xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 0dbdc6dc358bfe24d83c23ccc1c84c468ed24f30)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanPatternMatch.h"
23 #include "VPlanTransforms.h"
24 #include "VPlanUtils.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include <cassert>
47 #include <string>
48 
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
51 
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
54 }
55 extern cl::opt<unsigned> ForceTargetInstructionCost;
56 
57 static cl::opt<bool> PrintVPlansInDotFormat(
58     "vplan-print-in-dot-format", cl::Hidden,
59     cl::desc("Use dot format instead of plain text when dumping VPlans"));
60 
61 #define DEBUG_TYPE "loop-vectorize"
62 
63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
65   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
66   VPSlotTracker SlotTracker(
67       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68   V.print(OS, SlotTracker);
69   return OS;
70 }
71 #endif
72 
73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
74                                 const ElementCount &VF) const {
75   switch (LaneKind) {
76   case VPLane::Kind::ScalableLast:
77     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79                              Builder.getInt32(VF.getKnownMinValue() - Lane));
80   case VPLane::Kind::First:
81     return Builder.getInt32(Lane);
82   }
83   llvm_unreachable("Unknown lane kind");
84 }
85 
86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88   if (Def)
89     Def->addDefinedValue(this);
90 }
91 
92 VPValue::~VPValue() {
93   assert(Users.empty() && "trying to delete a VPValue with remaining users");
94   if (Def)
95     Def->removeDefinedValue(this);
96 }
97 
98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
100   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101     R->print(OS, "", SlotTracker);
102   else
103     printAsOperand(OS, SlotTracker);
104 }
105 
106 void VPValue::dump() const {
107   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
108   VPSlotTracker SlotTracker(
109       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
110   print(dbgs(), SlotTracker);
111   dbgs() << "\n";
112 }
113 
114 void VPDef::dump() const {
115   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
116   VPSlotTracker SlotTracker(
117       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118   print(dbgs(), "", SlotTracker);
119   dbgs() << "\n";
120 }
121 #endif
122 
123 VPRecipeBase *VPValue::getDefiningRecipe() {
124   return cast_or_null<VPRecipeBase>(Def);
125 }
126 
127 const VPRecipeBase *VPValue::getDefiningRecipe() const {
128   return cast_or_null<VPRecipeBase>(Def);
129 }
130 
131 // Get the top-most entry block of \p Start. This is the entry block of the
132 // containing VPlan. This function is templated to support both const and non-const blocks
133 template <typename T> static T *getPlanEntry(T *Start) {
134   T *Next = Start;
135   T *Current = Start;
136   while ((Next = Next->getParent()))
137     Current = Next;
138 
139   SmallSetVector<T *, 8> WorkList;
140   WorkList.insert(Current);
141 
142   for (unsigned i = 0; i < WorkList.size(); i++) {
143     T *Current = WorkList[i];
144     if (Current->getNumPredecessors() == 0)
145       return Current;
146     auto &Predecessors = Current->getPredecessors();
147     WorkList.insert(Predecessors.begin(), Predecessors.end());
148   }
149 
150   llvm_unreachable("VPlan without any entry node without predecessors");
151 }
152 
153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154 
155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156 
157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
159   const VPBlockBase *Block = this;
160   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
166   VPBlockBase *Block = this;
167   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168     Block = Region->getEntry();
169   return cast<VPBasicBlock>(Block);
170 }
171 
172 void VPBlockBase::setPlan(VPlan *ParentPlan) {
173   assert(
174       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
175       "Can only set plan on its entry or preheader block.");
176   Plan = ParentPlan;
177 }
178 
179 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
180 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
181   const VPBlockBase *Block = this;
182   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
183     Block = Region->getExiting();
184   return cast<VPBasicBlock>(Block);
185 }
186 
187 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
188   VPBlockBase *Block = this;
189   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
190     Block = Region->getExiting();
191   return cast<VPBasicBlock>(Block);
192 }
193 
194 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
195   if (!Successors.empty() || !Parent)
196     return this;
197   assert(Parent->getExiting() == this &&
198          "Block w/o successors not the exiting block of its parent.");
199   return Parent->getEnclosingBlockWithSuccessors();
200 }
201 
202 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
203   if (!Predecessors.empty() || !Parent)
204     return this;
205   assert(Parent->getEntry() == this &&
206          "Block w/o predecessors not the entry of its parent.");
207   return Parent->getEnclosingBlockWithPredecessors();
208 }
209 
210 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
211   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
212     delete Block;
213 }
214 
215 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
216   iterator It = begin();
217   while (It != end() && It->isPhi())
218     It++;
219   return It;
220 }
221 
222 VPTransformState::VPTransformState(const TargetTransformInfo *TTI,
223                                    ElementCount VF, unsigned UF, LoopInfo *LI,
224                                    DominatorTree *DT, IRBuilderBase &Builder,
225                                    InnerLoopVectorizer *ILV, VPlan *Plan)
226     : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
227       LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {}
228 
229 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
230   if (Def->isLiveIn())
231     return Def->getLiveInIRValue();
232 
233   if (hasScalarValue(Def, Lane))
234     return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
235 
236   if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
237       hasScalarValue(Def, VPLane::getFirstLane())) {
238     return Data.VPV2Scalars[Def][0];
239   }
240 
241   assert(hasVectorValue(Def));
242   auto *VecPart = Data.VPV2Vector[Def];
243   if (!VecPart->getType()->isVectorTy()) {
244     assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
245     return VecPart;
246   }
247   // TODO: Cache created scalar values.
248   Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
249   auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
250   // set(Def, Extract, Instance);
251   return Extract;
252 }
253 
254 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
255   if (NeedsScalar) {
256     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
257             !vputils::onlyFirstLaneUsed(Def) ||
258             (hasScalarValue(Def, VPLane(0)) &&
259              Data.VPV2Scalars[Def].size() == 1)) &&
260            "Trying to access a single scalar per part but has multiple scalars "
261            "per part.");
262     return get(Def, VPLane(0));
263   }
264 
265   // If Values have been set for this Def return the one relevant for \p Part.
266   if (hasVectorValue(Def))
267     return Data.VPV2Vector[Def];
268 
269   auto GetBroadcastInstrs = [this, Def](Value *V) {
270     bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
271     if (VF.isScalar())
272       return V;
273     // Place the code for broadcasting invariant variables in the new preheader.
