1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanAnalysis.h" 61 #include "VPlanHCFGBuilder.h" 62 #include "VPlanPatternMatch.h" 63 #include "VPlanTransforms.h" 64 #include "VPlanUtils.h" 65 #include "VPlanVerifier.h" 66 #include "llvm/ADT/APInt.h" 67 #include "llvm/ADT/ArrayRef.h" 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/DenseMapInfo.h" 70 #include "llvm/ADT/Hashing.h" 71 #include "llvm/ADT/MapVector.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/TypeSwitch.h" 79 #include "llvm/ADT/iterator_range.h" 80 #include "llvm/Analysis/AssumptionCache.h" 81 #include "llvm/Analysis/BasicAliasAnalysis.h" 82 #include "llvm/Analysis/BlockFrequencyInfo.h" 83 #include "llvm/Analysis/CFG.h" 84 #include "llvm/Analysis/CodeMetrics.h" 85 #include "llvm/Analysis/DemandedBits.h" 86 #include "llvm/Analysis/GlobalsModRef.h" 87 #include "llvm/Analysis/LoopAccessAnalysis.h" 88 #include "llvm/Analysis/LoopAnalysisManager.h" 89 #include "llvm/Analysis/LoopInfo.h" 90 #include "llvm/Analysis/LoopIterator.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/ValueTracking.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfo.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/MDBuilder.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/PatternMatch.h" 122 #include "llvm/IR/ProfDataUtils.h" 123 #include "llvm/IR/Type.h" 124 #include "llvm/IR/Use.h" 125 #include "llvm/IR/User.h" 126 #include "llvm/IR/Value.h" 127 #include "llvm/IR/Verifier.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/NativeFormatting.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/Local.h" 139 #include "llvm/Transforms/Utils/LoopSimplify.h" 140 #include "llvm/Transforms/Utils/LoopUtils.h" 141 #include "llvm/Transforms/Utils/LoopVersioning.h" 142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 143 #include "llvm/Transforms/Utils/SizeOpts.h" 144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 145 #include <algorithm> 146 #include <cassert> 147 #include <cstdint> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> VectorizeMemoryCheckThreshold( 202 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<TailFoldingStyle> ForceTailFoldingStyle( 237 "force-tail-folding-style", cl::desc("Force the tail folding style"), 238 cl::init(TailFoldingStyle::None), 239 cl::values( 240 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), 241 clEnumValN( 242 TailFoldingStyle::Data, "data", 243 "Create lane mask for data only, using active.lane.mask intrinsic"), 244 clEnumValN(TailFoldingStyle::DataWithoutLaneMask, 245 "data-without-lane-mask", 246 "Create lane mask with compare/stepvector"), 247 clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", 248 "Create lane mask using active.lane.mask intrinsic, and use " 249 "it for both data and control flow"), 250 clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, 251 "data-and-control-without-rt-check", 252 "Similar to data-and-control, but remove the runtime check"), 253 clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", 254 "Use predicated EVL instructions for tail folding. If EVL " 255 "is unsupported, fallback to data-without-lane-mask."))); 256 257 static cl::opt<bool> MaximizeBandwidth( 258 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 259 cl::desc("Maximize bandwidth when selecting vectorization factor which " 260 "will be determined by the smallest type in loop.")); 261 262 static cl::opt<bool> EnableInterleavedMemAccesses( 263 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 264 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 265 266 /// An interleave-group may need masking if it resides in a block that needs 267 /// predication, or in order to mask away gaps. 268 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 269 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 270 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 271 272 static cl::opt<unsigned> ForceTargetNumScalarRegs( 273 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 274 cl::desc("A flag that overrides the target's number of scalar registers.")); 275 276 static cl::opt<unsigned> ForceTargetNumVectorRegs( 277 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 278 cl::desc("A flag that overrides the target's number of vector registers.")); 279 280 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 281 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 282 cl::desc("A flag that overrides the target's max interleave factor for " 283 "scalar loops.")); 284 285 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 286 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 287 cl::desc("A flag that overrides the target's max interleave factor for " 288 "vectorized loops.")); 289 290 cl::opt<unsigned> ForceTargetInstructionCost( 291 "force-target-instruction-cost", cl::init(0), cl::Hidden, 292 cl::desc("A flag that overrides the target's expected cost for " 293 "an instruction to a single constant value. Mostly " 294 "useful for getting consistent testing.")); 295 296 static cl::opt<bool> ForceTargetSupportsScalableVectors( 297 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 298 cl::desc( 299 "Pretend that scalable vectors are supported, even if the target does " 300 "not support them. This flag should only be used for testing.")); 301 302 static cl::opt<unsigned> SmallLoopCost( 303 "small-loop-cost", cl::init(20), cl::Hidden, 304 cl::desc( 305 "The cost of a loop that is considered 'small' by the interleaver.")); 306 307 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 308 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 309 cl::desc("Enable the use of the block frequency analysis to access PGO " 310 "heuristics minimizing code growth in cold regions and being more " 311 "aggressive in hot regions.")); 312 313 // Runtime interleave loops for load/store throughput. 314 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 315 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 316 cl::desc( 317 "Enable runtime interleaving until load/store ports are saturated")); 318 319 /// The number of stores in a loop that are allowed to need predication. 320 static cl::opt<unsigned> NumberOfStoresToPredicate( 321 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 322 cl::desc("Max number of stores to be predicated behind an if.")); 323 324 static cl::opt<bool> EnableIndVarRegisterHeur( 325 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 326 cl::desc("Count the induction variable only once when interleaving")); 327 328 static cl::opt<bool> EnableCondStoresVectorization( 329 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 330 cl::desc("Enable if predication of stores during vectorization.")); 331 332 static cl::opt<unsigned> MaxNestedScalarReductionIC( 333 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 334 cl::desc("The maximum interleave count to use when interleaving a scalar " 335 "reduction in a nested loop.")); 336 337 static cl::opt<bool> 338 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 339 cl::Hidden, 340 cl::desc("Prefer in-loop vector reductions, " 341 "overriding the targets preference.")); 342 343 static cl::opt<bool> ForceOrderedReductions( 344 "force-ordered-reductions", cl::init(false), cl::Hidden, 345 cl::desc("Enable the vectorisation of loops with in-order (strict) " 346 "FP reductions")); 347 348 static cl::opt<bool> PreferPredicatedReductionSelect( 349 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 350 cl::desc( 351 "Prefer predicating a reduction operation over an after loop select.")); 352 353 namespace llvm { 354 cl::opt<bool> EnableVPlanNativePath( 355 "enable-vplan-native-path", cl::Hidden, 356 cl::desc("Enable VPlan-native vectorization path with " 357 "support for outer loop vectorization.")); 358 } // namespace llvm 359 360 // This flag enables the stress testing of the VPlan H-CFG construction in the 361 // VPlan-native vectorization path. It must be used in conjuction with 362 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 363 // verification of the H-CFGs built. 364 static cl::opt<bool> VPlanBuildStressTest( 365 "vplan-build-stress-test", cl::init(false), cl::Hidden, 366 cl::desc( 367 "Build VPlan for every supported loop nest in the function and bail " 368 "out right after the build (stress test the VPlan H-CFG construction " 369 "in the VPlan-native vectorization path).")); 370 371 cl::opt<bool> llvm::EnableLoopInterleaving( 372 "interleave-loops", cl::init(true), cl::Hidden, 373 cl::desc("Enable loop interleaving in Loop vectorization passes")); 374 cl::opt<bool> llvm::EnableLoopVectorization( 375 "vectorize-loops", cl::init(true), cl::Hidden, 376 cl::desc("Run the Loop vectorization passes")); 377 378 static cl::opt<cl::boolOrDefault> ForceSafeDivisor( 379 "force-widen-divrem-via-safe-divisor", cl::Hidden, 380 cl::desc( 381 "Override cost based safe divisor widening for div/rem instructions")); 382 383 static cl::opt<bool> UseWiderVFIfCallVariantsPresent( 384 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), 385 cl::Hidden, 386 cl::desc("Try wider VFs if they enable the use of vector variants")); 387 388 static cl::opt<bool> EnableEarlyExitVectorization( 389 "enable-early-exit-vectorization", cl::init(false), cl::Hidden, 390 cl::desc( 391 "Enable vectorization of early exit loops with uncountable exits.")); 392 393 // Likelyhood of bypassing the vectorized loop because assumptions about SCEV 394 // variables not overflowing do not hold. See `emitSCEVChecks`. 395 static constexpr uint32_t SCEVCheckBypassWeights[] = {1, 127}; 396 // Likelyhood of bypassing the vectorized loop because pointers overlap. See 397 // `emitMemRuntimeChecks`. 398 static constexpr uint32_t MemCheckBypassWeights[] = {1, 127}; 399 // Likelyhood of bypassing the vectorized loop because there are zero trips left 400 // after prolog. See `emitIterationCountCheck`. 401 static constexpr uint32_t MinItersBypassWeights[] = {1, 127}; 402 403 /// A helper function that returns true if the given type is irregular. The 404 /// type is irregular if its allocated size doesn't equal the store size of an 405 /// element of the corresponding vector type. 406 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 407 // Determine if an array of N elements of type Ty is "bitcast compatible" 408 // with a <N x Ty> vector. 409 // This is only true if there is no padding between the array elements. 410 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 411 } 412 413 /// Returns "best known" trip count for the specified loop \p L as defined by 414 /// the following procedure: 415 /// 1) Returns exact trip count if it is known. 416 /// 2) Returns expected trip count according to profile data if any. 417 /// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax. 418 /// 4) Returns std::nullopt if all of the above failed. 419 static std::optional<unsigned> 420 getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, 421 bool CanUseConstantMax = true) { 422 // Check if exact trip count is known. 423 if (unsigned ExpectedTC = PSE.getSE()->getSmallConstantTripCount(L)) 424 return ExpectedTC; 425 426 // Check if there is an expected trip count available from profile data. 427 if (LoopVectorizeWithBlockFrequency) 428 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 429 return *EstimatedTC; 430 431 if (!CanUseConstantMax) 432 return std::nullopt; 433 434 // Check if upper bound estimate is known. 435 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount()) 436 return ExpectedTC; 437 438 return std::nullopt; 439 } 440 441 namespace { 442 // Forward declare GeneratedRTChecks. 443 class GeneratedRTChecks; 444 445 using SCEV2ValueTy = DenseMap<const SCEV *, Value *>; 446 } // namespace 447 448 namespace llvm { 449 450 AnalysisKey ShouldRunExtraVectorPasses::Key; 451 452 /// InnerLoopVectorizer vectorizes loops which contain only one basic 453 /// block to a specified vectorization factor (VF). 454 /// This class performs the widening of scalars into vectors, or multiple 455 /// scalars. This class also implements the following features: 456 /// * It inserts an epilogue loop for handling loops that don't have iteration 457 /// counts that are known to be a multiple of the vectorization factor. 458 /// * It handles the code generation for reduction variables. 459 /// * Scalarization (implementation using scalars) of un-vectorizable 460 /// instructions. 461 /// InnerLoopVectorizer does not perform any vectorization-legality 462 /// checks, and relies on the caller to check for the different legality 463 /// aspects. The InnerLoopVectorizer relies on the 464 /// LoopVectorizationLegality class to provide information about the induction 465 /// and reduction variables that were found to a given vectorization factor. 466 class InnerLoopVectorizer { 467 public: 468 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 469 LoopInfo *LI, DominatorTree *DT, 470 const TargetLibraryInfo *TLI, 471 const TargetTransformInfo *TTI, AssumptionCache *AC, 472 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 473 ElementCount MinProfitableTripCount, 474 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 475 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 476 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, 477 VPlan &Plan) 478 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 479 AC(AC), ORE(ORE), VF(VecWidth), 480 MinProfitableTripCount(MinProfitableTripCount), UF(UnrollFactor), 481 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 482 PSI(PSI), RTChecks(RTChecks), Plan(Plan), 483 VectorPHVPB(Plan.getEntry()->getSingleSuccessor()) { 484 // Query this against the original loop and save it here because the profile 485 // of the original loop header may change as the transformation happens. 486 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 487 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 488 } 489 490 virtual ~InnerLoopVectorizer() = default; 491 492 /// Create a new empty loop that will contain vectorized instructions later 493 /// on, while the old loop will be used as the scalar remainder. Control flow 494 /// is generated around the vectorized (and scalar epilogue) loops consisting 495 /// of various checks and bypasses. Return the pre-header block of the new 496 /// loop. In the case of epilogue vectorization, this function is overriden to 497 /// handle the more complex control flow around the loops. \p ExpandedSCEVs is 498 /// used to look up SCEV expansions for expressions needed during skeleton 499 /// creation. 500 virtual BasicBlock * 501 createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs); 502 503 /// Fix the vectorized code, taking care of header phi's, and more. 504 void fixVectorizedLoop(VPTransformState &State); 505 506 // Return true if any runtime check is added. 507 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 508 509 /// A helper function to scalarize a single Instruction in the innermost loop. 510 /// Generates a sequence of scalar instances for each lane between \p MinLane 511 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 512 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 513 /// Instr's operands. 514 void scalarizeInstruction(const Instruction *Instr, 515 VPReplicateRecipe *RepRecipe, const VPLane &Lane, 516 VPTransformState &State); 517 518 /// Fix the non-induction PHIs in \p Plan. 519 void fixNonInductionPHIs(VPTransformState &State); 520 521 /// Returns the original loop trip count. 522 Value *getTripCount() const { return TripCount; } 523 524 /// Used to set the trip count after ILV's construction and after the 525 /// preheader block has been executed. Note that this always holds the trip 526 /// count of the original loop for both main loop and epilogue vectorization. 527 void setTripCount(Value *TC) { TripCount = TC; } 528 529 // Retrieve the additional bypass value associated with an original 530 /// induction header phi. 531 Value *getInductionAdditionalBypassValue(PHINode *OrigPhi) const { 532 return Induction2AdditionalBypassValue.at(OrigPhi); 533 } 534 535 /// Return the additional bypass block which targets the scalar loop by 536 /// skipping the epilogue loop after completing the main loop. 537 BasicBlock *getAdditionalBypassBlock() const { 538 assert(AdditionalBypassBlock && 539 "Trying to access AdditionalBypassBlock but it has not been set"); 540 return AdditionalBypassBlock; 541 } 542 543 protected: 544 friend class LoopVectorizationPlanner; 545 546 /// Iteratively sink the scalarized operands of a predicated instruction into 547 /// the block that was created for it. 548 void sinkScalarOperands(Instruction *PredInst); 549 550 /// Returns (and creates if needed) the trip count of the widened loop. 551 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 552 553 /// Emit a bypass check to see if the vector trip count is zero, including if 554 /// it overflows. 555 void emitIterationCountCheck(BasicBlock *Bypass); 556 557 /// Emit a bypass check to see if all of the SCEV assumptions we've 558 /// had to make are correct. Returns the block containing the checks or 559 /// nullptr if no checks have been added. 560 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 561 562 /// Emit bypass checks to check any memory assumptions we may have made. 563 /// Returns the block containing the checks or nullptr if no checks have been 564 /// added. 565 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 566 567 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 568 /// vector loop preheader, middle block and scalar preheader. 569 void createVectorLoopSkeleton(StringRef Prefix); 570 571 /// Create and record the values for induction variables to resume coming from 572 /// the additional bypass block. 573 void createInductionAdditionalBypassValues(const SCEV2ValueTy &ExpandedSCEVs, 574 Value *MainVectorTripCount); 575 576 /// Allow subclasses to override and print debug traces before/after vplan 577 /// execution, when trace information is requested. 578 virtual void printDebugTracesAtStart() {} 579 virtual void printDebugTracesAtEnd() {} 580 581 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the 582 /// vector preheader and its predecessor, also connecting the new block to the 583 /// scalar preheader. 584 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB); 585 586 /// The original loop. 587 Loop *OrigLoop; 588 589 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 590 /// dynamic knowledge to simplify SCEV expressions and converts them to a 591 /// more usable form. 592 PredicatedScalarEvolution &PSE; 593 594 /// Loop Info. 595 LoopInfo *LI; 596 597 /// Dominator Tree. 598 DominatorTree *DT; 599 600 /// Target Library Info. 601 const TargetLibraryInfo *TLI; 602 603 /// Target Transform Info. 604 const TargetTransformInfo *TTI; 605 606 /// Assumption Cache. 607 AssumptionCache *AC; 608 609 /// Interface to emit optimization remarks. 610 OptimizationRemarkEmitter *ORE; 611 612 /// The vectorization SIMD factor to use. Each vector will have this many 613 /// vector elements. 614 ElementCount VF; 615 616 ElementCount MinProfitableTripCount; 617 618 /// The vectorization unroll factor to use. Each scalar is vectorized to this 619 /// many different vector instructions. 620 unsigned UF; 621 622 /// The builder that we use 623 IRBuilder<> Builder; 624 625 // --- Vectorization state --- 626 627 /// The vector-loop preheader. 628 BasicBlock *LoopVectorPreHeader; 629 630 /// The scalar-loop preheader. 631 BasicBlock *LoopScalarPreHeader; 632 633 /// Middle Block between the vector and the scalar. 634 BasicBlock *LoopMiddleBlock; 635 636 /// A list of all bypass blocks. The first block is the entry of the loop. 637 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 638 639 /// Store instructions that were predicated. 640 SmallVector<Instruction *, 4> PredicatedInstructions; 641 642 /// Trip count of the original loop. 643 Value *TripCount = nullptr; 644 645 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 646 Value *VectorTripCount = nullptr; 647 648 /// The legality analysis. 649 LoopVectorizationLegality *Legal; 650 651 /// The profitablity analysis. 652 LoopVectorizationCostModel *Cost; 653 654 // Record whether runtime checks are added. 655 bool AddedSafetyChecks = false; 656 657 /// BFI and PSI are used to check for profile guided size optimizations. 658 BlockFrequencyInfo *BFI; 659 ProfileSummaryInfo *PSI; 660 661 // Whether this loop should be optimized for size based on profile guided size 662 // optimizatios. 663 bool OptForSizeBasedOnProfile; 664 665 /// Structure to hold information about generated runtime checks, responsible 666 /// for cleaning the checks, if vectorization turns out unprofitable. 667 GeneratedRTChecks &RTChecks; 668 669 /// Mapping of induction phis to their additional bypass values. They 670 /// need to be added as operands to phi nodes in the scalar loop preheader 671 /// after the epilogue skeleton has been created. 672 DenseMap<PHINode *, Value *> Induction2AdditionalBypassValue; 673 674 /// The additional bypass block which conditionally skips over the epilogue 675 /// loop after executing the main loop. Needed to resume inductions and 676 /// reductions during epilogue vectorization. 677 BasicBlock *AdditionalBypassBlock = nullptr; 678 679 VPlan &Plan; 680 681 /// The vector preheader block of \p Plan, used as target for check blocks 682 /// introduced during skeleton creation. 683 VPBlockBase *VectorPHVPB; 684 }; 685 686 /// Encapsulate information regarding vectorization of a loop and its epilogue. 687 /// This information is meant to be updated and used across two stages of 688 /// epilogue vectorization. 