1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V)) 53 Instr->print(OS); 54 else 55 V.printAsOperand(OS); 56 return OS; 57 } 58 59 // Get the top-most entry block of \p Start. This is the entry block of the 60 // containing VPlan. This function is templated to support both const and non-const blocks 61 template <typename T> static T *getPlanEntry(T *Start) { 62 T *Next = Start; 63 T *Current = Start; 64 while ((Next = Next->getParent())) 65 Current = Next; 66 67 SmallSetVector<T *, 8> WorkList; 68 WorkList.insert(Current); 69 70 for (unsigned i = 0; i < WorkList.size(); i++) { 71 T *Current = WorkList[i]; 72 if (Current->getNumPredecessors() == 0) 73 return Current; 74 auto &Predecessors = Current->getPredecessors(); 75 WorkList.insert(Predecessors.begin(), Predecessors.end()); 76 } 77 78 llvm_unreachable("VPlan without any entry node without predecessors"); 79 } 80 81 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 82 83 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 84 85 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 86 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 87 const VPBlockBase *Block = this; 88 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 89 Block = Region->getEntry(); 90 return cast<VPBasicBlock>(Block); 91 } 92 93 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 94 VPBlockBase *Block = this; 95 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 96 Block = Region->getEntry(); 97 return cast<VPBasicBlock>(Block); 98 } 99 100 void VPBlockBase::setPlan(VPlan *ParentPlan) { 101 assert(ParentPlan->getEntry() == this && 102 "Can only set plan on its entry block."); 103 Plan = ParentPlan; 104 } 105 106 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 107 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 108 const VPBlockBase *Block = this; 109 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 110 Block = Region->getExit(); 111 return cast<VPBasicBlock>(Block); 112 } 113 114 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 115 VPBlockBase *Block = this; 116 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 117 Block = Region->getExit(); 118 return cast<VPBasicBlock>(Block); 119 } 120 121 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 122 if (!Successors.empty() || !Parent) 123 return this; 124 assert(Parent->getExit() == this && 125 "Block w/o successors not the exit of its parent."); 126 return Parent->getEnclosingBlockWithSuccessors(); 127 } 128 129 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 130 if (!Predecessors.empty() || !Parent) 131 return this; 132 assert(Parent->getEntry() == this && 133 "Block w/o predecessors not the entry of its parent."); 134 return Parent->getEnclosingBlockWithPredecessors(); 135 } 136 137 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 138 SmallVector<VPBlockBase *, 8> Blocks; 139 for (VPBlockBase *Block : depth_first(Entry)) 140 Blocks.push_back(Block); 141 142 for (VPBlockBase *Block : Blocks) 143 delete Block; 144 } 145 146 BasicBlock * 147 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 148 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 149 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 150 BasicBlock *PrevBB = CFG.PrevBB; 151 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 152 PrevBB->getParent(), CFG.LastBB); 153 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 154 155 // Hook up the new basic block to its predecessors. 156 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 157 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 158 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 159 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 160 161 // In outer loop vectorization scenario, the predecessor BBlock may not yet 162 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 163 // vectorization. We do not encounter this case in inner loop vectorization 164 // as we start out by building a loop skeleton with the vector loop header 165 // and latch blocks. As a result, we never enter this function for the 166 // header block in the non VPlan-native path. 167 if (!PredBB) { 168 assert(EnableVPlanNativePath && 169 "Unexpected null predecessor in non VPlan-native path"); 170 CFG.VPBBsToFix.push_back(PredVPBB); 171 continue; 172 } 173 174 assert(PredBB && "Predecessor basic-block not found building successor."); 175 auto *PredBBTerminator = PredBB->getTerminator(); 176 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 177 if (isa<UnreachableInst>(PredBBTerminator)) { 178 assert(PredVPSuccessors.size() == 1 && 179 "Predecessor ending w/o branch must have single