xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 09e516c54b0c5ec3fe6b3ef6c70d9e09e89abc95)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This is the LLVM vectorization plan. It represents a candidate for
12 /// vectorization, allowing to plan and optimize how to vectorize a given loop
13 /// before generating LLVM-IR.
14 /// The vectorizer uses vectorization plans to estimate the costs of potential
15 /// candidates and if profitable to execute the desired plan, generating vector
16 /// LLVM-IR code.
17 ///
18 //===----------------------------------------------------------------------===//
19 
20 #include "VPlan.h"
21 #include "VPlanDominatorTree.h"
22 #include "llvm/ADT/DepthFirstIterator.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/GenericDomTreeConstruction.h"
38 #include "llvm/Support/GraphWriter.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include <cassert>
42 #include <iterator>
43 #include <string>
44 #include <vector>
45 
46 using namespace llvm;
47 extern cl::opt<bool> EnableVPlanNativePath;
48 
49 #define DEBUG_TYPE "vplan"
50 
51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
52   if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V))
53     Instr->print(OS);
54   else
55     V.printAsOperand(OS);
56   return OS;
57 }
58 
59 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
60 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
61   const VPBlockBase *Block = this;
62   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
63     Block = Region->getEntry();
64   return cast<VPBasicBlock>(Block);
65 }
66 
67 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
68   VPBlockBase *Block = this;
69   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
70     Block = Region->getEntry();
71   return cast<VPBasicBlock>(Block);
72 }
73 
74 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
75 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
76   const VPBlockBase *Block = this;
77   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
78     Block = Region->getExit();
79   return cast<VPBasicBlock>(Block);
80 }
81 
82 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
83   VPBlockBase *Block = this;
84   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
85     Block = Region->getExit();
86   return cast<VPBasicBlock>(Block);
87 }
88 
89 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
90   if (!Successors.empty() || !Parent)
91     return this;
92   assert(Parent->getExit() == this &&
93          "Block w/o successors not the exit of its parent.");
94   return Parent->getEnclosingBlockWithSuccessors();
95 }
96 
97 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
98   if (!Predecessors.empty() || !Parent)
99     return this;
100   assert(Parent->getEntry() == this &&
101          "Block w/o predecessors not the entry of its parent.");
102   return Parent->getEnclosingBlockWithPredecessors();
103 }
104 
105 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
106   SmallVector<VPBlockBase *, 8> Blocks;
107   for (VPBlockBase *Block : depth_first(Entry))
108     Blocks.push_back(Block);
109 
110   for (VPBlockBase *Block : Blocks)
111     delete Block;
112 }
113 
114 BasicBlock *
115 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
116   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
117   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
118   BasicBlock *PrevBB = CFG.PrevBB;
119   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
120                                          PrevBB->getParent(), CFG.LastBB);
121   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
122 
123   // Hook up the new basic block to its predecessors.
124   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
125     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
126     auto &PredVPSuccessors = PredVPBB->getSuccessors();
127     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
128 
129     // In outer loop vectorization scenario, the predecessor BBlock may not yet
130     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
131     // vectorization. We do not encounter this case in inner loop vectorization
132     // as we start out by building a loop skeleton with the vector loop header
133     // and latch blocks. As a result, we never enter this function for the
134     // header block in the non VPlan-native path.