689 struct EpilogueLoopVectorizationInfo { 690 ElementCount MainLoopVF = ElementCount::getFixed(0); 691 unsigned MainLoopUF = 0; 692 ElementCount EpilogueVF = ElementCount::getFixed(0); 693 unsigned EpilogueUF = 0; 694 BasicBlock *MainLoopIterationCountCheck = nullptr; 695 BasicBlock *EpilogueIterationCountCheck = nullptr; 696 BasicBlock *SCEVSafetyCheck = nullptr; 697 BasicBlock *MemSafetyCheck = nullptr; 698 Value *TripCount = nullptr; 699 Value *VectorTripCount = nullptr; 700 VPlan &EpiloguePlan; 701 702 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 703 ElementCount EVF, unsigned EUF, 704 VPlan &EpiloguePlan) 705 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF), 706 EpiloguePlan(EpiloguePlan) { 707 assert(EUF == 1 && 708 "A high UF for the epilogue loop is likely not beneficial."); 709 } 710 }; 711 712 /// An extension of the inner loop vectorizer that creates a skeleton for a 713 /// vectorized loop that has its epilogue (residual) also vectorized. 714 /// The idea is to run the vplan on a given loop twice, firstly to setup the 715 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 716 /// from the first step and vectorize the epilogue. This is achieved by 717 /// deriving two concrete strategy classes from this base class and invoking 718 /// them in succession from the loop vectorizer planner. 719 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 720 public: 721 InnerLoopAndEpilogueVectorizer( 722 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 723 DominatorTree *DT, const TargetLibraryInfo *TLI, 724 const TargetTransformInfo *TTI, AssumptionCache *AC, 725 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 726 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 727 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 728 GeneratedRTChecks &Checks, VPlan &Plan) 729 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 730 EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, 731 CM, BFI, PSI, Checks, Plan), 732 EPI(EPI) {} 733 734 // Override this function to handle the more complex control flow around the 735 // three loops. 736 BasicBlock * 737 createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final { 738 return createEpilogueVectorizedLoopSkeleton(ExpandedSCEVs); 739 } 740 741 /// The interface for creating a vectorized skeleton using one of two 742 /// different strategies, each corresponding to one execution of the vplan 743 /// as described above. 744 virtual BasicBlock * 745 createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) = 0; 746 747 /// Holds and updates state information required to vectorize the main loop 748 /// and its epilogue in two separate passes. This setup helps us avoid 749 /// regenerating and recomputing runtime safety checks. It also helps us to 750 /// shorten the iteration-count-check path length for the cases where the 751 /// iteration count of the loop is so small that the main vector loop is 752 /// completely skipped. 753 EpilogueLoopVectorizationInfo &EPI; 754 }; 755 756 /// A specialized derived class of inner loop vectorizer that performs 757 /// vectorization of *main* loops in the process of vectorizing loops and their 758 /// epilogues. 759 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 760 public: 761 EpilogueVectorizerMainLoop( 762 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 763 DominatorTree *DT, const TargetLibraryInfo *TLI, 764 const TargetTransformInfo *TTI, AssumptionCache *AC, 765 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 766 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 767 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 768 GeneratedRTChecks &Check, VPlan &Plan) 769 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 770 EPI, LVL, CM, BFI, PSI, Check, Plan) {} 771 /// Implements the interface for creating a vectorized skeleton using the 772 /// *main loop* strategy (ie the first pass of vplan execution). 773 BasicBlock * 774 createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final; 775 776 protected: 777 /// Emits an iteration count bypass check once for the main loop (when \p 778 /// ForEpilogue is false) and once for the epilogue loop (when \p 779 /// ForEpilogue is true). 780 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 781 void printDebugTracesAtStart() override; 782 void printDebugTracesAtEnd() override; 783 }; 784 785 // A specialized derived class of inner loop vectorizer that performs 786 // vectorization of *epilogue* loops in the process of vectorizing loops and 787 // their epilogues. 788 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 789 public: 790 EpilogueVectorizerEpilogueLoop( 791 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 792 DominatorTree *DT, const TargetLibraryInfo *TLI, 793 const TargetTransformInfo *TTI, AssumptionCache *AC, 794 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 795 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 796 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 797 GeneratedRTChecks &Checks, VPlan &Plan) 798 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 799 EPI, LVL, CM, BFI, PSI, Checks, Plan) { 800 TripCount = EPI.TripCount; 801 } 802 /// Implements the interface for creating a vectorized skeleton using the 803 /// *epilogue loop* strategy (ie the second pass of vplan execution). 804 BasicBlock * 805 createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final; 806 807 protected: 808 /// Emits an iteration count bypass check after the main vector loop has 809 /// finished to see if there are any iterations left to execute by either 810 /// the vector epilogue or the scalar epilogue. 811 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 812 BasicBlock *Bypass, 813 BasicBlock *Insert); 814 void printDebugTracesAtStart() override; 815 void printDebugTracesAtEnd() override; 816 }; 817 } // end namespace llvm 818 819 /// Look for a meaningful debug location on the instruction or its operands. 820 static DebugLoc getDebugLocFromInstOrOperands(Instruction *I) { 821 if (!I) 822 return DebugLoc(); 823 824 DebugLoc Empty; 825 if (I->getDebugLoc() != Empty) 826 return I->getDebugLoc(); 827 828 for (Use &Op : I->operands()) { 829 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 830 if (OpInst->getDebugLoc() != Empty) 831 return OpInst->getDebugLoc(); 832 } 833 834 return I->getDebugLoc(); 835 } 836 837 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 838 /// is passed, the message relates to that particular instruction. 839 #ifndef NDEBUG 840 static void debugVectorizationMessage(const StringRef Prefix, 841 const StringRef DebugMsg, 842 Instruction *I) { 843 dbgs() << "LV: " << Prefix << DebugMsg; 844 if (I != nullptr) 845 dbgs() << " " << *I; 846 else 847 dbgs() << '.'; 848 dbgs() << '\n'; 849 } 850 #endif 851 852 /// Create an analysis remark that explains why vectorization failed 853 /// 854 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 855 /// RemarkName is the identifier for the remark. If \p I is passed it is an 856 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 857 /// the location of the remark. If \p DL is passed, use it as debug location for 858 /// the remark. \return the remark object that can be streamed to. 859 static OptimizationRemarkAnalysis 860 createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 861 Instruction *I, DebugLoc DL = {}) { 862 Value *CodeRegion = I ? I->getParent() : TheLoop->getHeader(); 863 // If debug location is attached to the instruction, use it. Otherwise if DL 864 // was not provided, use the loop's. 865 if (I && I->getDebugLoc()) 866 DL = I->getDebugLoc(); 867 else if (!DL) 868 DL = TheLoop->getStartLoc(); 869 870 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 871 } 872 873 namespace llvm { 874 875 /// Return a value for Step multiplied by VF. 876 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 877 int64_t Step) { 878 assert(Ty->isIntegerTy() && "Expected an integer step"); 879 return B.CreateElementCount(Ty, VF.multiplyCoefficientBy(Step)); 880 } 881 882 /// Return the runtime value for VF. 883 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 884 return B.CreateElementCount(Ty, VF); 885 } 886 887 void reportVectorizationFailure(const StringRef DebugMsg, 888 const StringRef OREMsg, const StringRef ORETag, 889 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 890 Instruction *I) { 891 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 892 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 893 ORE->emit( 894 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 895 << "loop not vectorized: " << OREMsg); 896 } 897 898 /// Reports an informative message: print \p Msg for debugging purposes as well 899 /// as an optimization remark. Uses either \p I as location of the remark, or 900 /// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the 901 /// remark. If \p DL is passed, use it as debug location for the remark. 902 static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 903 OptimizationRemarkEmitter *ORE, 904 Loop *TheLoop, Instruction *I = nullptr, 905 DebugLoc DL = {}) { 906 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 907 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 908 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, 909 I, DL) 910 << Msg); 911 } 912 913 /// Report successful vectorization of the loop. In case an outer loop is 914 /// vectorized, prepend "outer" to the vectorization remark. 915 static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, 916 VectorizationFactor VF, unsigned IC) { 917 LLVM_DEBUG(debugVectorizationMessage( 918 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop", 919 nullptr)); 920 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer "; 921 ORE->emit([&]() { 922 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(), 923 TheLoop->getHeader()) 924 << "vectorized " << LoopType << "loop (vectorization width: " 925 << ore::NV("VectorizationFactor", VF.Width) 926 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")"; 927 }); 928 } 929 930 } // end namespace llvm 931 932 namespace llvm { 933 934 // Loop vectorization cost-model hints how the scalar epilogue loop should be 935 // lowered. 936 enum ScalarEpilogueLowering { 937 938 // The default: allowing scalar epilogues. 939 CM_ScalarEpilogueAllowed, 940 941 // Vectorization with OptForSize: don't allow epilogues. 942 CM_ScalarEpilogueNotAllowedOptSize, 943 944 // A special case of vectorisation with OptForSize: loops with a very small 945 // trip count are considered for vectorization under OptForSize, thereby 946 // making sure the cost of their loop body is dominant, free of runtime 947 // guards and scalar iteration overheads. 948 CM_ScalarEpilogueNotAllowedLowTripLoop, 949 950 // Loop hint predicate indicating an epilogue is undesired. 951 CM_ScalarEpilogueNotNeededUsePredicate, 952 953 // Directive indicating we must either tail fold or not vectorize 954 CM_ScalarEpilogueNotAllowedUsePredicate 955 }; 956 957 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 958 959 /// LoopVectorizationCostModel - estimates the expected speedups due to 960 /// vectorization. 961 /// In many cases vectorization is not profitable. This can happen because of 962 /// a number of reasons. In this class we mainly attempt to predict the 963 /// expected speedup/slowdowns due to the supported instruction set. We use the 964 /// TargetTransformInfo to query the different backends for the cost of 965 /// different operations. 966 class LoopVectorizationCostModel { 967 friend class LoopVectorizationPlanner; 968 969 public: 970 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 971 PredicatedScalarEvolution &PSE, LoopInfo *LI, 972 LoopVectorizationLegality *Legal, 973 const TargetTransformInfo &TTI, 974 const TargetLibraryInfo *TLI, DemandedBits *DB, 975 AssumptionCache *AC, 976 OptimizationRemarkEmitter *ORE, const Function *F, 977 const LoopVectorizeHints *Hints, 978 InterleavedAccessInfo &IAI) 979 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 980 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 981 Hints(Hints), InterleaveInfo(IAI), CostKind(TTI::TCK_RecipThroughput) {} 982 983 /// \return An upper bound for the vectorization factors (both fixed and 984 /// scalable). If the factors are 0, vectorization and interleaving should be 985 /// avoided up front. 986 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 987 988 /// \return True if runtime checks are required for vectorization, and false 989 /// otherwise. 990 bool runtimeChecksRequired(); 991 992 /// Setup cost-based decisions for user vectorization factor. 993 /// \return true if the UserVF is a feasible VF to be chosen. 994 bool selectUserVectorizationFactor(ElementCount UserVF) { 995 collectUniformsAndScalars(UserVF); 996 collectInstsToScalarize(UserVF); 997 return expectedCost(UserVF).isValid(); 998 } 999 1000 /// \return The size (in bits) of the smallest and widest types in the code 1001 /// that needs to be vectorized. We ignore values that remain scalar such as 1002 /// 64 bit loop indices. 1003 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1004 1005 /// \return The desired interleave count. 1006 /// If interleave count has been specified by metadata it will be returned. 1007 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1008 /// are the selected vectorization factor and the cost of the selected VF. 1009 unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost); 1010 1011 /// Memory access instruction may be vectorized in more than one way. 1012 /// Form of instruction after vectorization depends on cost. 1013 /// This function takes cost-based decisions for Load/Store instructions 1014 /// and collects them in a map. This decisions map is used for building 1015 /// the lists of loop-uniform and loop-scalar instructions. 1016 /// The calculated cost is saved with widening decision in order to 1017 /// avoid redundant calculations. 1018 void setCostBasedWideningDecision(ElementCount VF); 1019 1020 /// A call may be vectorized in different ways depending on whether we have 1021 /// vectorized variants available and whether the target supports masking. 1022 /// This function analyzes all calls in the function at the supplied VF, 1023 /// makes a decision based on the costs of available options, and stores that 1024 /// decision in a map for use in planning and plan execution. 1025 void setVectorizedCallDecision(ElementCount VF); 1026 1027 /// A struct that represents some properties of the register usage 1028 /// of a loop. 1029 struct RegisterUsage { 1030 /// Holds the number of loop invariant values that are used in the loop. 1031 /// The key is ClassID of target-provided register class. 1032 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1033 /// Holds the maximum number of concurrent live intervals in the loop. 1034 /// The key is ClassID of target-provided register class. 1035 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1036 }; 1037 1038 /// \return Returns information about the register usages of the loop for the 1039 /// given vectorization factors. 1040 SmallVector<RegisterUsage, 8> 1041 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1042 1043 /// Collect values we want to ignore in the cost model. 1044 void collectValuesToIgnore(); 1045 1046 /// Collect all element types in the loop for which widening is needed. 1047 void collectElementTypesForWidening(); 1048 1049 /// Split reductions into those that happen in the loop, and those that happen 1050 /// outside. In loop reductions are collected into InLoopReductions. 1051 void collectInLoopReductions(); 1052 1053 /// Returns true if we should use strict in-order reductions for the given 1054 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1055 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1056 /// of FP operations. 1057 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { 1058 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1059 } 1060 1061 /// \returns The smallest bitwidth each instruction can be represented with. 1062 /// The vector equivalents of these instructions should be truncated to this 1063 /// type. 1064 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1065 return MinBWs; 1066 } 1067 1068 /// \returns True if it is more profitable to scalarize instruction \p I for 1069 /// vectorization factor \p VF. 1070 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1071 assert(VF.isVector() && 1072 "Profitable to scalarize relevant only for VF > 1."); 1073 assert( 1074 TheLoop->isInnermost() && 1075 "cost-model should not be used for outer loops (in VPlan-native path)"); 1076 1077 auto Scalars = InstsToScalarize.find(VF); 1078 assert(Scalars != InstsToScalarize.end() && 1079 "VF not yet analyzed for scalarization profitability"); 1080 return Scalars->second.contains(I); 1081 } 1082 1083 /// Returns true if \p I is known to be uniform after vectorization. 1084 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1085 assert( 1086 TheLoop->isInnermost() && 1087 "cost-model should not be used for outer loops (in VPlan-native path)"); 1088 // Pseudo probe needs to be duplicated for each unrolled iteration and 1089 // vector lane so that profiled loop trip count can be accurately 1090 // accumulated instead of being under counted. 1091 if (isa<PseudoProbeInst>(I)) 1092 return false; 1093 1094 if (VF.isScalar()) 1095 return true; 1096 1097 auto UniformsPerVF = Uniforms.find(VF); 1098 assert(UniformsPerVF != Uniforms.end() && 1099 "VF not yet analyzed for uniformity"); 1100 return UniformsPerVF->second.count(I); 1101 } 1102 1103 /// Returns true if \p I is known to be scalar after vectorization. 1104 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1105 assert( 1106 TheLoop->isInnermost() && 1107 "cost-model should not be used for outer loops (in VPlan-native path)"); 1108 if (VF.isScalar()) 1109 return true; 1110 1111 auto ScalarsPerVF = Scalars.find(VF); 1112 assert(ScalarsPerVF != Scalars.end() && 1113 "Scalar values are not calculated for VF"); 1114 return ScalarsPerVF->second.count(I); 1115 } 1116 1117 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1118 /// for vectorization factor \p VF. 1119 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1120 return VF.isVector() && MinBWs.contains(I) && 1121 !isProfitableToScalarize(I, VF) && 1122 !isScalarAfterVectorization(I, VF); 1123 } 1124 1125 /// Decision that was taken during cost calculation for memory instruction. 1126 enum InstWidening { 1127 CM_Unknown, 1128 CM_Widen, // For consecutive accesses with stride +1. 1129 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1130 CM_Interleave, 1131 CM_GatherScatter, 1132 CM_Scalarize, 1133 CM_VectorCall, 1134 CM_IntrinsicCall 1135 }; 1136 1137 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1138 /// instruction \p I and vector width \p VF. 1139 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1140 InstructionCost Cost) { 1141 assert(VF.isVector() && "Expected VF >=2"); 1142 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1143 } 1144 1145 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1146 /// interleaving group \p Grp and vector width \p VF. 1147 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1148 ElementCount VF, InstWidening W, 1149 InstructionCost Cost) { 1150 assert(VF.isVector() && "Expected VF >=2"); 1151 /// Broadcast this decicion to all instructions inside the group. 1152 /// When interleaving, the cost will only be assigned one instruction, the 1153 /// insert position. For other cases, add the appropriate fraction of the 1154 /// total cost to each instruction. This ensures accurate costs are used, 1155 /// even if the insert position instruction is not used. 1156 InstructionCost InsertPosCost = Cost; 1157 InstructionCost OtherMemberCost = 0; 1158 if (W != CM_Interleave) 1159 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers(); 1160 ; 1161 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) { 1162 if (auto *I = Grp->getMember(Idx)) { 1163 if (Grp->getInsertPos() == I) 1164 WideningDecisions[std::make_pair(I, VF)] = 1165 std::make_pair(W, InsertPosCost); 1166 else 1167 WideningDecisions[std::make_pair(I, VF)] = 1168 std::make_pair(W, OtherMemberCost); 1169 } 1170 } 1171 } 1172 1173 /// Return the cost model decision for the given instruction \p I and vector 1174 /// width \p VF. Return CM_Unknown if this instruction did not pass 1175 /// through the cost modeling. 1176 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1177 assert(VF.isVector() && "Expected VF to be a vector VF"); 1178 assert( 1179 TheLoop->isInnermost() && 1180 "cost-model should not be used for outer loops (in VPlan-native path)"); 1181 1182 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1183 auto Itr = WideningDecisions.find(InstOnVF); 1184 if (Itr == WideningDecisions.end()) 1185 return CM_Unknown; 1186 return Itr->second.first; 1187 } 1188 1189 /// Return the vectorization cost for the given instruction \p I and vector 1190 /// width \p VF. 1191 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1192 assert(VF.isVector() && "Expected VF >=2"); 1193 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1194 assert(WideningDecisions.contains(InstOnVF) && 1195 "The cost is not calculated"); 1196 return WideningDecisions[InstOnVF].second; 1197 } 1198 1199 struct CallWideningDecision { 1200 InstWidening Kind; 1201 Function *Variant; 1202 Intrinsic::ID IID; 1203 std::optional<unsigned> MaskPos; 1204 InstructionCost Cost; 1205 }; 1206 1207 void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, 1208 Function *Variant, Intrinsic::ID IID, 1209 std::optional<unsigned> MaskPos, 1210 InstructionCost Cost) { 1211 assert(!VF.isScalar() && "Expected vector VF"); 1212 CallWideningDecisions[std::make_pair(CI, VF)] = {Kind, Variant, IID, 1213 MaskPos, Cost}; 1214 } 1215 1216 CallWideningDecision getCallWideningDecision(CallInst *CI, 1217 ElementCount VF) const { 1218 assert(!VF.isScalar() && "Expected vector VF"); 1219 return CallWideningDecisions.at(std::make_pair(CI, VF)); 1220 } 1221 1222 /// Return True if instruction \p I is an optimizable truncate whose operand 1223 /// is an induction variable. Such a truncate will be removed by adding a new 1224 /// induction variable with the destination type. 1225 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1226 // If the instruction is not a truncate, return false. 