successor."); 180 PredBBTerminator->eraseFromParent(); 181 BranchInst::Create(NewBB, PredBB); 182 } else { 183 assert(PredVPSuccessors.size() == 2 && 184 "Predecessor ending with branch must have two successors."); 185 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 186 assert(!PredBBTerminator->getSuccessor(idx) && 187 "Trying to reset an existing successor block."); 188 PredBBTerminator->setSuccessor(idx, NewBB); 189 } 190 } 191 return NewBB; 192 } 193 194 void VPBasicBlock::execute(VPTransformState *State) { 195 bool Replica = State->Instance && 196 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 197 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 198 VPBlockBase *SingleHPred = nullptr; 199 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 200 201 // 1. Create an IR basic block, or reuse the last one if possible. 202 // The last IR basic block is reused, as an optimization, in three cases: 203 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 204 // B. when the current VPBB has a single (hierarchical) predecessor which 205 // is PrevVPBB and the latter has a single (hierarchical) successor; and 206 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 207 // is the exit of this region from a previous instance, or the predecessor 208 // of this region. 209 if (PrevVPBB && /* A */ 210 !((SingleHPred = getSingleHierarchicalPredecessor()) && 211 SingleHPred->getExitBasicBlock() == PrevVPBB && 212 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 213 !(Replica && getPredecessors().empty())) { /* C */ 214 NewBB = createEmptyBasicBlock(State->CFG); 215 State->Builder.SetInsertPoint(NewBB); 216 // Temporarily terminate with unreachable until CFG is rewired. 217 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 218 State->Builder.SetInsertPoint(Terminator); 219 // Register NewBB in its loop. In innermost loops its the same for all BB's. 220 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 221 L->addBasicBlockToLoop(NewBB, *State->LI); 222 State->CFG.PrevBB = NewBB; 223 } 224 225 // 2. Fill the IR basic block with IR instructions. 226 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 227 << " in BB:" << NewBB->getName() << '\n'); 228 229 State->CFG.VPBB2IRBB[this] = NewBB; 230 State->CFG.PrevVPBB = this; 231 232 for (VPRecipeBase &Recipe : Recipes) 233 Recipe.execute(*State); 234 235 VPValue *CBV; 236 if (EnableVPlanNativePath && (CBV = getCondBit())) { 237 Value *IRCBV = CBV->getUnderlyingValue(); 238 assert(IRCBV && "Unexpected null underlying value for condition bit"); 239 240 // Condition bit value in a VPBasicBlock is used as the branch selector. In 241 // the VPlan-native path case, since all branches are uniform we generate a 242 // branch instruction using the condition value from vector lane 0 and dummy 243 // successors. The successors are fixed later when the successor blocks are 244 // visited. 245 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 246 NewCond = State->Builder.CreateExtractElement(NewCond, 247 State->Builder.getInt32(0)); 248 249 // Replace the temporary unreachable terminator with the new conditional 250 // branch. 251 auto *CurrentTerminator = NewBB->getTerminator(); 252 assert(isa<UnreachableInst>(CurrentTerminator) && 253 "Expected to replace unreachable terminator with conditional " 254 "branch."); 255 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 256 CondBr->setSuccessor(0, nullptr); 257 ReplaceInstWithInst(CurrentTerminator, CondBr); 258 } 259 260 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 261 } 262 263 void VPRegionBlock::execute(VPTransformState *State) { 264 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 265 266 if (!isReplicator()) { 267 // Visit the VPBlocks connected to "this", starting from it. 268 for (VPBlockBase *Block : RPOT) { 269 if (EnableVPlanNativePath) { 270 // The inner loop vectorization path does not represent loop preheader 271 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 272 // vectorizing loop preheader block. In future, we may replace this 273 // check with the check for loop preheader. 