274     IRBuilder<>::InsertPointGuard Guard(Builder);
275     if (SafeToHoist) {
276       BasicBlock *LoopVectorPreHeader =
277           CFG.VPBB2IRBB[Plan->getVectorPreheader()];
278       if (LoopVectorPreHeader)
279         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
280     }
281 
282     // Place the code for broadcasting invariant variables in the new preheader.
283     // Broadcast the scalar into all locations in the vector.
284     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
285 
286     return Shuf;
287   };
288 
289   if (!hasScalarValue(Def, {0})) {
290     assert(Def->isLiveIn() && "expected a live-in");
291     Value *IRV = Def->getLiveInIRValue();
292     Value *B = GetBroadcastInstrs(IRV);
293     set(Def, B);
294     return B;
295   }
296 
297   Value *ScalarValue = get(Def, VPLane(0));
298   // If we aren't vectorizing, we can just copy the scalar map values over
299   // to the vector map.
300   if (VF.isScalar()) {
301     set(Def, ScalarValue);
302     return ScalarValue;
303   }
304 
305   bool IsUniform = vputils::isUniformAfterVectorization(Def);
306 
307   VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
308   // Check if there is a scalar value for the selected lane.
309   if (!hasScalarValue(Def, LastLane)) {
310     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
311     // VPExpandSCEVRecipes can also be uniform.
312     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
313             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
314             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
315            "unexpected recipe found to be invariant");
316     IsUniform = true;
317     LastLane = 0;
318   }
319 
320   auto *LastInst = cast<Instruction>(get(Def, LastLane));
321   // Set the insert point after the last scalarized instruction or after the
322   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
323   // will directly follow the scalar definitions.
324   auto OldIP = Builder.saveIP();
325   auto NewIP =
326       isa<PHINode>(LastInst)
327           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
328           : std::next(BasicBlock::iterator(LastInst));
329   Builder.SetInsertPoint(&*NewIP);
330 
331   // However, if we are vectorizing, we need to construct the vector values.
332   // If the value is known to be uniform after vectorization, we can just
333   // broadcast the scalar value corresponding to lane zero. Otherwise, we
334   // construct the vector values using insertelement instructions. Since the
335   // resulting vectors are stored in State, we will only generate the
336   // insertelements once.
337   Value *VectorValue = nullptr;
338   if (IsUniform) {
339     VectorValue = GetBroadcastInstrs(ScalarValue);
340     set(Def, VectorValue);
341   } else {
342     // Initialize packing with insertelements to start from undef.
343     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
344     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
345     set(Def, Undef);
346     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
347       packScalarIntoVectorValue(Def, Lane);
348     VectorValue = get(Def);
349   }
350   Builder.restoreIP(OldIP);
351   return VectorValue;
352 }
353 
354 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
355   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
356   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
357 }
358 
359 void VPTransformState::addNewMetadata(Instruction *To,
360                                       const Instruction *Orig) {
361   // If the loop was versioned with memchecks, add the corresponding no-alias
362   // metadata.
363   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
364     LVer->annotateInstWithNoAlias(To, Orig);
365 }
366 
367 void VPTransformState::addMetadata(Value *To, Instruction *From) {
368   // No source instruction to transfer metadata from?
369   if (!From)
370     return;
371 
372   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
373     propagateMetadata(ToI, From);
374     addNewMetadata(ToI, From);
375   }
376 }
377 
378 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
379   const DILocation *DIL = DL;
380   // When a FSDiscriminator is enabled, we don't need to add the multiply
381   // factors to the discriminators.
382   if (DIL &&
383       Builder.GetInsertBlock()
384           ->getParent()
385           ->shouldEmitDebugInfoForProfiling() &&
386       !EnableFSDiscriminator) {
387     // FIXME: For scalable vectors, assume vscale=1.
388     unsigned UF = Plan->getUF();
389     auto NewDIL =
390         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
391     if (NewDIL)
392       Builder.SetCurrentDebugLocation(*NewDIL);
393     else
394       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
395                         << DIL->getFilename() << " Line: " << DIL->getLine());
396   } else
397     Builder.SetCurrentDebugLocation(DIL);
398 }
399 
400 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
401                                                  const VPLane &Lane) {
402   Value *ScalarInst = get(Def, Lane);
403   Value *VectorValue = get(Def);
404   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
405                                             Lane.getAsRuntimeExpr(Builder, VF));
406   set(Def, VectorValue);
407 }
408 
409 BasicBlock *
410 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
411   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
412   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
413   BasicBlock *PrevBB = CFG.PrevBB;
414   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
415                                          PrevBB->getParent(), CFG.ExitBB);
416   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
417 
418   return NewBB;
419 }
420 
421 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) {
422   BasicBlock *NewBB = CFG.VPBB2IRBB[this];
423   // Hook up the new basic block to its predecessors.
424   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
425     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
426     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
427     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
428 
429     assert(PredBB && "Predecessor basic-block not found building successor.");
430     auto *PredBBTerminator = PredBB->getTerminator();
431     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
432 
433     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
434     if (isa<UnreachableInst>(PredBBTerminator)) {
435       assert(PredVPSuccessors.size() == 1 &&
436              "Predecessor ending w/o branch must have single successor.");
437       DebugLoc DL = PredBBTerminator->getDebugLoc();
438       PredBBTerminator->eraseFromParent();
439       auto *Br = BranchInst::Create(NewBB, PredBB);
440       Br->setDebugLoc(DL);
441     } else if (TermBr && !TermBr->isConditional()) {
442       TermBr->setSuccessor(0, NewBB);
443     } else {
444       // Set each forward successor here when it is created, excluding
445       // backedges. A backward successor is set when the branch is created.
446       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
447       assert(
448           (!TermBr->getSuccessor(idx) ||
449            (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) &&
450           "Trying to reset an existing successor block.");
451       TermBr->setSuccessor(idx, NewBB);
452     }
453     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
454   }
455 }
456 
457 void VPIRBasicBlock::execute(VPTransformState *State) {
458   assert(getHierarchicalSuccessors().size() <= 2 &&
459          "VPIRBasicBlock can have at most two successors at the moment!");
460   State->Builder.SetInsertPoint(IRBB->getTerminator());
461   State->CFG.PrevBB = IRBB;
462   State->CFG.VPBB2IRBB[this] = IRBB;
463   executeRecipes(State, IRBB);
464   // Create a branch instruction to terminate IRBB if one was not created yet
465   // and is needed.
