xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 012dbec604c99a8f144c4d19357e61b65d2a7b78)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanDominatorTree.h"
23 #include "VPlanPatternMatch.h"
24 #include "VPlanTransforms.h"
25 #include "VPlanUtils.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/DomTreeUpdater.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/GraphWriter.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopVersioning.h"
47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
48 #include <cassert>
49 #include <string>
50 #include <vector>
51 
52 using namespace llvm;
53 using namespace llvm::VPlanPatternMatch;
54 
55 namespace llvm {
56 extern cl::opt<bool> EnableVPlanNativePath;
57 }
58 extern cl::opt<unsigned> ForceTargetInstructionCost;
59 
60 static cl::opt<bool> PrintVPlansInDotFormat(
61     "vplan-print-in-dot-format", cl::Hidden,
62     cl::desc("Use dot format instead of plain text when dumping VPlans"));
63 
64 #define DEBUG_TYPE "vplan"
65 
66 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
67 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
68   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
69   VPSlotTracker SlotTracker(
70       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
71   V.print(OS, SlotTracker);
72   return OS;
73 }
74 #endif
75 
76 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
77                                 const ElementCount &VF) const {
78   switch (LaneKind) {
79   case VPLane::Kind::ScalableLast:
80     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
81     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
82                              Builder.getInt32(VF.getKnownMinValue() - Lane));
83   case VPLane::Kind::First:
84     return Builder.getInt32(Lane);
85   }
86   llvm_unreachable("Unknown lane kind");
87 }
88 
89 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
90     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
91   if (Def)
92     Def->addDefinedValue(this);
93 }
94 
95 VPValue::~VPValue() {
96   assert(Users.empty() && "trying to delete a VPValue with remaining users");
97   if (Def)
98     Def->removeDefinedValue(this);
99 }
100 
101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
102 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
103   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
104     R->print(OS, "", SlotTracker);
105   else
106     printAsOperand(OS, SlotTracker);
107 }
108 
109 void VPValue::dump() const {
110   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
111   VPSlotTracker SlotTracker(
112       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
113   print(dbgs(), SlotTracker);
114   dbgs() << "\n";
115 }
116 
117 void VPDef::dump() const {
118   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
119   VPSlotTracker SlotTracker(
120       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
121   print(dbgs(), "", SlotTracker);
122   dbgs() << "\n";
123 }
124 #endif
125 
126 VPRecipeBase *VPValue::getDefiningRecipe() {
127   return cast_or_null<VPRecipeBase>(Def);
128 }
129 
130 const VPRecipeBase *VPValue::getDefiningRecipe() const {
131   return cast_or_null<VPRecipeBase>(Def);
132 }
133 
134 // Get the top-most entry block of \p Start. This is the entry block of the
135 // containing VPlan. This function is templated to support both const and non-const blocks
136 template <typename T> static T *getPlanEntry(T *Start) {
137   T *Next = Start;
138   T *Current = Start;
139   while ((Next = Next->getParent()))
140     Current = Next;
141 
142   SmallSetVector<T *, 8> WorkList;
143   WorkList.insert(Current);
144 
145   for (unsigned i = 0; i < WorkList.size(); i++) {
146     T *Current = WorkList[i];
147     if (Current->getNumPredecessors() == 0)
148       return Current;
149     auto &Predecessors = Current->getPredecessors();
150     WorkList.insert(Predecessors.begin(), Predecessors.end());
151   }
152 
153   llvm_unreachable("VPlan without any entry node without predecessors");
154 }
155 
156 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
157 
158 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
159 
160 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getEntry();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getEntry();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 void VPBlockBase::setPlan(VPlan *ParentPlan) {
176   assert(
177       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
178       "Can only set plan on its entry or preheader block.");
179   Plan = ParentPlan;
180 }
181 
182 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
183 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
184   const VPBlockBase *Block = this;
185   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
186     Block = Region->getExiting();
187   return cast<VPBasicBlock>(Block);
188 }
189 
190 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
191   VPBlockBase *Block = this;
192   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
193     Block = Region->getExiting();
194   return cast<VPBasicBlock>(Block);
195 }
196 
197 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
198   if (!Successors.empty() || !Parent)
199     return this;
200   assert(Parent->getExiting() == this &&
201          "Block w/o successors not the exiting block of its parent.");
202   return Parent->getEnclosingBlockWithSuccessors();
203 }
204 
205 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
206   if (!Predecessors.empty() || !Parent)
207     return this;
208   assert(Parent->getEntry() == this &&
209          "Block w/o predecessors not the entry of its parent.");
210   return Parent->getEnclosingBlockWithPredecessors();
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
215     delete Block;
216 }
217 
218 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
219   iterator It = begin();
220   while (It != end() && It->isPhi())
221     It++;
222   return It;
223 }
224 
225 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
226                                    DominatorTree *DT, IRBuilderBase &Builder,
227                                    InnerLoopVectorizer *ILV, VPlan *Plan,
228                                    LLVMContext &Ctx)
229     : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
230       LVer(nullptr),
231       TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {}
232 
233 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
234   if (Def->isLiveIn())
235     return Def->getLiveInIRValue();
236 
237   if (hasScalarValue(Def, Instance)) {
238     return Data
239         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
240   }
241   if (!Instance.Lane.isFirstLane() &&
242       vputils::isUniformAfterVectorization(Def) &&
243       hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) {
244     return Data.PerPartScalars[Def][Instance.Part][0];
245   }
246 
247   assert(hasVectorValue(Def, Instance.Part));
248   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
249   if (!VecPart->getType()->isVectorTy()) {
250     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
251     return VecPart;
252   }
253   // TODO: Cache created scalar values.
254   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
255   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
256   // set(Def, Extract, Instance);
257   return Extract;
258 }
259 
260 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) {
261   if (NeedsScalar) {
262     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) ||
263             !vputils::onlyFirstLaneUsed(Def) ||
264             (hasScalarValue(Def, VPIteration(Part, 0)) &&
265              Data.PerPartScalars[Def][Part].size() == 1)) &&
266            "Trying to access a single scalar per part but has multiple scalars "
267            "per part.");
268     return get(Def, VPIteration(Part, 0));
269   }
270 
271   // If Values have been set for this Def return the one relevant for \p Part.
272   if (hasVectorValue(Def, Part))
273     return Data.PerPartOutput[Def][Part];
274 
275   auto GetBroadcastInstrs = [this, Def](Value *V) {
276     bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
277     if (VF.isScalar())
278       return V;
279     // Place the code for broadcasting invariant variables in the new preheader.