1227 auto *Trunc = dyn_cast<TruncInst>(I); 1228 if (!Trunc) 1229 return false; 1230 1231 // Get the source and destination types of the truncate. 1232 Type *SrcTy = toVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1233 Type *DestTy = toVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1234 1235 // If the truncate is free for the given types, return false. Replacing a 1236 // free truncate with an induction variable would add an induction variable 1237 // update instruction to each iteration of the loop. We exclude from this 1238 // check the primary induction variable since it will need an update 1239 // instruction regardless. 1240 Value *Op = Trunc->getOperand(0); 1241 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1242 return false; 1243 1244 // If the truncated value is not an induction variable, return false. 1245 return Legal->isInductionPhi(Op); 1246 } 1247 1248 /// Collects the instructions to scalarize for each predicated instruction in 1249 /// the loop. 1250 void collectInstsToScalarize(ElementCount VF); 1251 1252 /// Collect Uniform and Scalar values for the given \p VF. 1253 /// The sets depend on CM decision for Load/Store instructions 1254 /// that may be vectorized as interleave, gather-scatter or scalarized. 1255 /// Also make a decision on what to do about call instructions in the loop 1256 /// at that VF -- scalarize, call a known vector routine, or call a 1257 /// vector intrinsic. 1258 void collectUniformsAndScalars(ElementCount VF) { 1259 // Do the analysis once. 1260 if (VF.isScalar() || Uniforms.contains(VF)) 1261 return; 1262 setCostBasedWideningDecision(VF); 1263 collectLoopUniforms(VF); 1264 setVectorizedCallDecision(VF); 1265 collectLoopScalars(VF); 1266 } 1267 1268 /// Returns true if the target machine supports masked store operation 1269 /// for the given \p DataType and kind of access to \p Ptr. 1270 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1271 return Legal->isConsecutivePtr(DataType, Ptr) && 1272 TTI.isLegalMaskedStore(DataType, Alignment); 1273 } 1274 1275 /// Returns true if the target machine supports masked load operation 1276 /// for the given \p DataType and kind of access to \p Ptr. 1277 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1278 return Legal->isConsecutivePtr(DataType, Ptr) && 1279 TTI.isLegalMaskedLoad(DataType, Alignment); 1280 } 1281 1282 /// Returns true if the target machine can represent \p V as a masked gather 1283 /// or scatter operation. 1284 bool isLegalGatherOrScatter(Value *V, ElementCount VF) { 1285 bool LI = isa<LoadInst>(V); 1286 bool SI = isa<StoreInst>(V); 1287 if (!LI && !SI) 1288 return false; 1289 auto *Ty = getLoadStoreType(V); 1290 Align Align = getLoadStoreAlignment(V); 1291 if (VF.isVector()) 1292 Ty = VectorType::get(Ty, VF); 1293 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1294 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1295 } 1296 1297 /// Returns true if the target machine supports all of the reduction 1298 /// variables found for the given VF. 1299 bool canVectorizeReductions(ElementCount VF) const { 1300 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1301 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1302 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1303 })); 1304 } 1305 1306 /// Given costs for both strategies, return true if the scalar predication 1307 /// lowering should be used for div/rem. This incorporates an override 1308 /// option so it is not simply a cost comparison. 1309 bool isDivRemScalarWithPredication(InstructionCost ScalarCost, 1310 InstructionCost SafeDivisorCost) const { 1311 switch (ForceSafeDivisor) { 1312 case cl::BOU_UNSET: 1313 return ScalarCost < SafeDivisorCost; 1314 case cl::BOU_TRUE: 1315 return false; 1316 case cl::BOU_FALSE: 1317 return true; 1318 } 1319 llvm_unreachable("impossible case value"); 1320 } 1321 1322 /// Returns true if \p I is an instruction which requires predication and 1323 /// for which our chosen predication strategy is scalarization (i.e. we 1324 /// don't have an alternate strategy such as masking available). 1325 /// \p VF is the vectorization factor that will be used to vectorize \p I. 1326 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1327 1328 /// Returns true if \p I is an instruction that needs to be predicated 1329 /// at runtime. The result is independent of the predication mechanism. 1330 /// Superset of instructions that return true for isScalarWithPredication. 1331 bool isPredicatedInst(Instruction *I) const; 1332 1333 /// Return the costs for our two available strategies for lowering a 1334 /// div/rem operation which requires speculating at least one lane. 1335 /// First result is for scalarization (will be invalid for scalable 1336 /// vectors); second is for the safe-divisor strategy. 1337 std::pair<InstructionCost, InstructionCost> 1338 getDivRemSpeculationCost(Instruction *I, 1339 ElementCount VF) const; 1340 1341 /// Returns true if \p I is a memory instruction with consecutive memory 1342 /// access that can be widened. 1343 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF); 1344 1345 /// Returns true if \p I is a memory instruction in an interleaved-group 1346 /// of memory accesses that can be vectorized with wide vector loads/stores 1347 /// and shuffles. 1348 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const; 1349 1350 /// Check if \p Instr belongs to any interleaved access group. 1351 bool isAccessInterleaved(Instruction *Instr) const { 1352 return InterleaveInfo.isInterleaved(Instr); 1353 } 1354 1355 /// Get the interleaved access group that \p Instr belongs to. 1356 const InterleaveGroup<Instruction> * 1357 getInterleavedAccessGroup(Instruction *Instr) const { 1358 return InterleaveInfo.getInterleaveGroup(Instr); 1359 } 1360 1361 /// Returns true if we're required to use a scalar epilogue for at least 1362 /// the final iteration of the original loop. 1363 bool requiresScalarEpilogue(bool IsVectorizing) const { 1364 if (!isScalarEpilogueAllowed()) { 1365 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n"); 1366 return false; 1367 } 1368 // If we might exit from anywhere but the latch and early exit vectorization 1369 // is disabled, we must run the exiting iteration in scalar form. 1370 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() && 1371 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) { 1372 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting " 1373 "from latch block\n"); 1374 return true; 1375 } 1376 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) { 1377 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: " 1378 "interleaved group requires scalar epilogue\n"); 1379 return true; 1380 } 1381 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n"); 1382 return false; 1383 } 1384 1385 /// Returns true if we're required to use a scalar epilogue for at least 1386 /// the final iteration of the original loop for all VFs in \p Range. 1387 /// A scalar epilogue must either be required for all VFs in \p Range or for 1388 /// none. 1389 bool requiresScalarEpilogue(VFRange Range) const { 1390 auto RequiresScalarEpilogue = [this](ElementCount VF) { 1391 return requiresScalarEpilogue(VF.isVector()); 1392 }; 1393 bool IsRequired = all_of(Range, RequiresScalarEpilogue); 1394 assert( 1395 (IsRequired || none_of(Range, RequiresScalarEpilogue)) && 1396 "all VFs in range must agree on whether a scalar epilogue is required"); 1397 return IsRequired; 1398 } 1399 1400 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1401 /// loop hint annotation. 1402 bool isScalarEpilogueAllowed() const { 1403 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1404 } 1405 1406 /// Returns the TailFoldingStyle that is best for the current loop. 1407 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const { 1408 if (!ChosenTailFoldingStyle) 1409 return TailFoldingStyle::None; 1410 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first 1411 : ChosenTailFoldingStyle->second; 1412 } 1413 1414 /// Selects and saves TailFoldingStyle for 2 options - if IV update may 1415 /// overflow or not. 1416 /// \param IsScalableVF true if scalable vector factors enabled. 1417 /// \param UserIC User specific interleave count. 1418 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) { 1419 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet."); 1420 if (!Legal->canFoldTailByMasking()) { 1421 ChosenTailFoldingStyle = 1422 std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None); 1423 return; 1424 } 1425 1426 if (!ForceTailFoldingStyle.getNumOccurrences()) { 1427 ChosenTailFoldingStyle = std::make_pair( 1428 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true), 1429 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)); 1430 return; 1431 } 1432 1433 // Set styles when forced. 1434 ChosenTailFoldingStyle = std::make_pair(ForceTailFoldingStyle.getValue(), 1435 ForceTailFoldingStyle.getValue()); 1436 if (ForceTailFoldingStyle != TailFoldingStyle::DataWithEVL) 1437 return; 1438 // Override forced styles if needed. 1439 // FIXME: use actual opcode/data type for analysis here. 1440 // FIXME: Investigate opportunity for fixed vector factor. 1441 // FIXME: support fixed-order recurrences by fixing splice of non VFxUF 1442 // penultimate EVL. 1443 bool EVLIsLegal = 1444 UserIC <= 1 && TTI.hasActiveVectorLength(0, nullptr, Align()) && 1445 !EnableVPlanNativePath && Legal->getFixedOrderRecurrences().empty(); 1446 if (!EVLIsLegal) { 1447 // If for some reason EVL mode is unsupported, fallback to 1448 // DataWithoutLaneMask to try to vectorize the loop with folded tail 1449 // in a generic way. 1450 ChosenTailFoldingStyle = 1451 std::make_pair(TailFoldingStyle::DataWithoutLaneMask, 1452 TailFoldingStyle::DataWithoutLaneMask); 1453 LLVM_DEBUG( 1454 dbgs() 1455 << "LV: Preference for VP intrinsics indicated. Will " 1456 "not try to generate VP Intrinsics " 1457 << (UserIC > 1 1458 ? "since interleave count specified is greater than 1.\n" 1459 : "due to non-interleaving reasons.\n")); 1460 } 1461 } 1462 1463 /// Returns true if all loop blocks should be masked to fold tail loop. 1464 bool foldTailByMasking() const { 1465 // TODO: check if it is possible to check for None style independent of 1466 // IVUpdateMayOverflow flag in getTailFoldingStyle. 1467 return getTailFoldingStyle() != TailFoldingStyle::None; 1468 } 1469 1470 /// Return maximum safe number of elements to be processed per vector 1471 /// iteration, which do not prevent store-load forwarding and are safe with 1472 /// regard to the memory dependencies. Required for EVL-based VPlans to 1473 /// correctly calculate AVL (application vector length) as min(remaining AVL, 1474 /// MaxSafeElements). 1475 /// TODO: need to consider adjusting cost model to use this value as a 1476 /// vectorization factor for EVL-based vectorization. 1477 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; } 1478 1479 /// Returns true if the instructions in this block requires predication 1480 /// for any reason, e.g. because tail folding now requires a predicate 1481 /// or because the block in the original loop was predicated. 1482 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1483 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1484 } 1485 1486 /// Returns true if VP intrinsics with explicit vector length support should 1487 /// be generated in the tail folded loop. 1488 bool foldTailWithEVL() const { 1489 return getTailFoldingStyle() == TailFoldingStyle::DataWithEVL; 1490 } 1491 1492 /// Returns true if the Phi is part of an inloop reduction. 1493 bool isInLoopReduction(PHINode *Phi) const { 1494 return InLoopReductions.contains(Phi); 1495 } 1496 1497 /// Returns true if the predicated reduction select should be used to set the 1498 /// incoming value for the reduction phi. 1499 bool usePredicatedReductionSelect(unsigned Opcode, Type *PhiTy) const { 1500 // Force to use predicated reduction select since the EVL of the 1501 // second-to-last iteration might not be VF*UF. 1502 if (foldTailWithEVL()) 1503 return true; 1504 return PreferPredicatedReductionSelect || 1505 TTI.preferPredicatedReductionSelect( 1506 Opcode, PhiTy, TargetTransformInfo::ReductionFlags()); 1507 } 1508 1509 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1510 /// with factor VF. Return the cost of the instruction, including 1511 /// scalarization overhead if it's needed. 1512 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1513 1514 /// Estimate cost of a call instruction CI if it were vectorized with factor 1515 /// VF. Return the cost of the instruction, including scalarization overhead 1516 /// if it's needed. 1517 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const; 1518 1519 /// Invalidates decisions already taken by the cost model. 1520 void invalidateCostModelingDecisions() { 1521 WideningDecisions.clear(); 1522 CallWideningDecisions.clear(); 1523 Uniforms.clear(); 1524 Scalars.clear(); 1525 } 1526 1527 /// Returns the expected execution cost. The unit of the cost does 1528 /// not matter because we use the 'cost' units to compare different 1529 /// vector widths. The cost that is returned is *not* normalized by 1530 /// the factor width. 1531 InstructionCost expectedCost(ElementCount VF); 1532 1533 bool hasPredStores() const { return NumPredStores > 0; } 1534 1535 /// Returns true if epilogue vectorization is considered profitable, and 1536 /// false otherwise. 1537 /// \p VF is the vectorization factor chosen for the original loop. 1538 /// \p Multiplier is an aditional scaling factor applied to VF before 1539 /// comparing to EpilogueVectorizationMinVF. 1540 bool isEpilogueVectorizationProfitable(const ElementCount VF, 1541 const unsigned IC) const; 1542 1543 /// Returns the execution time cost of an instruction for a given vector 1544 /// width. Vector width of one means scalar. 1545 InstructionCost getInstructionCost(Instruction *I, ElementCount VF); 1546 1547 /// Return the cost of instructions in an inloop reduction pattern, if I is 1548 /// part of that pattern. 1549 std::optional<InstructionCost> getReductionPatternCost(Instruction *I, 1550 ElementCount VF, 1551 Type *VectorTy) const; 1552 1553 /// Returns true if \p Op should be considered invariant and if it is 1554 /// trivially hoistable. 1555 bool shouldConsiderInvariant(Value *Op); 1556 1557 private: 1558 unsigned NumPredStores = 0; 1559 1560 /// \return An upper bound for the vectorization factors for both 1561 /// fixed and scalable vectorization, where the minimum-known number of 1562 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1563 /// disabled or unsupported, then the scalable part will be equal to 1564 /// ElementCount::getScalable(0). 1565 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount, 1566 ElementCount UserVF, 1567 bool FoldTailByMasking); 1568 1569 /// \return the maximized element count based on the targets vector 1570 /// registers and the loop trip-count, but limited to a maximum safe VF. 1571 /// This is a helper function of computeFeasibleMaxVF. 1572 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount, 1573 unsigned SmallestType, 1574 unsigned WidestType, 1575 ElementCount MaxSafeVF, 1576 bool FoldTailByMasking); 1577 1578 /// Checks if scalable vectorization is supported and enabled. Caches the 1579 /// result to avoid repeated debug dumps for repeated queries. 1580 bool isScalableVectorizationAllowed(); 1581 1582 /// \return the maximum legal scalable VF, based on the safe max number 1583 /// of elements. 1584 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1585 1586 /// Calculate vectorization cost of memory instruction \p I. 1587 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1588 1589 /// The cost computation for scalarized memory instruction. 1590 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1591 1592 /// The cost computation for interleaving group of memory instructions. 1593 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1594 1595 /// The cost computation for Gather/Scatter instruction. 1596 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1597 1598 /// The cost computation for widening instruction \p I with consecutive 1599 /// memory access. 1600 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1601 1602 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1603 /// Load: scalar load + broadcast. 1604 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1605 /// element) 1606 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1607 1608 /// Estimate the overhead of scalarizing an instruction. This is a 1609 /// convenience wrapper for the type-based getScalarizationOverhead API. 1610 InstructionCost getScalarizationOverhead(Instruction *I, 1611 ElementCount VF) const; 1612 1613 /// Returns true if an artificially high cost for emulated masked memrefs 1614 /// should be used. 1615 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1616 1617 /// Map of scalar integer values to the smallest bitwidth they can be legally 1618 /// represented as. The vector equivalents of these values should be truncated 1619 /// to this type. 1620 MapVector<Instruction *, uint64_t> MinBWs; 1621 1622 /// A type representing the costs for instructions if they were to be 1623 /// scalarized rather than vectorized. The entries are Instruction-Cost 1624 /// pairs. 1625 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1626 1627 /// A set containing all BasicBlocks that are known to present after 1628 /// vectorization as a predicated block. 1629 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> 1630 PredicatedBBsAfterVectorization; 1631 1632 /// Records whether it is allowed to have the original scalar loop execute at 1633 /// least once. This may be needed as a fallback loop in case runtime 1634 /// aliasing/dependence checks fail, or to handle the tail/remainder 1635 /// iterations when the trip count is unknown or doesn't divide by the VF, 1636 /// or as a peel-loop to handle gaps in interleave-groups. 1637 /// Under optsize and when the trip count is very small we don't allow any 1638 /// iterations to execute in the scalar loop. 1639 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1640 1641 /// Control finally chosen tail folding style. The first element is used if 1642 /// the IV update may overflow, the second element - if it does not. 1643 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>> 1644 ChosenTailFoldingStyle; 1645 1646 /// true if scalable vectorization is supported and enabled. 1647 std::optional<bool> IsScalableVectorizationAllowed; 1648 1649 /// Maximum safe number of elements to be processed per vector iteration, 1650 /// which do not prevent store-load forwarding and are safe with regard to the 1651 /// memory dependencies. Required for EVL-based veectorization, where this 1652 /// value is used as the upper bound of the safe AVL. 1653 std::optional<unsigned> MaxSafeElements; 1654 1655 /// A map holding scalar costs for different vectorization factors. The 1656 /// presence of a cost for an instruction in the mapping indicates that the 1657 /// instruction will be scalarized when vectorizing with the associated 1658 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1659 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1660 1661 /// Holds the instructions known to be uniform after vectorization. 1662 /// The data is collected per VF. 1663 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1664 1665 /// Holds the instructions known to be scalar after vectorization. 1666 /// The data is collected per VF. 1667 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1668 1669 /// Holds the instructions (address computations) that are forced to be 1670 /// scalarized. 1671 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1672 1673 /// PHINodes of the reductions that should be expanded in-loop. 1674 SmallPtrSet<PHINode *, 4> InLoopReductions; 1675 1676 /// A Map of inloop reduction operations and their immediate chain operand. 1677 /// FIXME: This can be removed once reductions can be costed correctly in 1678 /// VPlan. This was added to allow quick lookup of the inloop operations. 1679 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1680 1681 /// Returns the expected difference in cost from scalarizing the expression 1682 /// feeding a predicated instruction \p PredInst. The instructions to 1683 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1684 /// non-negative return value implies the expression will be scalarized. 1685 /// Currently, only single-use chains are considered for scalarization. 