274 if (Block->getNumPredecessors() == 0) 275 continue; 276 277 // Skip vectorizing loop exit block. In future, we may replace this 278 // check with the check for loop exit. 279 if (Block->getNumSuccessors() == 0) 280 continue; 281 } 282 283 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 284 Block->execute(State); 285 } 286 return; 287 } 288 289 assert(!State->Instance && "Replicating a Region with non-null instance."); 290 291 // Enter replicating mode. 292 State->Instance = {0, 0}; 293 294 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 295 State->Instance->Part = Part; 296 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 297 State->Instance->Lane = Lane; 298 // Visit the VPBlocks connected to \p this, starting from it. 299 for (VPBlockBase *Block : RPOT) { 300 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 301 Block->execute(State); 302 } 303 } 304 } 305 306 // Exit replicating mode. 307 State->Instance.reset(); 308 } 309 310 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 311 assert(!Parent && "Recipe already in some VPBasicBlock"); 312 assert(InsertPos->getParent() && 313 "Insertion position not in any VPBasicBlock"); 314 Parent = InsertPos->getParent(); 315 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 316 } 317 318 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 319 assert(!Parent && "Recipe already in some VPBasicBlock"); 320 assert(InsertPos->getParent() && 321 "Insertion position not in any VPBasicBlock"); 322 Parent = InsertPos->getParent(); 323 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 324 } 325 326 void VPRecipeBase::removeFromParent() { 327 assert(getParent() && "Recipe not in any VPBasicBlock"); 328 getParent()->getRecipeList().remove(getIterator()); 329 Parent = nullptr; 330 } 331 332 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 333 assert(getParent() && "Recipe not in any VPBasicBlock"); 334 return getParent()->getRecipeList().erase(getIterator()); 335 } 336 337 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 338 removeFromParent(); 339 insertAfter(InsertPos); 340 } 341 342 void VPInstruction::generateInstruction(VPTransformState &State, 343 unsigned Part) { 344 IRBuilder<> &Builder = State.Builder; 345 346 if (Instruction::isBinaryOp(getOpcode())) { 347 Value *A = State.get(getOperand(0), Part); 348 Value *B = State.get(getOperand(1), Part); 349 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 350 State.set(this, V, Part); 351 return; 352 } 353 354 switch (getOpcode()) { 355 case VPInstruction::Not: { 356 Value *A = State.get(getOperand(0), Part); 357 Value *V = Builder.CreateNot(A); 358 State.set(this, V, Part); 359 break; 360 } 361 case VPInstruction::ICmpULE: { 362 Value *IV = State.get(getOperand(0), Part); 363 Value *TC = State.get(getOperand(1), Part); 364 Value *V = Builder.CreateICmpULE(IV, TC); 365 State.set(this, V, Part); 366 break; 367 } 368 case Instruction::Select: { 369 Value *Cond = State.get(getOperand(0), Part); 370 Value *Op1 = State.get(getOperand(1), Part); 371 Value *Op2 = State.get(getOperand(2), Part); 372 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 373 State.set(this, V, Part); 374 break; 375 } 376 default: 377 llvm_unreachable("Unsupported opcode for instruction"); 378 } 379 } 380 381 void VPInstruction::execute(VPTransformState &State) { 382 assert(!State.Instance && "VPInstruction executing an Instance"); 383 for (unsigned Part = 0; Part < State.UF; ++Part) 384 generateInstruction(State, Part); 385 } 386 387 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const { 388 O << " +\n" << Indent << "\"EMIT "; 389 print(O); 390 O << "\\l\""; 391 } 392 393 void VPInstruction::print(raw_ostream &O) const { 394 printAsOperand(O); 395 O << " = "; 396 397 switch (getOpcode()) { 398 case VPInstruction::Not: 399 O << "not"; 400 break; 401 case VPInstruction::ICmpULE: 402 O << "icmp ule"; 403 break; 404 case VPInstruction::SLPLoad: 405 O << "combined load"; 406 break; 407 case VPInstruction::SLPStore: 408 O << "combined store"; 409 break; 410 default: 411 O << Instruction::getOpcodeName(getOpcode()); 412 } 413 414 for (const VPValue *Operand : operands()) { 415 O << " "; 416 Operand->printAsOperand(O); 417 } 418 } 419 420 /// Generate the code inside the body of the vectorized loop. Assumes a single 421 /// LoopVectorBody basic-block was created for this. Introduce additional 422 /// basic-blocks as needed, and fill them all. 423 void VPlan::execute(VPTransformState *State) { 424 // -1. Check if the backedge taken count is needed, and if so build it. 425 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 426 Value *TC = State->TripCount; 427 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 428 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 429 "trip.count.minus.1"); 430 Value2VPValue[TCMO] = BackedgeTakenCount; 431 } 432 433 // 0. Set the reverse mapping from VPValues to Values for code generation. 434 for (auto &Entry : Value2VPValue) 435 State->VPValue2Value[Entry.second] = Entry.first; 436 437 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 438 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 439 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 440 441 // 1. Make room to generate basic-blocks inside loop body if needed. 