466   if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
467     auto *Br = State->Builder.CreateBr(IRBB);
468     Br->setOperand(0, nullptr);
469     IRBB->getTerminator()->eraseFromParent();
470   } else {
471     assert(
472         (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
473         "other blocks must be terminated by a branch");
474   }
475 
476   connectToPredecessors(State->CFG);
477 }
478 
479 void VPBasicBlock::execute(VPTransformState *State) {
480   bool Replica = bool(State->Lane);
481   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
482 
483   auto IsReplicateRegion = [](VPBlockBase *BB) {
484     auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
485     return R && R->isReplicator();
486   };
487 
488   // 1. Create an IR basic block.
489   if (this == getPlan()->getVectorPreheader() ||
490       (Replica && this == getParent()->getEntry()) ||
491       IsReplicateRegion(getSingleHierarchicalPredecessor())) {
492     // Reuse the previous basic block if the current VPBB is either
493     //  * the vector preheader,
494     //  * the entry to a replicate region, or
495     //  * the exit of a replicate region.
496     State->CFG.VPBB2IRBB[this] = NewBB;
497   } else {
498     NewBB = createEmptyBasicBlock(State->CFG);
499 
500     State->Builder.SetInsertPoint(NewBB);
501     // Temporarily terminate with unreachable until CFG is rewired.
502     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
503     // Register NewBB in its loop. In innermost loops its the same for all
504     // BB's.
505     if (State->CurrentVectorLoop)
506       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
507     State->Builder.SetInsertPoint(Terminator);
508 
509     State->CFG.PrevBB = NewBB;
510     State->CFG.VPBB2IRBB[this] = NewBB;
511     connectToPredecessors(State->CFG);
512   }
513 
514   // 2. Fill the IR basic block with IR instructions.
515   executeRecipes(State, NewBB);
516 }
517 
518 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
519   for (VPRecipeBase &R : Recipes) {
520     for (auto *Def : R.definedValues())
521       Def->replaceAllUsesWith(NewValue);
522 
523     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
524       R.setOperand(I, NewValue);
525   }
526 }
527 
528 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
529   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
530                     << " in BB:" << BB->getName() << '\n');
531 
532   State->CFG.PrevVPBB = this;
533 
534   for (VPRecipeBase &Recipe : Recipes)
535     Recipe.execute(*State);
536 
537   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
538 }
539 
540 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
541   assert((SplitAt == end() || SplitAt->getParent() == this) &&
542          "can only split at a position in the same block");
543 
544   SmallVector<VPBlockBase *, 2> Succs(successors());
545   // Create new empty block after the block to split.
546   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
547   VPBlockUtils::insertBlockAfter(SplitBlock, this);
548 
549   // Finally, move the recipes starting at SplitAt to new block.
550   for (VPRecipeBase &ToMove :
551        make_early_inc_range(make_range(SplitAt, this->end())))
552     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
553 
554   return SplitBlock;
555 }
556 
557 /// Return the enclosing loop region for region \p P. The templated version is
558 /// used to support both const and non-const block arguments.
559 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
560   if (P && P->isReplicator()) {
561     P = P->getParent();
562     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
563            "unexpected nested replicate regions");
564   }
565   return P;
566 }
567 
568 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
569   return getEnclosingLoopRegionForRegion(getParent());
570 }
571 
572 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
573   return getEnclosingLoopRegionForRegion(getParent());
574 }
575 
576 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
577   if (VPBB->empty()) {
578     assert(
579         VPBB->getNumSuccessors() < 2 &&
580         "block with multiple successors doesn't have a recipe as terminator");
581     return false;
582   }
583 
584   const VPRecipeBase *R = &VPBB->back();
585   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
586                       match(R, m_BranchOnCond(m_VPValue())) ||
587                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
588   (void)IsCondBranch;
589 
590   if (VPBB->getNumSuccessors() >= 2 ||
591       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
592     assert(IsCondBranch && "block with multiple successors not terminated by "
593                            "conditional branch recipe");
594 
595     return true;
596   }
597 
598   assert(
599       !IsCondBranch &&
600       "block with 0 or 1 successors terminated by conditional branch recipe");
601   return false;
602 }
603 
604 VPRecipeBase *VPBasicBlock::getTerminator() {
605   if (hasConditionalTerminator(this))
606     return &back();
607   return nullptr;
608 }
609 
610 const VPRecipeBase *VPBasicBlock::getTerminator() const {
611   if (hasConditionalTerminator(this))
612     return &back();
613   return nullptr;
614 }
615 
616 bool VPBasicBlock::isExiting() const {
617   return getParent() && getParent()->getExitingBasicBlock() == this;
618 }
619 
620 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
621 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
622   if (getSuccessors().empty()) {
623     O << Indent << "No successors\n";
624   } else {
625     O << Indent << "Successor(s): ";
626     ListSeparator LS;
627     for (auto *Succ : getSuccessors())
628       O << LS << Succ->getName();
629     O << '\n';
630   }
631 }
632 
633 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
634                          VPSlotTracker &SlotTracker) const {
635   O << Indent << getName() << ":\n";
636 
637   auto RecipeIndent = Indent + "  ";
638   for (const VPRecipeBase &Recipe : *this) {
639     Recipe.print(O, RecipeIndent, SlotTracker);
640     O << '\n';
641   }
642 
643   printSuccessors(O, Indent);
644 }
645 #endif
646 
647 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
648 
649 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
650 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
651 // Remapping of operands must be done separately. Returns a pair with the new
652 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
653 // region, return nullptr for the exiting block.
654 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
655   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
656   VPBlockBase *Exiting = nullptr;
657   bool InRegion = Entry->getParent();
658   // First, clone blocks reachable from Entry.
659   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
660     VPBlockBase *NewBB = BB->clone();
661     Old2NewVPBlocks[BB] = NewBB;
662     if (InRegion && BB->getNumSuccessors() == 0) {
663       assert(!Exiting && "Multiple exiting blocks?");
664       Exiting = BB;
665     }
666   }
667   assert((!InRegion || Exiting) && "regions must have a single exiting block");
668 
669   // Second, update the predecessors & successors of the cloned blocks.