1686 InstructionCost computePredInstDiscount(Instruction *PredInst, 1687 ScalarCostsTy &ScalarCosts, 1688 ElementCount VF); 1689 1690 /// Collect the instructions that are uniform after vectorization. An 1691 /// instruction is uniform if we represent it with a single scalar value in 1692 /// the vectorized loop corresponding to each vector iteration. Examples of 1693 /// uniform instructions include pointer operands of consecutive or 1694 /// interleaved memory accesses. Note that although uniformity implies an 1695 /// instruction will be scalar, the reverse is not true. In general, a 1696 /// scalarized instruction will be represented by VF scalar values in the 1697 /// vectorized loop, each corresponding to an iteration of the original 1698 /// scalar loop. 1699 void collectLoopUniforms(ElementCount VF); 1700 1701 /// Collect the instructions that are scalar after vectorization. An 1702 /// instruction is scalar if it is known to be uniform or will be scalarized 1703 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1704 /// to the list if they are used by a load/store instruction that is marked as 1705 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1706 /// VF values in the vectorized loop, each corresponding to an iteration of 1707 /// the original scalar loop. 1708 void collectLoopScalars(ElementCount VF); 1709 1710 /// Keeps cost model vectorization decision and cost for instructions. 1711 /// Right now it is used for memory instructions only. 1712 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1713 std::pair<InstWidening, InstructionCost>>; 1714 1715 DecisionList WideningDecisions; 1716 1717 using CallDecisionList = 1718 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>; 1719 1720 CallDecisionList CallWideningDecisions; 1721 1722 /// Returns true if \p V is expected to be vectorized and it needs to be 1723 /// extracted. 1724 bool needsExtract(Value *V, ElementCount VF) const { 1725 Instruction *I = dyn_cast<Instruction>(V); 1726 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1727 TheLoop->isLoopInvariant(I) || 1728 getWideningDecision(I, VF) == CM_Scalarize) 1729 return false; 1730 1731 // Assume we can vectorize V (and hence we need extraction) if the 1732 // scalars are not computed yet. This can happen, because it is called 1733 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1734 // the scalars are collected. That should be a safe assumption in most 1735 // cases, because we check if the operands have vectorizable types 1736 // beforehand in LoopVectorizationLegality. 1737 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF); 1738 }; 1739 1740 /// Returns a range containing only operands needing to be extracted. 1741 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1742 ElementCount VF) const { 1743 return SmallVector<Value *, 4>(make_filter_range( 1744 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1745 } 1746 1747 public: 1748 /// The loop that we evaluate. 1749 Loop *TheLoop; 1750 1751 /// Predicated scalar evolution analysis. 1752 PredicatedScalarEvolution &PSE; 1753 1754 /// Loop Info analysis. 1755 LoopInfo *LI; 1756 1757 /// Vectorization legality. 1758 LoopVectorizationLegality *Legal; 1759 1760 /// Vector target information. 1761 const TargetTransformInfo &TTI; 1762 1763 /// Target Library Info. 1764 const TargetLibraryInfo *TLI; 1765 1766 /// Demanded bits analysis. 1767 DemandedBits *DB; 1768 1769 /// Assumption cache. 1770 AssumptionCache *AC; 1771 1772 /// Interface to emit optimization remarks. 1773 OptimizationRemarkEmitter *ORE; 1774 1775 const Function *TheFunction; 1776 1777 /// Loop Vectorize Hint. 1778 const LoopVectorizeHints *Hints; 1779 1780 /// The interleave access information contains groups of interleaved accesses 1781 /// with the same stride and close to each other. 1782 InterleavedAccessInfo &InterleaveInfo; 1783 1784 /// Values to ignore in the cost model. 1785 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1786 1787 /// Values to ignore in the cost model when VF > 1. 1788 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1789 1790 /// All element types found in the loop. 1791 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1792 1793 /// The kind of cost that we are calculating 1794 TTI::TargetCostKind CostKind; 1795 }; 1796 } // end namespace llvm 1797 1798 namespace { 1799 /// Helper struct to manage generating runtime checks for vectorization. 1800 /// 1801 /// The runtime checks are created up-front in temporary blocks to allow better 1802 /// estimating the cost and un-linked from the existing IR. After deciding to 1803 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1804 /// temporary blocks are completely removed. 1805 class GeneratedRTChecks { 1806 /// Basic block which contains the generated SCEV checks, if any. 1807 BasicBlock *SCEVCheckBlock = nullptr; 1808 1809 /// The value representing the result of the generated SCEV checks. If it is 1810 /// nullptr, either no SCEV checks have been generated or they have been used. 1811 Value *SCEVCheckCond = nullptr; 1812 1813 /// Basic block which contains the generated memory runtime checks, if any. 1814 BasicBlock *MemCheckBlock = nullptr; 1815 1816 /// The value representing the result of the generated memory runtime checks. 1817 /// If it is nullptr, either no memory runtime checks have been generated or 1818 /// they have been used. 1819 Value *MemRuntimeCheckCond = nullptr; 1820 1821 DominatorTree *DT; 1822 LoopInfo *LI; 1823 TargetTransformInfo *TTI; 1824 1825 SCEVExpander SCEVExp; 1826 SCEVExpander MemCheckExp; 1827 1828 bool CostTooHigh = false; 1829 const bool AddBranchWeights; 1830 1831 Loop *OuterLoop = nullptr; 1832 1833 PredicatedScalarEvolution &PSE; 1834 1835 /// The kind of cost that we are calculating 1836 TTI::TargetCostKind CostKind; 1837 1838 public: 1839 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT, 1840 LoopInfo *LI, TargetTransformInfo *TTI, 1841 const DataLayout &DL, bool AddBranchWeights, 1842 TTI::TargetCostKind CostKind) 1843 : DT(DT), LI(LI), TTI(TTI), SCEVExp(*PSE.getSE(), DL, "scev.check"), 1844 MemCheckExp(*PSE.getSE(), DL, "scev.check"), 1845 AddBranchWeights(AddBranchWeights), PSE(PSE), CostKind(CostKind) {} 1846 1847 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1848 /// accurately estimate the cost of the runtime checks. The blocks are 1849 /// un-linked from the IR and are added back during vector code generation. If 1850 /// there is no vector code generation, the check blocks are removed 1851 /// completely. 1852 void create(Loop *L, const LoopAccessInfo &LAI, 1853 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1854 1855 // Hard cutoff to limit compile-time increase in case a very large number of 1856 // runtime checks needs to be generated. 1857 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to 1858 // profile info. 1859 CostTooHigh = 1860 LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; 1861 if (CostTooHigh) 1862 return; 1863 1864 BasicBlock *LoopHeader = L->getHeader(); 1865 BasicBlock *Preheader = L->getLoopPreheader(); 1866 1867 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1868 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1869 // may be used by SCEVExpander. The blocks will be un-linked from their 1870 // predecessors and removed from LI & DT at the end of the function. 1871 if (!UnionPred.isAlwaysTrue()) { 1872 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1873 nullptr, "vector.scevcheck"); 1874 1875 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1876 &UnionPred, SCEVCheckBlock->getTerminator()); 1877 } 1878 1879 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1880 if (RtPtrChecking.Need) { 1881 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1882 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1883 "vector.memcheck"); 1884 1885 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1886 if (DiffChecks) { 1887 Value *RuntimeVF = nullptr; 1888 MemRuntimeCheckCond = addDiffRuntimeChecks( 1889 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp, 1890 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) { 1891 if (!RuntimeVF) 1892 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF); 1893 return RuntimeVF; 1894 }, 1895 IC); 1896 } else { 1897 MemRuntimeCheckCond = addRuntimeChecks( 1898 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(), 1899 MemCheckExp, VectorizerParams::HoistRuntimeChecks); 1900 } 1901 assert(MemRuntimeCheckCond && 1902 "no RT checks generated although RtPtrChecking " 1903 "claimed checks are required"); 1904 } 1905 1906 if (!MemCheckBlock && !SCEVCheckBlock) 1907 return; 1908 1909 // Unhook the temporary block with the checks, update various places 1910 // accordingly. 1911 if (SCEVCheckBlock) 1912 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1913 if (MemCheckBlock) 1914 MemCheckBlock->replaceAllUsesWith(Preheader); 1915 1916 if (SCEVCheckBlock) { 1917 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1918 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1919 Preheader->getTerminator()->eraseFromParent(); 1920 } 1921 if (MemCheckBlock) { 1922 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1923 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1924 Preheader->getTerminator()->eraseFromParent(); 1925 } 1926 1927 DT->changeImmediateDominator(LoopHeader, Preheader); 1928 if (MemCheckBlock) { 1929 DT->eraseNode(MemCheckBlock); 1930 LI->removeBlock(MemCheckBlock); 1931 } 1932 if (SCEVCheckBlock) { 1933 DT->eraseNode(SCEVCheckBlock); 1934 LI->removeBlock(SCEVCheckBlock); 1935 } 1936 1937 // Outer loop is used as part of the later cost calculations. 1938 OuterLoop = L->getParentLoop(); 1939 } 1940 1941 InstructionCost getCost() { 1942 if (SCEVCheckBlock || MemCheckBlock) 1943 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n"); 1944 1945 if (CostTooHigh) { 1946 InstructionCost Cost; 1947 Cost.setInvalid(); 1948 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n"); 1949 return Cost; 1950 } 1951 1952 InstructionCost RTCheckCost = 0; 1953 if (SCEVCheckBlock) 1954 for (Instruction &I : *SCEVCheckBlock) { 1955 if (SCEVCheckBlock->getTerminator() == &I) 1956 continue; 1957 InstructionCost C = TTI->getInstructionCost(&I, CostKind); 1958 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1959 RTCheckCost += C; 1960 } 1961 if (MemCheckBlock) { 1962 InstructionCost MemCheckCost = 0; 1963 for (Instruction &I : *MemCheckBlock) { 1964 if (MemCheckBlock->getTerminator() == &I) 1965 continue; 1966 InstructionCost C = TTI->getInstructionCost(&I, CostKind); 1967 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1968 MemCheckCost += C; 1969 } 1970 1971 // If the runtime memory checks are being created inside an outer loop 1972 // we should find out if these checks are outer loop invariant. If so, 1973 // the checks will likely be hoisted out and so the effective cost will 1974 // reduce according to the outer loop trip count. 1975 if (OuterLoop) { 1976 ScalarEvolution *SE = MemCheckExp.getSE(); 1977 // TODO: If profitable, we could refine this further by analysing every 1978 // individual memory check, since there could be a mixture of loop 1979 // variant and invariant checks that mean the final condition is 1980 // variant. 1981 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond); 1982 if (SE->isLoopInvariant(Cond, OuterLoop)) { 1983 // It seems reasonable to assume that we can reduce the effective 1984 // cost of the checks even when we know nothing about the trip 1985 // count. Assume that the outer loop executes at least twice. 1986 unsigned BestTripCount = 2; 1987 1988 // Get the best known TC estimate. 1989 if (auto EstimatedTC = getSmallBestKnownTC( 1990 PSE, OuterLoop, /* CanUseConstantMax = */ false)) 1991 BestTripCount = *EstimatedTC; 1992 1993 BestTripCount = std::max(BestTripCount, 1U); 1994 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount; 1995 1996 // Let's ensure the cost is always at least 1. 1997 NewMemCheckCost = std::max(*NewMemCheckCost.getValue(), 1998 (InstructionCost::CostType)1); 1999 2000 if (BestTripCount > 1) 2001 LLVM_DEBUG(dbgs() 2002 << "We expect runtime memory checks to be hoisted " 2003 << "out of the outer loop. Cost reduced from " 2004 << MemCheckCost << " to " << NewMemCheckCost << '\n'); 2005 2006 MemCheckCost = NewMemCheckCost; 2007 } 2008 } 2009 2010 RTCheckCost += MemCheckCost; 2011 } 2012 2013 if (SCEVCheckBlock || MemCheckBlock) 2014 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost 2015 << "\n"); 2016 2017 return RTCheckCost; 2018 } 2019 2020 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2021 /// unused. 2022 ~GeneratedRTChecks() { 2023 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2024 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2025 if (!SCEVCheckCond) 2026 SCEVCleaner.markResultUsed(); 2027 2028 if (!MemRuntimeCheckCond) 2029 MemCheckCleaner.markResultUsed(); 2030 2031 if (MemRuntimeCheckCond) { 2032 auto &SE = *MemCheckExp.getSE(); 2033 // Memory runtime check generation creates compares that use expanded 2034 // values. Remove them before running the SCEVExpanderCleaners. 2035 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2036 if (MemCheckExp.isInsertedInstruction(&I)) 2037 continue; 2038 SE.forgetValue(&I); 2039 I.eraseFromParent(); 2040 } 2041 } 2042 MemCheckCleaner.cleanup(); 2043 SCEVCleaner.cleanup(); 2044 2045 if (SCEVCheckCond) 2046 SCEVCheckBlock->eraseFromParent(); 2047 if (MemRuntimeCheckCond) 2048 MemCheckBlock->eraseFromParent(); 2049 } 2050 2051 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2052 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2053 /// depending on the generated condition. 2054 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2055 BasicBlock *LoopVectorPreHeader) { 2056 if (!SCEVCheckCond) 2057 return nullptr; 2058 2059 Value *Cond = SCEVCheckCond; 2060 // Mark the check as used, to prevent it from being removed during cleanup. 2061 SCEVCheckCond = nullptr; 2062 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2063 if (C->isZero()) 2064 return nullptr; 2065 2066 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2067 2068 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2069 // Create new preheader for vector loop. 2070 if (OuterLoop) 2071 OuterLoop->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2072 2073 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2074 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2075 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2076 SCEVCheckBlock); 2077 2078 DT->addNewBlock(SCEVCheckBlock, Pred); 2079 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2080 2081 BranchInst &BI = *BranchInst::Create(Bypass, LoopVectorPreHeader, Cond); 2082 if (AddBranchWeights) 2083 setBranchWeights(BI, SCEVCheckBypassWeights, /*IsExpected=*/false); 2084 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), &BI); 2085 return SCEVCheckBlock; 2086 } 2087 2088 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2089 /// the branches to branch to the vector preheader or \p Bypass, depending on 2090 /// the generated condition. 2091 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2092 BasicBlock *LoopVectorPreHeader) { 2093 // Check if we generated code that checks in runtime if arrays overlap. 2094 if (!MemRuntimeCheckCond) 2095 return nullptr; 2096 2097 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2098 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2099 MemCheckBlock); 2100 2101 DT->addNewBlock(MemCheckBlock, Pred); 2102 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2103 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2104 2105 if (OuterLoop) 2106 OuterLoop->addBasicBlockToLoop(MemCheckBlock, *LI); 2107 2108 BranchInst &BI = 2109 *BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond); 2110 if (AddBranchWeights) { 2111 setBranchWeights(BI, MemCheckBypassWeights, /*IsExpected=*/false); 2112 } 2113 ReplaceInstWithInst(MemCheckBlock->getTerminator(), &BI); 2114 MemCheckBlock->getTerminator()->setDebugLoc( 2115 Pred->getTerminator()->getDebugLoc()); 2116 2117 // Mark the check as used, to prevent it from being removed during cleanup. 2118 MemRuntimeCheckCond = nullptr; 2119 return MemCheckBlock; 2120 } 2121 }; 2122 } // namespace 2123 2124 static bool useActiveLaneMask(TailFoldingStyle Style) { 2125 return Style == TailFoldingStyle::Data || 2126 Style == TailFoldingStyle::DataAndControlFlow || 2127 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck; 2128 } 2129 2130 static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style) { 2131 return Style == TailFoldingStyle::DataAndControlFlow || 2132 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck; 2133 } 2134 2135 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2136 // vectorization. The loop needs to be annotated with #pragma omp simd 2137 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2138 // vector length information is not provided, vectorization is not considered 2139 // explicit. Interleave hints are not allowed either. These limitations will be 2140 // relaxed in the future. 2141 // Please, note that we are currently forced to abuse the pragma 'clang 2142 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2143 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2144 // provides *explicit vectorization hints* (LV can bypass legal checks and 2145 // assume that vectorization is legal). However, both hints are implemented 2146 // using the same metadata (llvm.loop.vectorize, processed by 2147 // LoopVectorizeHints). This will be fixed in the future when the native IR 2148 // representation for pragma 'omp simd' is introduced. 2149 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2150 OptimizationRemarkEmitter *ORE) { 2151 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2152 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2153 2154 // Only outer loops with an explicit vectorization hint are supported. 2155 // Unannotated outer loops are ignored. 2156 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2157 return false; 2158 2159 Function *Fn = OuterLp->getHeader()->getParent(); 2160 if (!Hints.allowVectorization(Fn, OuterLp, 2161 true /*VectorizeOnlyWhenForced*/)) { 2162 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2163 return false; 2164 } 2165 2166 if (Hints.getInterleave() > 1) { 2167 // TODO: Interleave support is future work. 2168 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2169 "outer loops.\n"); 2170 Hints.emitRemarkWithHints(); 2171 return false; 2172 } 2173 2174 return true; 2175 } 2176 2177 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2178 OptimizationRemarkEmitter *ORE, 2179 SmallVectorImpl<Loop *> &V) { 2180 // Collect inner loops and outer loops without irreducible control flow. For 2181 // now, only collect outer loops that have explicit vectorization hints. If we 2182 // are stress testing the VPlan H-CFG construction, we collect the outermost 2183 // loop of every loop nest. 2184 if (L.isInnermost() || VPlanBuildStressTest || 2185 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2186 LoopBlocksRPO RPOT(&L); 2187 RPOT.perform(LI); 2188 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2189 V.push_back(&L); 2190 // TODO: Collect inner loops inside marked outer loops in case 2191 // vectorization fails for the outer loop. Do not invoke 2192 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2193 // already known to be reducible. We can use an inherited attribute for 2194 // that. 2195 return; 2196 } 2197 } 2198 for (Loop *InnerL : L) 2199 collectSupportedLoops(*InnerL, LI, ORE, V); 2200 } 2201 2202 //===----------------------------------------------------------------------===// 2203 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2204 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2205 //===----------------------------------------------------------------------===// 2206 2207 /// Compute the transformed value of Index at offset StartValue using step 2208 /// StepValue. 2209 /// For integer induction, returns StartValue + Index * StepValue. 2210 /// For pointer induction, returns StartValue[Index * StepValue]. 2211 /// FIXME: The newly created binary instructions should contain nsw/nuw 2212 /// flags, which can be found from the original scalar operations. 2213 static Value * 2214 emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, 2215 Value *Step, 2216 InductionDescriptor::InductionKind InductionKind, 2217 const BinaryOperator *InductionBinOp) { 2218 Type *StepTy = Step->getType(); 2219 Value *CastedIndex = StepTy->isIntegerTy() 2220 ? B.CreateSExtOrTrunc(Index, StepTy) 2221 : B.CreateCast(Instruction::SIToFP, Index, StepTy); 2222 if (CastedIndex != Index) { 2223 CastedIndex->setName(CastedIndex->getName() + ".cast"); 2224 Index = CastedIndex; 2225 } 2226 2227 // Note: the IR at this point is broken. We cannot use SE to create any new 2228 // SCEV and then expand it, hoping that SCEV's simplification will give us 2229 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2230 // lead to various SCEV crashes. So all we can do is to use builder and rely 2231 // on InstCombine for future simplifications. Here we handle some trivial 2232 // cases only. 2233 auto CreateAdd = [&B](Value *X, Value *Y) { 2234 assert(X->getType() == Y->getType() && "Types don't match!"); 2235 if (auto *CX = dyn_cast<ConstantInt>(X)) 2236 if (CX->isZero()) 2237 return Y; 2238 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2239 if (CY->isZero()) 2240 return X; 2241 return B.CreateAdd(X, Y); 2242 }; 2243 2244 // We allow X to be a vector type, in which case Y will potentially be 2245 // splatted into a vector with the same element count. 