280     IRBuilder<>::InsertPointGuard Guard(Builder);
281     if (SafeToHoist) {
282       BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
283           Plan->getVectorLoopRegion()->getSinglePredecessor())];
284       if (LoopVectorPreHeader)
285         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
286     }
287 
288     // Place the code for broadcasting invariant variables in the new preheader.
289     // Broadcast the scalar into all locations in the vector.
290     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
291 
292     return Shuf;
293   };
294 
295   if (!hasScalarValue(Def, {Part, 0})) {
296     assert(Def->isLiveIn() && "expected a live-in");
297     if (Part != 0)
298       return get(Def, 0);
299     Value *IRV = Def->getLiveInIRValue();
300     Value *B = GetBroadcastInstrs(IRV);
301     set(Def, B, Part);
302     return B;
303   }
304 
305   Value *ScalarValue = get(Def, {Part, 0});
306   // If we aren't vectorizing, we can just copy the scalar map values over
307   // to the vector map.
308   if (VF.isScalar()) {
309     set(Def, ScalarValue, Part);
310     return ScalarValue;
311   }
312 
313   bool IsUniform = vputils::isUniformAfterVectorization(Def);
314 
315   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
316   // Check if there is a scalar value for the selected lane.
317   if (!hasScalarValue(Def, {Part, LastLane})) {
318     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
319     // VPExpandSCEVRecipes can also be uniform.
320     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
321             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
322             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
323            "unexpected recipe found to be invariant");
324     IsUniform = true;
325     LastLane = 0;
326   }
327 
328   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
329   // Set the insert point after the last scalarized instruction or after the
330   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
331   // will directly follow the scalar definitions.
332   auto OldIP = Builder.saveIP();
333   auto NewIP =
334       isa<PHINode>(LastInst)
335           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
336           : std::next(BasicBlock::iterator(LastInst));
337   Builder.SetInsertPoint(&*NewIP);
338 
339   // However, if we are vectorizing, we need to construct the vector values.
340   // If the value is known to be uniform after vectorization, we can just
341   // broadcast the scalar value corresponding to lane zero for each unroll
342   // iteration. Otherwise, we construct the vector values using
343   // insertelement instructions. Since the resulting vectors are stored in
344   // State, we will only generate the insertelements once.
345   Value *VectorValue = nullptr;
346   if (IsUniform) {
347     VectorValue = GetBroadcastInstrs(ScalarValue);
348     set(Def, VectorValue, Part);
349   } else {
350     // Initialize packing with insertelements to start from undef.
351     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
352     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
353     set(Def, Undef, Part);
354     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
355       packScalarIntoVectorValue(Def, {Part, Lane});
356     VectorValue = get(Def, Part);
357   }
358   Builder.restoreIP(OldIP);
359   return VectorValue;
360 }
361 
362 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
363   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
364   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
365 }
366 
367 void VPTransformState::addNewMetadata(Instruction *To,
368                                       const Instruction *Orig) {
369   // If the loop was versioned with memchecks, add the corresponding no-alias
370   // metadata.
371   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
372     LVer->annotateInstWithNoAlias(To, Orig);
373 }
374 
375 void VPTransformState::addMetadata(Value *To, Instruction *From) {
376   // No source instruction to transfer metadata from?
377   if (!From)
378     return;
379 
380   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
381     propagateMetadata(ToI, From);
382     addNewMetadata(ToI, From);
383   }
384 }
385 
386 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
387   const DILocation *DIL = DL;
388   // When a FSDiscriminator is enabled, we don't need to add the multiply
389   // factors to the discriminators.
390   if (DIL &&
391       Builder.GetInsertBlock()
392           ->getParent()
393           ->shouldEmitDebugInfoForProfiling() &&
394       !EnableFSDiscriminator) {
395     // FIXME: For scalable vectors, assume vscale=1.
396     auto NewDIL =
397         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
398     if (NewDIL)
399       Builder.SetCurrentDebugLocation(*NewDIL);
400     else
401       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
402                         << DIL->getFilename() << " Line: " << DIL->getLine());
403   } else
404     Builder.SetCurrentDebugLocation(DIL);
405 }
406 
407 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
408                                                  const VPIteration &Instance) {
409   Value *ScalarInst = get(Def, Instance);
410   Value *VectorValue = get(Def, Instance.Part);
411   VectorValue = Builder.CreateInsertElement(
412       VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
413   set(Def, VectorValue, Instance.Part);
414 }
415 
416 BasicBlock *
417 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
418   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
419   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
420   BasicBlock *PrevBB = CFG.PrevBB;
421   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
422                                          PrevBB->getParent(), CFG.ExitBB);
423   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
424 
425   // Hook up the new basic block to its predecessors.
426   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
427     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
428     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
429     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
430 
431     assert(PredBB && "Predecessor basic-block not found building successor.");
432     auto *PredBBTerminator = PredBB->getTerminator();
433     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
434 
435     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
436     if (isa<UnreachableInst>(PredBBTerminator)) {
437       assert(PredVPSuccessors.size() == 1 &&
438              "Predecessor ending w/o branch must have single successor.");
439       DebugLoc DL = PredBBTerminator->getDebugLoc();
440       PredBBTerminator->eraseFromParent();
441       auto *Br = BranchInst::Create(NewBB, PredBB);
442       Br->setDebugLoc(DL);
443     } else if (TermBr && !TermBr->isConditional()) {
444       TermBr->setSuccessor(0, NewBB);
445     } else {
446       // Set each forward successor here when it is created, excluding
447       // backedges. A backward successor is set when the branch is created.
448       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
449       assert(!TermBr->getSuccessor(idx) &&
450              "Trying to reset an existing successor block.");
451       TermBr->setSuccessor(idx, NewBB);
452     }
453     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
454   }
455   return NewBB;
456 }
457 
458 void VPIRBasicBlock::execute(VPTransformState *State) {
459   assert(getHierarchicalSuccessors().size() <= 2 &&
460          "VPIRBasicBlock can have at most two successors at the moment!");
461   State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator());
462   executeRecipes(State, getIRBasicBlock());
463   if (getSingleSuccessor()) {
464     assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator()));
465     auto *Br = State->Builder.CreateBr(getIRBasicBlock());
466     Br->setOperand(0, nullptr);
467     getIRBasicBlock()->getTerminator()->eraseFromParent();
468   }
469 
470   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
471     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
472     BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB];
473     assert(PredBB && "Predecessor basic-block not found building successor.");
474     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
475 
476     auto *PredBBTerminator = PredBB->getTerminator();
477     auto *TermBr = cast<BranchInst>(PredBBTerminator);
478     // Set each forward successor here when it is created, excluding
479     // backedges. A backward successor is set when the branch is created.
