1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/LoopVersioning.h" 42 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 43 #include <cassert> 44 #include <string> 45 #include <vector> 46 47 using namespace llvm; 48 extern cl::opt<bool> EnableVPlanNativePath; 49 50 #define DEBUG_TYPE "vplan" 51 52 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 #endif 61 62 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 63 const ElementCount &VF) const { 64 switch (LaneKind) { 65 case VPLane::Kind::ScalableLast: 66 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 67 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 68 Builder.getInt32(VF.getKnownMinValue() - Lane)); 69 case VPLane::Kind::First: 70 return Builder.getInt32(Lane); 71 } 72 llvm_unreachable("Unknown lane kind"); 73 } 74 75 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 76 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 77 if (Def) 78 Def->addDefinedValue(this); 79 } 80 81 VPValue::~VPValue() { 82 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 83 if (Def) 84 Def->removeDefinedValue(this); 85 } 86 87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 88 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 89 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 90 R->print(OS, "", SlotTracker); 91 else 92 printAsOperand(OS, SlotTracker); 93 } 94 95 void VPValue::dump() const { 96 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 97 VPSlotTracker SlotTracker( 98 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 99 print(dbgs(), SlotTracker); 100 dbgs() << "\n"; 101 } 102 103 void VPDef::dump() const { 104 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 105 VPSlotTracker SlotTracker( 106 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 107 print(dbgs(), "", SlotTracker); 108 dbgs() << "\n"; 109 } 110 #endif 111 112 // Get the top-most entry block of \p Start. This is the entry block of the 113 // containing VPlan. This function is templated to support both const and non-const blocks 114 template <typename T> static T *getPlanEntry(T *Start) { 115 T *Next = Start; 116 T *Current = Start; 117 while ((Next = Next->getParent())) 118 Current = Next; 119 120 SmallSetVector<T *, 8> WorkList; 121 WorkList.insert(Current); 122 123 for (unsigned i = 0; i < WorkList.size(); i++) { 124 T *Current = WorkList[i]; 125 if (Current->getNumPredecessors() == 0) 126 return Current; 127 auto &Predecessors = Current->getPredecessors(); 128 WorkList.insert(Predecessors.begin(), Predecessors.end()); 129 } 130 131 llvm_unreachable("VPlan without any entry node without predecessors"); 132 } 133 134 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 135 136 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 137 138 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 139 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 140 const VPBlockBase *Block = this; 141 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 142 Block = Region->getEntry(); 143 return cast<VPBasicBlock>(Block); 144 } 145 146 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 147 VPBlockBase *Block = this; 148 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 149 Block = Region->getEntry(); 150 return cast<VPBasicBlock>(Block); 151 } 152 153 void VPBlockBase::setPlan(VPlan *ParentPlan) { 154 assert(ParentPlan->getEntry() == this && 155 "Can only set plan on its entry block."); 156 Plan = ParentPlan; 157 } 158 159 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 160 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 161 const VPBlockBase *Block = this; 162 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 163 Block = Region->getExiting(); 164 return cast<VPBasicBlock>(Block); 165 } 166 167 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 168 VPBlockBase *Block = this; 169 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 170 Block = Region->getExiting(); 171 return cast<VPBasicBlock>(Block); 172 } 173 174 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 175 if (!Successors.empty() || !Parent) 176 return this; 177 assert(Parent->getExiting() == this && 178 "Block w/o successors not the exiting block of its parent."); 179 return Parent->getEnclosingBlockWithSuccessors(); 180 } 181 182 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 183 if (!Predecessors.empty() || !Parent) 184 return this; 185 