2246 auto CreateMul = [&B](Value *X, Value *Y) { 2247 assert(X->getType()->getScalarType() == Y->getType() && 2248 "Types don't match!"); 2249 if (auto *CX = dyn_cast<ConstantInt>(X)) 2250 if (CX->isOne()) 2251 return Y; 2252 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2253 if (CY->isOne()) 2254 return X; 2255 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2256 if (XVTy && !isa<VectorType>(Y->getType())) 2257 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2258 return B.CreateMul(X, Y); 2259 }; 2260 2261 switch (InductionKind) { 2262 case InductionDescriptor::IK_IntInduction: { 2263 assert(!isa<VectorType>(Index->getType()) && 2264 "Vector indices not supported for integer inductions yet"); 2265 assert(Index->getType() == StartValue->getType() && 2266 "Index type does not match StartValue type"); 2267 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2268 return B.CreateSub(StartValue, Index); 2269 auto *Offset = CreateMul(Index, Step); 2270 return CreateAdd(StartValue, Offset); 2271 } 2272 case InductionDescriptor::IK_PtrInduction: 2273 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step)); 2274 case InductionDescriptor::IK_FpInduction: { 2275 assert(!isa<VectorType>(Index->getType()) && 2276 "Vector indices not supported for FP inductions yet"); 2277 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2278 assert(InductionBinOp && 2279 (InductionBinOp->getOpcode() == Instruction::FAdd || 2280 InductionBinOp->getOpcode() == Instruction::FSub) && 2281 "Original bin op should be defined for FP induction"); 2282 2283 Value *MulExp = B.CreateFMul(Step, Index); 2284 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2285 "induction"); 2286 } 2287 case InductionDescriptor::IK_NoInduction: 2288 return nullptr; 2289 } 2290 llvm_unreachable("invalid enum"); 2291 } 2292 2293 std::optional<unsigned> getMaxVScale(const Function &F, 2294 const TargetTransformInfo &TTI) { 2295 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale()) 2296 return MaxVScale; 2297 2298 if (F.hasFnAttribute(Attribute::VScaleRange)) 2299 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 2300 2301 return std::nullopt; 2302 } 2303 2304 /// For the given VF and UF and maximum trip count computed for the loop, return 2305 /// whether the induction variable might overflow in the vectorized loop. If not, 2306 /// then we know a runtime overflow check always evaluates to false and can be 2307 /// removed. 2308 static bool isIndvarOverflowCheckKnownFalse( 2309 const LoopVectorizationCostModel *Cost, 2310 ElementCount VF, std::optional<unsigned> UF = std::nullopt) { 2311 // Always be conservative if we don't know the exact unroll factor. 2312 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF); 2313 2314 Type *IdxTy = Cost->Legal->getWidestInductionType(); 2315 APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask(); 2316 2317 // We know the runtime overflow check is known false iff the (max) trip-count 2318 // is known and (max) trip-count + (VF * UF) does not overflow in the type of 2319 // the vector loop induction variable. 2320 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) { 2321 uint64_t MaxVF = VF.getKnownMinValue(); 2322 if (VF.isScalable()) { 2323 std::optional<unsigned> MaxVScale = 2324 getMaxVScale(*Cost->TheFunction, Cost->TTI); 2325 if (!MaxVScale) 2326 return false; 2327 MaxVF *= *MaxVScale; 2328 } 2329 2330 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF); 2331 } 2332 2333 return false; 2334 } 2335 2336 // Return whether we allow using masked interleave-groups (for dealing with 2337 // strided loads/stores that reside in predicated blocks, or for dealing 2338 // with gaps). 2339 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2340 // If an override option has been passed in for interleaved accesses, use it. 2341 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2342 return EnableMaskedInterleavedMemAccesses; 2343 2344 return TTI.enableMaskedInterleavedAccessVectorization(); 2345 } 2346 2347 void InnerLoopVectorizer::scalarizeInstruction(const Instruction *Instr, 2348 VPReplicateRecipe *RepRecipe, 2349 const VPLane &Lane, 2350 VPTransformState &State) { 2351 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2352 2353 // Does this instruction return a value ? 2354 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2355 2356 Instruction *Cloned = Instr->clone(); 2357 if (!IsVoidRetTy) { 2358 Cloned->setName(Instr->getName() + ".cloned"); 2359 #if !defined(NDEBUG) 2360 // Verify that VPlan type inference results agree with the type of the 2361 // generated values. 2362 assert(State.TypeAnalysis.inferScalarType(RepRecipe) == Cloned->getType() && 2363 "inferred type and type from generated instructions do not match"); 2364 #endif 2365 } 2366 2367 RepRecipe->setFlags(Cloned); 2368 2369 if (auto DL = Instr->getDebugLoc()) 2370 State.setDebugLocFrom(DL); 2371 2372 // Replace the operands of the cloned instructions with their scalar 2373 // equivalents in the new loop. 2374 for (const auto &I : enumerate(RepRecipe->operands())) { 2375 auto InputLane = Lane; 2376 VPValue *Operand = I.value(); 2377 if (vputils::isUniformAfterVectorization(Operand)) 2378 InputLane = VPLane::getFirstLane(); 2379 Cloned->setOperand(I.index(), State.get(Operand, InputLane)); 2380 } 2381 State.addNewMetadata(Cloned, Instr); 2382 2383 // Place the cloned scalar in the new loop. 2384 State.Builder.Insert(Cloned); 2385 2386 State.set(RepRecipe, Cloned, Lane); 2387 2388 // If we just cloned a new assumption, add it the assumption cache. 2389 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2390 AC->registerAssumption(II); 2391 2392 // End if-block. 2393 VPRegionBlock *Parent = RepRecipe->getParent()->getParent(); 2394 bool IfPredicateInstr = Parent ? Parent->isReplicator() : false; 2395 assert( 2396 (Parent || !RepRecipe->getParent()->getPlan()->getVectorLoopRegion() || 2397 all_of(RepRecipe->operands(), 2398 [](VPValue *Op) { return Op->isDefinedOutsideLoopRegions(); })) && 2399 "Expected a recipe is either within a region or all of its operands " 2400 "are defined outside the vectorized region."); 2401 if (IfPredicateInstr) 2402 PredicatedInstructions.push_back(Cloned); 2403 } 2404 2405 Value * 2406 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2407 if (VectorTripCount) 2408 return VectorTripCount; 2409 2410 Value *TC = getTripCount(); 2411 IRBuilder<> Builder(InsertBlock->getTerminator()); 2412 2413 Type *Ty = TC->getType(); 2414 // This is where we can make the step a runtime constant. 2415 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2416 2417 // If the tail is to be folded by masking, round the number of iterations N 2418 // up to a multiple of Step instead of rounding down. This is done by first 2419 // adding Step-1 and then rounding down. Note that it's ok if this addition 2420 // overflows: the vector induction variable will eventually wrap to zero given 2421 // that it starts at zero and its Step is a power of two; the loop will then 2422 // exit, with the last early-exit vector comparison also producing all-true. 2423 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2424 // is accounted for in emitIterationCountCheck that adds an overflow check. 2425 if (Cost->foldTailByMasking()) { 2426 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2427 "VF*UF must be a power of 2 when folding tail by masking"); 2428 TC = Builder.CreateAdd(TC, Builder.CreateSub(Step, ConstantInt::get(Ty, 1)), 2429 "n.rnd.up"); 2430 } 2431 2432 // Now we need to generate the expression for the part of the loop that the 2433 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2434 // iterations are not required for correctness, or N - Step, otherwise. Step 2435 // is equal to the vectorization factor (number of SIMD elements) times the 2436 // unroll factor (number of SIMD instructions). 2437 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2438 2439 // There are cases where we *must* run at least one iteration in the remainder 2440 // loop. See the cost model for when this can happen. If the step evenly 2441 // divides the trip count, we set the remainder to be equal to the step. If 2442 // the step does not evenly divide the trip count, no adjustment is necessary 2443 // since there will already be scalar iterations. Note that the minimum 2444 // iterations check ensures that N >= Step. 2445 if (Cost->requiresScalarEpilogue(VF.isVector())) { 2446 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2447 R = Builder.CreateSelect(IsZero, Step, R); 2448 } 2449 2450 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2451 2452 return VectorTripCount; 2453 } 2454 2455 void InnerLoopVectorizer::introduceCheckBlockInVPlan(BasicBlock *CheckIRBB) { 2456 VPBlockBase *ScalarPH = Plan.getScalarPreheader(); 2457 VPBlockBase *PreVectorPH = VectorPHVPB->getSinglePredecessor(); 2458 if (PreVectorPH->getNumSuccessors() != 1) { 2459 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors"); 2460 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && 2461 "Unexpected successor"); 2462 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB); 2463 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPB, CheckVPIRBB); 2464 PreVectorPH = CheckVPIRBB; 2465 } 2466 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH); 2467 PreVectorPH->swapSuccessors(); 2468 } 2469 2470 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2471 Value *Count = getTripCount(); 2472 // Reuse existing vector loop preheader for TC checks. 2473 // Note that new preheader block is generated for vector loop. 2474 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2475 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2476 2477 // Generate code to check if the loop's trip count is less than VF * UF, or 2478 // equal to it in case a scalar epilogue is required; this implies that the 2479 // vector trip count is zero. This check also covers the case where adding one 2480 // to the backedge-taken count overflowed leading to an incorrect trip count 2481 // of zero. In this case we will also jump to the scalar loop. 2482 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE 2483 : ICmpInst::ICMP_ULT; 2484 2485 // If tail is to be folded, vector loop takes care of all iterations. 2486 Type *CountTy = Count->getType(); 2487 Value *CheckMinIters = Builder.getFalse(); 2488 auto CreateStep = [&]() -> Value * { 2489 // Create step with max(MinProTripCount, UF * VF). 2490 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue()) 2491 return createStepForVF(Builder, CountTy, VF, UF); 2492 2493 Value *MinProfTC = 2494 createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); 2495 if (!VF.isScalable()) 2496 return MinProfTC; 2497 return Builder.CreateBinaryIntrinsic( 2498 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF)); 2499 }; 2500 2501 TailFoldingStyle Style = Cost->getTailFoldingStyle(); 2502 if (Style == TailFoldingStyle::None) { 2503 Value *Step = CreateStep(); 2504 ScalarEvolution &SE = *PSE.getSE(); 2505 // TODO: Emit unconditional branch to vector preheader instead of 2506 // conditional branch with known condition. 2507 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop); 2508 // Check if the trip count is < the step. 2509 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) { 2510 // TODO: Ensure step is at most the trip count when determining max VF and 2511 // UF, w/o tail folding. 2512 CheckMinIters = Builder.getTrue(); 2513 } else if (!SE.isKnownPredicate(CmpInst::getInversePredicate(P), 2514 TripCountSCEV, SE.getSCEV(Step))) { 2515 // Generate the minimum iteration check only if we cannot prove the 2516 // check is known to be true, or known to be false. 2517 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2518 } // else step known to be < trip count, use CheckMinIters preset to false. 2519 } else if (VF.isScalable() && 2520 !isIndvarOverflowCheckKnownFalse(Cost, VF, UF) && 2521 Style != TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck) { 2522 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2523 // an overflow to zero when updating induction variables and so an 2524 // additional overflow check is required before entering the vector loop. 2525 2526 // Get the maximum unsigned value for the type. 2527 Value *MaxUIntTripCount = 2528 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2529 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2530 2531 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2532 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); 2533 } 2534 2535 // Create new preheader for vector loop. 2536 LoopVectorPreHeader = 2537 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2538 "vector.ph"); 2539 2540 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2541 DT->getNode(Bypass)->getIDom()) && 2542 "TC check is expected to dominate Bypass"); 2543 2544 BranchInst &BI = 2545 *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters); 2546 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) 2547 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false); 2548 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI); 2549 LoopBypassBlocks.push_back(TCCheckBlock); 2550 2551 // TODO: Wrap LoopVectorPreHeader in VPIRBasicBlock here. 2552 introduceCheckBlockInVPlan(TCCheckBlock); 2553 } 2554 2555 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 2556 BasicBlock *const SCEVCheckBlock = 2557 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader); 2558 if (!SCEVCheckBlock) 2559 return nullptr; 2560 2561 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2562 (OptForSizeBasedOnProfile && 2563 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 2564 "Cannot SCEV check stride or overflow when optimizing for size"); 2565 assert(!LoopBypassBlocks.empty() && 2566 "Should already be a bypass block due to iteration count check"); 2567 LoopBypassBlocks.push_back(SCEVCheckBlock); 2568 AddedSafetyChecks = true; 2569 2570 introduceCheckBlockInVPlan(SCEVCheckBlock); 2571 return SCEVCheckBlock; 2572 } 2573 2574 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 2575 // VPlan-native path does not do any analysis for runtime checks currently. 2576 if (EnableVPlanNativePath) 2577 return nullptr; 2578 2579 BasicBlock *const MemCheckBlock = 2580 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 2581 2582 // Check if we generated code that checks in runtime if arrays overlap. We put 2583 // the checks into a separate block to make the more common case of few 2584 // elements faster. 2585 if (!MemCheckBlock) 2586 return nullptr; 2587 2588 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2589 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2590 "Cannot emit memory checks when optimizing for size, unless forced " 2591 "to vectorize."); 2592 ORE->emit([&]() { 2593 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2594 OrigLoop->getStartLoc(), 2595 OrigLoop->getHeader()) 2596 << "Code-size may be reduced by not forcing " 2597 "vectorization, or by source-code modifications " 2598 "eliminating the need for runtime checks " 2599 "(e.g., adding 'restrict')."; 2600 }); 2601 } 2602 2603 LoopBypassBlocks.push_back(MemCheckBlock); 2604 2605 AddedSafetyChecks = true; 2606 2607 introduceCheckBlockInVPlan(MemCheckBlock); 2608 return MemCheckBlock; 2609 } 2610 2611 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 2612 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 2613 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 2614 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 2615 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 2616 VPIRBasicBlock *IRVPBB = VPBB->getPlan()->createVPIRBasicBlock(IRBB); 2617 for (auto &R : make_early_inc_range(*VPBB)) { 2618 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 2619 R.moveBefore(*IRVPBB, IRVPBB->end()); 2620 } 2621 2622 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB); 2623 // VPBB is now dead and will be cleaned up when the plan gets destroyed. 2624 } 2625 2626 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 2627 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2628 assert(LoopVectorPreHeader && "Invalid loop structure"); 2629 assert((OrigLoop->getUniqueLatchExitBlock() || 2630 Cost->requiresScalarEpilogue(VF.isVector())) && 2631 "loops not exiting via the latch without required epilogue?"); 2632 2633 LoopMiddleBlock = 2634 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2635 LI, nullptr, Twine(Prefix) + "middle.block"); 2636 replaceVPBBWithIRVPBB(Plan.getMiddleBlock(), LoopMiddleBlock); 2637 LoopScalarPreHeader = 2638 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 2639 nullptr, Twine(Prefix) + "scalar.ph"); 2640 replaceVPBBWithIRVPBB(Plan.getScalarPreheader(), LoopScalarPreHeader); 2641 } 2642 2643 /// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV 2644 /// expansion results. 2645 static Value *getExpandedStep(const InductionDescriptor &ID, 2646 const SCEV2ValueTy &ExpandedSCEVs) { 2647 const SCEV *Step = ID.getStep(); 2648 if (auto *C = dyn_cast<SCEVConstant>(Step)) 2649 return C->getValue(); 2650 if (auto *U = dyn_cast<SCEVUnknown>(Step)) 2651 return U->getValue(); 2652 auto I = ExpandedSCEVs.find(Step); 2653 assert(I != ExpandedSCEVs.end() && "SCEV must be expanded at this point"); 2654 return I->second; 2655 } 2656 2657 /// Knowing that loop \p L executes a single vector iteration, add instructions 2658 /// that will get simplified and thus should not have any cost to \p 2659 /// InstsToIgnore. 2660 static void addFullyUnrolledInstructionsToIgnore( 2661 Loop *L, const LoopVectorizationLegality::InductionList &IL, 2662 SmallPtrSetImpl<Instruction *> &InstsToIgnore) { 2663 auto *Cmp = L->getLatchCmpInst(); 2664 if (Cmp) 2665 InstsToIgnore.insert(Cmp); 2666 for (const auto &KV : IL) { 2667 // Extract the key by hand so that it can be used in the lambda below. Note 2668 // that captured structured bindings are a C++20 extension. 2669 const PHINode *IV = KV.first; 2670 2671 // Get next iteration value of the induction variable. 2672 Instruction *IVInst = 2673 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch())); 2674 if (all_of(IVInst->users(), 2675 [&](const User *U) { return U == IV || U == Cmp; })) 2676 InstsToIgnore.insert(IVInst); 2677 } 2678 } 2679 2680 void InnerLoopVectorizer::createInductionAdditionalBypassValues( 2681 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount) { 2682 assert(MainVectorTripCount && "Must have bypass information"); 2683 2684 Instruction *OldInduction = Legal->getPrimaryInduction(); 2685 IRBuilder<> BypassBuilder(getAdditionalBypassBlock(), 2686 getAdditionalBypassBlock()->getFirstInsertionPt()); 2687 for (const auto &InductionEntry : Legal->getInductionVars()) { 2688 PHINode *OrigPhi = InductionEntry.first; 2689 const InductionDescriptor &II = InductionEntry.second; 2690 Value *Step = getExpandedStep(II, ExpandedSCEVs); 2691 // For the primary induction the additional bypass end value is known. 2692 // Otherwise it is computed. 2693 Value *EndValueFromAdditionalBypass = MainVectorTripCount; 2694 if (OrigPhi != OldInduction) { 2695 auto *BinOp = II.getInductionBinOp(); 2696 // Fast-math-flags propagate from the original induction instruction. 2697 if (isa_and_nonnull<FPMathOperator>(BinOp)) 2698 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags()); 2699 2700 // Compute the end value for the additional bypass. 2701 EndValueFromAdditionalBypass = 2702 emitTransformedIndex(BypassBuilder, MainVectorTripCount, 2703 II.getStartValue(), Step, II.getKind(), BinOp); 2704 EndValueFromAdditionalBypass->setName("ind.end"); 2705 } 2706 2707 // Store the bypass value here, as it needs to be added as operand to its 2708 // scalar preheader phi node after the epilogue skeleton has been created. 2709 // TODO: Directly add as extra operand to the VPResumePHI recipe. 2710 assert(!Induction2AdditionalBypassValue.contains(OrigPhi) && 2711 "entry for OrigPhi already exits"); 2712 Induction2AdditionalBypassValue[OrigPhi] = EndValueFromAdditionalBypass; 2713 } 2714 } 2715 2716 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton( 2717 const SCEV2ValueTy &ExpandedSCEVs) { 2718 /* 2719 In this function we generate a new loop. The new loop will contain 2720 the vectorized instructions while the old loop will continue to run the 2721 scalar remainder. 2722 2723 [ ] <-- old preheader - loop iteration number check and SCEVs in Plan's 2724 / | preheader are expanded here. Eventually all required SCEV 2725 / | expansion should happen here. 2726 / v 2727 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2728 | / | 2729 | / v 2730 || [ ] <-- vector pre header. 2731 |/ | 2732 | v 2733 | [ ] \ 2734 | [ ]_| <-- vector loop (created during VPlan execution). 2735 | | 2736 | v 2737 \ -[ ] <--- middle-block (wrapped in VPIRBasicBlock with the branch to 2738 | | successors created during VPlan execution) 2739 \/ | 2740 /\ v 2741 | ->[ ] <--- new preheader (wrapped in VPIRBasicBlock). 2742 | | 2743 (opt) v <-- edge from middle to exit iff epilogue is not required. 2744 | [ ] \ 2745 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue, header 2746 | | wrapped in VPIRBasicBlock). 2747 \ | 2748 \ v 2749 >[ ] <-- exit block(s). (wrapped in VPIRBasicBlock) 2750 ... 2751 */ 2752 2753 // Create an empty vector loop, and prepare basic blocks for the runtime 2754 // checks. 2755 createVectorLoopSkeleton(""); 2756 2757 // Now, compare the new count to zero. If it is zero skip the vector loop and 2758 // jump to the scalar loop. This check also covers the case where the 2759 // backedge-taken count is uint##_max: adding one to it will overflow leading 2760 // to an incorrect trip count of zero. In this (rare) case we will also jump 2761 // to the scalar loop. 2762 emitIterationCountCheck(LoopScalarPreHeader); 2763 2764 // Generate the code to check any assumptions that we've made for SCEV 2765 // expressions. 