480     const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
481     unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
482     assert(!TermBr->getSuccessor(idx) &&
483            "Trying to reset an existing successor block.");
484     TermBr->setSuccessor(idx, IRBB);
485     State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}});
486   }
487 }
488 
489 void VPBasicBlock::execute(VPTransformState *State) {
490   bool Replica = State->Instance && !State->Instance->isFirstIteration();
491   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
492   VPBlockBase *SingleHPred = nullptr;
493   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
494 
495   auto IsLoopRegion = [](VPBlockBase *BB) {
496     auto *R = dyn_cast<VPRegionBlock>(BB);
497     return R && !R->isReplicator();
498   };
499 
500   // 1. Create an IR basic block.
501   if (PrevVPBB && /* A */
502       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
503         SingleHPred->getExitingBasicBlock() == PrevVPBB &&
504         PrevVPBB->getSingleHierarchicalSuccessor() &&
505         (SingleHPred->getParent() == getEnclosingLoopRegion() &&
506          !IsLoopRegion(SingleHPred))) &&         /* B */
507       !(Replica && getPredecessors().empty())) { /* C */
508     // The last IR basic block is reused, as an optimization, in three cases:
509     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
510     // B. when the current VPBB has a single (hierarchical) predecessor which
511     //    is PrevVPBB and the latter has a single (hierarchical) successor which
512     //    both are in the same non-replicator region; and
513     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
514     //    is the exiting VPBB of this region from a previous instance, or the
515     //    predecessor of this region.
516 
517     NewBB = createEmptyBasicBlock(State->CFG);
518     State->Builder.SetInsertPoint(NewBB);
519     // Temporarily terminate with unreachable until CFG is rewired.
520     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
521     // Register NewBB in its loop. In innermost loops its the same for all
522     // BB's.
523     if (State->CurrentVectorLoop)
524       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
525     State->Builder.SetInsertPoint(Terminator);
526     State->CFG.PrevBB = NewBB;
527   }
528 
529   // 2. Fill the IR basic block with IR instructions.
530   executeRecipes(State, NewBB);
531 }
532 
533 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
534   for (VPRecipeBase &R : Recipes) {
535     for (auto *Def : R.definedValues())
536       Def->replaceAllUsesWith(NewValue);
537 
538     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
539       R.setOperand(I, NewValue);
540   }
541 }
542 
543 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
544   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
545                     << " in BB:" << BB->getName() << '\n');
546 
547   State->CFG.VPBB2IRBB[this] = BB;
548   State->CFG.PrevVPBB = this;
549 
550   for (VPRecipeBase &Recipe : Recipes)
551     Recipe.execute(*State);
552 
553   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
554 }
555 
556 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
557   assert((SplitAt == end() || SplitAt->getParent() == this) &&
558          "can only split at a position in the same block");
559 
560   SmallVector<VPBlockBase *, 2> Succs(successors());
561   // First, disconnect the current block from its successors.
562   for (VPBlockBase *Succ : Succs)
563     VPBlockUtils::disconnectBlocks(this, Succ);
564 
565   // Create new empty block after the block to split.
566   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
567   VPBlockUtils::insertBlockAfter(SplitBlock, this);
568 
569   // Add successors for block to split to new block.
570   for (VPBlockBase *Succ : Succs)
571     VPBlockUtils::connectBlocks(SplitBlock, Succ);
572 
573   // Finally, move the recipes starting at SplitAt to new block.
574   for (VPRecipeBase &ToMove :
575        make_early_inc_range(make_range(SplitAt, this->end())))
576     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
577 
578   return SplitBlock;
579 }
580 
581 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
582   VPRegionBlock *P = getParent();
583   if (P && P->isReplicator()) {
584     P = P->getParent();
585     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
586            "unexpected nested replicate regions");
587   }
588   return P;
589 }
590 
591 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
592   if (VPBB->empty()) {
593     assert(
594         VPBB->getNumSuccessors() < 2 &&
595         "block with multiple successors doesn't have a recipe as terminator");
596     return false;
597   }
598 
599   const VPRecipeBase *R = &VPBB->back();
600   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
601                       match(R, m_BranchOnCond(m_VPValue())) ||
602                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
603   (void)IsCondBranch;
604 
605   if (VPBB->getNumSuccessors() >= 2 ||
606       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
607     assert(IsCondBranch && "block with multiple successors not terminated by "
608                            "conditional branch recipe");
609 
610     return true;
611   }
612 
613   assert(
614       !IsCondBranch &&
615       "block with 0 or 1 successors terminated by conditional branch recipe");
616   return false;
617 }
618 
619 VPRecipeBase *VPBasicBlock::getTerminator() {
620   if (hasConditionalTerminator(this))
621     return &back();
622   return nullptr;
623 }
624 
625 const VPRecipeBase *VPBasicBlock::getTerminator() const {
626   if (hasConditionalTerminator(this))
627     return &back();
628   return nullptr;
629 }
630 
631 bool VPBasicBlock::isExiting() const {
632   return getParent() && getParent()->getExitingBasicBlock() == this;
633 }
634 
635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
636 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
637   if (getSuccessors().empty()) {
638     O << Indent << "No successors\n";
639   } else {
640     O << Indent << "Successor(s): ";
641     ListSeparator LS;
642     for (auto *Succ : getSuccessors())
643       O << LS << Succ->getName();
644     O << '\n';
645   }
646 }
647 
648 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
649                          VPSlotTracker &SlotTracker) const {
650   O << Indent << getName() << ":\n";
651 
652   auto RecipeIndent = Indent + "  ";
653   for (const VPRecipeBase &Recipe : *this) {
654     Recipe.print(O, RecipeIndent, SlotTracker);
655     O << '\n';
656   }
657 
658   printSuccessors(O, Indent);
659 }
660 #endif
661 
662 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
663 
664 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
665 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
666 // Remapping of operands must be done separately. Returns a pair with the new
667 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
668 // region, return nullptr for the exiting block.
669 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
670   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
671   VPBlockBase *Exiting = nullptr;
672   bool InRegion = Entry->getParent();
673   // First, clone blocks reachable from Entry.