assert(Parent->getEntry() == this && 186 "Block w/o predecessors not the entry of its parent."); 187 return Parent->getEnclosingBlockWithPredecessors(); 188 } 189 190 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 191 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 192 193 for (VPBlockBase *Block : Blocks) 194 delete Block; 195 } 196 197 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 198 iterator It = begin(); 199 while (It != end() && It->isPhi()) 200 It++; 201 return It; 202 } 203 204 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 205 if (!Def->getDef()) 206 return Def->getLiveInIRValue(); 207 208 if (hasScalarValue(Def, Instance)) { 209 return Data 210 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 211 } 212 213 assert(hasVectorValue(Def, Instance.Part)); 214 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 215 if (!VecPart->getType()->isVectorTy()) { 216 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 217 return VecPart; 218 } 219 // TODO: Cache created scalar values. 220 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 221 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 222 // set(Def, Extract, Instance); 223 return Extract; 224 } 225 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 226 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 227 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 228 } 229 230 void VPTransformState::addNewMetadata(Instruction *To, 231 const Instruction *Orig) { 232 // If the loop was versioned with memchecks, add the corresponding no-alias 233 // metadata. 234 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 235 LVer->annotateInstWithNoAlias(To, Orig); 236 } 237 238 void VPTransformState::addMetadata(Instruction *To, Instruction *From) { 239 propagateMetadata(To, From); 240 addNewMetadata(To, From); 241 } 242 243 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) { 244 for (Value *V : To) { 245 if (Instruction *I = dyn_cast<Instruction>(V)) 246 addMetadata(I, From); 247 } 248 } 249 250 BasicBlock * 251 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 252 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 253 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 254 BasicBlock *PrevBB = CFG.PrevBB; 255 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 256 PrevBB->getParent(), CFG.ExitBB); 257 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 258 259 // Hook up the new basic block to its predecessors. 260 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 261 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 262 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 263 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 264 265 assert(PredBB && "Predecessor basic-block not found building successor."); 266 auto *PredBBTerminator = PredBB->getTerminator(); 267 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 268 269 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 270 if (isa<UnreachableInst>(PredBBTerminator)) { 271 assert(PredVPSuccessors.size() == 1 && 272 "Predecessor ending w/o branch must have single successor."); 273 DebugLoc DL = PredBBTerminator->getDebugLoc(); 274 PredBBTerminator->eraseFromParent(); 275 auto *Br = BranchInst::Create(NewBB, PredBB); 276 Br->setDebugLoc(DL); 277 } else if (TermBr && !TermBr->isConditional()) { 278 TermBr->setSuccessor(0, NewBB); 279 } else { 280 // Set each forward successor here when it is created, excluding 281 // backedges. A backward successor is set when the branch is created. 282 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 283 assert(!TermBr->getSuccessor(idx) && 284 "Trying to reset an existing successor block."); 285 TermBr->setSuccessor(idx, NewBB); 286 } 287 } 288 return NewBB; 289 } 290 291 void VPBasicBlock::execute(VPTransformState *State) { 292 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 293 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 294 VPBlockBase *SingleHPred = nullptr; 295 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 296 297 auto IsLoopRegion = [](VPBlockBase *BB) { 298 auto *R = dyn_cast<VPRegionBlock>(BB); 299 return R && !R->isReplicator(); 300 }; 301 302 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 303 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 304 // ExitBB can be re-used for the exit block of the Plan. 305 NewBB = State->CFG.ExitBB; 306 State->CFG.PrevBB = NewBB; 307 308 // Update the branch instruction in the predecessor to branch to ExitBB. 