670   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
671     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
672     SmallVector<VPBlockBase *> NewPreds;
673     for (VPBlockBase *Pred : BB->getPredecessors()) {
674       NewPreds.push_back(Old2NewVPBlocks[Pred]);
675     }
676     NewBB->setPredecessors(NewPreds);
677     SmallVector<VPBlockBase *> NewSuccs;
678     for (VPBlockBase *Succ : BB->successors()) {
679       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
680     }
681     NewBB->setSuccessors(NewSuccs);
682   }
683 
684 #if !defined(NDEBUG)
685   // Verify that the order of predecessors and successors matches in the cloned
686   // version.
687   for (const auto &[OldBB, NewBB] :
688        zip(vp_depth_first_shallow(Entry),
689            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
690     for (const auto &[OldPred, NewPred] :
691          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
692       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
693 
694     for (const auto &[OldSucc, NewSucc] :
695          zip(OldBB->successors(), NewBB->successors()))
696       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
697   }
698 #endif
699 
700   return std::make_pair(Old2NewVPBlocks[Entry],
701                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
702 }
703 
704 VPRegionBlock *VPRegionBlock::clone() {
705   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
706   auto *NewRegion =
707       new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
708   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
709     Block->setParent(NewRegion);
710   return NewRegion;
711 }
712 
713 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
714   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
715     // Drop all references in VPBasicBlocks and replace all uses with
716     // DummyValue.
717     Block->dropAllReferences(NewValue);
718 }
719 
720 void VPRegionBlock::execute(VPTransformState *State) {
721   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
722       RPOT(Entry);
723 
724   if (!isReplicator()) {
725     // Create and register the new vector loop.
726     Loop *PrevLoop = State->CurrentVectorLoop;
727     State->CurrentVectorLoop = State->LI->AllocateLoop();
728     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
729     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
730 
731     // Insert the new loop into the loop nest and register the new basic blocks
732     // before calling any utilities such as SCEV that require valid LoopInfo.
733     if (ParentLoop)
734       ParentLoop->addChildLoop(State->CurrentVectorLoop);
735     else
736       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
737 
738     // Visit the VPBlocks connected to "this", starting from it.
739     for (VPBlockBase *Block : RPOT) {
740       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
741       Block->execute(State);
742     }
743 
744     State->CurrentVectorLoop = PrevLoop;
745     return;
746   }
747 
748   assert(!State->Lane && "Replicating a Region with non-null instance.");
749 
750   // Enter replicating mode.
751   assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
752   State->Lane = VPLane(0);
753   for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
754        ++Lane) {
755     State->Lane = VPLane(Lane, VPLane::Kind::First);
756     // Visit the VPBlocks connected to \p this, starting from it.
757     for (VPBlockBase *Block : RPOT) {
758       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
759       Block->execute(State);
760     }
761   }
762 
763   // Exit replicating mode.
764   State->Lane.reset();
765 }
766 
767 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
768   InstructionCost Cost = 0;
769   for (VPRecipeBase &R : Recipes)
770     Cost += R.cost(VF, Ctx);
771   return Cost;
772 }
773 
774 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
775   if (!isReplicator()) {
776     InstructionCost Cost = 0;
777     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
778       Cost += Block->cost(VF, Ctx);
779     InstructionCost BackedgeCost =
780         ForceTargetInstructionCost.getNumOccurrences()
781             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
782             : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
783     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
784                       << ": vector loop backedge\n");
785     Cost += BackedgeCost;
786     return Cost;
787   }
788 
789   // Compute the cost of a replicate region. Replicating isn't supported for
790   // scalable vectors, return an invalid cost for them.
791   // TODO: Discard scalable VPlans with replicate recipes earlier after
792   // construction.
793   if (VF.isScalable())
794     return InstructionCost::getInvalid();
795 
796   // First compute the cost of the conditionally executed recipes, followed by
797   // account for the branching cost, except if the mask is a header mask or
798   // uniform condition.
799   using namespace llvm::VPlanPatternMatch;
800   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
801   InstructionCost ThenCost = Then->cost(VF, Ctx);
802 
803   // For the scalar case, we may not always execute the original predicated
804   // block, Thus, scale the block's cost by the probability of executing it.
805   if (VF.isScalar())
806     return ThenCost / getReciprocalPredBlockProb();
807 
808   return ThenCost;
809 }
810 
811 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
812 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
813                           VPSlotTracker &SlotTracker) const {
814   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
815   auto NewIndent = Indent + "  ";
816   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
817     O << '\n';
818     BlockBase->print(O, NewIndent, SlotTracker);
819   }
820   O << Indent << "}\n";
821 
822   printSuccessors(O, Indent);
823 }
824 #endif
825 
826 VPlan::~VPlan() {
827   if (Entry) {
828     VPValue DummyValue;
829     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
830       Block->dropAllReferences(&DummyValue);
831 
832     VPBlockBase::deleteCFG(Entry);
833 
834     Preheader->dropAllReferences(&DummyValue);
835     delete Preheader;
836   }
837   for (VPValue *VPV : VPLiveInsToFree)
838     delete VPV;
839   if (BackedgeTakenCount)
840     delete BackedgeTakenCount;
841 }
842 
843 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) {
844   auto *VPIRBB = new VPIRBasicBlock(IRBB);
845   for (Instruction &I :
846        make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
847     VPIRBB->appendRecipe(new VPIRInstruction(I));
848   return VPIRBB;
849 }
850 
851 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
852                                    PredicatedScalarEvolution &PSE,
853                                    bool RequiresScalarEpilogueCheck,
854                                    bool TailFolded, Loop *TheLoop) {
855   VPIRBasicBlock *Entry =
856       VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader());
857   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
858   VPIRBasicBlock *ScalarHeader =
859       VPIRBasicBlock::fromBasicBlock(TheLoop->getHeader());
860   auto Plan = std::make_unique<VPlan>(Entry, VecPreheader, ScalarHeader);
861 
862   // Create SCEV and VPValue for the trip count.
863 
864   // Currently only loops with countable exits are vectorized, but calling
865   // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with
866   // uncountable exits whilst also ensuring the symbolic maximum and known
867   // back-edge taken count remain identical for loops with countable exits.