2766 emitSCEVChecks(LoopScalarPreHeader); 2767 2768 // Generate the code that checks in runtime if arrays overlap. We put the 2769 // checks into a separate block to make the more common case of few elements 2770 // faster. 2771 emitMemRuntimeChecks(LoopScalarPreHeader); 2772 2773 return LoopVectorPreHeader; 2774 } 2775 2776 namespace { 2777 2778 struct CSEDenseMapInfo { 2779 static bool canHandle(const Instruction *I) { 2780 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2781 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2782 } 2783 2784 static inline Instruction *getEmptyKey() { 2785 return DenseMapInfo<Instruction *>::getEmptyKey(); 2786 } 2787 2788 static inline Instruction *getTombstoneKey() { 2789 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2790 } 2791 2792 static unsigned getHashValue(const Instruction *I) { 2793 assert(canHandle(I) && "Unknown instruction!"); 2794 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2795 I->value_op_end())); 2796 } 2797 2798 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 2799 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2800 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2801 return LHS == RHS; 2802 return LHS->isIdenticalTo(RHS); 2803 } 2804 }; 2805 2806 } // end anonymous namespace 2807 2808 ///Perform cse of induction variable instructions. 2809 static void cse(BasicBlock *BB) { 2810 // Perform simple cse. 2811 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2812 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 2813 if (!CSEDenseMapInfo::canHandle(&In)) 2814 continue; 2815 2816 // Check if we can replace this instruction with any of the 2817 // visited instructions. 2818 if (Instruction *V = CSEMap.lookup(&In)) { 2819 In.replaceAllUsesWith(V); 2820 In.eraseFromParent(); 2821 continue; 2822 } 2823 2824 CSEMap[&In] = &In; 2825 } 2826 } 2827 2828 InstructionCost 2829 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 2830 ElementCount VF) const { 2831 // We only need to calculate a cost if the VF is scalar; for actual vectors 2832 // we should already have a pre-calculated cost at each VF. 2833 if (!VF.isScalar()) 2834 return CallWideningDecisions.at(std::make_pair(CI, VF)).Cost; 2835 2836 Type *RetTy = CI->getType(); 2837 if (RecurrenceDescriptor::isFMulAddIntrinsic(CI)) 2838 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) 2839 return *RedCost; 2840 2841 SmallVector<Type *, 4> Tys; 2842 for (auto &ArgOp : CI->args()) 2843 Tys.push_back(ArgOp->getType()); 2844 2845 InstructionCost ScalarCallCost = 2846 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind); 2847 2848 // If this is an intrinsic we may have a lower cost for it. 2849 if (getVectorIntrinsicIDForCall(CI, TLI)) { 2850 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 2851 return std::min(ScalarCallCost, IntrinsicCost); 2852 } 2853 return ScalarCallCost; 2854 } 2855 2856 static Type *maybeVectorizeType(Type *Elt, ElementCount VF) { 2857 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 2858 return Elt; 2859 return VectorType::get(Elt, VF); 2860 } 2861 2862 InstructionCost 2863 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 2864 ElementCount VF) const { 2865 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2866 assert(ID && "Expected intrinsic call!"); 2867 Type *RetTy = maybeVectorizeType(CI->getType(), VF); 2868 FastMathFlags FMF; 2869 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2870 FMF = FPMO->getFastMathFlags(); 2871 2872 SmallVector<const Value *> Arguments(CI->args()); 2873 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 2874 SmallVector<Type *> ParamTys; 2875 std::transform(FTy->param_begin(), FTy->param_end(), 2876 std::back_inserter(ParamTys), 2877 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); }); 2878 2879 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 2880 dyn_cast<IntrinsicInst>(CI)); 2881 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind); 2882 } 2883 2884 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 2885 // Fix widened non-induction PHIs by setting up the PHI operands. 2886 if (EnableVPlanNativePath) 2887 fixNonInductionPHIs(State); 2888 2889 // Forget the original basic block. 2890 PSE.getSE()->forgetLoop(OrigLoop); 2891 PSE.getSE()->forgetBlockAndLoopDispositions(); 2892 2893 // After vectorization, the exit blocks of the original loop will have 2894 // additional predecessors. Invalidate SCEVs for the exit phis in case SE 2895 // looked through single-entry phis. 2896 SmallVector<BasicBlock *> ExitBlocks; 2897 OrigLoop->getExitBlocks(ExitBlocks); 2898 for (BasicBlock *Exit : ExitBlocks) 2899 for (PHINode &PN : Exit->phis()) 2900 PSE.getSE()->forgetLcssaPhiWithNewPredecessor(OrigLoop, &PN); 2901 2902 // Don't apply optimizations below when no vector region remains, as they all 2903 // require a vector loop at the moment. 2904 if (!State.Plan->getVectorLoopRegion()) 2905 return; 2906 2907 for (Instruction *PI : PredicatedInstructions) 2908 sinkScalarOperands(&*PI); 2909 2910 VPRegionBlock *VectorRegion = State.Plan->getVectorLoopRegion(); 2911 VPBasicBlock *HeaderVPBB = VectorRegion->getEntryBasicBlock(); 2912 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB]; 2913 2914 // Remove redundant induction instructions. 2915 cse(HeaderBB); 2916 2917 // Set/update profile weights for the vector and remainder loops as original 2918 // loop iterations are now distributed among them. Note that original loop 2919 // becomes the scalar remainder loop after vectorization. 2920 // 2921 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 2922 // end up getting slightly roughened result but that should be OK since 2923 // profile is not inherently precise anyway. Note also possible bypass of 2924 // vector code caused by legality checks is ignored, assigning all the weight 2925 // to the vector loop, optimistically. 2926 // 2927 // For scalable vectorization we can't know at compile time how many 2928 // iterations of the loop are handled in one vector iteration, so instead 2929 // assume a pessimistic vscale of '1'. 2930 Loop *VectorLoop = LI->getLoopFor(HeaderBB); 2931 setProfileInfoAfterUnrolling(OrigLoop, VectorLoop, OrigLoop, 2932 VF.getKnownMinValue() * UF); 2933 } 2934 2935 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 2936 // The basic block and loop containing the predicated instruction. 2937 auto *PredBB = PredInst->getParent(); 2938 auto *VectorLoop = LI->getLoopFor(PredBB); 2939 2940 // Initialize a worklist with the operands of the predicated instruction. 2941 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 2942 2943 // Holds instructions that we need to analyze again. An instruction may be 2944 // reanalyzed if we don't yet know if we can sink it or not. 2945 SmallVector<Instruction *, 8> InstsToReanalyze; 2946 2947 // Returns true if a given use occurs in the predicated block. Phi nodes use 2948 // their operands in their corresponding predecessor blocks. 2949 auto IsBlockOfUsePredicated = [&](Use &U) -> bool { 2950 auto *I = cast<Instruction>(U.getUser()); 2951 BasicBlock *BB = I->getParent(); 2952 if (auto *Phi = dyn_cast<PHINode>(I)) 2953 BB = Phi->getIncomingBlock( 2954 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 2955 return BB == PredBB; 2956 }; 2957 2958 // Iteratively sink the scalarized operands of the predicated instruction 2959 // into the block we created for it. When an instruction is sunk, it's 2960 // operands are then added to the worklist. The algorithm ends after one pass 2961 // through the worklist doesn't sink a single instruction. 2962 bool Changed; 2963 do { 2964 // Add the instructions that need to be reanalyzed to the worklist, and 2965 // reset the changed indicator. 2966 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 2967 InstsToReanalyze.clear(); 2968 Changed = false; 2969 2970 while (!Worklist.empty()) { 2971 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 2972 2973 // We can't sink an instruction if it is a phi node, is not in the loop, 2974 // may have side effects or may read from memory. 2975 // TODO: Could do more granular checking to allow sinking 2976 // a load past non-store instructions. 2977 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 2978 I->mayHaveSideEffects() || I->mayReadFromMemory()) 2979 continue; 2980 2981 // If the instruction is already in PredBB, check if we can sink its 2982 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 2983 // sinking the scalar instruction I, hence it appears in PredBB; but it 2984 // may have failed to sink I's operands (recursively), which we try 2985 // (again) here. 2986 if (I->getParent() == PredBB) { 2987 Worklist.insert(I->op_begin(), I->op_end()); 2988 continue; 2989 } 2990 2991 // It's legal to sink the instruction if all its uses occur in the 2992 // predicated block. Otherwise, there's nothing to do yet, and we may 2993 // need to reanalyze the instruction. 2994 if (!llvm::all_of(I->uses(), IsBlockOfUsePredicated)) { 2995 InstsToReanalyze.push_back(I); 2996 continue; 2997 } 2998 2999 // Move the instruction to the beginning of the predicated block, and add 3000 // it's operands to the worklist. 3001 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3002 Worklist.insert(I->op_begin(), I->op_end()); 3003 3004 // The sinking may have enabled other instructions to be sunk, so we will 3005 // need to iterate. 3006 Changed = true; 3007 } 3008 } while (Changed); 3009 } 3010 3011 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 3012 auto Iter = vp_depth_first_deep(Plan.getEntry()); 3013 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 3014 for (VPRecipeBase &P : VPBB->phis()) { 3015 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); 3016 if (!VPPhi) 3017 continue; 3018 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi)); 3019 // Make sure the builder has a valid insert point. 3020 Builder.SetInsertPoint(NewPhi); 3021 for (unsigned Idx = 0; Idx < VPPhi->getNumOperands(); ++Idx) { 3022 VPValue *Inc = VPPhi->getIncomingValue(Idx); 3023 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(Idx); 3024 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]); 3025 } 3026 } 3027 } 3028 } 3029 3030 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 3031 // We should not collect Scalars more than once per VF. Right now, this 3032 // function is called from collectUniformsAndScalars(), which already does 3033 // this check. Collecting Scalars for VF=1 does not make any sense. 3034 assert(VF.isVector() && !Scalars.contains(VF) && 3035 "This function should not be visited twice for the same VF"); 3036 3037 // This avoids any chances of creating a REPLICATE recipe during planning 3038 // since that would result in generation of scalarized code during execution, 3039 // which is not supported for scalable vectors. 3040 if (VF.isScalable()) { 3041 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 3042 return; 3043 } 3044 3045 SmallSetVector<Instruction *, 8> Worklist; 3046 3047 // These sets are used to seed the analysis with pointers used by memory 3048 // accesses that will remain scalar. 3049 SmallSetVector<Instruction *, 8> ScalarPtrs; 3050 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 3051 auto *Latch = TheLoop->getLoopLatch(); 3052 3053 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 3054 // The pointer operands of loads and stores will be scalar as long as the 3055 // memory access is not a gather or scatter operation. The value operand of a 3056 // store will remain scalar if the store is scalarized. 3057 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 3058 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 3059 assert(WideningDecision != CM_Unknown && 3060 "Widening decision should be ready at this moment"); 3061 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 3062 if (Ptr == Store->getValueOperand()) 3063 return WideningDecision == CM_Scalarize; 3064 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 3065 "Ptr is neither a value or pointer operand"); 3066 return WideningDecision != CM_GatherScatter; 3067 }; 3068 3069 // A helper that returns true if the given value is a getelementptr 3070 // instruction contained in the loop. 3071 auto IsLoopVaryingGEP = [&](Value *V) { 3072 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V); 3073 }; 3074 3075 // A helper that evaluates a memory access's use of a pointer. If the use will 3076 // be a scalar use and the pointer is only used by memory accesses, we place 3077 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 3078 // PossibleNonScalarPtrs. 3079 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 3080 // We only care about bitcast and getelementptr instructions contained in 3081 // the loop. 3082 if (!IsLoopVaryingGEP(Ptr)) 3083 return; 3084 3085 // If the pointer has already been identified as scalar (e.g., if it was 3086 // also identified as uniform), there's nothing to do. 3087 auto *I = cast<Instruction>(Ptr); 3088 if (Worklist.count(I)) 3089 return; 3090 3091 // If the use of the pointer will be a scalar use, and all users of the 3092 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 3093 // place the pointer in PossibleNonScalarPtrs. 3094 if (IsScalarUse(MemAccess, Ptr) && 3095 all_of(I->users(), IsaPred<LoadInst, StoreInst>)) 3096 ScalarPtrs.insert(I); 3097 else 3098 PossibleNonScalarPtrs.insert(I); 3099 }; 3100 3101 // We seed the scalars analysis with three classes of instructions: (1) 3102 // instructions marked uniform-after-vectorization and (2) bitcast, 3103 // getelementptr and (pointer) phi instructions used by memory accesses 3104 // requiring a scalar use. 3105 // 3106 // (1) Add to the worklist all instructions that have been identified as 3107 // uniform-after-vectorization. 3108 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 3109 3110 // (2) Add to the worklist all bitcast and getelementptr instructions used by 3111 // memory accesses requiring a scalar use. The pointer operands of loads and 3112 // stores will be scalar unless the operation is a gather or scatter. 3113 // The value operand of a store will remain scalar if the store is scalarized. 3114 for (auto *BB : TheLoop->blocks()) 3115 for (auto &I : *BB) { 3116 if (auto *Load = dyn_cast<LoadInst>(&I)) { 3117 EvaluatePtrUse(Load, Load->getPointerOperand()); 3118 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 3119 EvaluatePtrUse(Store, Store->getPointerOperand()); 3120 EvaluatePtrUse(Store, Store->getValueOperand()); 3121 } 3122 } 3123 for (auto *I : ScalarPtrs) 3124 if (!PossibleNonScalarPtrs.count(I)) { 3125 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 3126 Worklist.insert(I); 3127 } 3128 3129 // Insert the forced scalars. 3130 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector 3131 // induction variable when the PHI user is scalarized. 3132 auto ForcedScalar = ForcedScalars.find(VF); 3133 if (ForcedScalar != ForcedScalars.end()) 3134 for (auto *I : ForcedScalar->second) { 3135 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n"); 3136 Worklist.insert(I); 3137 } 3138 3139 // Expand the worklist by looking through any bitcasts and getelementptr 3140 // instructions we've already identified as scalar. This is similar to the 3141 // expansion step in collectLoopUniforms(); however, here we're only 3142 // expanding to include additional bitcasts and getelementptr instructions. 3143 unsigned Idx = 0; 3144 while (Idx != Worklist.size()) { 3145 Instruction *Dst = Worklist[Idx++]; 3146 if (!IsLoopVaryingGEP(Dst->getOperand(0))) 3147 continue; 3148 auto *Src = cast<Instruction>(Dst->getOperand(0)); 3149 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 3150 auto *J = cast<Instruction>(U); 3151 return !TheLoop->contains(J) || Worklist.count(J) || 3152 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 3153 IsScalarUse(J, Src)); 3154 })) { 3155 Worklist.insert(Src); 3156 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 3157 } 3158 } 3159 3160 // An induction variable will remain scalar if all users of the induction 3161 // variable and induction variable update remain scalar. 3162 for (const auto &Induction : Legal->getInductionVars()) { 3163 auto *Ind = Induction.first; 3164 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 3165 3166 // If tail-folding is applied, the primary induction variable will be used 3167 // to feed a vector compare. 3168 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 3169 continue; 3170 3171 // Returns true if \p Indvar is a pointer induction that is used directly by 3172 // load/store instruction \p I. 3173 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 3174 Instruction *I) { 3175 return Induction.second.getKind() == 3176 InductionDescriptor::IK_PtrInduction && 3177 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 3178 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar); 3179 }; 3180 3181 // Determine if all users of the induction variable are scalar after 3182 // vectorization. 3183 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 3184 auto *I = cast<Instruction>(U); 3185 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 3186 IsDirectLoadStoreFromPtrIndvar(Ind, I); 3187 }); 3188 if (!ScalarInd) 3189 continue; 3190 3191 // If the induction variable update is a fixed-order recurrence, neither the 3192 // induction variable or its update should be marked scalar after 3193 // vectorization. 3194 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate); 3195 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi)) 3196 continue; 3197 3198 // Determine if all users of the induction variable update instruction are 3199 // scalar after vectorization. 3200 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 3201 auto *I = cast<Instruction>(U); 3202 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 3203 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 3204 }); 3205 if (!ScalarIndUpdate) 3206 continue; 3207 3208 // The induction variable and its update instruction will remain scalar. 3209 Worklist.insert(Ind); 3210 Worklist.insert(IndUpdate); 3211 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 3212 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 3213 << "\n"); 3214 } 3215 3216 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 3217 } 3218 3219 bool LoopVectorizationCostModel::isScalarWithPredication( 3220 Instruction *I, ElementCount VF) const { 3221 if (!isPredicatedInst(I)) 3222 return false; 3223 3224 // Do we have a non-scalar lowering for this predicated 3225 // instruction? No - it is scalar with predication. 3226 switch(I->getOpcode()) { 3227 default: 3228 return true; 3229 case Instruction::Call: 3230 if (VF.isScalar()) 3231 return true; 3232 return CallWideningDecisions.at(std::make_pair(cast<CallInst>(I), VF)) 3233 .Kind == CM_Scalarize; 3234 case Instruction::Load: 3235 case Instruction::Store: { 3236 auto *Ptr = getLoadStorePointerOperand(I); 3237 auto *Ty = getLoadStoreType(I); 3238 Type *VTy = Ty; 3239 if (VF.isVector()) 3240 VTy = VectorType::get(Ty, VF); 3241 const Align Alignment = getLoadStoreAlignment(I); 3242 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 3243 TTI.isLegalMaskedGather(VTy, Alignment)) 3244 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 3245 TTI.isLegalMaskedScatter(VTy, Alignment)); 3246 } 3247 case Instruction::UDiv: 3248 case Instruction::SDiv: 3249 case Instruction::SRem: 3250 case Instruction::URem: { 3251 // We have the option to use the safe-divisor idiom to avoid predication. 3252 // The cost based decision here will always select safe-divisor for 3253 // scalable vectors as scalarization isn't legal. 3254 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF); 3255 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost); 3256 } 3257 } 3258 } 3259 3260 // TODO: Fold into LoopVectorizationLegality::isMaskRequired. 3261 bool LoopVectorizationCostModel::isPredicatedInst(Instruction *I) const { 3262 // If predication is not needed, avoid it. 3263 // TODO: We can use the loop-preheader as context point here and get 3264 // context sensitive reasoning for isSafeToSpeculativelyExecute. 3265 if (!blockNeedsPredicationForAnyReason(I->getParent()) || 3266 isSafeToSpeculativelyExecute(I) || 3267 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) || 3268 isa<BranchInst, SwitchInst, PHINode, AllocaInst>(I)) 3269 return false; 3270 3271 // If the instruction was executed conditionally in the original scalar loop, 3272 // predication is needed with a mask whose lanes are all possibly inactive. 3273 if (Legal->blockNeedsPredication(I->getParent())) 3274 return true; 3275 3276 // All that remain are instructions with side-effects originally executed in 3277 // the loop unconditionally, but now execute under a tail-fold mask (only) 3278 // having at least one active lane (the first). If the side-effects of the 3279 // instruction are invariant, executing it w/o (the tail-folding) mask is safe 3280 // - it will cause the same side-effects as when masked. 3281 switch(I->getOpcode()) { 3282 default: 3283 llvm_unreachable( 3284 "instruction should have been considered by earlier checks"); 3285 case Instruction::Call: 3286 // Side-effects of a Call are assumed to be non-invariant, needing a 3287 // (fold-tail) mask. 3288 assert(Legal->isMaskRequired(I) && 3289 "should have returned earlier for calls not needing a mask"); 3290 return true; 3291 case Instruction::Load: 3292 // If the address is loop invariant no predication is needed. 