309 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 310 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 311 assert(PredVPB->getSingleSuccessor() == this && 312 "predecessor must have the current block as only successor"); 313 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 314 // The Exit block of a loop is always set to be successor 0 of the Exiting 315 // block. 316 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 317 } else if (PrevVPBB && /* A */ 318 !((SingleHPred = getSingleHierarchicalPredecessor()) && 319 SingleHPred->getExitingBasicBlock() == PrevVPBB && 320 PrevVPBB->getSingleHierarchicalSuccessor() && 321 (SingleHPred->getParent() == getEnclosingLoopRegion() && 322 !IsLoopRegion(SingleHPred))) && /* B */ 323 !(Replica && getPredecessors().empty())) { /* C */ 324 // The last IR basic block is reused, as an optimization, in three cases: 325 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 326 // B. when the current VPBB has a single (hierarchical) predecessor which 327 // is PrevVPBB and the latter has a single (hierarchical) successor which 328 // both are in the same non-replicator region; and 329 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 330 // is the exiting VPBB of this region from a previous instance, or the 331 // predecessor of this region. 332 333 NewBB = createEmptyBasicBlock(State->CFG); 334 State->Builder.SetInsertPoint(NewBB); 335 // Temporarily terminate with unreachable until CFG is rewired. 336 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 337 // Register NewBB in its loop. In innermost loops its the same for all 338 // BB's. 339 if (State->CurrentVectorLoop) 340 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 341 State->Builder.SetInsertPoint(Terminator); 342 State->CFG.PrevBB = NewBB; 343 } 344 345 // 2. Fill the IR basic block with IR instructions. 346 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 347 << " in BB:" << NewBB->getName() << '\n'); 348 349 State->CFG.VPBB2IRBB[this] = NewBB; 350 State->CFG.PrevVPBB = this; 351 352 for (VPRecipeBase &Recipe : Recipes) 353 Recipe.execute(*State); 354 355 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 356 } 357 358 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 359 for (VPRecipeBase &R : Recipes) { 360 for (auto *Def : R.definedValues()) 361 Def->replaceAllUsesWith(NewValue); 362 363 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 364 R.setOperand(I, NewValue); 365 } 366 } 367 368 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 369 assert((SplitAt == end() || SplitAt->getParent() == this) && 370 "can only split at a position in the same block"); 371 372 SmallVector<VPBlockBase *, 2> Succs(successors()); 373 // First, disconnect the current block from its successors. 374 for (VPBlockBase *Succ : Succs) 375 VPBlockUtils::disconnectBlocks(this, Succ); 376 377 // Create new empty block after the block to split. 378 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 379 VPBlockUtils::insertBlockAfter(SplitBlock, this); 380 381 // Add successors for block to split to new block. 382 for (VPBlockBase *Succ : Succs) 383 VPBlockUtils::connectBlocks(SplitBlock, Succ); 384 385 // Finally, move the recipes starting at SplitAt to new block. 386 for (VPRecipeBase &ToMove : 387 make_early_inc_range(make_range(SplitAt, this->end()))) 388 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 389 390 return SplitBlock; 391 } 392 393 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 394 VPRegionBlock *P = getParent(); 395 if (P && P->isReplicator()) { 396 P = P->getParent(); 397 assert(!cast<VPRegionBlock>(P)->isReplicator() && 398 "unexpected nested replicate regions"); 399 } 400 return P; 401 } 402 403 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 404 if (VPBB->empty()) { 405 assert( 406 VPBB->getNumSuccessors() < 2 && 407 "block with multiple successors doesn't have a recipe as terminator"); 408 return false; 409 } 410 411 const VPRecipeBase *R = &VPBB->back(); 412 auto *VPI = dyn_cast<VPInstruction>(R); 413 bool IsCondBranch = 414 isa<VPBranchOnMaskRecipe>(R) || 415 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 416 VPI->getOpcode() == VPInstruction::BranchOnCount)); 417 (void)IsCondBranch; 418 419 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 420 