442 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 443 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 444 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 445 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 446 // Remove the edge between Header and Latch to allow other connections. 447 // Temporarily terminate with unreachable until CFG is rewired. 448 // Note: this asserts the generated code's assumption that 449 // getFirstInsertionPt() can be dereferenced into an Instruction. 450 VectorHeaderBB->getTerminator()->eraseFromParent(); 451 State->Builder.SetInsertPoint(VectorHeaderBB); 452 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 453 State->Builder.SetInsertPoint(Terminator); 454 455 // 2. Generate code in loop body. 456 State->CFG.PrevVPBB = nullptr; 457 State->CFG.PrevBB = VectorHeaderBB; 458 State->CFG.LastBB = VectorLatchBB; 459 460 for (VPBlockBase *Block : depth_first(Entry)) 461 Block->execute(State); 462 463 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 464 // VPBB's successors. 465 for (auto VPBB : State->CFG.VPBBsToFix) { 466 assert(EnableVPlanNativePath && 467 "Unexpected VPBBsToFix in non VPlan-native path"); 468 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 469 assert(BB && "Unexpected null basic block for VPBB"); 470 471 unsigned Idx = 0; 472 auto *BBTerminator = BB->getTerminator(); 473 474 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 475 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 476 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 477 ++Idx; 478 } 479 } 480 481 // 3. Merge the temporary latch created with the last basic-block filled. 482 BasicBlock *LastBB = State->CFG.PrevBB; 483 // Connect LastBB to VectorLatchBB to facilitate their merge. 484 assert((EnableVPlanNativePath || 485 isa<UnreachableInst>(LastBB->getTerminator())) && 486 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 487 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 488 "Expected VPlan CFG to terminate with branch in NativePath"); 489 LastBB->getTerminator()->eraseFromParent(); 490 BranchInst::Create(VectorLatchBB, LastBB); 491 492 // Merge LastBB with Latch. 493 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 494 (void)Merged; 495 assert(Merged && "Could not merge last basic block with latch."); 496 VectorLatchBB = LastBB; 497 498 // We do not attempt to preserve DT for outer loop vectorization currently. 499 if (!EnableVPlanNativePath) 500 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 501 L->getExitBlock()); 502 } 503 504 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 505 LLVM_DUMP_METHOD 506 void VPlan::dump() const { dbgs() << *this << '\n'; } 507 #endif 508 509 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 510 BasicBlock *LoopLatchBB, 511 BasicBlock *LoopExitBB) { 512 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 513 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 514 // The vector body may be more than a single basic-block by this point. 515 // Update the dominator tree information inside the vector body by propagating 516 // it from header to latch, expecting only triangular control-flow, if any. 517 BasicBlock *PostDomSucc = nullptr; 518 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 519 // Get the list of successors of this block. 520 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 521 assert(Succs.size() <= 2 && 522 "Basic block in vector loop has more than 2 successors."); 523 PostDomSucc = Succs[0]; 524 if (Succs.size() == 1) { 525 assert(PostDomSucc->getSinglePredecessor() && 526 "PostDom successor has more than one predecessor."); 527 DT->addNewBlock(PostDomSucc, BB); 528 continue; 529 } 530 BasicBlock *InterimSucc = Succs[1]; 531 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 532 PostDomSucc = Succs[1]; 533 InterimSucc = Succs[0]; 534 } 535 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 536 "One successor of a basic block does not lead to the other."); 537 assert(InterimSucc->getSinglePredecessor() && 538 "Interim successor has more than one predecessor."); 539 assert(PostDomSucc->hasNPredecessors(2) && 540 "PostDom successor has more than two predecessors."); 541 DT->addNewBlock(InterimSucc, BB); 542 DT->addNewBlock(PostDomSucc, BB); 543 } 544 // Latch block is a new dominator for the loop exit. 545 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 546 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 547 } 548 549 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 550 