1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 void VPValue::dump() const { 67 const VPInstruction *Instr = dyn_cast<VPInstruction>(this); 68 VPSlotTracker SlotTracker( 69 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 70 print(dbgs(), SlotTracker); 71 dbgs() << "\n"; 72 } 73 74 void VPRecipeBase::dump() const { 75 VPSlotTracker SlotTracker(nullptr); 76 print(dbgs(), "", SlotTracker); 77 dbgs() << "\n"; 78 } 79 80 VPUser *VPRecipeBase::toVPUser() { 81 if (auto *U = dyn_cast<VPInstruction>(this)) 82 return U; 83 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 84 return U; 85 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 86 return U; 87 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 88 return U; 89 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 90 return U; 91 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 92 return U; 93 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 94 return U; 95 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 96 return U; 97 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 98 return U; 99 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 100 return U; 101 return nullptr; 102 } 103 104 VPValue *VPRecipeBase::toVPValue() { 105 if (auto *V = dyn_cast<VPInstruction>(this)) 106 return V; 107 if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 108 return V; 109 return nullptr; 110 } 111 112 const VPValue *VPRecipeBase::toVPValue() const { 113 if (auto *V = dyn_cast<VPInstruction>(this)) 114 return V; 115 if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 116 return V; 117 return nullptr; 118 } 119 120 // Get the top-most entry block of \p Start. This is the entry block of the 121 // containing VPlan. This function is templated to support both const and non-const blocks 122 template <typename T> static T *getPlanEntry(T *Start) { 123 T *Next = Start; 124 T *Current = Start; 125 while ((Next = Next->getParent())) 126 Current = Next; 127 128 SmallSetVector<T *, 8> WorkList; 129 WorkList.insert(Current); 130 131 for (unsigned i = 0; i < WorkList.size(); i++) { 132 T *Current = WorkList[i]; 133 if (Current->getNumPredecessors() == 0) 134 return Current; 135 auto &Predecessors = Current->getPredecessors(); 136 WorkList.insert(Predecessors.begin(), Predecessors.end()); 137 } 138 139 llvm_unreachable("VPlan without any entry node without predecessors"); 140 } 141 142 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 143 144 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 145 146 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 147 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 148 const VPBlockBase *Block = this; 149 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 155 VPBlockBase *Block = this; 156 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 157 Block = Region->getEntry(); 158 return cast<VPBasicBlock>(Block); 159 } 160 161 void VPBlockBase::setPlan(VPlan *ParentPlan) { 162 assert(ParentPlan->getEntry() == this && 163 "Can only set plan on its entry block."); 164 Plan = ParentPlan; 165 } 166 167 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 168 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 169 const VPBlockBase *Block = this; 170 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 176 VPBlockBase *Block = this; 177 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 178 Block = Region->getExit(); 179 return cast<VPBasicBlock>(Block); 180 } 181 182 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 183 if (!Successors.empty() || !Parent) 184 return this; 185 assert(Parent->getExit() == this && 186 "Block w/o successors not the exit of its parent."); 187 return Parent->getEnclosingBlockWithSuccessors(); 188 } 189 190 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 191 if (!Predecessors.empty() || !Parent) 192 return this; 193 assert(Parent->getEntry() == this && 194 "Block w/o predecessors not the entry of its parent."); 195 return Parent->getEnclosingBlockWithPredecessors(); 196 } 197 198 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 199 SmallVector<VPBlockBase *, 8> Blocks; 200 201 VPValue DummyValue; 202 for (VPBlockBase *Block : depth_first(Entry)) { 203 // Drop all references in VPBasicBlocks and replace all uses with 204 // DummyValue. 