assert(IsCondBranch && "block with multiple successors not terminated by " 421 "conditional branch recipe"); 422 423 return true; 424 } 425 426 assert( 427 !IsCondBranch && 428 "block with 0 or 1 successors terminated by conditional branch recipe"); 429 return false; 430 } 431 432 VPRecipeBase *VPBasicBlock::getTerminator() { 433 if (hasConditionalTerminator(this)) 434 return &back(); 435 return nullptr; 436 } 437 438 const VPRecipeBase *VPBasicBlock::getTerminator() const { 439 if (hasConditionalTerminator(this)) 440 return &back(); 441 return nullptr; 442 } 443 444 bool VPBasicBlock::isExiting() const { 445 return getParent()->getExitingBasicBlock() == this; 446 } 447 448 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 449 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 450 if (getSuccessors().empty()) { 451 O << Indent << "No successors\n"; 452 } else { 453 O << Indent << "Successor(s): "; 454 ListSeparator LS; 455 for (auto *Succ : getSuccessors()) 456 O << LS << Succ->getName(); 457 O << '\n'; 458 } 459 } 460 461 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 462 VPSlotTracker &SlotTracker) const { 463 O << Indent << getName() << ":\n"; 464 465 auto RecipeIndent = Indent + " "; 466 for (const VPRecipeBase &Recipe : *this) { 467 Recipe.print(O, RecipeIndent, SlotTracker); 468 O << '\n'; 469 } 470 471 printSuccessors(O, Indent); 472 } 473 #endif 474 475 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 476 for (VPBlockBase *Block : depth_first(Entry)) 477 // Drop all references in VPBasicBlocks and replace all uses with 478 // DummyValue. 479 Block->dropAllReferences(NewValue); 480 } 481 482 void VPRegionBlock::execute(VPTransformState *State) { 483 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 484 485 if (!isReplicator()) { 486 // Create and register the new vector loop. 487 Loop *PrevLoop = State->CurrentVectorLoop; 488 State->CurrentVectorLoop = State->LI->AllocateLoop(); 489 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 490 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 491 492 // Insert the new loop into the loop nest and register the new basic blocks 493 // before calling any utilities such as SCEV that require valid LoopInfo. 494 if (ParentLoop) 495 ParentLoop->addChildLoop(State->CurrentVectorLoop); 496 else 497 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 498 499 // Visit the VPBlocks connected to "this", starting from it. 500 for (VPBlockBase *Block : RPOT) { 501 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 502 Block->execute(State); 503 } 504 505 State->CurrentVectorLoop = PrevLoop; 506 return; 507 } 508 509 assert(!State->Instance && "Replicating a Region with non-null instance."); 510 511 // Enter replicating mode. 512 State->Instance = VPIteration(0, 0); 513 514 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 515 State->Instance->Part = Part; 516 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 517 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 518 ++Lane) { 519 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 520 // Visit the VPBlocks connected to \p this, starting from it. 521 for (VPBlockBase *Block : RPOT) { 522 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 523 Block->execute(State); 524 } 525 } 526 } 527 528 // Exit replicating mode. 529 State->Instance.reset(); 530 } 531 532 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 533 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 534 VPSlotTracker &SlotTracker) const { 535 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 536 auto NewIndent = Indent + " "; 537 for (auto *BlockBase : depth_first(Entry)) { 538 O << '\n'; 539 BlockBase->print(O, NewIndent, SlotTracker); 540 } 541 O << Indent << "}\n"; 542 543 printSuccessors(O, Indent); 544 } 545 #endif 546 547 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 548 Value *CanonicalIVStartValue, 549 VPTransformState &State, 550 bool IsEpilogueVectorization) { 551 552 VPBasicBlock *ExitingVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 553 auto *Term = dyn_cast<VPInstruction>(&ExitingVPBB->back()); 554 // Try to simplify BranchOnCount to 'BranchOnCond true' if TC <= VF * UF when 555 // preparing to execute the plan for the main vector loop. 556 if (!IsEpilogueVectorization && Term && 557 Term->getOpcode() == VPInstruction::BranchOnCount && 558 isa<ConstantInt>(TripCountV)) { 559 ConstantInt *C = cast<ConstantInt>(TripCountV); 560 uint64_t TCVal = C->getZExtValue(); 561 if (TCVal && TCVal <= State.VF.getKnownMinValue() * State.UF) { 562 auto *BOC = 563 new VPInstruction(VPInstruction::BranchOnCond, 564 {getOrAddExternalDef(State.Builder.getTrue())}); 565 Term->eraseFromParent(); 566 ExitingVPBB->appendRecipe(BOC); 567 // TODO: Further simplifications are possible 568 // 1. Replace inductions with constants. 