674   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
675     VPBlockBase *NewBB = BB->clone();
676     Old2NewVPBlocks[BB] = NewBB;
677     if (InRegion && BB->getNumSuccessors() == 0) {
678       assert(!Exiting && "Multiple exiting blocks?");
679       Exiting = BB;
680     }
681   }
682   assert((!InRegion || Exiting) && "regions must have a single exiting block");
683 
684   // Second, update the predecessors & successors of the cloned blocks.
685   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
686     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
687     SmallVector<VPBlockBase *> NewPreds;
688     for (VPBlockBase *Pred : BB->getPredecessors()) {
689       NewPreds.push_back(Old2NewVPBlocks[Pred]);
690     }
691     NewBB->setPredecessors(NewPreds);
692     SmallVector<VPBlockBase *> NewSuccs;
693     for (VPBlockBase *Succ : BB->successors()) {
694       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
695     }
696     NewBB->setSuccessors(NewSuccs);
697   }
698 
699 #if !defined(NDEBUG)
700   // Verify that the order of predecessors and successors matches in the cloned
701   // version.
702   for (const auto &[OldBB, NewBB] :
703        zip(vp_depth_first_shallow(Entry),
704            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
705     for (const auto &[OldPred, NewPred] :
706          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
707       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
708 
709     for (const auto &[OldSucc, NewSucc] :
710          zip(OldBB->successors(), NewBB->successors()))
711       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
712   }
713 #endif
714 
715   return std::make_pair(Old2NewVPBlocks[Entry],
716                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
717 }
718 
719 VPRegionBlock *VPRegionBlock::clone() {
720   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
721   auto *NewRegion =
722       new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
723   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
724     Block->setParent(NewRegion);
725   return NewRegion;
726 }
727 
728 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
729   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
730     // Drop all references in VPBasicBlocks and replace all uses with
731     // DummyValue.
732     Block->dropAllReferences(NewValue);
733 }
734 
735 void VPRegionBlock::execute(VPTransformState *State) {
736   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
737       RPOT(Entry);
738 
739   if (!isReplicator()) {
740     // Create and register the new vector loop.
741     Loop *PrevLoop = State->CurrentVectorLoop;
742     State->CurrentVectorLoop = State->LI->AllocateLoop();
743     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
744     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
745 
746     // Insert the new loop into the loop nest and register the new basic blocks
747     // before calling any utilities such as SCEV that require valid LoopInfo.
748     if (ParentLoop)
749       ParentLoop->addChildLoop(State->CurrentVectorLoop);
750     else
751       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
752 
753     // Visit the VPBlocks connected to "this", starting from it.
754     for (VPBlockBase *Block : RPOT) {
755       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
756       Block->execute(State);
757     }
758 
759     State->CurrentVectorLoop = PrevLoop;
760     return;
761   }
762 
763   assert(!State->Instance && "Replicating a Region with non-null instance.");
764 
765   // Enter replicating mode.
766   State->Instance = VPIteration(0, 0);
767 
768   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
769     State->Instance->Part = Part;
770     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
771     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
772          ++Lane) {
773       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
774       // Visit the VPBlocks connected to \p this, starting from it.
775       for (VPBlockBase *Block : RPOT) {
776         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
777         Block->execute(State);
778       }
779     }
780   }
781 
782   // Exit replicating mode.
783   State->Instance.reset();
784 }
785 
786 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
787   InstructionCost Cost = 0;
788   for (VPRecipeBase &R : Recipes)
789     Cost += R.cost(VF, Ctx);
790   return Cost;
791 }
792 
793 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
794   if (!isReplicator()) {
795     InstructionCost Cost = 0;
796     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
797       Cost += Block->cost(VF, Ctx);
798     InstructionCost BackedgeCost =
799         ForceTargetInstructionCost.getNumOccurrences()
800             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
801             : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
802     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
803                       << ": vector loop backedge\n");
804     Cost += BackedgeCost;
805     return Cost;
806   }
807 
808   // Compute the cost of a replicate region. Replicating isn't supported for
809   // scalable vectors, return an invalid cost for them.
810   // TODO: Discard scalable VPlans with replicate recipes earlier after
811   // construction.
812   if (VF.isScalable())
813     return InstructionCost::getInvalid();
814 
815   // First compute the cost of the conditionally executed recipes, followed by
816   // account for the branching cost, except if the mask is a header mask or
817   // uniform condition.
818   using namespace llvm::VPlanPatternMatch;
819   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
820   InstructionCost ThenCost = Then->cost(VF, Ctx);
821 
822   // For the scalar case, we may not always execute the original predicated
823   // block, Thus, scale the block's cost by the probability of executing it.
824   if (VF.isScalar())
825     return ThenCost / getReciprocalPredBlockProb();
826 
827   return ThenCost;
828 }
829 
830 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
831 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
832                           VPSlotTracker &SlotTracker) const {
833   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
834   auto NewIndent = Indent + "  ";
835   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
836     O << '\n';
837     BlockBase->print(O, NewIndent, SlotTracker);
838   }
839   O << Indent << "}\n";
840 
841   printSuccessors(O, Indent);
842 }
843 #endif
844 
845 VPlan::~VPlan() {
846   for (auto &KV : LiveOuts)
847     delete KV.second;
848   LiveOuts.clear();
849 
850   if (Entry) {
851     VPValue DummyValue;
852     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
853       Block->dropAllReferences(&DummyValue);
854 
855     VPBlockBase::deleteCFG(Entry);
856 
857     Preheader->dropAllReferences(&DummyValue);
858     delete Preheader;
859   }
860   for (VPValue *VPV : VPLiveInsToFree)
861     delete VPV;
862   if (BackedgeTakenCount)
863     delete BackedgeTakenCount;
864 }
865 
866 static VPIRBasicBlock *createVPIRBasicBlockFor(BasicBlock *BB) {
867   auto *VPIRBB = new VPIRBasicBlock(BB);
868   for (Instruction &I :
869        make_range(BB->begin(), BB->getTerminator()->getIterator()))
870     VPIRBB->appendRecipe(new VPIRInstruction(I));
871   return VPIRBB;
872 }
873 
874 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE,
875                                    bool RequiresScalarEpilogueCheck,
876                                    bool TailFolded, Loop *TheLoop) {
877   VPIRBasicBlock *Entry = createVPIRBasicBlockFor(TheLoop->getLoopPreheader());
878   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
879   auto Plan = std::make_unique<VPlan>(Entry, VecPreheader);
880   Plan->TripCount =
881       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
882   // Create VPRegionBlock, with empty header and latch blocks, to be filled
883   // during processing later.