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 551 Twine(getOrCreateBID(Block)); 552 } 553 554 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 555 const std::string &Name = Block->getName(); 556 if (!Name.empty()) 557 return Name; 558 return "VPB" + Twine(getOrCreateBID(Block)); 559 } 560 561 void VPlanPrinter::dump() { 562 Depth = 1; 563 bumpIndent(0); 564 OS << "digraph VPlan {\n"; 565 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 566 if (!Plan.getName().empty()) 567 OS << "\\n" << DOT::EscapeString(Plan.getName()); 568 if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) { 569 OS << ", where:"; 570 if (Plan.BackedgeTakenCount) 571 OS << "\\n" << *Plan.BackedgeTakenCount << " := BackedgeTakenCount"; 572 for (auto Entry : Plan.Value2VPValue) { 573 OS << "\\n" << *Entry.second; 574 OS << DOT::EscapeString(" := "); 575 Entry.first->printAsOperand(OS, false); 576 } 577 } 578 OS << "\"]\n"; 579 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 580 OS << "edge [fontname=Courier, fontsize=30]\n"; 581 OS << "compound=true\n"; 582 583 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 584 dumpBlock(Block); 585 586 OS << "}\n"; 587 } 588 589 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 590 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 591 dumpBasicBlock(BasicBlock); 592 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 593 dumpRegion(Region); 594 else 595 llvm_unreachable("Unsupported kind of VPBlock."); 596 } 597 598 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 599 bool Hidden, const Twine &Label) { 600 // Due to "dot" we print an edge between two regions as an edge between the 601 // exit basic block and the entry basic of the respective regions. 602 const VPBlockBase *Tail = From->getExitBasicBlock(); 603 const VPBlockBase *Head = To->getEntryBasicBlock(); 604 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 605 OS << " [ label=\"" << Label << '\"'; 606 if (Tail != From) 607 OS << " ltail=" << getUID(From); 608 if (Head != To) 609 OS << " lhead=" << getUID(To); 610 if (Hidden) 611 OS << "; splines=none"; 612 OS << "]\n"; 613 } 614 615 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 616 auto &Successors = Block->getSuccessors(); 617 if (Successors.size() == 1) 618 drawEdge(Block, Successors.front(), false, ""); 619 else if (Successors.size() == 2) { 620 drawEdge(Block, Successors.front(), false, "T"); 621 drawEdge(Block, Successors.back(), false, "F"); 622 } else { 623 unsigned SuccessorNumber = 0; 624 for (auto *Successor : Successors) 625 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 626 } 627 } 628 629 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 630 OS << Indent << getUID(BasicBlock) << " [label =\n"; 631 bumpIndent(1); 632 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 633 bumpIndent(1); 634 635 // Dump the block predicate. 636 const VPValue *Pred = BasicBlock->getPredicate(); 637 if (Pred) { 638 OS << " +\n" << Indent << " \"BlockPredicate: "; 639 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 640 PredI->printAsOperand(OS); 641 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 642 << ")\\l\""; 643 } else 644 Pred->printAsOperand(OS); 645 } 646 647 for (const VPRecipeBase &Recipe : *BasicBlock) 648 Recipe.print(OS, Indent); 649 650 // Dump the condition bit. 651 const VPValue *CBV = BasicBlock->getCondBit(); 652 if (CBV) { 653 OS << " +\n" << Indent << " \"CondBit: "; 654 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 655 CBI->printAsOperand(OS); 656 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 657 } else { 658 CBV->printAsOperand(OS); 659 OS << "\""; 660 } 661 } 662 663 bumpIndent(-2); 664 OS << "\n" << Indent << "]\n"; 665 dumpEdges(BasicBlock); 666 } 667 668 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 669 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 670 bumpIndent(1); 671 OS << Indent << "fontname=Courier\n" 672 << Indent << "label=\"" 673 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 674 << DOT::EscapeString(Region->getName()) << "\"\n"; 675 // Dump the blocks of the region. 