569 // 2. Replace vector loop region with VPBasicBlock. 570 } 571 } 572 573 // Check if the trip count is needed, and if so build it. 574 if (TripCount && TripCount->getNumUsers()) { 575 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 576 State.set(TripCount, TripCountV, Part); 577 } 578 579 // Check if the backedge taken count is needed, and if so build it. 580 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 581 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 582 auto *TCMO = Builder.CreateSub(TripCountV, 583 ConstantInt::get(TripCountV->getType(), 1), 584 "trip.count.minus.1"); 585 auto VF = State.VF; 586 Value *VTCMO = 587 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 588 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 589 State.set(BackedgeTakenCount, VTCMO, Part); 590 } 591 592 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 593 State.set(&VectorTripCount, VectorTripCountV, Part); 594 595 // When vectorizing the epilogue loop, the canonical induction start value 596 // needs to be changed from zero to the value after the main vector loop. 597 if (CanonicalIVStartValue) { 598 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 599 auto *IV = getCanonicalIV(); 600 assert(all_of(IV->users(), 601 [](const VPUser *U) { 602 if (isa<VPScalarIVStepsRecipe>(U)) 603 return true; 604 auto *VPI = cast<VPInstruction>(U); 605 return VPI->getOpcode() == 606 VPInstruction::CanonicalIVIncrement || 607 VPI->getOpcode() == 608 VPInstruction::CanonicalIVIncrementNUW; 609 }) && 610 "the canonical IV should only be used by its increments or " 611 "ScalarIVSteps when " 612 "resetting the start value"); 613 IV->setOperand(0, VPV); 614 } 615 } 616 617 /// Generate the code inside the preheader and body of the vectorized loop. 618 /// Assumes a single pre-header basic-block was created for this. Introduce 619 /// additional basic-blocks as needed, and fill them all. 620 void VPlan::execute(VPTransformState *State) { 621 // Set the reverse mapping from VPValues to Values for code generation. 622 for (auto &Entry : Value2VPValue) 623 State->VPValue2Value[Entry.second] = Entry.first; 624 625 // Initialize CFG state. 626 State->CFG.PrevVPBB = nullptr; 627 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 628 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 629 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 630 631 // Generate code in the loop pre-header and body. 632 for (VPBlockBase *Block : depth_first(Entry)) 633 Block->execute(State); 634 635 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 636 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 637 638 // Fix the latch value of canonical, reduction and first-order recurrences 639 // phis in the vector loop. 640 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 641 for (VPRecipeBase &R : Header->phis()) { 642 // Skip phi-like recipes that generate their backedege values themselves. 643 if (isa<VPWidenPHIRecipe>(&R)) 644 continue; 645 646 if (isa<VPWidenPointerInductionRecipe>(&R) || 647 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 648 PHINode *Phi = nullptr; 649 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 650 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 651 } else { 652 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 653 // TODO: Split off the case that all users of a pointer phi are scalar 654 // from the VPWidenPointerInductionRecipe. 655 if (WidenPhi->onlyScalarsGenerated(State->VF)) 656 continue; 657 658 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 659 Phi = cast<PHINode>(GEP->getPointerOperand()); 660 } 661 662 Phi->setIncomingBlock(1, VectorLatchBB); 663 664 // Move the last step to the end of the latch block. This ensures 665 // consistent placement of all induction updates. 