3293 return !Legal->isInvariant(getLoadStorePointerOperand(I)); 3294 case Instruction::Store: { 3295 // For stores, we need to prove both speculation safety (which follows from 3296 // the same argument as loads), but also must prove the value being stored 3297 // is correct. The easiest form of the later is to require that all values 3298 // stored are the same. 3299 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) && 3300 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand())); 3301 } 3302 case Instruction::UDiv: 3303 case Instruction::SDiv: 3304 case Instruction::SRem: 3305 case Instruction::URem: 3306 // If the divisor is loop-invariant no predication is needed. 3307 return !TheLoop->isLoopInvariant(I->getOperand(1)); 3308 } 3309 } 3310 3311 std::pair<InstructionCost, InstructionCost> 3312 LoopVectorizationCostModel::getDivRemSpeculationCost(Instruction *I, 3313 ElementCount VF) const { 3314 assert(I->getOpcode() == Instruction::UDiv || 3315 I->getOpcode() == Instruction::SDiv || 3316 I->getOpcode() == Instruction::SRem || 3317 I->getOpcode() == Instruction::URem); 3318 assert(!isSafeToSpeculativelyExecute(I)); 3319 3320 // Scalarization isn't legal for scalable vector types 3321 InstructionCost ScalarizationCost = InstructionCost::getInvalid(); 3322 if (!VF.isScalable()) { 3323 // Get the scalarization cost and scale this amount by the probability of 3324 // executing the predicated block. If the instruction is not predicated, 3325 // we fall through to the next case. 3326 ScalarizationCost = 0; 3327 3328 // These instructions have a non-void type, so account for the phi nodes 3329 // that we will create. This cost is likely to be zero. The phi node 3330 // cost, if any, should be scaled by the block probability because it 3331 // models a copy at the end of each predicated block. 3332 ScalarizationCost += VF.getKnownMinValue() * 3333 TTI.getCFInstrCost(Instruction::PHI, CostKind); 3334 3335 // The cost of the non-predicated instruction. 3336 ScalarizationCost += VF.getKnownMinValue() * 3337 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind); 3338 3339 // The cost of insertelement and extractelement instructions needed for 3340 // scalarization. 3341 ScalarizationCost += getScalarizationOverhead(I, VF); 3342 3343 // Scale the cost by the probability of executing the predicated blocks. 3344 // This assumes the predicated block for each vector lane is equally 3345 // likely. 3346 ScalarizationCost = ScalarizationCost / getReciprocalPredBlockProb(); 3347 } 3348 InstructionCost SafeDivisorCost = 0; 3349 3350 auto *VecTy = toVectorTy(I->getType(), VF); 3351 3352 // The cost of the select guard to ensure all lanes are well defined 3353 // after we speculate above any internal control flow. 3354 SafeDivisorCost += 3355 TTI.getCmpSelInstrCost(Instruction::Select, VecTy, 3356 toVectorTy(Type::getInt1Ty(I->getContext()), VF), 3357 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3358 3359 // Certain instructions can be cheaper to vectorize if they have a constant 3360 // second vector operand. One example of this are shifts on x86. 3361 Value *Op2 = I->getOperand(1); 3362 auto Op2Info = TTI.getOperandInfo(Op2); 3363 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && 3364 Legal->isInvariant(Op2)) 3365 Op2Info.Kind = TargetTransformInfo::OK_UniformValue; 3366 3367 SmallVector<const Value *, 4> Operands(I->operand_values()); 3368 SafeDivisorCost += TTI.getArithmeticInstrCost( 3369 I->getOpcode(), VecTy, CostKind, 3370 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, 3371 Op2Info, Operands, I); 3372 return {ScalarizationCost, SafeDivisorCost}; 3373 } 3374 3375 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 3376 Instruction *I, ElementCount VF) const { 3377 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 3378 assert(getWideningDecision(I, VF) == CM_Unknown && 3379 "Decision should not be set yet."); 3380 auto *Group = getInterleavedAccessGroup(I); 3381 assert(Group && "Must have a group."); 3382 unsigned InterleaveFactor = Group->getFactor(); 3383 3384 // If the instruction's allocated size doesn't equal its type size, it 3385 // requires padding and will be scalarized. 3386 auto &DL = I->getDataLayout(); 3387 auto *ScalarTy = getLoadStoreType(I); 3388 if (hasIrregularType(ScalarTy, DL)) 3389 return false; 3390 3391 // We currently only know how to emit interleave/deinterleave with 3392 // Factor=2 for scalable vectors. This is purely an implementation 3393 // limit. 3394 if (VF.isScalable() && InterleaveFactor != 2) 3395 return false; 3396 3397 // If the group involves a non-integral pointer, we may not be able to 3398 // losslessly cast all values to a common type. 3399 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 3400 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) { 3401 Instruction *Member = Group->getMember(Idx); 3402 if (!Member) 3403 continue; 3404 auto *MemberTy = getLoadStoreType(Member); 3405 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 3406 // Don't coerce non-integral pointers to integers or vice versa. 3407 if (MemberNI != ScalarNI) 3408 // TODO: Consider adding special nullptr value case here 3409 return false; 3410 if (MemberNI && ScalarNI && 3411 ScalarTy->getPointerAddressSpace() != 3412 MemberTy->getPointerAddressSpace()) 3413 return false; 3414 } 3415 3416 // Check if masking is required. 3417 // A Group may need masking for one of two reasons: it resides in a block that 3418 // needs predication, or it was decided to use masking to deal with gaps 3419 // (either a gap at the end of a load-access that may result in a speculative 3420 // load, or any gaps in a store-access). 3421 bool PredicatedAccessRequiresMasking = 3422 blockNeedsPredicationForAnyReason(I->getParent()) && 3423 Legal->isMaskRequired(I); 3424 bool LoadAccessWithGapsRequiresEpilogMasking = 3425 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 3426 !isScalarEpilogueAllowed(); 3427 bool StoreAccessWithGapsRequiresMasking = 3428 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 3429 if (!PredicatedAccessRequiresMasking && 3430 !LoadAccessWithGapsRequiresEpilogMasking && 3431 !StoreAccessWithGapsRequiresMasking) 3432 return true; 3433 3434 // If masked interleaving is required, we expect that the user/target had 3435 // enabled it, because otherwise it either wouldn't have been created or 3436 // it should have been invalidated by the CostModel. 3437 assert(useMaskedInterleavedAccesses(TTI) && 3438 "Masked interleave-groups for predicated accesses are not enabled."); 3439 3440 if (Group->isReverse()) 3441 return false; 3442 3443 auto *Ty = getLoadStoreType(I); 3444 const Align Alignment = getLoadStoreAlignment(I); 3445 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 3446 : TTI.isLegalMaskedStore(Ty, Alignment); 3447 } 3448 3449 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 3450 Instruction *I, ElementCount VF) { 3451 // Get and ensure we have a valid memory instruction. 3452 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 3453 3454 auto *Ptr = getLoadStorePointerOperand(I); 3455 auto *ScalarTy = getLoadStoreType(I); 3456 3457 // In order to be widened, the pointer should be consecutive, first of all. 3458 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 3459 return false; 3460 3461 // If the instruction is a store located in a predicated block, it will be 3462 // scalarized. 3463 if (isScalarWithPredication(I, VF)) 3464 return false; 3465 3466 // If the instruction's allocated size doesn't equal it's type size, it 3467 // requires padding and will be scalarized. 3468 auto &DL = I->getDataLayout(); 3469 if (hasIrregularType(ScalarTy, DL)) 3470 return false; 3471 3472 return true; 3473 } 3474 3475 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 3476 // We should not collect Uniforms more than once per VF. Right now, 3477 // this function is called from collectUniformsAndScalars(), which 3478 // already does this check. Collecting Uniforms for VF=1 does not make any 3479 // sense. 3480 3481 assert(VF.isVector() && !Uniforms.contains(VF) && 3482 "This function should not be visited twice for the same VF"); 3483 3484 // Visit the list of Uniforms. If we find no uniform value, we won't 3485 // analyze again. Uniforms.count(VF) will return 1. 3486 Uniforms[VF].clear(); 3487 3488 // Now we know that the loop is vectorizable! 3489 // Collect instructions inside the loop that will remain uniform after 3490 // vectorization. 3491 3492 // Global values, params and instructions outside of current loop are out of 3493 // scope. 3494 auto IsOutOfScope = [&](Value *V) -> bool { 3495 Instruction *I = dyn_cast<Instruction>(V); 3496 return (!I || !TheLoop->contains(I)); 3497 }; 3498 3499 // Worklist containing uniform instructions demanding lane 0. 3500 SetVector<Instruction *> Worklist; 3501 3502 // Add uniform instructions demanding lane 0 to the worklist. Instructions 3503 // that require predication must not be considered uniform after 3504 // vectorization, because that would create an erroneous replicating region 3505 // where only a single instance out of VF should be formed. 3506 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void { 3507 if (IsOutOfScope(I)) { 3508 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 3509 << *I << "\n"); 3510 return; 3511 } 3512 if (isPredicatedInst(I)) { 3513 LLVM_DEBUG( 3514 dbgs() << "LV: Found not uniform due to requiring predication: " << *I 3515 << "\n"); 3516 return; 3517 } 3518 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 3519 Worklist.insert(I); 3520 }; 3521 3522 // Start with the conditional branches exiting the loop. If the branch 3523 // condition is an instruction contained in the loop that is only used by the 3524 // branch, it is uniform. Note conditions from uncountable early exits are not 3525 // uniform. 3526 SmallVector<BasicBlock *> Exiting; 3527 TheLoop->getExitingBlocks(Exiting); 3528 for (BasicBlock *E : Exiting) { 3529 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E) 3530 continue; 3531 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0)); 3532 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 3533 AddToWorklistIfAllowed(Cmp); 3534 } 3535 3536 auto PrevVF = VF.divideCoefficientBy(2); 3537 // Return true if all lanes perform the same memory operation, and we can 3538 // thus choose to execute only one. 3539 auto IsUniformMemOpUse = [&](Instruction *I) { 3540 // If the value was already known to not be uniform for the previous 3541 // (smaller VF), it cannot be uniform for the larger VF. 3542 if (PrevVF.isVector()) { 3543 auto Iter = Uniforms.find(PrevVF); 3544 if (Iter != Uniforms.end() && !Iter->second.contains(I)) 3545 return false; 3546 } 3547 if (!Legal->isUniformMemOp(*I, VF)) 3548 return false; 3549 if (isa<LoadInst>(I)) 3550 // Loading the same address always produces the same result - at least 3551 // assuming aliasing and ordering which have already been checked. 3552 return true; 3553 // Storing the same value on every iteration. 3554 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()); 3555 }; 3556 3557 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) { 3558 InstWidening WideningDecision = getWideningDecision(I, VF); 3559 assert(WideningDecision != CM_Unknown && 3560 "Widening decision should be ready at this moment"); 3561 3562 if (IsUniformMemOpUse(I)) 3563 return true; 3564 3565 return (WideningDecision == CM_Widen || 3566 WideningDecision == CM_Widen_Reverse || 3567 WideningDecision == CM_Interleave); 3568 }; 3569 3570 // Returns true if Ptr is the pointer operand of a memory access instruction 3571 // I, I is known to not require scalarization, and the pointer is not also 3572 // stored. 3573 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 3574 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr) 3575 return false; 3576 return getLoadStorePointerOperand(I) == Ptr && 3577 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr)); 3578 }; 3579 3580 // Holds a list of values which are known to have at least one uniform use. 3581 // Note that there may be other uses which aren't uniform. A "uniform use" 3582 // here is something which only demands lane 0 of the unrolled iterations; 3583 // it does not imply that all lanes produce the same value (e.g. this is not 3584 // the usual meaning of uniform) 3585 SetVector<Value *> HasUniformUse; 3586 3587 // Scan the loop for instructions which are either a) known to have only 3588 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 3589 for (auto *BB : TheLoop->blocks()) 3590 for (auto &I : *BB) { 3591 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 3592 switch (II->getIntrinsicID()) { 3593 case Intrinsic::sideeffect: 3594 case Intrinsic::experimental_noalias_scope_decl: 3595 case Intrinsic::assume: 3596 case Intrinsic::lifetime_start: 3597 case Intrinsic::lifetime_end: 3598 if (TheLoop->hasLoopInvariantOperands(&I)) 3599 AddToWorklistIfAllowed(&I); 3600 break; 3601 default: 3602 break; 3603 } 3604 } 3605 3606 // ExtractValue instructions must be uniform, because the operands are 3607 // known to be loop-invariant. 3608 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 3609 assert(IsOutOfScope(EVI->getAggregateOperand()) && 3610 "Expected aggregate value to be loop invariant"); 3611 AddToWorklistIfAllowed(EVI); 3612 continue; 3613 } 3614 3615 // If there's no pointer operand, there's nothing to do. 3616 auto *Ptr = getLoadStorePointerOperand(&I); 3617 if (!Ptr) 3618 continue; 3619 3620 if (IsUniformMemOpUse(&I)) 3621 AddToWorklistIfAllowed(&I); 3622 3623 if (IsVectorizedMemAccessUse(&I, Ptr)) 3624 HasUniformUse.insert(Ptr); 3625 } 3626 3627 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 3628 // demanding) users. Since loops are assumed to be in LCSSA form, this 3629 // disallows uses outside the loop as well. 3630 for (auto *V : HasUniformUse) { 3631 if (IsOutOfScope(V)) 3632 continue; 3633 auto *I = cast<Instruction>(V); 3634 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool { 3635 auto *UI = cast<Instruction>(U); 3636 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V); 3637 }); 3638 if (UsersAreMemAccesses) 3639 AddToWorklistIfAllowed(I); 3640 } 3641 3642 // Expand Worklist in topological order: whenever a new instruction 3643 // is added , its users should be already inside Worklist. It ensures 3644 // a uniform instruction will only be used by uniform instructions. 3645 unsigned Idx = 0; 3646 while (Idx != Worklist.size()) { 3647 Instruction *I = Worklist[Idx++]; 3648 3649 for (auto *OV : I->operand_values()) { 3650 // isOutOfScope operands cannot be uniform instructions. 3651 if (IsOutOfScope(OV)) 3652 continue; 3653 // First order recurrence Phi's should typically be considered 3654 // non-uniform. 3655 auto *OP = dyn_cast<PHINode>(OV); 3656 if (OP && Legal->isFixedOrderRecurrence(OP)) 3657 continue; 3658 // If all the users of the operand are uniform, then add the 3659 // operand into the uniform worklist. 3660 auto *OI = cast<Instruction>(OV); 3661 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 3662 auto *J = cast<Instruction>(U); 3663 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI); 3664 })) 3665 AddToWorklistIfAllowed(OI); 3666 } 3667 } 3668 3669 // For an instruction to be added into Worklist above, all its users inside 3670 // the loop should also be in Worklist. However, this condition cannot be 3671 // true for phi nodes that form a cyclic dependence. We must process phi 3672 // nodes separately. An induction variable will remain uniform if all users 3673 // of the induction variable and induction variable update remain uniform. 3674 // The code below handles both pointer and non-pointer induction variables. 3675 BasicBlock *Latch = TheLoop->getLoopLatch(); 3676 for (const auto &Induction : Legal->getInductionVars()) { 3677 auto *Ind = Induction.first; 3678 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 3679 3680 // Determine if all users of the induction variable are uniform after 3681 // vectorization. 3682 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 3683 auto *I = cast<Instruction>(U); 3684 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 3685 IsVectorizedMemAccessUse(I, Ind); 3686 }); 3687 if (!UniformInd) 3688 continue; 3689 3690 // Determine if all users of the induction variable update instruction are 3691 // uniform after vectorization. 3692 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 3693 auto *I = cast<Instruction>(U); 3694 return I == Ind || Worklist.count(I) || 3695 IsVectorizedMemAccessUse(I, IndUpdate); 3696 }); 3697 if (!UniformIndUpdate) 3698 continue; 3699 3700 // The induction variable and its update instruction will remain uniform. 3701 AddToWorklistIfAllowed(Ind); 3702 AddToWorklistIfAllowed(IndUpdate); 3703 } 3704 3705 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 3706 } 3707 3708 bool LoopVectorizationCostModel::runtimeChecksRequired() { 3709 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 3710 3711 if (Legal->getRuntimePointerChecking()->Need) { 3712 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 3713 "runtime pointer checks needed. Enable vectorization of this " 3714 "loop with '#pragma clang loop vectorize(enable)' when " 3715 "compiling with -Os/-Oz", 3716 "CantVersionLoopWithOptForSize", ORE, TheLoop); 3717 return true; 3718 } 3719 3720 if (!PSE.getPredicate().isAlwaysTrue()) { 3721 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 3722 "runtime SCEV checks needed. Enable vectorization of this " 3723 "loop with '#pragma clang loop vectorize(enable)' when " 3724 "compiling with -Os/-Oz", 3725 "CantVersionLoopWithOptForSize", ORE, TheLoop); 3726 return true; 3727 } 3728 3729 // FIXME: Avoid specializing for stride==1 instead of bailing out. 3730 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 3731 reportVectorizationFailure("Runtime stride check for small trip count", 3732 "runtime stride == 1 checks needed. Enable vectorization of " 3733 "this loop without such check by compiling with -Os/-Oz", 3734 "CantVersionLoopWithOptForSize", ORE, TheLoop); 3735 return true; 3736 } 3737 3738 return false; 3739 } 3740 3741 bool LoopVectorizationCostModel::isScalableVectorizationAllowed() { 3742 if (IsScalableVectorizationAllowed) 3743 return *IsScalableVectorizationAllowed; 3744 3745 IsScalableVectorizationAllowed = false; 3746 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 3747 return false; 3748 3749 if (Hints->isScalableVectorizationDisabled()) { 3750 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 3751 "ScalableVectorizationDisabled", ORE, TheLoop); 3752 return false; 3753 } 3754 3755 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 3756 3757 auto MaxScalableVF = ElementCount::getScalable( 3758 std::numeric_limits<ElementCount::ScalarTy>::max()); 3759 3760 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 3761 // FIXME: While for scalable vectors this is currently sufficient, this should 3762 // be replaced by a more detailed mechanism that filters out specific VFs, 3763 // instead of invalidating vectorization for a whole set of VFs based on the 3764 // MaxVF. 3765 3766 // Disable scalable vectorization if the loop contains unsupported reductions. 3767 if (!canVectorizeReductions(MaxScalableVF)) { 3768 reportVectorizationInfo( 3769 "Scalable vectorization not supported for the reduction " 3770 "operations found in this loop.", 3771 "ScalableVFUnfeasible", ORE, TheLoop); 3772 return false; 3773 } 3774 3775 // Disable scalable vectorization if the loop contains any instructions 3776 // with element types not supported for scalable vectors. 3777 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 3778 return !Ty->isVoidTy() && 3779 !this->TTI.isElementTypeLegalForScalableVector(Ty); 3780 })) { 3781 reportVectorizationInfo("Scalable vectorization is not supported " 3782 "for all element types found in this loop.", 3783 "ScalableVFUnfeasible", ORE, TheLoop); 3784 return false; 3785 } 3786 3787 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) { 3788 reportVectorizationInfo("The target does not provide maximum vscale value " 3789 "for safe distance analysis.", 3790 "ScalableVFUnfeasible", ORE, TheLoop); 3791 return false; 3792 } 3793 3794 IsScalableVectorizationAllowed = true; 3795 return true; 3796 } 3797 3798 ElementCount 3799 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 3800 if (!isScalableVectorizationAllowed()) 3801 return ElementCount::getScalable(0); 3802 3803 auto MaxScalableVF = ElementCount::getScalable( 3804 std::numeric_limits<ElementCount::ScalarTy>::max()); 3805 if (Legal->isSafeForAnyVectorWidth()) 3806 return MaxScalableVF; 3807 3808 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI); 3809 // Limit MaxScalableVF by the maximum safe dependence distance. 3810 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale); 3811 3812 if (!MaxScalableVF) 3813 reportVectorizationInfo( 3814 "Max legal vector width too small, scalable vectorization " 3815 "unfeasible.", 3816 "ScalableVFUnfeasible", ORE, TheLoop); 3817 3818 return MaxScalableVF; 3819 } 3820 3821 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 3822 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) { 3823 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 3824 unsigned SmallestType, WidestType; 3825 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 3826 3827 // Get the maximum safe dependence distance in bits computed by LAA. 3828 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 3829 // the memory accesses that is most restrictive (involved in the smallest 3830 // dependence distance). 