884   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
885   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
886   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
887   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
888                                       false /*isReplicator*/);
889 
890   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
891   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
892   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
893 
894   VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
895   if (!RequiresScalarEpilogueCheck) {
896     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
897     return Plan;
898   }
899 
900   // If needed, add a check in the middle block to see if we have completed
901   // all of the iterations in the first vector loop.  Three cases:
902   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
903   //    Thus if tail is to be folded, we know we don't need to run the
904   //    remainder and we can set the condition to true.
905   // 2) If we require a scalar epilogue, there is no conditional branch as
906   //    we unconditionally branch to the scalar preheader.  Do nothing.
907   // 3) Otherwise, construct a runtime check.
908   BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock();
909   auto *VPExitBlock = createVPIRBasicBlockFor(IRExitBlock);
910   // The connection order corresponds to the operands of the conditional branch.
911   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
912   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
913 
914   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
915   // Here we use the same DebugLoc as the scalar loop latch terminator instead
916   // of the corresponding compare because they may have ended up with
917   // different line numbers and we want to avoid awkward line stepping while
918   // debugging. Eg. if the compare has got a line number inside the loop.
919   VPBuilder Builder(MiddleVPBB);
920   VPValue *Cmp =
921       TailFolded
922           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
923                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
924           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
925                                &Plan->getVectorTripCount(),
926                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
927   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
928                        ScalarLatchTerm->getDebugLoc());
929   return Plan;
930 }
931 
932 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
933                              Value *CanonicalIVStartValue,
934                              VPTransformState &State) {
935   Type *TCTy = TripCountV->getType();
936   // Check if the backedge taken count is needed, and if so build it.
937   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
938     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
939     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
940                                    "trip.count.minus.1");
941     BackedgeTakenCount->setUnderlyingValue(TCMO);
942   }
943 
944   VectorTripCount.setUnderlyingValue(VectorTripCountV);
945 
946   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
947   // FIXME: Model VF * UF computation completely in VPlan.
948   assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
949   if (VF.getNumUsers()) {
950     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
951     VF.setUnderlyingValue(RuntimeVF);
952     VFxUF.setUnderlyingValue(
953         State.UF > 1
954             ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, State.UF))
955             : RuntimeVF);
956   } else {
957     VFxUF.setUnderlyingValue(
958         createStepForVF(Builder, TCTy, State.VF, State.UF));
959   }
960 
961   // When vectorizing the epilogue loop, the canonical induction start value
962   // needs to be changed from zero to the value after the main vector loop.
963   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
964   if (CanonicalIVStartValue) {
965     VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
966     auto *IV = getCanonicalIV();
967     assert(all_of(IV->users(),
968                   [](const VPUser *U) {
969                     return isa<VPScalarIVStepsRecipe>(U) ||
970                            isa<VPScalarCastRecipe>(U) ||
971                            isa<VPDerivedIVRecipe>(U) ||
972                            cast<VPInstruction>(U)->getOpcode() ==
973                                Instruction::Add;
974                   }) &&
975            "the canonical IV should only be used by its increment or "
976            "ScalarIVSteps when resetting the start value");
977     IV->setOperand(0, VPV);
978   }
979 }
980 
981 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
982 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
983 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
984 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
985 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
986   VPIRBasicBlock *IRMiddleVPBB = createVPIRBasicBlockFor(IRBB);
987   for (auto &R : make_early_inc_range(*VPBB)) {
988     assert(!R.isPhi() && "Tried to move phi recipe to end of block");
989     R.moveBefore(*IRMiddleVPBB, IRMiddleVPBB->end());
990   }
991   VPBlockBase *PredVPBB = VPBB->getSinglePredecessor();
992   VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
993   VPBlockUtils::connectBlocks(PredVPBB, IRMiddleVPBB);
994   for (auto *Succ : to_vector(VPBB->getSuccessors())) {
995     VPBlockUtils::connectBlocks(IRMiddleVPBB, Succ);
996     VPBlockUtils::disconnectBlocks(VPBB, Succ);
997   }
998   delete VPBB;
999 }
1000 
1001 /// Generate the code inside the preheader and body of the vectorized loop.
1002 /// Assumes a single pre-header basic-block was created for this. Introduce
1003 /// additional basic-blocks as needed, and fill them all.
1004 void VPlan::execute(VPTransformState *State) {
1005   // Initialize CFG state.
1006   State->CFG.PrevVPBB = nullptr;
1007   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
1008   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
1009   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
1010 
1011   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
1012   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
1013   State->CFG.DTU.applyUpdates(
1014       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
1015 
1016   // Replace regular VPBB's for the middle and scalar preheader blocks with
1017   // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during
1018   // skeleton creation, so we can only create the VPIRBasicBlocks now during
1019   // VPlan execution rather than earlier during VPlan construction.
1020   BasicBlock *MiddleBB = State->CFG.ExitBB;
1021   VPBasicBlock *MiddleVPBB =
1022       cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor());
1023   // Find the VPBB for the scalar preheader, relying on the current structure
1024   // when creating the middle block and its successrs: if there's a single
1025   // predecessor, it must be the scalar preheader. Otherwise, the second
1026   // successor is the scalar preheader.
1027   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1028   auto &MiddleSuccs = MiddleVPBB->getSuccessors();
1029   assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) &&
1030          "middle block has unexpected successors");
1031   VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>(
1032       MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]);
1033   assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) &&
1034          "scalar preheader cannot be wrapped already");
1035   replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh);
1036   replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB);
1037 
1038   // Disconnect the middle block from its single successor (the scalar loop
1039   // header) in both the CFG and DT. The branch will be recreated during VPlan
1040   // execution.
1041   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1042   BrInst->insertBefore(MiddleBB->getTerminator());
1043   MiddleBB->getTerminator()->eraseFromParent();
1044   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1045 
1046   // Generate code in the loop pre-header and body.
1047   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
1048     Block->execute(State);
1049 
1050   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1051   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1052 
1053   // Fix the latch value of canonical, reduction and first-order recurrences
1054   // phis in the vector loop.
1055   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1056   for (VPRecipeBase &R : Header->phis()) {
1057     // Skip phi-like recipes that generate their backedege values themselves.
1058     if (isa<VPWidenPHIRecipe>(&R))
1059       continue;
1060 
1061     if (isa<VPWidenPointerInductionRecipe>(&R) ||
1062         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1063       PHINode *Phi = nullptr;
1064       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1065         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
1066       } else {
1067         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1068         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1069                "recipe generating only scalars should have been replaced");
1070         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
1071         Phi = cast<PHINode>(GEP->getPointerOperand());
1072       }
1073 
1074       Phi->setIncomingBlock(1, VectorLatchBB);
1075 
1076       // Move the last step to the end of the latch block. This ensures
1077       // consistent placement of all induction updates.
