674 #endif 1675 1676 TargetTransformInfo::OperandValueInfo 1677 VPCostContext::getOperandInfo(VPValue *V) const { 1678 if (!V->isLiveIn()) 1679 return {}; 1680 1681 return TTI::getOperandInfo(V->getLiveInIRValue()); 1682 } 1683