666 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 667 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 668 continue; 669 } 670 671 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 672 // For canonical IV, first-order recurrences and in-order reduction phis, 673 // only a single part is generated, which provides the last part from the 674 // previous iteration. For non-ordered reductions all UF parts are 675 // generated. 676 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 677 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 678 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 679 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 680 681 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 682 Value *Phi = State->get(PhiR, Part); 683 Value *Val = State->get(PhiR->getBackedgeValue(), 684 SinglePartNeeded ? State->UF - 1 : Part); 685 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 686 } 687 } 688 689 // We do not attempt to preserve DT for outer loop vectorization currently. 690 if (!EnableVPlanNativePath) { 691 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 692 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 693 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 694 State->CFG.ExitBB); 695 } 696 } 697 698 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 699 LLVM_DUMP_METHOD 700 void VPlan::print(raw_ostream &O) const { 701 VPSlotTracker SlotTracker(this); 702 703 O << "VPlan '" << Name << "' {"; 704 705 if (VectorTripCount.getNumUsers() > 0) { 706 O << "\nLive-in "; 707 VectorTripCount.printAsOperand(O, SlotTracker); 708 O << " = vector-trip-count\n"; 709 } 710 711 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 712 O << "\nLive-in "; 713 BackedgeTakenCount->printAsOperand(O, SlotTracker); 714 O << " = backedge-taken count\n"; 715 } 716 717 for (const VPBlockBase *Block : depth_first(getEntry())) { 718 O << '\n'; 719 Block->print(O, "", SlotTracker); 720 } 721 722 if (!LiveOuts.empty()) 723 O << "\n"; 724 for (auto &KV : LiveOuts) { 725 O << "Live-out "; 726 KV.second->getPhi()->printAsOperand(O); 727 O << " = "; 728 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 729 O << "\n"; 730 } 731 732 O << "}\n"; 733 } 734 735 LLVM_DUMP_METHOD 736 void VPlan::printDOT(raw_ostream &O) const { 737 VPlanPrinter Printer(O, *this); 738 Printer.dump(); 739 } 740 741 LLVM_DUMP_METHOD 742 void VPlan::dump() const { print(dbgs()); } 743 #endif 744 745 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 746 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 747 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 748 } 749 750 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 751 BasicBlock *LoopLatchBB, 752 BasicBlock *LoopExitBB) { 753 // The vector body may be more than a single basic-block by this point. 754 // Update the dominator tree information inside the vector body by propagating 755 // it from header to latch, expecting only triangular control-flow, if any. 756 BasicBlock *PostDomSucc = nullptr; 757 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 758 // Get the list of successors of this block. 759 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 760 assert(Succs.size() <= 2 && 761 "Basic block in vector loop has more than 2 successors."); 762 PostDomSucc = Succs[0]; 763 if (Succs.size() == 1) { 764 assert(PostDomSucc->getSinglePredecessor() && 765 "PostDom successor has more than one predecessor."); 766 DT->addNewBlock(PostDomSucc, BB); 767 continue; 768 } 769 BasicBlock *InterimSucc = Succs[1]; 770 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 771 PostDomSucc = Succs[1]; 772 InterimSucc = Succs[0]; 773 } 774 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 775 "One successor of a basic block does not lead to the other."); 776 assert(InterimSucc->getSinglePredecessor() && 777 "Interim successor has more than one predecessor."); 778 assert(PostDomSucc->hasNPredecessors(2) && 779 "PostDom successor has more than two predecessors."); 780 DT->addNewBlock(InterimSucc, BB); 781 DT->addNewBlock(PostDomSucc, BB); 782 } 783 // Latch block is a new dominator for the loop exit. 784 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 785 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 786 } 787 788 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 789 790 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 791 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 792 Twine(getOrCreateBID(Block)); 793 } 794 795 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 