205 if (auto *VPBB = dyn_cast<VPBasicBlock>(Block)) 206 VPBB->dropAllReferences(&DummyValue); 207 Blocks.push_back(Block); 208 } 209 210 for (VPBlockBase *Block : Blocks) 211 delete Block; 212 } 213 214 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 215 iterator It = begin(); 216 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 217 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 218 isa<VPPredInstPHIRecipe>(&*It) || 219 isa<VPWidenCanonicalIVRecipe>(&*It))) 220 It++; 221 return It; 222 } 223 224 BasicBlock * 225 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 226 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 227 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 228 BasicBlock *PrevBB = CFG.PrevBB; 229 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 230 PrevBB->getParent(), CFG.LastBB); 231 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 232 233 // Hook up the new basic block to its predecessors. 234 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 235 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 236 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 237 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 238 239 // In outer loop vectorization scenario, the predecessor BBlock may not yet 240 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 241 // vectorization. We do not encounter this case in inner loop vectorization 242 // as we start out by building a loop skeleton with the vector loop header 243 // and latch blocks. As a result, we never enter this function for the 244 // header block in the non VPlan-native path. 245 if (!PredBB) { 246 assert(EnableVPlanNativePath && 247 "Unexpected null predecessor in non VPlan-native path"); 248 CFG.VPBBsToFix.push_back(PredVPBB); 249 continue; 250 } 251 252 assert(PredBB && "Predecessor basic-block not found building successor."); 253 auto *PredBBTerminator = PredBB->getTerminator(); 254 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 255 if (isa<UnreachableInst>(PredBBTerminator)) { 256 assert(PredVPSuccessors.size() == 1 && 257 "Predecessor ending w/o branch must have single successor."); 258 PredBBTerminator->eraseFromParent(); 259 BranchInst::Create(NewBB, PredBB); 260 } else { 261 assert(PredVPSuccessors.size() == 2 && 262 "Predecessor ending with branch must have two successors."); 263 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 264 assert(!PredBBTerminator->getSuccessor(idx) && 265 "Trying to reset an existing successor block."); 266 PredBBTerminator->setSuccessor(idx, NewBB); 267 } 268 } 269 return NewBB; 270 } 271 272 void VPBasicBlock::execute(VPTransformState *State) { 273 bool Replica = State->Instance && 274 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 275 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 276 VPBlockBase *SingleHPred = nullptr; 277 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 278 279 // 1. Create an IR basic block, or reuse the last one if possible. 280 // The last IR basic block is reused, as an optimization, in three cases: 281 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 282 // B. when the current VPBB has a single (hierarchical) predecessor which 283 // is PrevVPBB and the latter has a single (hierarchical) successor; and 284 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 285 // is the exit of this region from a previous instance, or the predecessor 286 // of this region. 287 if (PrevVPBB && /* A */ 288 !((SingleHPred = getSingleHierarchicalPredecessor()) && 289 SingleHPred->getExitBasicBlock() == PrevVPBB && 290 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 291 !(Replica && getPredecessors().empty())) { /* C */ 292 NewBB = createEmptyBasicBlock(State->CFG); 293 State->Builder.SetInsertPoint(NewBB); 294 // Temporarily terminate with unreachable until CFG is rewired. 295 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 296 State->Builder.SetInsertPoint(Terminator); 297 // Register NewBB in its loop. In innermost loops its the same for all BB's. 298 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 299 L->addBasicBlockToLoop(NewBB, *State->LI); 300 State->CFG.PrevBB = NewBB; 301 } 302 303 // 2. Fill the IR basic block with IR instructions. 