135     if (!PredBB) {
136       assert(EnableVPlanNativePath &&
137              "Unexpected null predecessor in non VPlan-native path");
138       CFG.VPBBsToFix.push_back(PredVPBB);
139       continue;
140     }
141 
142     assert(PredBB && "Predecessor basic-block not found building successor.");
143     auto *PredBBTerminator = PredBB->getTerminator();
144     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
145     if (isa<UnreachableInst>(PredBBTerminator)) {
146       assert(PredVPSuccessors.size() == 1 &&
147              "Predecessor ending w/o branch must have single successor.");
148       PredBBTerminator->eraseFromParent();
149       BranchInst::Create(NewBB, PredBB);
150     } else {
151       assert(PredVPSuccessors.size() == 2 &&
152              "Predecessor ending with branch must have two successors.");
153       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
154       assert(!PredBBTerminator->getSuccessor(idx) &&
155              "Trying to reset an existing successor block.");
156       PredBBTerminator->setSuccessor(idx, NewBB);
157     }
158   }
159   return NewBB;
160 }
161 
162 void VPBasicBlock::execute(VPTransformState *State) {
163   bool Replica = State->Instance &&
164                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
165   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
166   VPBlockBase *SingleHPred = nullptr;
167   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
168 
169   // 1. Create an IR basic block, or reuse the last one if possible.
170   // The last IR basic block is reused, as an optimization, in three cases:
171   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
172   // B. when the current VPBB has a single (hierarchical) predecessor which
173   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
174   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
175   //    is the exit of this region from a previous instance, or the predecessor
176   //    of this region.
177   if (PrevVPBB && /* A */
178       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
179         SingleHPred->getExitBasicBlock() == PrevVPBB &&
180         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
181       !(Replica && getPredecessors().empty())) {       /* C */
182     NewBB = createEmptyBasicBlock(State->CFG);
183     State->Builder.SetInsertPoint(NewBB);
184     // Temporarily terminate with unreachable until CFG is rewired.
185     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
186     State->Builder.SetInsertPoint(Terminator);
187     // Register NewBB in its loop. In innermost loops its the same for all BB's.
188     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
189     L->addBasicBlockToLoop(NewBB, *State->LI);
190     State->CFG.PrevBB = NewBB;
191   }
192 
193   // 2. Fill the IR basic block with IR instructions.
194   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
195                     << " in BB:" << NewBB->getName() << '\n');
196 
197   State->CFG.VPBB2IRBB[this] = NewBB;
198   State->CFG.PrevVPBB = this;
199 
200   for (VPRecipeBase &Recipe : Recipes)
201     Recipe.execute(*State);
202 
203   VPValue *CBV;
204   if (EnableVPlanNativePath && (CBV = getCondBit())) {
205     Value *IRCBV = CBV->getUnderlyingValue();
206     assert(IRCBV && "Unexpected null underlying value for condition bit");
207 
208     // Condition bit value in a VPBasicBlock is used as the branch selector. In
209     // the VPlan-native path case, since all branches are uniform we generate a
210     // branch instruction using the condition value from vector lane 0 and dummy
211     // successors. The successors are fixed later when the successor blocks are
212     // visited.
213     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
214     NewCond = State->Builder.CreateExtractElement(NewCond,
215                                                   State->Builder.getInt32(0));
216 
217     // Replace the temporary unreachable terminator with the new conditional
218     // branch.
219     auto *CurrentTerminator = NewBB->getTerminator();
220     assert(isa<UnreachableInst>(CurrentTerminator) &&
221            "Expected to replace unreachable terminator with conditional "
222            "branch.");
223     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
224     CondBr->setSuccessor(0, nullptr);
225     ReplaceInstWithInst(CurrentTerminator, CondBr);
226   }
227 
228   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
229 }
230 
231 void VPRegionBlock::execute(VPTransformState *State) {
232   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
233 
234   if (!isReplicator()) {
235     // Visit the VPBlocks connected to "this", starting from it.
236     for (VPBlockBase *Block : RPOT) {
237       if (EnableVPlanNativePath) {
238         // The inner loop vectorization path does not represent loop preheader
239         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
240         // vectorizing loop preheader block. In future, we may replace this
241         // check with the check for loop preheader.
242         if (Block->getNumPredecessors() == 0)
243           continue;
244 
245         // Skip vectorizing loop exit block. In future, we may replace this
246         // check with the check for loop exit.
247         if (Block->getNumSuccessors() == 0)
248           continue;
249       }
250 
251       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
252       Block->execute(State);
253     }
254     return;
255   }
256 
257   assert(!State->Instance && "Replicating a Region with non-null instance.");
258 
259   // Enter replicating mode.