1078       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1079       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1080       continue;
1081     }
1082 
1083     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1084     // For  canonical IV, first-order recurrences and in-order reduction phis,
1085     // only a single part is generated, which provides the last part from the
1086     // previous iteration. For non-ordered reductions all UF parts are
1087     // generated.
1088     bool SinglePartNeeded =
1089         isa<VPCanonicalIVPHIRecipe>(PhiR) ||
1090         isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1091         (isa<VPReductionPHIRecipe>(PhiR) &&
1092          cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
1093     bool NeedsScalar =
1094         isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1095         (isa<VPReductionPHIRecipe>(PhiR) &&
1096          cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1097     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
1098 
1099     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1100       Value *Phi = State->get(PhiR, Part, NeedsScalar);
1101       Value *Val =
1102           State->get(PhiR->getBackedgeValue(),
1103                      SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar);
1104       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1105     }
1106   }
1107 
1108   State->CFG.DTU.flush();
1109   assert(State->CFG.DTU.getDomTree().verify(
1110              DominatorTree::VerificationLevel::Fast) &&
1111          "DT not preserved correctly");
1112 }
1113 
1114 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1115   // For now only return the cost of the vector loop region, ignoring any other
1116   // blocks, like the preheader or middle blocks.
1117   return getVectorLoopRegion()->cost(VF, Ctx);
1118 }
1119 
1120 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1121 void VPlan::printLiveIns(raw_ostream &O) const {
1122   VPSlotTracker SlotTracker(this);
1123 
1124   if (VF.getNumUsers() > 0) {
1125     O << "\nLive-in ";
1126     VF.printAsOperand(O, SlotTracker);
1127     O << " = VF";
1128   }
1129 
1130   if (VFxUF.getNumUsers() > 0) {
1131     O << "\nLive-in ";
1132     VFxUF.printAsOperand(O, SlotTracker);
1133     O << " = VF * UF";
1134   }
1135 
1136   if (VectorTripCount.getNumUsers() > 0) {
1137     O << "\nLive-in ";
1138     VectorTripCount.printAsOperand(O, SlotTracker);
1139     O << " = vector-trip-count";
1140   }
1141 
1142   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1143     O << "\nLive-in ";
1144     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1145     O << " = backedge-taken count";
1146   }
1147 
1148   O << "\n";
1149   if (TripCount->isLiveIn())
1150     O << "Live-in ";
1151   TripCount->printAsOperand(O, SlotTracker);
1152   O << " = original trip-count";
1153   O << "\n";
1154 }
1155 
1156 LLVM_DUMP_METHOD
1157 void VPlan::print(raw_ostream &O) const {
1158   VPSlotTracker SlotTracker(this);
1159 
1160   O << "VPlan '" << getName() << "' {";
1161 
1162   printLiveIns(O);
1163 
1164   if (!getPreheader()->empty()) {
1165     O << "\n";
1166     getPreheader()->print(O, "", SlotTracker);
1167   }
1168 
1169   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
1170     O << '\n';
1171     Block->print(O, "", SlotTracker);
1172   }
1173 
1174   if (!LiveOuts.empty())
1175     O << "\n";
1176   for (const auto &KV : LiveOuts) {
1177     KV.second->print(O, SlotTracker);
1178   }
1179 
1180   O << "}\n";
1181 }
1182 
1183 std::string VPlan::getName() const {
1184   std::string Out;
1185   raw_string_ostream RSO(Out);
1186   RSO << Name << " for ";
1187   if (!VFs.empty()) {
1188     RSO << "VF={" << VFs[0];
1189     for (ElementCount VF : drop_begin(VFs))
1190       RSO << "," << VF;
1191     RSO << "},";
1192   }
1193 
1194   if (UFs.empty()) {
1195     RSO << "UF>=1";
1196   } else {
1197     RSO << "UF={" << UFs[0];
1198     for (unsigned UF : drop_begin(UFs))
1199       RSO << "," << UF;
1200     RSO << "}";
1201   }
1202 
1203   return Out;
1204 }
1205 
1206 LLVM_DUMP_METHOD
1207 void VPlan::printDOT(raw_ostream &O) const {
1208   VPlanPrinter Printer(O, *this);
1209   Printer.dump();
1210 }
1211 
1212 LLVM_DUMP_METHOD
1213 void VPlan::dump() const { print(dbgs()); }
1214 #endif
1215 
1216 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
1217   assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
1218   LiveOuts.insert({PN, new VPLiveOut(PN, V)});
1219 }
1220 
1221 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1222                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1223   // Update the operands of all cloned recipes starting at NewEntry. This
1224   // traverses all reachable blocks. This is done in two steps, to handle cycles
1225   // in PHI recipes.
1226   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1227       OldDeepRPOT(Entry);
1228   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1229       NewDeepRPOT(NewEntry);
1230   // First, collect all mappings from old to new VPValues defined by cloned
1231   // recipes.
1232   for (const auto &[OldBB, NewBB] :
1233        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1234            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1235     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1236            "blocks must have the same number of recipes");
1237     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1238       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1239              "recipes must have the same number of operands");
1240       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1241              "recipes must define the same number of operands");
1242       for (const auto &[OldV, NewV] :
1243            zip(OldR.definedValues(), NewR.definedValues()))
1244         Old2NewVPValues[OldV] = NewV;
1245     }
1246   }
1247 
1248   // Update all operands to use cloned VPValues.
1249   for (VPBasicBlock *NewBB :
1250        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1251     for (VPRecipeBase &NewR : *NewBB)
1252       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1253         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1254         NewR.setOperand(I, NewOp);
1255       }
1256   }
1257 }
1258 
1259 VPlan *VPlan::duplicate() {
1260   // Clone blocks.
1261   VPBasicBlock *NewPreheader = Preheader->clone();
1262   const auto &[NewEntry, __] = cloneFrom(Entry);
1263 
1264   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1265   auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry));
1266   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1267   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1268     Old2NewVPValues[OldLiveIn] =
1269         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1270   }
1271   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1272   Old2NewVPValues[&VF] = &NewPlan->VF;
1273   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1274   if (BackedgeTakenCount) {
1275     NewPlan->BackedgeTakenCount = new VPValue();
1276     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1277   }
1278   assert(TripCount && "trip count must be set");
1279   if (TripCount->isLiveIn())
1280     Old2NewVPValues[TripCount] =
1281         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1282   // else NewTripCount will be created and inserted into Old2NewVPValues when
1283   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1284 
1285   remapOperands(Preheader, NewPreheader, Old2NewVPValues);
1286   remapOperands(Entry, NewEntry, Old2NewVPValues);
1287 
1288   // Clone live-outs.