304 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 305 << " in BB:" << NewBB->getName() << '\n'); 306 307 State->CFG.VPBB2IRBB[this] = NewBB; 308 State->CFG.PrevVPBB = this; 309 310 for (VPRecipeBase &Recipe : Recipes) 311 Recipe.execute(*State); 312 313 VPValue *CBV; 314 if (EnableVPlanNativePath && (CBV = getCondBit())) { 315 Value *IRCBV = CBV->getUnderlyingValue(); 316 assert(IRCBV && "Unexpected null underlying value for condition bit"); 317 318 // Condition bit value in a VPBasicBlock is used as the branch selector. In 319 // the VPlan-native path case, since all branches are uniform we generate a 320 // branch instruction using the condition value from vector lane 0 and dummy 321 // successors. The successors are fixed later when the successor blocks are 322 // visited. 323 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 324 NewCond = State->Builder.CreateExtractElement(NewCond, 325 State->Builder.getInt32(0)); 326 327 // Replace the temporary unreachable terminator with the new conditional 328 // branch. 329 auto *CurrentTerminator = NewBB->getTerminator(); 330 assert(isa<UnreachableInst>(CurrentTerminator) && 331 "Expected to replace unreachable terminator with conditional " 332 "branch."); 333 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 334 CondBr->setSuccessor(0, nullptr); 335 ReplaceInstWithInst(CurrentTerminator, CondBr); 336 } 337 338 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 339 } 340 341 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 342 for (VPRecipeBase &R : Recipes) { 343 if (auto *VPV = R.toVPValue()) 344 VPV->replaceAllUsesWith(NewValue); 345 346 if (auto *User = R.toVPUser()) 347 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 348 User->setOperand(I, NewValue); 349 } 350 } 351 352 void VPRegionBlock::execute(VPTransformState *State) { 353 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 354 355 if (!isReplicator()) { 356 // Visit the VPBlocks connected to "this", starting from it. 357 for (VPBlockBase *Block : RPOT) { 358 if (EnableVPlanNativePath) { 359 // The inner loop vectorization path does not represent loop preheader 360 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 361 // vectorizing loop preheader block. In future, we may replace this 362 // check with the check for loop preheader. 363 if (Block->getNumPredecessors() == 0) 364 continue; 365 366 // Skip vectorizing loop exit block. In future, we may replace this 367 // check with the check for loop exit. 368 if (Block->getNumSuccessors() == 0) 369 continue; 370 } 371 372 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 373 Block->execute(State); 374 } 375 return; 376 } 377 378 assert(!State->Instance && "Replicating a Region with non-null instance."); 379 380 // Enter replicating mode. 381 State->Instance = {0, 0}; 382 383 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 384 State->Instance->Part = Part; 385 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 386 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 387 ++Lane) { 388 State->Instance->Lane = Lane; 389 // Visit the VPBlocks connected to \p this, starting from it. 390 for (VPBlockBase *Block : RPOT) { 391 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 392 Block->execute(State); 393 } 394 } 395 } 396 397 // Exit replicating mode. 398 State->Instance.reset(); 399 } 400 401 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 402 assert(!Parent && "Recipe already in some VPBasicBlock"); 403 assert(InsertPos->getParent() && 404 "Insertion position not in any VPBasicBlock"); 405 Parent = InsertPos->getParent(); 406 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 407 } 408 409 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 410 assert(!Parent && "Recipe already in some VPBasicBlock"); 411 assert(InsertPos->getParent() && 412 "Insertion position not in any VPBasicBlock"); 413 Parent = InsertPos->getParent(); 414 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 415 } 416 417 void VPRecipeBase::removeFromParent() { 418 assert(getParent() && "Recipe not in any VPBasicBlock"); 419 getParent()->getRecipeList().remove(getIterator()); 420 Parent = nullptr; 421 } 422 423 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 424 assert(getParent() && "Recipe not in any VPBasicBlock"); 425 return getParent()->getRecipeList().erase(getIterator()); 426 } 427 428 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 429 removeFromParent(); 430 insertAfter(InsertPos); 431 } 432 433 void VPInstruction::generateInstruction(VPTransformState &State, 434 unsigned Part) { 435 IRBuilder<> &Builder = State.Builder; 436 437 if (Instruction::isBinaryOp(getOpcode())) { 438 Value *A = State.get(getOperand(0), Part); 439 Value *B = State.get(getOperand(1), Part); 