796 const std::string &Name = Block->getName(); 797 if (!Name.empty()) 798 return Name; 799 return "VPB" + Twine(getOrCreateBID(Block)); 800 } 801 802 void VPlanPrinter::dump() { 803 Depth = 1; 804 bumpIndent(0); 805 OS << "digraph VPlan {\n"; 806 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 807 if (!Plan.getName().empty()) 808 OS << "\\n" << DOT::EscapeString(Plan.getName()); 809 if (Plan.BackedgeTakenCount) { 810 OS << ", where:\\n"; 811 Plan.BackedgeTakenCount->print(OS, SlotTracker); 812 OS << " := BackedgeTakenCount"; 813 } 814 OS << "\"]\n"; 815 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 816 OS << "edge [fontname=Courier, fontsize=30]\n"; 817 OS << "compound=true\n"; 818 819 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 820 dumpBlock(Block); 821 822 OS << "}\n"; 823 } 824 825 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 826 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 827 dumpBasicBlock(BasicBlock); 828 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 829 dumpRegion(Region); 830 else 831 llvm_unreachable("Unsupported kind of VPBlock."); 832 } 833 834 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 835 bool Hidden, const Twine &Label) { 836 // Due to "dot" we print an edge between two regions as an edge between the 837 // exiting basic block and the entry basic of the respective regions. 838 const VPBlockBase *Tail = From->getExitingBasicBlock(); 839 const VPBlockBase *Head = To->getEntryBasicBlock(); 840 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 841 OS << " [ label=\"" << Label << '\"'; 842 if (Tail != From) 843 OS << " ltail=" << getUID(From); 844 if (Head != To) 845 OS << " lhead=" << getUID(To); 846 if (Hidden) 847 OS << "; splines=none"; 848 OS << "]\n"; 849 } 850 851 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 852 auto &Successors = Block->getSuccessors(); 853 if (Successors.size() == 1) 854 drawEdge(Block, Successors.front(), false, ""); 855 else if (Successors.size() == 2) { 856 drawEdge(Block, Successors.front(), false, "T"); 857 drawEdge(Block, Successors.back(), false, "F"); 858 } else { 859 unsigned SuccessorNumber = 0; 860 for (auto *Successor : Successors) 861 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 862 } 863 } 864 865 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 866 // Implement dot-formatted dump by performing plain-text dump into the 867 // temporary storage followed by some post-processing. 868 OS << Indent << getUID(BasicBlock) << " [label =\n"; 869 bumpIndent(1); 870 std::string Str; 871 raw_string_ostream SS(Str); 872 // Use no indentation as we need to wrap the lines into quotes ourselves. 873 BasicBlock->print(SS, "", SlotTracker); 874 875 // We need to process each line of the output separately, so split 876 // single-string plain-text dump. 877 SmallVector<StringRef, 0> Lines; 878 StringRef(Str).rtrim('\n').split(Lines, "\n"); 879 880 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 881 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 882 }; 883 884 // Don't need the "+" after the last line. 885 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 886 EmitLine(Line, " +\n"); 887 EmitLine(Lines.back(), "\n"); 888 889 bumpIndent(-1); 890 OS << Indent << "]\n"; 891 892 dumpEdges(BasicBlock); 893 } 894 895 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 896 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 897 bumpIndent(1); 898 OS << Indent << "fontname=Courier\n" 899 << Indent << "label=\"" 900 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 901 << DOT::EscapeString(Region->getName()) << "\"\n"; 902 // Dump the blocks of the region. 903 assert(Region->getEntry() && "Region contains no inner blocks."); 904 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 905 dumpBlock(Block); 906 bumpIndent(-1); 907 OS << Indent << "}\n"; 908 dumpEdges(Region); 909 } 910 911 void VPlanIngredient::print(raw_ostream &O) const { 912 if (auto *Inst = dyn_cast<Instruction>(V)) { 913 if (!Inst->getType()->isVoidTy()) { 914 Inst->printAsOperand(O, false); 915 O << " = "; 916 } 917 O << Inst->getOpcodeName() << " "; 918 unsigned E = Inst->getNumOperands(); 919 if (E > 0) { 920 Inst->getOperand(0)->printAsOperand(O, false); 921 for (unsigned I = 1; I < E; ++I) 922 Inst->getOperand(I)->printAsOperand(O << ", ", false); 923 } 924 } else // !Inst 925 V->printAsOperand(O, false); 926 } 927 928 #endif 929 930 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 931 932 void VPValue::replaceAllUsesWith(VPValue *New) { 933 for (unsigned J = 0; J < getNumUsers();) { 934 VPUser *User = Users[J]; 935 unsigned NumUsers = getNumUsers(); 936 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 937 if (User->getOperand(I) == this) 938 User->setOperand(I, New); 939 // If a user got removed after updating the current user, the next user to 940 // update will be moved to the current position, so we only need to 941 // increment the index if the number of users did not change. 