676 assert(Region->getEntry() && "Region contains no inner blocks."); 677 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 678 dumpBlock(Block); 679 bumpIndent(-1); 680 OS << Indent << "}\n"; 681 dumpEdges(Region); 682 } 683 684 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 685 std::string IngredientString; 686 raw_string_ostream RSO(IngredientString); 687 if (auto *Inst = dyn_cast<Instruction>(V)) { 688 if (!Inst->getType()->isVoidTy()) { 689 Inst->printAsOperand(RSO, false); 690 RSO << " = "; 691 } 692 RSO << Inst->getOpcodeName() << " "; 693 unsigned E = Inst->getNumOperands(); 694 if (E > 0) { 695 Inst->getOperand(0)->printAsOperand(RSO, false); 696 for (unsigned I = 1; I < E; ++I) 697 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 698 } 699 } else // !Inst 700 V->printAsOperand(RSO, false); 701 RSO.flush(); 702 O << DOT::EscapeString(IngredientString); 703 } 704 705 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const { 706 O << " +\n" << Indent << "\"WIDEN\\l\""; 707 for (auto &Instr : make_range(Begin, End)) 708 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 709 } 710 711 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, 712 const Twine &Indent) const { 713 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 714 if (Trunc) { 715 O << "\\l\""; 716 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 717 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 718 } else 719 O << " " << VPlanIngredient(IV) << "\\l\""; 720 } 721 722 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent) const { 723 O << " +\n" << Indent << "\"WIDEN-GEP "; 724 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 725 size_t IndicesNumber = IsIndexLoopInvariant.size(); 726 for (size_t I = 0; I < IndicesNumber; ++I) 727 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 728 O << "\\l\""; 729 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP) << "\\l\""; 730 } 731 732 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 733 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 734 } 735 736 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const { 737 O << " +\n" << Indent << "\"BLEND "; 738 Phi->printAsOperand(O, false); 739 O << " ="; 740 if (!User) { 741 // Not a User of any mask: not really blending, this is a 742 // single-predecessor phi. 743 O << " "; 744 Phi->getIncomingValue(0)->printAsOperand(O, false); 745 } else { 746 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 747 O << " "; 748 Phi->getIncomingValue(I)->printAsOperand(O, false); 749 O << "/"; 750 User->getOperand(I)->printAsOperand(O); 751 } 752 } 753 O << "\\l\""; 754 } 755 756 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const { 757 O << " +\n" 758 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 759 << VPlanIngredient(Ingredient); 760 if (AlsoPack) 761 O << " (S->V)"; 762 O << "\\l\""; 763 } 764 765 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 766 O << " +\n" 767 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 768 << "\\l\""; 769 } 770 771 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, 772 const Twine &Indent) const { 773 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 774 O << ", "; 775 getAddr()->printAsOperand(O); 776 VPValue *Mask = getMask(); 777 if (Mask) { 778 O << ", "; 779 Mask->printAsOperand(O); 780 } 781 O << "\\l\""; 782 } 783 784 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 785 786 void VPValue::replaceAllUsesWith(VPValue *New) { 787 for (VPUser *User : users()) 788 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 789 if (User->getOperand(I) == this) 790 User->setOperand(I, New); 791 } 792 793 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 794 Old2NewTy &Old2New, 795 InterleavedAccessInfo &IAI) { 796 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 797 for (VPBlockBase *Base : RPOT) { 798 visitBlock(Base, Old2New, IAI); 799 } 800 } 801 802 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 803 InterleavedAccessInfo &IAI) { 804 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 805 for (VPRecipeBase &VPI : *VPBB) { 806 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 807 auto *VPInst = cast<VPInstruction>(&VPI); 808 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 809 auto *IG = IAI.getInterleaveGroup(Inst); 810 if (!IG) 811 continue; 812 813 auto NewIGIter = Old2New.find(IG); 814 if (NewIGIter == Old2New.end()) 815 Old2New[IG] = new InterleaveGroup<VPInstruction>( 816 IG->getFactor(), IG->isReverse(), Align(IG->getAlignment())); 817 818 if (Inst == IG->getInsertPos()) 819 Old2New[IG]->setInsertPos(VPInst); 820 821 InterleaveGroupMap[VPInst] = Old2New[IG]; 822 InterleaveGroupMap[VPInst]->insertMember( 823 VPInst, IG->getIndex(Inst), 824 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 825 : IG->getFactor())); 826 } 827 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 828 visitRegion(Region, Old2New, IAI); 829 else 830 llvm_unreachable("Unsupported kind of VPBlock."); 831 } 832 833 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 834 InterleavedAccessInfo &IAI) { 835 Old2NewTy Old2New; 836 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 837 } 838