440 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 441 State.set(this, V, Part); 442 return; 443 } 444 445 switch (getOpcode()) { 446 case VPInstruction::Not: { 447 Value *A = State.get(getOperand(0), Part); 448 Value *V = Builder.CreateNot(A); 449 State.set(this, V, Part); 450 break; 451 } 452 case VPInstruction::ICmpULE: { 453 Value *IV = State.get(getOperand(0), Part); 454 Value *TC = State.get(getOperand(1), Part); 455 Value *V = Builder.CreateICmpULE(IV, TC); 456 State.set(this, V, Part); 457 break; 458 } 459 case Instruction::Select: { 460 Value *Cond = State.get(getOperand(0), Part); 461 Value *Op1 = State.get(getOperand(1), Part); 462 Value *Op2 = State.get(getOperand(2), Part); 463 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 464 State.set(this, V, Part); 465 break; 466 } 467 case VPInstruction::ActiveLaneMask: { 468 // Get first lane of vector induction variable. 469 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 470 // Get the original loop tripcount. 471 Value *ScalarTC = State.TripCount; 472 473 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 474 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 475 Instruction *Call = Builder.CreateIntrinsic( 476 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 477 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 478 State.set(this, Call, Part); 479 break; 480 } 481 default: 482 llvm_unreachable("Unsupported opcode for instruction"); 483 } 484 } 485 486 void VPInstruction::execute(VPTransformState &State) { 487 assert(!State.Instance && "VPInstruction executing an Instance"); 488 for (unsigned Part = 0; Part < State.UF; ++Part) 489 generateInstruction(State, Part); 490 } 491 492 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 493 VPSlotTracker &SlotTracker) const { 494 O << "\"EMIT "; 495 print(O, SlotTracker); 496 } 497 498 void VPInstruction::print(raw_ostream &O) const { 499 VPSlotTracker SlotTracker(getParent()->getPlan()); 500 print(O, SlotTracker); 501 } 502 503 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 504 if (hasResult()) { 505 printAsOperand(O, SlotTracker); 506 O << " = "; 507 } 508 509 switch (getOpcode()) { 510 case VPInstruction::Not: 511 O << "not"; 512 break; 513 case VPInstruction::ICmpULE: 514 O << "icmp ule"; 515 break; 516 case VPInstruction::SLPLoad: 517 O << "combined load"; 518 break; 519 case VPInstruction::SLPStore: 520 O << "combined store"; 521 break; 522 case VPInstruction::ActiveLaneMask: 523 O << "active lane mask"; 524 break; 525 526 default: 527 O << Instruction::getOpcodeName(getOpcode()); 528 } 529 530 for (const VPValue *Operand : operands()) { 531 O << " "; 532 Operand->printAsOperand(O, SlotTracker); 533 } 534 } 535 536 /// Generate the code inside the body of the vectorized loop. Assumes a single 537 /// LoopVectorBody basic-block was created for this. Introduce additional 538 /// basic-blocks as needed, and fill them all. 539 void VPlan::execute(VPTransformState *State) { 540 // -1. Check if the backedge taken count is needed, and if so build it. 541 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 542 Value *TC = State->TripCount; 543 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 544 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 545 "trip.count.minus.1"); 546 auto VF = State->VF; 547 Value *VTCMO = 548 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 549 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 550 State->set(BackedgeTakenCount, VTCMO, Part); 551 } 552 553 // 0. Set the reverse mapping from VPValues to Values for code generation. 554 for (auto &Entry : Value2VPValue) 555 State->VPValue2Value[Entry.second] = Entry.first; 556 557 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 558 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 559 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 560 561 // 1. Make room to generate basic-blocks inside loop body if needed. 562 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 563 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 564 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 565 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 566 // Remove the edge between Header and Latch to allow other connections. 567 // Temporarily terminate with unreachable until CFG is rewired. 568 // Note: this asserts the generated code's assumption that 569 // getFirstInsertionPt() can be dereferenced into an Instruction. 