260   State->Instance = {0, 0};
261 
262   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
263     State->Instance->Part = Part;
264     for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
265       State->Instance->Lane = Lane;
266       // Visit the VPBlocks connected to \p this, starting from it.
267       for (VPBlockBase *Block : RPOT) {
268         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
269         Block->execute(State);
270       }
271     }
272   }
273 
274   // Exit replicating mode.
275   State->Instance.reset();
276 }
277 
278 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
279   Parent = InsertPos->getParent();
280   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
281 }
282 
283 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
284   return getParent()->getRecipeList().erase(getIterator());
285 }
286 
287 void VPInstruction::generateInstruction(VPTransformState &State,
288                                         unsigned Part) {
289   IRBuilder<> &Builder = State.Builder;
290 
291   if (Instruction::isBinaryOp(getOpcode())) {
292     Value *A = State.get(getOperand(0), Part);
293     Value *B = State.get(getOperand(1), Part);
294     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
295     State.set(this, V, Part);
296     return;
297   }
298 
299   switch (getOpcode()) {
300   case VPInstruction::Not: {
301     Value *A = State.get(getOperand(0), Part);
302     Value *V = Builder.CreateNot(A);
303     State.set(this, V, Part);
304     break;
305   }
306   case VPInstruction::ICmpULE: {
307     Value *IV = State.get(getOperand(0), Part);
308     Value *TC = State.get(getOperand(1), Part);
309     Value *V = Builder.CreateICmpULE(IV, TC);
310     State.set(this, V, Part);
311     break;
312   }
313   default:
314     llvm_unreachable("Unsupported opcode for instruction");
315   }
316 }
317 
318 void VPInstruction::execute(VPTransformState &State) {
319   assert(!State.Instance && "VPInstruction executing an Instance");
320   for (unsigned Part = 0; Part < State.UF; ++Part)
321     generateInstruction(State, Part);
322 }
323 
324 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const {
325   O << " +\n" << Indent << "\"EMIT ";
326   print(O);
327   O << "\\l\"";
328 }
329 
330 void VPInstruction::print(raw_ostream &O) const {
331   printAsOperand(O);
332   O << " = ";
333 
334   switch (getOpcode()) {
335   case VPInstruction::Not:
336     O << "not";
337     break;
338   case VPInstruction::ICmpULE:
339     O << "icmp ule";
340     break;
341   case VPInstruction::SLPLoad:
342     O << "combined load";
343     break;
344   case VPInstruction::SLPStore:
345     O << "combined store";
346     break;
347   default:
348     O << Instruction::getOpcodeName(getOpcode());
349   }
350 
351   for (const VPValue *Operand : operands()) {
352     O << " ";
353     Operand->printAsOperand(O);
354   }
355 }
356 
357 /// Generate the code inside the body of the vectorized loop. Assumes a single
358 /// LoopVectorBody basic-block was created for this. Introduce additional
359 /// basic-blocks as needed, and fill them all.
360 void VPlan::execute(VPTransformState *State) {
361   // -1. Check if the backedge taken count is needed, and if so build it.
362   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
363     Value *TC = State->TripCount;
364     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
365     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
366                                    "trip.count.minus.1");
367     Value2VPValue[TCMO] = BackedgeTakenCount;
368   }
369 
370   // 0. Set the reverse mapping from VPValues to Values for code generation.
371   for (auto &Entry : Value2VPValue)
372     State->VPValue2Value[Entry.second] = Entry.first;
373 
374   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
375   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
376   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
377   BasicBlock *VectorLatchBB = VectorHeaderBB;
378 
379   // 1. Make room to generate basic-blocks inside loop body if needed.
380   VectorLatchBB = VectorHeaderBB->splitBasicBlock(
381       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
382   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
383   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
384   // Remove the edge between Header and Latch to allow other connections.
385   // Temporarily terminate with unreachable until CFG is rewired.