868   const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
869   assert((!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
870           BackedgeTakenCountSCEV == PSE.getBackedgeTakenCount()) &&
871          "Invalid loop count");
872   ScalarEvolution &SE = *PSE.getSE();
873   const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
874                                                        InductionTy, TheLoop);
875   Plan->TripCount =
876       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
877 
878   // Create VPRegionBlock, with empty header and latch blocks, to be filled
879   // during processing later.
880   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
881   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
882   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
883   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
884                                       false /*isReplicator*/);
885 
886   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
887   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
888   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
889 
890   VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
891   VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
892   if (!RequiresScalarEpilogueCheck) {
893     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
894     return Plan;
895   }
896 
897   // If needed, add a check in the middle block to see if we have completed
898   // all of the iterations in the first vector loop.  Three cases:
899   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
900   //    Thus if tail is to be folded, we know we don't need to run the
901   //    remainder and we can set the condition to true.
902   // 2) If we require a scalar epilogue, there is no conditional branch as
903   //    we unconditionally branch to the scalar preheader.  Do nothing.
904   // 3) Otherwise, construct a runtime check.
905   BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock();
906   auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock);
907   // The connection order corresponds to the operands of the conditional branch.
908   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
909   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
910 
911   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
912   // Here we use the same DebugLoc as the scalar loop latch terminator instead
913   // of the corresponding compare because they may have ended up with
914   // different line numbers and we want to avoid awkward line stepping while
915   // debugging. Eg. if the compare has got a line number inside the loop.
916   VPBuilder Builder(MiddleVPBB);
917   VPValue *Cmp =
918       TailFolded
919           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
920                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
921           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
922                                &Plan->getVectorTripCount(),
923                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
924   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
925                        ScalarLatchTerm->getDebugLoc());
926   return Plan;
927 }
928 
929 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
930                              Value *CanonicalIVStartValue,
931                              VPTransformState &State) {
932   Type *TCTy = TripCountV->getType();
933   // Check if the backedge taken count is needed, and if so build it.
934   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
935     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
936     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
937                                    "trip.count.minus.1");
938     BackedgeTakenCount->setUnderlyingValue(TCMO);
939   }
940 
941   VectorTripCount.setUnderlyingValue(VectorTripCountV);
942 
943   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
944   // FIXME: Model VF * UF computation completely in VPlan.
945   assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
946   unsigned UF = getUF();
947   if (VF.getNumUsers()) {
948     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
949     VF.setUnderlyingValue(RuntimeVF);
950     VFxUF.setUnderlyingValue(
951         UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
952                : RuntimeVF);
953   } else {
954     VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
955   }
956 
957   // When vectorizing the epilogue loop, the canonical induction start value
958   // needs to be changed from zero to the value after the main vector loop.
959   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
960   if (CanonicalIVStartValue) {
961     VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
962     auto *IV = getCanonicalIV();
963     assert(all_of(IV->users(),
964                   [](const VPUser *U) {
965                     return isa<VPScalarIVStepsRecipe>(U) ||
966                            isa<VPScalarCastRecipe>(U) ||
967                            isa<VPDerivedIVRecipe>(U) ||
968                            cast<VPInstruction>(U)->getOpcode() ==
969                                Instruction::Add;
970                   }) &&
971            "the canonical IV should only be used by its increment or "
972            "ScalarIVSteps when resetting the start value");
973     IV->setOperand(0, VPV);
974   }
975 }
976 
977 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
978 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
979 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
980 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
981 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
982   VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB);
983   for (auto &R : make_early_inc_range(*VPBB)) {
984     assert(!R.isPhi() && "Tried to move phi recipe to end of block");
985     R.moveBefore(*IRVPBB, IRVPBB->end());
986   }
987 
988   VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
989 
990   delete VPBB;
991 }
992 
993 /// Generate the code inside the preheader and body of the vectorized loop.
994 /// Assumes a single pre-header basic-block was created for this. Introduce
995 /// additional basic-blocks as needed, and fill them all.
996 void VPlan::execute(VPTransformState *State) {
997   // Initialize CFG state.
998   State->CFG.PrevVPBB = nullptr;
999   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
1000   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
1001   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
1002 
1003   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
1004   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
1005   State->CFG.DTU.applyUpdates(
1006       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
1007 
1008   // Replace regular VPBB's for the middle and scalar preheader blocks with
1009   // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during
1010   // skeleton creation, so we can only create the VPIRBasicBlocks now during
1011   // VPlan execution rather than earlier during VPlan construction.
1012   BasicBlock *MiddleBB = State->CFG.ExitBB;
1013   VPBasicBlock *MiddleVPBB = getMiddleBlock();
1014   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1015   replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh);
1016   replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB);
1017 
1018   // Disconnect the middle block from its single successor (the scalar loop
1019   // header) in both the CFG and DT. The branch will be recreated during VPlan
1020   // execution.
1021   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1022   BrInst->insertBefore(MiddleBB->getTerminator());
1023   MiddleBB->getTerminator()->eraseFromParent();
1024   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1025   // Disconnect scalar preheader and scalar header, as the dominator tree edge
1026   // will be updated as part of VPlan execution. This allows keeping the DTU
1027   // logic generic during VPlan execution.
1028   State->CFG.DTU.applyUpdates(
1029       {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
1030 
1031   // Generate code in the loop pre-header and body.
1032   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
1033     Block->execute(State);
1034 
1035   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1036   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1037 
1038   // Fix the latch value of canonical, reduction and first-order recurrences
1039   // phis in the vector loop.
1040   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1041   for (VPRecipeBase &R : Header->phis()) {
1042     // Skip phi-like recipes that generate their backedege values themselves.
1043     if (isa<VPWidenPHIRecipe>(&R))
1044       continue;
1045 
1046     if (isa<VPWidenPointerInductionRecipe>(&R) ||
1047         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1048       PHINode *Phi = nullptr;
1049       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1050         Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1051       } else {
1052         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1053         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1054                "recipe generating only scalars should have been replaced");
1055         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1056         Phi = cast<PHINode>(GEP->getPointerOperand());
1057       }
1058 
1059       Phi->setIncomingBlock(1, VectorLatchBB);
1060 
1061       // Move the last step to the end of the latch block. This ensures
1062       // consistent placement of all induction updates.
1063       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1064       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1065 
1066       // Use the steps for the last part as backedge value for the induction.