570 VectorHeaderBB->getTerminator()->eraseFromParent(); 571 State->Builder.SetInsertPoint(VectorHeaderBB); 572 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 573 State->Builder.SetInsertPoint(Terminator); 574 575 // 2. Generate code in loop body. 576 State->CFG.PrevVPBB = nullptr; 577 State->CFG.PrevBB = VectorHeaderBB; 578 State->CFG.LastBB = VectorLatchBB; 579 580 for (VPBlockBase *Block : depth_first(Entry)) 581 Block->execute(State); 582 583 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 584 // VPBB's successors. 585 for (auto VPBB : State->CFG.VPBBsToFix) { 586 assert(EnableVPlanNativePath && 587 "Unexpected VPBBsToFix in non VPlan-native path"); 588 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 589 assert(BB && "Unexpected null basic block for VPBB"); 590 591 unsigned Idx = 0; 592 auto *BBTerminator = BB->getTerminator(); 593 594 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 595 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 596 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 597 ++Idx; 598 } 599 } 600 601 // 3. Merge the temporary latch created with the last basic-block filled. 602 BasicBlock *LastBB = State->CFG.PrevBB; 603 // Connect LastBB to VectorLatchBB to facilitate their merge. 604 assert((EnableVPlanNativePath || 605 isa<UnreachableInst>(LastBB->getTerminator())) && 606 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 607 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 608 "Expected VPlan CFG to terminate with branch in NativePath"); 609 LastBB->getTerminator()->eraseFromParent(); 610 BranchInst::Create(VectorLatchBB, LastBB); 611 612 // Merge LastBB with Latch. 613 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 614 (void)Merged; 615 assert(Merged && "Could not merge last basic block with latch."); 616 VectorLatchBB = LastBB; 617 618 // We do not attempt to preserve DT for outer loop vectorization currently. 619 if (!EnableVPlanNativePath) 620 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 621 L->getExitBlock()); 622 } 623 624 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 625 LLVM_DUMP_METHOD 626 void VPlan::dump() const { dbgs() << *this << '\n'; } 627 #endif 628 629 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 630 BasicBlock *LoopLatchBB, 631 BasicBlock *LoopExitBB) { 632 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 633 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 634 // The vector body may be more than a single basic-block by this point. 635 // Update the dominator tree information inside the vector body by propagating 636 // it from header to latch, expecting only triangular control-flow, if any. 637 BasicBlock *PostDomSucc = nullptr; 638 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 639 // Get the list of successors of this block. 640 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 641 assert(Succs.size() <= 2 && 642 "Basic block in vector loop has more than 2 successors."); 643 PostDomSucc = Succs[0]; 644 if (Succs.size() == 1) { 645 assert(PostDomSucc->getSinglePredecessor() && 646 "PostDom successor has more than one predecessor."); 647 DT->addNewBlock(PostDomSucc, BB); 648 continue; 649 } 650 BasicBlock *InterimSucc = Succs[1]; 651 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 652 PostDomSucc = Succs[1]; 653 InterimSucc = Succs[0]; 654 } 655 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 656 "One successor of a basic block does not lead to the other."); 657 assert(InterimSucc->getSinglePredecessor() && 658 "Interim successor has more than one predecessor."); 659 assert(PostDomSucc->hasNPredecessors(2) && 660 "PostDom successor has more than two predecessors."); 661 DT->addNewBlock(InterimSucc, BB); 662 DT->addNewBlock(PostDomSucc, BB); 663 } 664 // Latch block is a new dominator for the loop exit. 665 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 666 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 667 } 668 669 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 670 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 671 Twine(getOrCreateBID(Block)); 672 } 673 674 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 675 const std::string &Name = Block->getName(); 676 if (!Name.empty()) 677 return Name; 678 return "VPB" + Twine(getOrCreateBID(Block)); 679 } 680 681 void VPlanPrinter::dump() { 682 Depth = 1; 683 bumpIndent(0); 684 OS << "digraph VPlan {\n"; 