386   // Note: this asserts the generated code's assumption that
387   // getFirstInsertionPt() can be dereferenced into an Instruction.
388   VectorHeaderBB->getTerminator()->eraseFromParent();
389   State->Builder.SetInsertPoint(VectorHeaderBB);
390   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
391   State->Builder.SetInsertPoint(Terminator);
392 
393   // 2. Generate code in loop body.
394   State->CFG.PrevVPBB = nullptr;
395   State->CFG.PrevBB = VectorHeaderBB;
396   State->CFG.LastBB = VectorLatchBB;
397 
398   for (VPBlockBase *Block : depth_first(Entry))
399     Block->execute(State);
400 
401   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
402   // VPBB's successors.
403   for (auto VPBB : State->CFG.VPBBsToFix) {
404     assert(EnableVPlanNativePath &&
405            "Unexpected VPBBsToFix in non VPlan-native path");
406     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
407     assert(BB && "Unexpected null basic block for VPBB");
408 
409     unsigned Idx = 0;
410     auto *BBTerminator = BB->getTerminator();
411 
412     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
413       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
414       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
415       ++Idx;
416     }
417   }
418 
419   // 3. Merge the temporary latch created with the last basic-block filled.
420   BasicBlock *LastBB = State->CFG.PrevBB;
421   // Connect LastBB to VectorLatchBB to facilitate their merge.
422   assert((EnableVPlanNativePath ||
423           isa<UnreachableInst>(LastBB->getTerminator())) &&
424          "Expected InnerLoop VPlan CFG to terminate with unreachable");
425   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
426          "Expected VPlan CFG to terminate with branch in NativePath");
427   LastBB->getTerminator()->eraseFromParent();
428   BranchInst::Create(VectorLatchBB, LastBB);
429 
430   // Merge LastBB with Latch.
431   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
432   (void)Merged;
433   assert(Merged && "Could not merge last basic block with latch.");
434   VectorLatchBB = LastBB;
435 
436   // We do not attempt to preserve DT for outer loop vectorization currently.
437   if (!EnableVPlanNativePath)
438     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB);
439 }
440 
441 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
442                                 BasicBlock *LoopLatchBB) {
443   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
444   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
445   DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB);
446   // The vector body may be more than a single basic-block by this point.
447   // Update the dominator tree information inside the vector body by propagating
448   // it from header to latch, expecting only triangular control-flow, if any.
449   BasicBlock *PostDomSucc = nullptr;
450   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
451     // Get the list of successors of this block.
452     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
453     assert(Succs.size() <= 2 &&
454            "Basic block in vector loop has more than 2 successors.");
455     PostDomSucc = Succs[0];
456     if (Succs.size() == 1) {
457       assert(PostDomSucc->getSinglePredecessor() &&
458              "PostDom successor has more than one predecessor.");
459       DT->addNewBlock(PostDomSucc, BB);
460       continue;
461     }
462     BasicBlock *InterimSucc = Succs[1];
463     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
464       PostDomSucc = Succs[1];
465       InterimSucc = Succs[0];
466     }
467     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
468            "One successor of a basic block does not lead to the other.");
469     assert(InterimSucc->getSinglePredecessor() &&
470            "Interim successor has more than one predecessor.");
471     assert(pred_size(PostDomSucc) == 2 &&
472            "PostDom successor has more than two predecessors.");
473     DT->addNewBlock(InterimSucc, BB);
474     DT->addNewBlock(PostDomSucc, BB);
475   }
476 }
477 