1067       if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1068         Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1069       continue;
1070     }
1071 
1072     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1073     bool NeedsScalar =
1074         isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1075         (isa<VPReductionPHIRecipe>(PhiR) &&
1076          cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1077     Value *Phi = State->get(PhiR, NeedsScalar);
1078     Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1079     cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1080   }
1081 
1082   State->CFG.DTU.flush();
1083   assert(State->CFG.DTU.getDomTree().verify(
1084              DominatorTree::VerificationLevel::Fast) &&
1085          "DT not preserved correctly");
1086 }
1087 
1088 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1089   // For now only return the cost of the vector loop region, ignoring any other
1090   // blocks, like the preheader or middle blocks.
1091   return getVectorLoopRegion()->cost(VF, Ctx);
1092 }
1093 
1094 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1095 void VPlan::printLiveIns(raw_ostream &O) const {
1096   VPSlotTracker SlotTracker(this);
1097 
1098   if (VF.getNumUsers() > 0) {
1099     O << "\nLive-in ";
1100     VF.printAsOperand(O, SlotTracker);
1101     O << " = VF";
1102   }
1103 
1104   if (VFxUF.getNumUsers() > 0) {
1105     O << "\nLive-in ";
1106     VFxUF.printAsOperand(O, SlotTracker);
1107     O << " = VF * UF";
1108   }
1109 
1110   if (VectorTripCount.getNumUsers() > 0) {
1111     O << "\nLive-in ";
1112     VectorTripCount.printAsOperand(O, SlotTracker);
1113     O << " = vector-trip-count";
1114   }
1115 
1116   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1117     O << "\nLive-in ";
1118     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1119     O << " = backedge-taken count";
1120   }
1121 
1122   O << "\n";
1123   if (TripCount->isLiveIn())
1124     O << "Live-in ";
1125   TripCount->printAsOperand(O, SlotTracker);
1126   O << " = original trip-count";
1127   O << "\n";
1128 }
1129 
1130 LLVM_DUMP_METHOD
1131 void VPlan::print(raw_ostream &O) const {
1132   VPSlotTracker SlotTracker(this);
1133 
1134   O << "VPlan '" << getName() << "' {";
1135 
1136   printLiveIns(O);
1137 
1138   if (!getPreheader()->empty()) {
1139     O << "\n";
1140     getPreheader()->print(O, "", SlotTracker);
1141   }
1142 
1143   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
1144     O << '\n';
1145     Block->print(O, "", SlotTracker);
1146   }
1147 
1148   O << "}\n";
1149 }
1150 
1151 std::string VPlan::getName() const {
1152   std::string Out;
1153   raw_string_ostream RSO(Out);
1154   RSO << Name << " for ";
1155   if (!VFs.empty()) {
1156     RSO << "VF={" << VFs[0];
1157     for (ElementCount VF : drop_begin(VFs))
1158       RSO << "," << VF;
1159     RSO << "},";
1160   }
1161 
1162   if (UFs.empty()) {
1163     RSO << "UF>=1";
1164   } else {
1165     RSO << "UF={" << UFs[0];
1166     for (unsigned UF : drop_begin(UFs))
1167       RSO << "," << UF;
1168     RSO << "}";
1169   }
1170 
1171   return Out;
1172 }
1173 
1174 LLVM_DUMP_METHOD
1175 void VPlan::printDOT(raw_ostream &O) const {
1176   VPlanPrinter Printer(O, *this);
1177   Printer.dump();
1178 }
1179 
1180 LLVM_DUMP_METHOD
1181 void VPlan::dump() const { print(dbgs()); }
1182 #endif
1183 
1184 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1185                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1186   // Update the operands of all cloned recipes starting at NewEntry. This
1187   // traverses all reachable blocks. This is done in two steps, to handle cycles
1188   // in PHI recipes.
1189   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1190       OldDeepRPOT(Entry);
1191   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1192       NewDeepRPOT(NewEntry);
1193   // First, collect all mappings from old to new VPValues defined by cloned
1194   // recipes.
1195   for (const auto &[OldBB, NewBB] :
1196        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1197            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1198     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1199            "blocks must have the same number of recipes");
1200     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1201       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1202              "recipes must have the same number of operands");
1203       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1204              "recipes must define the same number of operands");
1205       for (const auto &[OldV, NewV] :
1206            zip(OldR.definedValues(), NewR.definedValues()))
1207         Old2NewVPValues[OldV] = NewV;
1208     }
1209   }
1210 
1211   // Update all operands to use cloned VPValues.
1212   for (VPBasicBlock *NewBB :
1213        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1214     for (VPRecipeBase &NewR : *NewBB)
1215       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1216         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1217         NewR.setOperand(I, NewOp);
1218       }
1219   }
1220 }
1221 
1222 VPlan *VPlan::duplicate() {
1223   // Clone blocks.
1224   VPBasicBlock *NewPreheader = Preheader->clone();
1225   const auto &[NewEntry, __] = cloneFrom(Entry);
1226 
1227   BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1228   VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1229       vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1230         auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1231         return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1232       }));
1233   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1234   auto *NewPlan =
1235       new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1236   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1237   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1238     Old2NewVPValues[OldLiveIn] =
1239         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1240   }
1241   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1242   Old2NewVPValues[&VF] = &NewPlan->VF;
1243   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1244   if (BackedgeTakenCount) {
1245     NewPlan->BackedgeTakenCount = new VPValue();
1246     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1247   }
1248   assert(TripCount && "trip count must be set");
1249   if (TripCount->isLiveIn())
1250     Old2NewVPValues[TripCount] =
1251         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1252   // else NewTripCount will be created and inserted into Old2NewVPValues when
1253   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1254 
1255   remapOperands(Preheader, NewPreheader, Old2NewVPValues);
1256   remapOperands(Entry, NewEntry, Old2NewVPValues);
1257 
1258   // Initialize remaining fields of cloned VPlan.
1259   NewPlan->VFs = VFs;
1260   NewPlan->UFs = UFs;
1261   // TODO: Adjust names.
1262   NewPlan->Name = Name;
1263   assert(Old2NewVPValues.contains(TripCount) &&
1264          "TripCount must have been added to Old2NewVPValues");
1265   NewPlan->TripCount = Old2NewVPValues[TripCount];
1266   return NewPlan;
1267 }
1268 
1269 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1270 
1271 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1272   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1273          Twine(getOrCreateBID(Block));
1274 }
1275 
1276 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1277   const std::string &Name = Block->getName();
1278   if (!Name.empty())
1279     return Name;
1280   return "VPB" + Twine(getOrCreateBID(Block));
1281 }
1282 
1283 void VPlanPrinter::dump() {
1284   Depth = 1;
1285   bumpIndent(0);
1286   OS << "digraph VPlan {\n";
1287   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1288   if (!Plan.getName().empty())
1289     OS << "\\n" << DOT::EscapeString(Plan.getName());
1290 
1291   {
1292     // Print live-ins.