685 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 686 if (!Plan.getName().empty()) 687 OS << "\\n" << DOT::EscapeString(Plan.getName()); 688 if (Plan.BackedgeTakenCount) { 689 OS << ", where:\\n"; 690 Plan.BackedgeTakenCount->print(OS, SlotTracker); 691 OS << " := BackedgeTakenCount"; 692 } 693 OS << "\"]\n"; 694 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 695 OS << "edge [fontname=Courier, fontsize=30]\n"; 696 OS << "compound=true\n"; 697 698 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 699 dumpBlock(Block); 700 701 OS << "}\n"; 702 } 703 704 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 705 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 706 dumpBasicBlock(BasicBlock); 707 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 708 dumpRegion(Region); 709 else 710 llvm_unreachable("Unsupported kind of VPBlock."); 711 } 712 713 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 714 bool Hidden, const Twine &Label) { 715 // Due to "dot" we print an edge between two regions as an edge between the 716 // exit basic block and the entry basic of the respective regions. 717 const VPBlockBase *Tail = From->getExitBasicBlock(); 718 const VPBlockBase *Head = To->getEntryBasicBlock(); 719 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 720 OS << " [ label=\"" << Label << '\"'; 721 if (Tail != From) 722 OS << " ltail=" << getUID(From); 723 if (Head != To) 724 OS << " lhead=" << getUID(To); 725 if (Hidden) 726 OS << "; splines=none"; 727 OS << "]\n"; 728 } 729 730 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 731 auto &Successors = Block->getSuccessors(); 732 if (Successors.size() == 1) 733 drawEdge(Block, Successors.front(), false, ""); 734 else if (Successors.size() == 2) { 735 drawEdge(Block, Successors.front(), false, "T"); 736 drawEdge(Block, Successors.back(), false, "F"); 737 } else { 738 unsigned SuccessorNumber = 0; 739 for (auto *Successor : Successors) 740 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 741 } 742 } 743 744 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 745 OS << Indent << getUID(BasicBlock) << " [label =\n"; 746 bumpIndent(1); 747 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 748 bumpIndent(1); 749 750 // Dump the block predicate. 751 const VPValue *Pred = BasicBlock->getPredicate(); 752 if (Pred) { 753 OS << " +\n" << Indent << " \"BlockPredicate: "; 754 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 755 PredI->printAsOperand(OS, SlotTracker); 756 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 757 << ")\\l\""; 758 } else 759 Pred->printAsOperand(OS, SlotTracker); 760 } 761 762 for (const VPRecipeBase &Recipe : *BasicBlock) { 763 OS << " +\n" << Indent; 764 Recipe.print(OS, Indent, SlotTracker); 765 OS << "\\l\""; 766 } 767 768 // Dump the condition bit. 769 const VPValue *CBV = BasicBlock->getCondBit(); 770 if (CBV) { 771 OS << " +\n" << Indent << " \"CondBit: "; 772 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 773 CBI->printAsOperand(OS, SlotTracker); 774 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 775 } else { 776 CBV->printAsOperand(OS, SlotTracker); 777 OS << "\""; 778 } 779 } 780 781 bumpIndent(-2); 782 OS << "\n" << Indent << "]\n"; 783 dumpEdges(BasicBlock); 784 } 785 786 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 787 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 788 bumpIndent(1); 789 OS << Indent << "fontname=Courier\n" 790 << Indent << "label=\"" 791 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 792 << DOT::EscapeString(Region->getName()) << "\"\n"; 793 // Dump the blocks of the region. 794 assert(Region->getEntry() && "Region contains no inner blocks."); 795 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 796 dumpBlock(Block); 797 bumpIndent(-1); 798 OS << Indent << "}\n"; 799 dumpEdges(Region); 800 } 801 802 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 803 std::string IngredientString; 804 raw_string_ostream RSO(IngredientString); 805 if (auto *Inst = dyn_cast<Instruction>(V)) { 806 if (!Inst->getType()->isVoidTy()) { 807 Inst->printAsOperand(RSO, false); 808 RSO << " = "; 809 } 810 RSO << Inst->getOpcodeName() << " "; 811 unsigned E = Inst->getNumOperands(); 812 if (E > 0) { 813 Inst->getOperand(0)->printAsOperand(RSO, false); 814 for (unsigned I = 1; I < E; ++I) 815 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 816 } 817 } else // !Inst 818 