1289   for (const auto &[_, LO] : LiveOuts)
1290     NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]);
1291 
1292   // Initialize remaining fields of cloned VPlan.
1293   NewPlan->VFs = VFs;
1294   NewPlan->UFs = UFs;
1295   // TODO: Adjust names.
1296   NewPlan->Name = Name;
1297   assert(Old2NewVPValues.contains(TripCount) &&
1298          "TripCount must have been added to Old2NewVPValues");
1299   NewPlan->TripCount = Old2NewVPValues[TripCount];
1300   return NewPlan;
1301 }
1302 
1303 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1304 
1305 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1306   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1307          Twine(getOrCreateBID(Block));
1308 }
1309 
1310 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1311   const std::string &Name = Block->getName();
1312   if (!Name.empty())
1313     return Name;
1314   return "VPB" + Twine(getOrCreateBID(Block));
1315 }
1316 
1317 void VPlanPrinter::dump() {
1318   Depth = 1;
1319   bumpIndent(0);
1320   OS << "digraph VPlan {\n";
1321   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1322   if (!Plan.getName().empty())
1323     OS << "\\n" << DOT::EscapeString(Plan.getName());
1324 
1325   {
1326     // Print live-ins.
1327   std::string Str;
1328   raw_string_ostream SS(Str);
1329   Plan.printLiveIns(SS);
1330   SmallVector<StringRef, 0> Lines;
1331   StringRef(Str).rtrim('\n').split(Lines, "\n");
1332   for (auto Line : Lines)
1333     OS << DOT::EscapeString(Line.str()) << "\\n";
1334   }
1335 
1336   OS << "\"]\n";
1337   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1338   OS << "edge [fontname=Courier, fontsize=30]\n";
1339   OS << "compound=true\n";
1340 
1341   dumpBlock(Plan.getPreheader());
1342 
1343   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1344     dumpBlock(Block);
1345 
1346   OS << "}\n";
1347 }
1348 
1349 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1350   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1351     dumpBasicBlock(BasicBlock);
1352   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1353     dumpRegion(Region);
1354   else
1355     llvm_unreachable("Unsupported kind of VPBlock.");
1356 }
1357 
1358 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1359                             bool Hidden, const Twine &Label) {
1360   // Due to "dot" we print an edge between two regions as an edge between the
1361   // exiting basic block and the entry basic of the respective regions.
1362   const VPBlockBase *Tail = From->getExitingBasicBlock();
1363   const VPBlockBase *Head = To->getEntryBasicBlock();
1364   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1365   OS << " [ label=\"" << Label << '\"';
1366   if (Tail != From)
1367     OS << " ltail=" << getUID(From);
1368   if (Head != To)
1369     OS << " lhead=" << getUID(To);
1370   if (Hidden)
1371     OS << "; splines=none";
1372   OS << "]\n";
1373 }
1374 
1375 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1376   auto &Successors = Block->getSuccessors();
1377   if (Successors.size() == 1)
1378     drawEdge(Block, Successors.front(), false, "");
1379   else if (Successors.size() == 2) {
1380     drawEdge(Block, Successors.front(), false, "T");
1381     drawEdge(Block, Successors.back(), false, "F");
1382   } else {
1383     unsigned SuccessorNumber = 0;
1384     for (auto *Successor : Successors)
1385       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1386   }
1387 }
1388 
1389 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1390   // Implement dot-formatted dump by performing plain-text dump into the
1391   // temporary storage followed by some post-processing.
1392   OS << Indent << getUID(BasicBlock) << " [label =\n";
1393   bumpIndent(1);
1394   std::string Str;
1395   raw_string_ostream SS(Str);
1396   // Use no indentation as we need to wrap the lines into quotes ourselves.
1397   BasicBlock->print(SS, "", SlotTracker);
1398 
1399   // We need to process each line of the output separately, so split
1400   // single-string plain-text dump.
1401   SmallVector<StringRef, 0> Lines;
1402   StringRef(Str).rtrim('\n').split(Lines, "\n");
1403 
1404   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1405     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1406   };
1407 
1408   // Don't need the "+" after the last line.
1409   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1410     EmitLine(Line, " +\n");
1411   EmitLine(Lines.back(), "\n");
1412 
1413   bumpIndent(-1);
1414   OS << Indent << "]\n";
1415 
1416   dumpEdges(BasicBlock);
1417 }
1418 
1419 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1420   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1421   bumpIndent(1);
1422   OS << Indent << "fontname=Courier\n"
1423      << Indent << "label=\""
1424      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1425      << DOT::EscapeString(Region->getName()) << "\"\n";
1426   // Dump the blocks of the region.
1427   assert(Region->getEntry() && "Region contains no inner blocks.");
1428   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1429     dumpBlock(Block);
1430   bumpIndent(-1);
1431   OS << Indent << "}\n";
1432   dumpEdges(Region);
1433 }
1434 
1435 void VPlanIngredient::print(raw_ostream &O) const {
1436   if (auto *Inst = dyn_cast<Instruction>(V)) {
1437     if (!Inst->getType()->isVoidTy()) {
1438       Inst->printAsOperand(O, false);
1439       O << " = ";
1440     }
1441     O << Inst->getOpcodeName() << " ";
1442     unsigned E = Inst->getNumOperands();
1443     if (E > 0) {
1444       Inst->getOperand(0)->printAsOperand(O, false);
1445       for (unsigned I = 1; I < E; ++I)
1446         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1447     }
1448   } else // !Inst
1449     V->printAsOperand(O, false);
1450 }
1451 
1452 #endif
1453 
1454 void VPValue::replaceAllUsesWith(VPValue *New) {
1455   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1456 }
1457 
1458 void VPValue::replaceUsesWithIf(
1459     VPValue *New,
1460     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1461   // Note that this early exit is required for correctness; the implementation
1462   // below relies on the number of users for this VPValue to decrease, which
1463   // isn't the case if this == New.
1464   if (this == New)
1465     return;
1466 
1467   for (unsigned J = 0; J < getNumUsers();) {
1468     VPUser *User = Users[J];
1469     bool RemovedUser = false;
1470     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1471       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1472         continue;
1473 
1474       RemovedUser = true;
1475       User->setOperand(I, New);
1476     }
1477     // If a user got removed after updating the current user, the next user to
1478     // update will be moved to the current position, so we only need to
1479     // increment the index if the number of users did not change.