478 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
479   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
480          Twine(getOrCreateBID(Block));
481 }
482 
483 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
484   const std::string &Name = Block->getName();
485   if (!Name.empty())
486     return Name;
487   return "VPB" + Twine(getOrCreateBID(Block));
488 }
489 
490 void VPlanPrinter::dump() {
491   Depth = 1;
492   bumpIndent(0);
493   OS << "digraph VPlan {\n";
494   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
495   if (!Plan.getName().empty())
496     OS << "\\n" << DOT::EscapeString(Plan.getName());
497   if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) {
498     OS << ", where:";
499     if (Plan.BackedgeTakenCount)
500       OS << "\\n"
501          << *Plan.getOrCreateBackedgeTakenCount() << " := BackedgeTakenCount";
502     for (auto Entry : Plan.Value2VPValue) {
503       OS << "\\n" << *Entry.second;
504       OS << DOT::EscapeString(" := ");
505       Entry.first->printAsOperand(OS, false);
506     }
507   }
508   OS << "\"]\n";
509   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
510   OS << "edge [fontname=Courier, fontsize=30]\n";
511   OS << "compound=true\n";
512 
513   for (VPBlockBase *Block : depth_first(Plan.getEntry()))
514     dumpBlock(Block);
515 
516   OS << "}\n";
517 }
518 
519 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
520   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
521     dumpBasicBlock(BasicBlock);
522   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
523     dumpRegion(Region);
524   else
525     llvm_unreachable("Unsupported kind of VPBlock.");
526 }
527 
528 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
529                             bool Hidden, const Twine &Label) {
530   // Due to "dot" we print an edge between two regions as an edge between the
531   // exit basic block and the entry basic of the respective regions.
532   const VPBlockBase *Tail = From->getExitBasicBlock();
533   const VPBlockBase *Head = To->getEntryBasicBlock();
534   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
535   OS << " [ label=\"" << Label << '\"';
536   if (Tail != From)
537     OS << " ltail=" << getUID(From);
538   if (Head != To)
539     OS << " lhead=" << getUID(To);
540   if (Hidden)
541     OS << "; splines=none";
542   OS << "]\n";
543 }
544 
545 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
546   auto &Successors = Block->getSuccessors();
547   if (Successors.size() == 1)
548     drawEdge(Block, Successors.front(), false, "");
549   else if (Successors.size() == 2) {
550     drawEdge(Block, Successors.front(), false, "T");
551     drawEdge(Block, Successors.back(), false, "F");
552   } else {
553     unsigned SuccessorNumber = 0;
554     for (auto *Successor : Successors)
555       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
556   }
557 }
558 
559 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
560   OS << Indent << getUID(BasicBlock) << " [label =\n";
561   bumpIndent(1);
562   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
563   bumpIndent(1);
564   for (const VPRecipeBase &Recipe : *BasicBlock)
565     Recipe.print(OS, Indent);
566 
567   // Dump the condition bit.
568   const VPValue *CBV = BasicBlock->getCondBit();
569   if (CBV) {
570     OS << " +\n" << Indent << " \"CondBit: ";
571     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
572       CBI->printAsOperand(OS);
573       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
574     } else {
575       CBV->printAsOperand(OS);
576       OS << "\"";
577     }
578   }
579 
580   bumpIndent(-2);
581   OS << "\n" << Indent << "]\n";
582   dumpEdges(BasicBlock);
583 }
584 
585 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
586   OS << Indent << "subgraph " << getUID(Region) << " {\n";
587   bumpIndent(1);
588   OS << Indent << "fontname=Courier\n"
589      << Indent << "label=\""
590      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
591      << DOT::EscapeString(Region->getName()) << "\"\n";
592   // Dump the blocks of the region.