V->printAsOperand(RSO, false); 819 RSO.flush(); 820 O << DOT::EscapeString(IngredientString); 821 } 822 823 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 824 VPSlotTracker &SlotTracker) const { 825 O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient); 826 } 827 828 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 829 VPSlotTracker &SlotTracker) const { 830 O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) 831 << (InvariantCond ? " (condition is loop invariant)" : ""); 832 } 833 834 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 835 VPSlotTracker &SlotTracker) const { 836 O << "\"WIDEN\\l\""; 837 O << "\" " << VPlanIngredient(&Ingredient); 838 } 839 840 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 841 VPSlotTracker &SlotTracker) const { 842 O << "\"WIDEN-INDUCTION"; 843 if (Trunc) { 844 O << "\\l\""; 845 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 846 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 847 } else 848 O << " " << VPlanIngredient(IV); 849 } 850 851 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 852 VPSlotTracker &SlotTracker) const { 853 O << "\"WIDEN-GEP "; 854 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 855 size_t IndicesNumber = IsIndexLoopInvariant.size(); 856 for (size_t I = 0; I < IndicesNumber; ++I) 857 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 858 O << "\\l\""; 859 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); 860 } 861 862 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 863 VPSlotTracker &SlotTracker) const { 864 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 865 } 866 867 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 868 VPSlotTracker &SlotTracker) const { 869 O << "\"BLEND "; 870 Phi->printAsOperand(O, false); 871 O << " ="; 872 if (getNumIncomingValues() == 1) { 873 // Not a User of any mask: not really blending, this is a 874 // single-predecessor phi. 875 O << " "; 876 getIncomingValue(0)->printAsOperand(O, SlotTracker); 877 } else { 878 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 879 O << " "; 880 getIncomingValue(I)->printAsOperand(O, SlotTracker); 881 O << "/"; 882 getMask(I)->printAsOperand(O, SlotTracker); 883 } 884 } 885 } 886 887 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 888 VPSlotTracker &SlotTracker) const { 889 O << "\"REDUCE of" << *I << " as "; 890 ChainOp->printAsOperand(O, SlotTracker); 891 O << " + reduce("; 892 VecOp->printAsOperand(O, SlotTracker); 893 if (CondOp) { 894 O << ", "; 895 CondOp->printAsOperand(O, SlotTracker); 896 } 897 O << ")"; 898 } 899 900 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 901 VPSlotTracker &SlotTracker) const { 902 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 903 << VPlanIngredient(Ingredient); 904 if (AlsoPack) 905 O << " (S->V)"; 906 } 907 908 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 909 VPSlotTracker &SlotTracker) const { 910 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 911 } 912 913 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 914 VPSlotTracker &SlotTracker) const { 915 O << "\"WIDEN " 916 << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 917 918 printOperands(O, SlotTracker); 919 } 920 921 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 922 Value *CanonicalIV = State.CanonicalIV; 923 Type *STy = CanonicalIV->getType(); 924 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 925 ElementCount VF = State.VF; 926 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 927 Value *VStart = VF.isScalar() 928 ? CanonicalIV 929 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 930 CanonicalIV, "broadcast"); 931 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 932 SmallVector<Constant *, 8> Indices; 933 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 934 Indices.push_back( 935 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 936 // If VF == 1, there is only one iteration in the loop above, thus the 937 // element pushed back into Indices is ConstantInt::get(STy, Part) 938 Constant *VStep = 939 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 940 // Add the consecutive indices to the vector value. 