1480     if (!RemovedUser)
1481       J++;
1482   }
1483 }
1484 
1485 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1486 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1487   OS << Tracker.getOrCreateName(this);
1488 }
1489 
1490 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1491   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1492     Op->printAsOperand(O, SlotTracker);
1493   });
1494 }
1495 #endif
1496 
1497 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1498                                           Old2NewTy &Old2New,
1499                                           InterleavedAccessInfo &IAI) {
1500   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1501       RPOT(Region->getEntry());
1502   for (VPBlockBase *Base : RPOT) {
1503     visitBlock(Base, Old2New, IAI);
1504   }
1505 }
1506 
1507 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1508                                          InterleavedAccessInfo &IAI) {
1509   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1510     for (VPRecipeBase &VPI : *VPBB) {
1511       if (isa<VPWidenPHIRecipe>(&VPI))
1512         continue;
1513       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1514       auto *VPInst = cast<VPInstruction>(&VPI);
1515 
1516       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1517       if (!Inst)
1518         continue;
1519       auto *IG = IAI.getInterleaveGroup(Inst);
1520       if (!IG)
1521         continue;
1522 
1523       auto NewIGIter = Old2New.find(IG);
1524       if (NewIGIter == Old2New.end())
1525         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1526             IG->getFactor(), IG->isReverse(), IG->getAlign());
1527 
1528       if (Inst == IG->getInsertPos())
1529         Old2New[IG]->setInsertPos(VPInst);
1530 
1531       InterleaveGroupMap[VPInst] = Old2New[IG];
1532       InterleaveGroupMap[VPInst]->insertMember(
1533           VPInst, IG->getIndex(Inst),
1534           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1535                                 : IG->getFactor()));
1536     }
1537   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1538     visitRegion(Region, Old2New, IAI);
1539   else
1540     llvm_unreachable("Unsupported kind of VPBlock.");
1541 }
1542 
1543 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1544                                                  InterleavedAccessInfo &IAI) {
1545   Old2NewTy Old2New;
1546   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1547 }
1548 
1549 void VPSlotTracker::assignName(const VPValue *V) {
1550   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1551   auto *UV = V->getUnderlyingValue();
1552   if (!UV) {
1553     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1554     NextSlot++;
1555     return;
1556   }
1557 
1558   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1559   // appending ".Number" to the name if there are multiple uses.
1560   std::string Name;
1561   raw_string_ostream S(Name);
1562   UV->printAsOperand(S, false);
1563   assert(!Name.empty() && "Name cannot be empty.");
1564   std::string BaseName = (Twine("ir<") + Name + Twine(">")).str();
1565 
1566   // First assign the base name for V.
1567   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1568   // Integer or FP constants with different types will result in he same string
1569   // due to stripping types.
1570   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1571     return;
1572 
1573   // If it is already used by C > 0 other VPValues, increase the version counter
1574   // C and use it for V.
1575   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1576   if (!UseInserted) {
1577     C->second++;
1578     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1579   }
1580 }
1581 
1582 void VPSlotTracker::assignNames(const VPlan &Plan) {
1583   if (Plan.VF.getNumUsers() > 0)
1584     assignName(&Plan.VF);
1585   if (Plan.VFxUF.getNumUsers() > 0)
1586     assignName(&Plan.VFxUF);
1587   assignName(&Plan.VectorTripCount);
1588   if (Plan.BackedgeTakenCount)
1589     assignName(Plan.BackedgeTakenCount);
1590   for (VPValue *LI : Plan.VPLiveInsToFree)
1591     assignName(LI);
1592   assignNames(Plan.getPreheader());
1593 
1594   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1595       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1596   for (const VPBasicBlock *VPBB :
1597        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1598     assignNames(VPBB);
1599 }
1600 
1601 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1602   for (const VPRecipeBase &Recipe : *VPBB)
1603     for (VPValue *Def : Recipe.definedValues())
1604       assignName(Def);
1605 }
1606 
1607 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1608   std::string Name = VPValue2Name.lookup(V);
1609   if (!Name.empty())
1610     return Name;
1611 
1612   // If no name was assigned, no VPlan was provided when creating the slot
1613   // tracker or it is not reachable from the provided VPlan. This can happen,
1614   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1615   // in a debugger.
1616   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1617   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1618   // here.
1619   const VPRecipeBase *DefR = V->getDefiningRecipe();
1620   (void)DefR;
1621   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1622          "VPValue defined by a recipe in a VPlan?");
1623 
1624   // Use the underlying value's name, if there is one.
1625   if (auto *UV = V->getUnderlyingValue()) {
1626     std::string Name;
1627     raw_string_ostream S(Name);
1628     UV->printAsOperand(S, false);
1629     return (Twine("ir<") + Name + ">").str();
1630   }
1631 
1632   return "<badref>";
1633 }
1634 
1635 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1636     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1637   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1638   bool PredicateAtRangeStart = Predicate(Range.Start);
1639 
1640   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1641     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1642       Range.End = TmpVF;
1643       break;
1644     }
1645 
1646   return PredicateAtRangeStart;
1647 }
1648 
1649 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1650 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1651 /// of VF's starting at a given VF and extending it as much as possible. Each
1652 /// vectorization decision can potentially shorten this sub-range during
1653 /// buildVPlan().
1654 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1655                                            ElementCount MaxVF) {
1656   auto MaxVFTimes2 = MaxVF * 2;
1657   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1658     VFRange SubRange = {VF, MaxVFTimes2};
1659     auto Plan = buildVPlan(SubRange);
1660     VPlanTransforms::optimize(*Plan);
1661     VPlans.push_back(std::move(Plan));
1662     VF = SubRange.End;
1663   }
1664 }
1665 
1666 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1667   assert(count_if(VPlans,
1668                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1669              1 &&
1670          "Multiple VPlans for VF.");
1671 
1672   for (const VPlanPtr &Plan : VPlans) {
1673     if (Plan->hasVF(VF))
1674       return *Plan.get();
1675   }
1676   llvm_unreachable("No plan found!");
1677 }
1678 
1679 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1680 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1681   if (VPlans.empty()) {
1682     O << "LV: No VPlans built.\n";
1683     return;
1684   }
1685   for (const auto &Plan : VPlans)
1686     if (PrintVPlansInDotFormat)
1687       Plan->printDOT(O);
1688     else
1689       Plan->print(O);
1690 }
1691 #endif
1692