1293   std::string Str;
1294   raw_string_ostream SS(Str);
1295   Plan.printLiveIns(SS);
1296   SmallVector<StringRef, 0> Lines;
1297   StringRef(Str).rtrim('\n').split(Lines, "\n");
1298   for (auto Line : Lines)
1299     OS << DOT::EscapeString(Line.str()) << "\\n";
1300   }
1301 
1302   OS << "\"]\n";
1303   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1304   OS << "edge [fontname=Courier, fontsize=30]\n";
1305   OS << "compound=true\n";
1306 
1307   dumpBlock(Plan.getPreheader());
1308 
1309   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1310     dumpBlock(Block);
1311 
1312   OS << "}\n";
1313 }
1314 
1315 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1316   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1317     dumpBasicBlock(BasicBlock);
1318   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1319     dumpRegion(Region);
1320   else
1321     llvm_unreachable("Unsupported kind of VPBlock.");
1322 }
1323 
1324 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1325                             bool Hidden, const Twine &Label) {
1326   // Due to "dot" we print an edge between two regions as an edge between the
1327   // exiting basic block and the entry basic of the respective regions.
1328   const VPBlockBase *Tail = From->getExitingBasicBlock();
1329   const VPBlockBase *Head = To->getEntryBasicBlock();
1330   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1331   OS << " [ label=\"" << Label << '\"';
1332   if (Tail != From)
1333     OS << " ltail=" << getUID(From);
1334   if (Head != To)
1335     OS << " lhead=" << getUID(To);
1336   if (Hidden)
1337     OS << "; splines=none";
1338   OS << "]\n";
1339 }
1340 
1341 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1342   auto &Successors = Block->getSuccessors();
1343   if (Successors.size() == 1)
1344     drawEdge(Block, Successors.front(), false, "");
1345   else if (Successors.size() == 2) {
1346     drawEdge(Block, Successors.front(), false, "T");
1347     drawEdge(Block, Successors.back(), false, "F");
1348   } else {
1349     unsigned SuccessorNumber = 0;
1350     for (auto *Successor : Successors)
1351       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1352   }
1353 }
1354 
1355 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1356   // Implement dot-formatted dump by performing plain-text dump into the
1357   // temporary storage followed by some post-processing.
1358   OS << Indent << getUID(BasicBlock) << " [label =\n";
1359   bumpIndent(1);
1360   std::string Str;
1361   raw_string_ostream SS(Str);
1362   // Use no indentation as we need to wrap the lines into quotes ourselves.
1363   BasicBlock->print(SS, "", SlotTracker);
1364 
1365   // We need to process each line of the output separately, so split
1366   // single-string plain-text dump.
1367   SmallVector<StringRef, 0> Lines;
1368   StringRef(Str).rtrim('\n').split(Lines, "\n");
1369 
1370   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1371     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1372   };
1373 
1374   // Don't need the "+" after the last line.
1375   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1376     EmitLine(Line, " +\n");
1377   EmitLine(Lines.back(), "\n");
1378 
1379   bumpIndent(-1);
1380   OS << Indent << "]\n";
1381 
1382   dumpEdges(BasicBlock);
1383 }
1384 
1385 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1386   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1387   bumpIndent(1);
1388   OS << Indent << "fontname=Courier\n"
1389      << Indent << "label=\""
1390      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1391      << DOT::EscapeString(Region->getName()) << "\"\n";
1392   // Dump the blocks of the region.
1393   assert(Region->getEntry() && "Region contains no inner blocks.");
1394   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1395     dumpBlock(Block);
1396   bumpIndent(-1);
1397   OS << Indent << "}\n";
1398   dumpEdges(Region);
1399 }
1400 
1401 void VPlanIngredient::print(raw_ostream &O) const {
1402   if (auto *Inst = dyn_cast<Instruction>(V)) {
1403     if (!Inst->getType()->isVoidTy()) {
1404       Inst->printAsOperand(O, false);
1405       O << " = ";
1406     }
1407     O << Inst->getOpcodeName() << " ";
1408     unsigned E = Inst->getNumOperands();
1409     if (E > 0) {
1410       Inst->getOperand(0)->printAsOperand(O, false);
1411       for (unsigned I = 1; I < E; ++I)
1412         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1413     }
1414   } else // !Inst
1415     V->printAsOperand(O, false);
1416 }
1417 
1418 #endif
1419 
1420 bool VPValue::isDefinedOutsideLoopRegions() const {
1421   return !hasDefiningRecipe() ||
1422          !getDefiningRecipe()->getParent()->getEnclosingLoopRegion();
1423 }
1424 
1425 void VPValue::replaceAllUsesWith(VPValue *New) {
1426   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1427 }
1428 
1429 void VPValue::replaceUsesWithIf(
1430     VPValue *New,
1431     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1432   // Note that this early exit is required for correctness; the implementation
1433   // below relies on the number of users for this VPValue to decrease, which
1434   // isn't the case if this == New.
1435   if (this == New)
1436     return;
1437 
1438   for (unsigned J = 0; J < getNumUsers();) {
1439     VPUser *User = Users[J];
1440     bool RemovedUser = false;
1441     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1442       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1443         continue;
1444 
1445       RemovedUser = true;
1446       User->setOperand(I, New);
1447     }
1448     // If a user got removed after updating the current user, the next user to
1449     // update will be moved to the current position, so we only need to
1450     // increment the index if the number of users did not change.