941 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 942 State.set(getVPValue(), CanonicalVectorIV, Part); 943 } 944 } 945 946 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 947 VPSlotTracker &SlotTracker) const { 948 O << "\"EMIT "; 949 getVPValue()->printAsOperand(O, SlotTracker); 950 O << " = WIDEN-CANONICAL-INDUCTION"; 951 } 952 953 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 954 955 void VPValue::replaceAllUsesWith(VPValue *New) { 956 for (unsigned J = 0; J < getNumUsers();) { 957 VPUser *User = Users[J]; 958 unsigned NumUsers = getNumUsers(); 959 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 960 if (User->getOperand(I) == this) 961 User->setOperand(I, New); 962 // If a user got removed after updating the current user, the next user to 963 // update will be moved to the current position, so we only need to 964 // increment the index if the number of users did not change. 965 if (NumUsers == getNumUsers()) 966 J++; 967 } 968 } 969 970 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 971 if (const Value *UV = getUnderlyingValue()) { 972 OS << "ir<"; 973 UV->printAsOperand(OS, false); 974 OS << ">"; 975 return; 976 } 977 978 unsigned Slot = Tracker.getSlot(this); 979 if (Slot == unsigned(-1)) 980 OS << "<badref>"; 981 else 982 OS << "vp<%" << Tracker.getSlot(this) << ">"; 983 } 984 985 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 986 bool First = true; 987 for (VPValue *Op : operands()) { 988 if (!First) 989 O << ", "; 990 Op->printAsOperand(O, SlotTracker); 991 First = false; 992 } 993 } 994 995 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 996 Old2NewTy &Old2New, 997 InterleavedAccessInfo &IAI) { 998 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 999 for (VPBlockBase *Base : RPOT) { 1000 visitBlock(Base, Old2New, IAI); 1001 } 1002 } 1003 1004 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1005 InterleavedAccessInfo &IAI) { 1006 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1007 for (VPRecipeBase &VPI : *VPBB) { 1008 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1009 auto *VPInst = cast<VPInstruction>(&VPI); 1010 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1011 auto *IG = IAI.getInterleaveGroup(Inst); 1012 if (!IG) 1013 continue; 1014 1015 auto NewIGIter = Old2New.find(IG); 1016 if (NewIGIter == Old2New.end()) 1017 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1018 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1019 1020 if (Inst == IG->getInsertPos()) 1021 Old2New[IG]->setInsertPos(VPInst); 1022 1023 InterleaveGroupMap[VPInst] = Old2New[IG]; 1024 InterleaveGroupMap[VPInst]->insertMember( 1025 VPInst, IG->getIndex(Inst), 1026 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1027 : IG->getFactor())); 1028 } 1029 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1030 visitRegion(Region, Old2New, IAI); 1031 else 1032 llvm_unreachable("Unsupported kind of VPBlock."); 1033 } 1034 1035 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1036 InterleavedAccessInfo &IAI) { 1037 Old2NewTy Old2New; 1038 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1039 } 1040 1041 void VPSlotTracker::assignSlot(const VPValue *V) { 1042 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1043 const Value *UV = V->getUnderlyingValue(); 1044 if (UV) 1045 return; 1046 const auto *VPI = dyn_cast<VPInstruction>(V); 1047 if (VPI && !VPI->hasResult()) 1048 return; 1049 1050 Slots[V] = NextSlot++; 1051 } 1052 1053 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1054 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1055 assignSlots(Region); 1056 else 1057 assignSlots(cast<VPBasicBlock>(VPBB)); 1058 } 1059 1060 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1061 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1062 for (const VPBlockBase *Block : RPOT) 1063 assignSlots(Block); 1064 } 1065 1066 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1067 for (const VPRecipeBase &Recipe : *VPBB) { 1068 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 1069 assignSlot(VPI); 1070 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 1071 assignSlot(VPIV->getVPValue()); 1072 } 1073 } 1074 1075 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1076 1077 for (const VPValue *V : Plan.VPExternalDefs) 1078 assignSlot(V); 1079 1080 for (auto &E : Plan.Value2VPValue) 1081 if (!isa<VPInstruction>(E.second)) 1082 assignSlot(E.second); 1083 1084 for (const VPValue *V : Plan.VPCBVs) 1085 assignSlot(V); 1086 1087 if (Plan.BackedgeTakenCount) 1088 assignSlot(Plan.BackedgeTakenCount); 1089 1090 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1091 for (const VPBlockBase *Block : RPOT) 1092 assignSlots(Block); 1093 } 1094