593   assert(Region->getEntry() && "Region contains no inner blocks.");
594   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
595     dumpBlock(Block);
596   bumpIndent(-1);
597   OS << Indent << "}\n";
598   dumpEdges(Region);
599 }
600 
601 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
602   std::string IngredientString;
603   raw_string_ostream RSO(IngredientString);
604   if (auto *Inst = dyn_cast<Instruction>(V)) {
605     if (!Inst->getType()->isVoidTy()) {
606       Inst->printAsOperand(RSO, false);
607       RSO << " = ";
608     }
609     RSO << Inst->getOpcodeName() << " ";
610     unsigned E = Inst->getNumOperands();
611     if (E > 0) {
612       Inst->getOperand(0)->printAsOperand(RSO, false);
613       for (unsigned I = 1; I < E; ++I)
614         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
615     }
616   } else // !Inst
617     V->printAsOperand(RSO, false);
618   RSO.flush();
619   O << DOT::EscapeString(IngredientString);
620 }
621 
622 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const {
623   O << " +\n" << Indent << "\"WIDEN\\l\"";
624   for (auto &Instr : make_range(Begin, End))
625     O << " +\n" << Indent << "\"  " << VPlanIngredient(&Instr) << "\\l\"";
626 }
627 
628 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O,
629                                           const Twine &Indent) const {
630   O << " +\n" << Indent << "\"WIDEN-INDUCTION";
631   if (Trunc) {
632     O << "\\l\"";
633     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
634     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc) << "\\l\"";
635   } else
636     O << " " << VPlanIngredient(IV) << "\\l\"";
637 }
638 
639 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
640   O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\"";
641 }
642 
643 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const {
644   O << " +\n" << Indent << "\"BLEND ";
645   Phi->printAsOperand(O, false);
646   O << " =";
647   if (!User) {
648     // Not a User of any mask: not really blending, this is a
649     // single-predecessor phi.
650     O << " ";
651     Phi->getIncomingValue(0)->printAsOperand(O, false);
652   } else {
653     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
654       O << " ";
655       Phi->getIncomingValue(I)->printAsOperand(O, false);
656       O << "/";
657       User->getOperand(I)->printAsOperand(O);
658     }
659   }
660   O << "\\l\"";
661 }
662 
663 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const {
664   O << " +\n"
665     << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
666     << VPlanIngredient(Ingredient);
667   if (AlsoPack)
668     O << " (S->V)";
669   O << "\\l\"";
670 }
671 
672 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
673   O << " +\n"
674     << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst)
675     << "\\l\"";
676 }
677 
678 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O,
679                                            const Twine &Indent) const {
680   O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr);
681   if (User) {
682     O << ", ";
683     User->getOperand(0)->printAsOperand(O);
684   }
685   O << "\\l\"";
686 }
687 
688 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
689 
690 void VPValue::replaceAllUsesWith(VPValue *New) {
691   for (VPUser *User : users())
692     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
693       if (User->getOperand(I) == this)
694         User->setOperand(I, New);
695 }
696 
697 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
698                                           Old2NewTy &Old2New,
699                                           InterleavedAccessInfo &IAI) {
700   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
701   for (VPBlockBase *Base : RPOT) {
702     visitBlock(Base, Old2New, IAI);
703   }
704 }
705 
706 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
707                                          InterleavedAccessInfo &IAI) {
708   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
709     for (VPRecipeBase &VPI : *VPBB) {
710       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
711       auto *VPInst = cast<VPInstruction>(&VPI);
712       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
713       auto *IG = IAI.getInterleaveGroup(Inst);
714       if (!IG)
715         continue;
716 
717       auto NewIGIter = Old2New.find(IG);
718       if (NewIGIter == Old2New.end())
719         Old2New[IG] = new InterleaveGroup<VPInstruction>(
720             IG->getFactor(), IG->isReverse(), IG->getAlignment());
721 
722       if (Inst == IG->getInsertPos())
723         Old2New[IG]->setInsertPos(VPInst);
724 
725       InterleaveGroupMap[VPInst] = Old2New[IG];
726       InterleaveGroupMap[VPInst]->insertMember(
727           VPInst, IG->getIndex(Inst),
728           IG->isReverse() ? (-1) * int(IG->getFactor()) : IG->getFactor());
729     }
730   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
731     visitRegion(Region, Old2New, IAI);
732   else
733     llvm_unreachable("Unsupported kind of VPBlock.");
734 }
735 
736 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
737                                                  InterleavedAccessInfo &IAI) {
738   Old2NewTy Old2New;
739   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
740 }
741