942 if (NumUsers == getNumUsers()) 943 J++; 944 } 945 } 946 947 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 948 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 949 if (const Value *UV = getUnderlyingValue()) { 950 OS << "ir<"; 951 UV->printAsOperand(OS, false); 952 OS << ">"; 953 return; 954 } 955 956 unsigned Slot = Tracker.getSlot(this); 957 if (Slot == unsigned(-1)) 958 OS << "<badref>"; 959 else 960 OS << "vp<%" << Tracker.getSlot(this) << ">"; 961 } 962 963 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 964 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 965 Op->printAsOperand(O, SlotTracker); 966 }); 967 } 968 #endif 969 970 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 971 Old2NewTy &Old2New, 972 InterleavedAccessInfo &IAI) { 973 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 974 for (VPBlockBase *Base : RPOT) { 975 visitBlock(Base, Old2New, IAI); 976 } 977 } 978 979 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 980 InterleavedAccessInfo &IAI) { 981 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 982 for (VPRecipeBase &VPI : *VPBB) { 983 if (isa<VPHeaderPHIRecipe>(&VPI)) 984 continue; 985 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 986 auto *VPInst = cast<VPInstruction>(&VPI); 987 988 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 989 if (!Inst) 990 continue; 991 auto *IG = IAI.getInterleaveGroup(Inst); 992 if (!IG) 993 continue; 994 995 auto NewIGIter = Old2New.find(IG); 996 if (NewIGIter == Old2New.end()) 997 Old2New[IG] = new InterleaveGroup<VPInstruction>( 998 IG->getFactor(), IG->isReverse(), IG->getAlign()); 999 1000 if (Inst == IG->getInsertPos()) 1001 Old2New[IG]->setInsertPos(VPInst); 1002 1003 InterleaveGroupMap[VPInst] = Old2New[IG]; 1004 InterleaveGroupMap[VPInst]->insertMember( 1005 VPInst, IG->getIndex(Inst), 1006 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1007 : IG->getFactor())); 1008 } 1009 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1010 visitRegion(Region, Old2New, IAI); 1011 else 1012 llvm_unreachable("Unsupported kind of VPBlock."); 1013 } 1014 1015 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1016 InterleavedAccessInfo &IAI) { 1017 Old2NewTy Old2New; 1018 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1019 } 1020 1021 void VPSlotTracker::assignSlot(const VPValue *V) { 1022 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1023 Slots[V] = NextSlot++; 1024 } 1025 1026 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1027 1028 for (const auto &P : Plan.VPExternalDefs) 1029 assignSlot(P.second); 1030 1031 assignSlot(&Plan.VectorTripCount); 1032 if (Plan.BackedgeTakenCount) 1033 assignSlot(Plan.BackedgeTakenCount); 1034 1035 ReversePostOrderTraversal< 1036 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1037 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1038 Plan.getEntry())); 1039 for (const VPBasicBlock *VPBB : 1040 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1041 for (const VPRecipeBase &Recipe : *VPBB) 1042 for (VPValue *Def : Recipe.definedValues()) 1043 assignSlot(Def); 1044 } 1045 1046 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1047 return all_of(Def->users(), 1048 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1049 } 1050 1051 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1052 ScalarEvolution &SE) { 1053 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1054 return Plan.getOrAddExternalDef(E->getValue()); 1055 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1056 return Plan.getOrAddExternalDef(E->getValue()); 1057 1058 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1059 VPValue *Step = new VPExpandSCEVRecipe(Expr, SE); 1060 Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef())); 1061 return Step; 1062 } 1063