1451     if (!RemovedUser)
1452       J++;
1453   }
1454 }
1455 
1456 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1457 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1458   OS << Tracker.getOrCreateName(this);
1459 }
1460 
1461 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1462   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1463     Op->printAsOperand(O, SlotTracker);
1464   });
1465 }
1466 #endif
1467 
1468 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1469                                           Old2NewTy &Old2New,
1470                                           InterleavedAccessInfo &IAI) {
1471   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1472       RPOT(Region->getEntry());
1473   for (VPBlockBase *Base : RPOT) {
1474     visitBlock(Base, Old2New, IAI);
1475   }
1476 }
1477 
1478 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1479                                          InterleavedAccessInfo &IAI) {
1480   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1481     for (VPRecipeBase &VPI : *VPBB) {
1482       if (isa<VPWidenPHIRecipe>(&VPI))
1483         continue;
1484       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1485       auto *VPInst = cast<VPInstruction>(&VPI);
1486 
1487       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1488       if (!Inst)
1489         continue;
1490       auto *IG = IAI.getInterleaveGroup(Inst);
1491       if (!IG)
1492         continue;
1493 
1494       auto NewIGIter = Old2New.find(IG);
1495       if (NewIGIter == Old2New.end())
1496         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1497             IG->getFactor(), IG->isReverse(), IG->getAlign());
1498 
1499       if (Inst == IG->getInsertPos())
1500         Old2New[IG]->setInsertPos(VPInst);
1501 
1502       InterleaveGroupMap[VPInst] = Old2New[IG];
1503       InterleaveGroupMap[VPInst]->insertMember(
1504           VPInst, IG->getIndex(Inst),
1505           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1506                                 : IG->getFactor()));
1507     }
1508   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1509     visitRegion(Region, Old2New, IAI);
1510   else
1511     llvm_unreachable("Unsupported kind of VPBlock.");
1512 }
1513 
1514 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1515                                                  InterleavedAccessInfo &IAI) {
1516   Old2NewTy Old2New;
1517   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1518 }
1519 
1520 void VPSlotTracker::assignName(const VPValue *V) {
1521   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1522   auto *UV = V->getUnderlyingValue();
1523   auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1524   if (!UV && !(VPI && !VPI->getName().empty())) {
1525     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1526     NextSlot++;
1527     return;
1528   }
1529 
1530   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1531   // appending ".Number" to the name if there are multiple uses.
1532   std::string Name;
1533   if (UV) {
1534     raw_string_ostream S(Name);
1535     UV->printAsOperand(S, false);
1536   } else
1537     Name = VPI->getName();
1538 
1539   assert(!Name.empty() && "Name cannot be empty.");
1540   StringRef Prefix = UV ? "ir<" : "vp<%";
1541   std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1542 
1543   // First assign the base name for V.
1544   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1545   // Integer or FP constants with different types will result in he same string
1546   // due to stripping types.
1547   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1548     return;
1549 
1550   // If it is already used by C > 0 other VPValues, increase the version counter
1551   // C and use it for V.
1552   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1553   if (!UseInserted) {
1554     C->second++;
1555     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1556   }
1557 }
1558 
1559 void VPSlotTracker::assignNames(const VPlan &Plan) {
1560   if (Plan.VF.getNumUsers() > 0)
1561     assignName(&Plan.VF);
1562   if (Plan.VFxUF.getNumUsers() > 0)
1563     assignName(&Plan.VFxUF);
1564   assignName(&Plan.VectorTripCount);
1565   if (Plan.BackedgeTakenCount)
1566     assignName(Plan.BackedgeTakenCount);
1567   for (VPValue *LI : Plan.VPLiveInsToFree)
1568     assignName(LI);
1569   assignNames(Plan.getPreheader());
1570 
1571   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1572       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1573   for (const VPBasicBlock *VPBB :
1574        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1575     assignNames(VPBB);
1576 }
1577 
1578 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1579   for (const VPRecipeBase &Recipe : *VPBB)
1580     for (VPValue *Def : Recipe.definedValues())
1581       assignName(Def);
1582 }
1583 
1584 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1585   std::string Name = VPValue2Name.lookup(V);
1586   if (!Name.empty())
1587     return Name;
1588 
1589   // If no name was assigned, no VPlan was provided when creating the slot
1590   // tracker or it is not reachable from the provided VPlan. This can happen,
1591   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1592   // in a debugger.
1593   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1594   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1595   // here.
1596   const VPRecipeBase *DefR = V->getDefiningRecipe();
1597   (void)DefR;
1598   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1599          "VPValue defined by a recipe in a VPlan?");
1600 
1601   // Use the underlying value's name, if there is one.
1602   if (auto *UV = V->getUnderlyingValue()) {
1603     std::string Name;
1604     raw_string_ostream S(Name);
1605     UV->printAsOperand(S, false);
1606     return (Twine("ir<") + Name + ">").str();
1607   }
1608 
1609   return "<badref>";
1610 }
1611 
1612 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1613     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1614   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1615   bool PredicateAtRangeStart = Predicate(Range.Start);
1616 
1617   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1618     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1619       Range.End = TmpVF;
1620       break;
1621     }
1622 
1623   return PredicateAtRangeStart;
1624 }
1625 
1626 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1627 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1628 /// of VF's starting at a given VF and extending it as much as possible. Each
1629 /// vectorization decision can potentially shorten this sub-range during
1630 /// buildVPlan().
1631 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1632                                            ElementCount MaxVF) {
1633   auto MaxVFTimes2 = MaxVF * 2;
1634   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1635     VFRange SubRange = {VF, MaxVFTimes2};
1636     auto Plan = buildVPlan(SubRange);
1637     VPlanTransforms::optimize(*Plan);
1638     VPlans.push_back(std::move(Plan));
1639     VF = SubRange.End;
1640   }
1641 }
1642 
1643 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1644   assert(count_if(VPlans,
1645                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1646              1 &&
1647          "Multiple VPlans for VF.");
1648 
1649   for (const VPlanPtr &Plan : VPlans) {
1650     if (Plan->hasVF(VF))
1651       return *Plan.get();
1652   }
1653   llvm_unreachable("No plan found!");
1654 }
1655 
1656 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1657 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1658   if (VPlans.empty()) {
1659     O << "LV: No VPlans built.\n";
1660     return;
1661   }
1662   for (const auto &Plan : VPlans)
1663     if (PrintVPlansInDotFormat)
1664       Plan->printDOT(O);
1665     else
1666       Plan->print(O);
1667 }
1668 #endif
1669 
1670 TargetTransformInfo::OperandValueInfo
1671 VPCostContext::getOperandInfo(VPValue *V) const {
1672   if (!V->isLiveIn())
1673     return {};
1674 
1675   return TTI::getOperandInfo(V->getLiveInIRValue());
1676 }
1677