3831 unsigned MaxSafeElements = 3832 llvm::bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 3833 3834 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 3835 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 3836 if (!Legal->isSafeForAnyVectorWidth()) 3837 this->MaxSafeElements = MaxSafeElements; 3838 3839 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 3840 << ".\n"); 3841 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 3842 << ".\n"); 3843 3844 // First analyze the UserVF, fall back if the UserVF should be ignored. 3845 if (UserVF) { 3846 auto MaxSafeUserVF = 3847 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 3848 3849 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 3850 // If `VF=vscale x N` is safe, then so is `VF=N` 3851 if (UserVF.isScalable()) 3852 return FixedScalableVFPair( 3853 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 3854 3855 return UserVF; 3856 } 3857 3858 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 3859 3860 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 3861 // is better to ignore the hint and let the compiler choose a suitable VF. 3862 if (!UserVF.isScalable()) { 3863 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 3864 << " is unsafe, clamping to max safe VF=" 3865 << MaxSafeFixedVF << ".\n"); 3866 ORE->emit([&]() { 3867 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 3868 TheLoop->getStartLoc(), 3869 TheLoop->getHeader()) 3870 << "User-specified vectorization factor " 3871 << ore::NV("UserVectorizationFactor", UserVF) 3872 << " is unsafe, clamping to maximum safe vectorization factor " 3873 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 3874 }); 3875 return MaxSafeFixedVF; 3876 } 3877 3878 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 3879 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 3880 << " is ignored because scalable vectors are not " 3881 "available.\n"); 3882 ORE->emit([&]() { 3883 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 3884 TheLoop->getStartLoc(), 3885 TheLoop->getHeader()) 3886 << "User-specified vectorization factor " 3887 << ore::NV("UserVectorizationFactor", UserVF) 3888 << " is ignored because the target does not support scalable " 3889 "vectors. The compiler will pick a more suitable value."; 3890 }); 3891 } else { 3892 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 3893 << " is unsafe. Ignoring scalable UserVF.\n"); 3894 ORE->emit([&]() { 3895 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 3896 TheLoop->getStartLoc(), 3897 TheLoop->getHeader()) 3898 << "User-specified vectorization factor " 3899 << ore::NV("UserVectorizationFactor", UserVF) 3900 << " is unsafe. Ignoring the hint to let the compiler pick a " 3901 "more suitable value."; 3902 }); 3903 } 3904 } 3905 3906 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 3907 << " / " << WidestType << " bits.\n"); 3908 3909 FixedScalableVFPair Result(ElementCount::getFixed(1), 3910 ElementCount::getScalable(0)); 3911 if (auto MaxVF = 3912 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType, 3913 MaxSafeFixedVF, FoldTailByMasking)) 3914 Result.FixedVF = MaxVF; 3915 3916 if (auto MaxVF = 3917 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType, 3918 MaxSafeScalableVF, FoldTailByMasking)) 3919 if (MaxVF.isScalable()) { 3920 Result.ScalableVF = MaxVF; 3921 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 3922 << "\n"); 3923 } 3924 3925 return Result; 3926 } 3927 3928 FixedScalableVFPair 3929 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 3930 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 3931 // TODO: It may be useful to do since it's still likely to be dynamically 3932 // uniform if the target can skip. 3933 reportVectorizationFailure( 3934 "Not inserting runtime ptr check for divergent target", 3935 "runtime pointer checks needed. Not enabled for divergent target", 3936 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 3937 return FixedScalableVFPair::getNone(); 3938 } 3939 3940 ScalarEvolution *SE = PSE.getSE(); 3941 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 3942 unsigned MaxTC = PSE.getSmallConstantMaxTripCount(); 3943 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 3944 if (TC != MaxTC) 3945 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n'); 3946 if (TC == 1) { 3947 reportVectorizationFailure("Single iteration (non) loop", 3948 "loop trip count is one, irrelevant for vectorization", 3949 "SingleIterationLoop", ORE, TheLoop); 3950 return FixedScalableVFPair::getNone(); 3951 } 3952 3953 // If BTC matches the widest induction type and is -1 then the trip count 3954 // computation will wrap to 0 and the vector trip count will be 0. Do not try 3955 // to vectorize. 3956 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop); 3957 if (!isa<SCEVCouldNotCompute>(BTC) && 3958 BTC->getType()->getScalarSizeInBits() >= 3959 Legal->getWidestInductionType()->getScalarSizeInBits() && 3960 SE->isKnownPredicate(CmpInst::ICMP_EQ, BTC, 3961 SE->getMinusOne(BTC->getType()))) { 3962 reportVectorizationFailure( 3963 "Trip count computation wrapped", 3964 "backedge-taken count is -1, loop trip count wrapped to 0", 3965 "TripCountWrapped", ORE, TheLoop); 3966 return FixedScalableVFPair::getNone(); 3967 } 3968 3969 switch (ScalarEpilogueStatus) { 3970 case CM_ScalarEpilogueAllowed: 3971 return computeFeasibleMaxVF(MaxTC, UserVF, false); 3972 case CM_ScalarEpilogueNotAllowedUsePredicate: 3973 [[fallthrough]]; 3974 case CM_ScalarEpilogueNotNeededUsePredicate: 3975 LLVM_DEBUG( 3976 dbgs() << "LV: vector predicate hint/switch found.\n" 3977 << "LV: Not allowing scalar epilogue, creating predicated " 3978 << "vector loop.\n"); 3979 break; 3980 case CM_ScalarEpilogueNotAllowedLowTripLoop: 3981 // fallthrough as a special case of OptForSize 3982 case CM_ScalarEpilogueNotAllowedOptSize: 3983 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 3984 LLVM_DEBUG( 3985 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 3986 else 3987 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 3988 << "count.\n"); 3989 3990 // Bail if runtime checks are required, which are not good when optimising 3991 // for size. 3992 if (runtimeChecksRequired()) 3993 return FixedScalableVFPair::getNone(); 3994 3995 break; 3996 } 3997 3998 // The only loops we can vectorize without a scalar epilogue, are loops with 3999 // a bottom-test and a single exiting block. We'd have to handle the fact 4000 // that not every instruction executes on the last iteration. This will 4001 // require a lane mask which varies through the vector loop body. (TODO) 4002 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4003 // If there was a tail-folding hint/switch, but we can't fold the tail by 4004 // masking, fallback to a vectorization with a scalar epilogue. 4005 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 4006 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 4007 "scalar epilogue instead.\n"); 4008 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 4009 return computeFeasibleMaxVF(MaxTC, UserVF, false); 4010 } 4011 return FixedScalableVFPair::getNone(); 4012 } 4013 4014 // Now try the tail folding 4015 4016 // Invalidate interleave groups that require an epilogue if we can't mask 4017 // the interleave-group. 4018 if (!useMaskedInterleavedAccesses(TTI)) { 4019 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 4020 "No decisions should have been taken at this point"); 4021 // Note: There is no need to invalidate any cost modeling decisions here, as 4022 // none were taken so far. 4023 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4024 } 4025 4026 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true); 4027 4028 // Avoid tail folding if the trip count is known to be a multiple of any VF 4029 // we choose. 4030 std::optional<unsigned> MaxPowerOf2RuntimeVF = 4031 MaxFactors.FixedVF.getFixedValue(); 4032 if (MaxFactors.ScalableVF) { 4033 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI); 4034 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) { 4035 MaxPowerOf2RuntimeVF = std::max<unsigned>( 4036 *MaxPowerOf2RuntimeVF, 4037 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue()); 4038 } else 4039 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now. 4040 } 4041 4042 if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) { 4043 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) && 4044 "MaxFixedVF must be a power of 2"); 4045 unsigned MaxVFtimesIC = 4046 UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF; 4047 ScalarEvolution *SE = PSE.getSE(); 4048 // Currently only loops with countable exits are vectorized, but calling 4049 // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with 4050 // uncountable exits whilst also ensuring the symbolic maximum and known 4051 // back-edge taken count remain identical for loops with countable exits. 4052 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount(); 4053 assert(BackedgeTakenCount == PSE.getBackedgeTakenCount() && 4054 "Invalid loop count"); 4055 const SCEV *ExitCount = SE->getAddExpr( 4056 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 4057 const SCEV *Rem = SE->getURemExpr( 4058 SE->applyLoopGuards(ExitCount, TheLoop), 4059 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 4060 if (Rem->isZero()) { 4061 // Accept MaxFixedVF if we do not have a tail. 4062 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4063 return MaxFactors; 4064 } 4065 } 4066 4067 // If we don't know the precise trip count, or if the trip count that we 4068 // found modulo the vectorization factor is not zero, try to fold the tail 4069 // by masking. 4070 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4071 setTailFoldingStyles(MaxFactors.ScalableVF.isScalable(), UserIC); 4072 if (foldTailByMasking()) { 4073 if (getTailFoldingStyle() == TailFoldingStyle::DataWithEVL) { 4074 LLVM_DEBUG( 4075 dbgs() 4076 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will " 4077 "try to generate VP Intrinsics with scalable vector " 4078 "factors only.\n"); 4079 // Tail folded loop using VP intrinsics restricts the VF to be scalable 4080 // for now. 4081 // TODO: extend it for fixed vectors, if required. 4082 assert(MaxFactors.ScalableVF.isScalable() && 4083 "Expected scalable vector factor."); 4084 4085 MaxFactors.FixedVF = ElementCount::getFixed(1); 4086 } 4087 return MaxFactors; 4088 } 4089 4090 // If there was a tail-folding hint/switch, but we can't fold the tail by 4091 // masking, fallback to a vectorization with a scalar epilogue. 4092 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 4093 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 4094 "scalar epilogue instead.\n"); 4095 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 4096 return MaxFactors; 4097 } 4098 4099 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 4100 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 4101 return FixedScalableVFPair::getNone(); 4102 } 4103 4104 if (TC == 0) { 4105 reportVectorizationFailure( 4106 "unable to calculate the loop count due to complex control flow", 4107 "UnknownLoopCountComplexCFG", ORE, TheLoop); 4108 return FixedScalableVFPair::getNone(); 4109 } 4110 4111 reportVectorizationFailure( 4112 "Cannot optimize for size and vectorize at the same time.", 4113 "cannot optimize for size and vectorize at the same time. " 4114 "Enable vectorization of this loop with '#pragma clang loop " 4115 "vectorize(enable)' when compiling with -Os/-Oz", 4116 "NoTailLoopWithOptForSize", ORE, TheLoop); 4117 return FixedScalableVFPair::getNone(); 4118 } 4119 4120 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 4121 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType, 4122 ElementCount MaxSafeVF, bool FoldTailByMasking) { 4123 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 4124 const TypeSize WidestRegister = TTI.getRegisterBitWidth( 4125 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 4126 : TargetTransformInfo::RGK_FixedWidthVector); 4127 4128 // Convenience function to return the minimum of two ElementCounts. 4129 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 4130 assert((LHS.isScalable() == RHS.isScalable()) && 4131 "Scalable flags must match"); 4132 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 4133 }; 4134 4135 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 4136 // Note that both WidestRegister and WidestType may not be a powers of 2. 4137 auto MaxVectorElementCount = ElementCount::get( 4138 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType), 4139 ComputeScalableMaxVF); 4140 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 4141 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4142 << (MaxVectorElementCount * WidestType) << " bits.\n"); 4143 4144 if (!MaxVectorElementCount) { 4145 LLVM_DEBUG(dbgs() << "LV: The target has no " 4146 << (ComputeScalableMaxVF ? "scalable" : "fixed") 4147 << " vector registers.\n"); 4148 return ElementCount::getFixed(1); 4149 } 4150 4151 unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue(); 4152 if (MaxVectorElementCount.isScalable() && 4153 TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 4154 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 4155 auto Min = Attr.getVScaleRangeMin(); 4156 WidestRegisterMinEC *= Min; 4157 } 4158 4159 // When a scalar epilogue is required, at least one iteration of the scalar 4160 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a 4161 // max VF that results in a dead vector loop. 4162 if (MaxTripCount > 0 && requiresScalarEpilogue(true)) 4163 MaxTripCount -= 1; 4164 4165 if (MaxTripCount && MaxTripCount <= WidestRegisterMinEC && 4166 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) { 4167 // If upper bound loop trip count (TC) is known at compile time there is no 4168 // point in choosing VF greater than TC (as done in the loop below). Select 4169 // maximum power of two which doesn't exceed TC. If MaxVectorElementCount is 4170 // scalable, we only fall back on a fixed VF when the TC is less than or 4171 // equal to the known number of lanes. 4172 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount); 4173 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 4174 "exceeding the constant trip count: " 4175 << ClampedUpperTripCount << "\n"); 4176 return ElementCount::get( 4177 ClampedUpperTripCount, 4178 FoldTailByMasking ? MaxVectorElementCount.isScalable() : false); 4179 } 4180 4181 TargetTransformInfo::RegisterKind RegKind = 4182 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 4183 : TargetTransformInfo::RGK_FixedWidthVector; 4184 ElementCount MaxVF = MaxVectorElementCount; 4185 if (MaximizeBandwidth || 4186 (MaximizeBandwidth.getNumOccurrences() == 0 && 4187 (TTI.shouldMaximizeVectorBandwidth(RegKind) || 4188 (UseWiderVFIfCallVariantsPresent && Legal->hasVectorCallVariants())))) { 4189 auto MaxVectorElementCountMaxBW = ElementCount::get( 4190 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType), 4191 ComputeScalableMaxVF); 4192 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 4193 4194 // Collect all viable vectorization factors larger than the default MaxVF 4195 // (i.e. MaxVectorElementCount). 4196 SmallVector<ElementCount, 8> VFs; 4197 for (ElementCount VS = MaxVectorElementCount * 2; 4198 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 4199 VFs.push_back(VS); 4200 4201 // For each VF calculate its register usage. 4202 auto RUs = calculateRegisterUsage(VFs); 4203 4204 // Select the largest VF which doesn't require more registers than existing 4205 // ones. 4206 for (int I = RUs.size() - 1; I >= 0; --I) { 4207 const auto &MLU = RUs[I].MaxLocalUsers; 4208 if (all_of(MLU, [&](decltype(MLU.front()) &LU) { 4209 return LU.second <= TTI.getNumberOfRegisters(LU.first); 4210 })) { 4211 MaxVF = VFs[I]; 4212 break; 4213 } 4214 } 4215 if (ElementCount MinVF = 4216 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 4217 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 4218 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4219 << ") with target's minimum: " << MinVF << '\n'); 4220 MaxVF = MinVF; 4221 } 4222 } 4223 4224 // Invalidate any widening decisions we might have made, in case the loop 4225 // requires prediction (decided later), but we have already made some 4226 // load/store widening decisions. 4227 invalidateCostModelingDecisions(); 4228 } 4229 return MaxVF; 4230 } 4231 4232 /// Convenience function that returns the value of vscale_range iff 4233 /// vscale_range.min == vscale_range.max or otherwise returns the value 4234 /// returned by the corresponding TTI method. 4235 static std::optional<unsigned> 4236 getVScaleForTuning(const Loop *L, const TargetTransformInfo &TTI) { 4237 const Function *Fn = L->getHeader()->getParent(); 4238 if (Fn->hasFnAttribute(Attribute::VScaleRange)) { 4239 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange); 4240 auto Min = Attr.getVScaleRangeMin(); 4241 auto Max = Attr.getVScaleRangeMax(); 4242 if (Max && Min == Max) 4243 return Max; 4244 } 4245 4246 return TTI.getVScaleForTuning(); 4247 } 4248 4249 /// This function attempts to return a value that represents the vectorization 4250 /// factor at runtime. For fixed-width VFs we know this precisely at compile 4251 /// time, but for scalable VFs we calculate it based on an estimate of the 4252 /// vscale value. 4253 static unsigned getEstimatedRuntimeVF(const Loop *L, 4254 const TargetTransformInfo &TTI, 4255 ElementCount VF) { 4256 unsigned EstimatedVF = VF.getKnownMinValue(); 4257 if (VF.isScalable()) 4258 if (std::optional<unsigned> VScale = getVScaleForTuning(L, TTI)) 4259 EstimatedVF *= *VScale; 4260 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1"); 4261 return EstimatedVF; 4262 } 4263 4264 bool LoopVectorizationPlanner::isMoreProfitable( 4265 const VectorizationFactor &A, const VectorizationFactor &B, 4266 const unsigned MaxTripCount) const { 4267 InstructionCost CostA = A.Cost; 4268 InstructionCost CostB = B.Cost; 4269 4270 // Improve estimate for the vector width if it is scalable. 4271 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 4272 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 4273 if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI)) { 4274 if (A.Width.isScalable()) 4275 EstimatedWidthA *= *VScale; 4276 if (B.Width.isScalable()) 4277 EstimatedWidthB *= *VScale; 4278 } 4279 4280 // Assume vscale may be larger than 1 (or the value being tuned for), 4281 // so that scalable vectorization is slightly favorable over fixed-width 4282 // vectorization. 4283 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost() && 4284 A.Width.isScalable() && !B.Width.isScalable(); 4285 4286 auto CmpFn = [PreferScalable](const InstructionCost &LHS, 4287 const InstructionCost &RHS) { 4288 return PreferScalable ? LHS <= RHS : LHS < RHS; 4289 }; 4290 4291 // To avoid the need for FP division: 4292 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB) 4293 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA) 4294 if (!MaxTripCount) 4295 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA); 4296 4297 auto GetCostForTC = [MaxTripCount, this](unsigned VF, 4298 InstructionCost VectorCost, 4299 InstructionCost ScalarCost) { 4300 // If the trip count is a known (possibly small) constant, the trip count 4301 // will be rounded up to an integer number of iterations under 4302 // FoldTailByMasking. The total cost in that case will be 4303 // VecCost*ceil(TripCount/VF). When not folding the tail, the total 4304 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be 4305 // some extra overheads, but for the purpose of comparing the costs of 4306 // different VFs we can use this to compare the total loop-body cost 4307 // expected after vectorization. 4308 if (CM.foldTailByMasking()) 4309 return VectorCost * divideCeil(MaxTripCount, VF); 4310 return VectorCost * (MaxTripCount / VF) + ScalarCost * (MaxTripCount % VF); 4311 }; 4312 4313 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost); 4314 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost); 4315 return CmpFn(RTCostA, RTCostB); 4316 } 4317 4318 bool LoopVectorizationPlanner::isMoreProfitable( 4319 const VectorizationFactor &A, const VectorizationFactor &B) const { 4320 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount(); 4321 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount); 4322 } 4323 4324 void LoopVectorizationPlanner::emitInvalidCostRemarks( 4325 OptimizationRemarkEmitter *ORE) { 4326 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>; 4327 SmallVector<RecipeVFPair> InvalidCosts; 4328 for (const auto &Plan : VPlans) { 4329 for (ElementCount VF : Plan->vectorFactors()) { 4330 VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(), 4331 CM, CM.CostKind); 4332 precomputeCosts(*Plan, VF, CostCtx); 4333 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry()); 4334 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 4335 for (auto &R : *VPBB) { 4336 if (!R.cost(VF, CostCtx).isValid()) 4337 InvalidCosts.emplace_back(&R, VF); 4338 } 4339 } 4340 } 4341 } 4342 if (InvalidCosts.empty()) 4343 return; 4344 4345 // Emit a report of VFs with invalid costs in the loop. 4346 4347 // Group the remarks per recipe, keeping the recipe order from InvalidCosts. 4348 DenseMap<VPRecipeBase *, unsigned> Numbering; 4349 unsigned I = 0; 4350 for (auto &Pair : InvalidCosts) 4351 if (!Numbering.count(Pair.first)) 4352 Numbering[Pair.first] = I++; 4353 4354 // Sort the list, first on recipe(number) then on VF. 4355 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) { 4356 if (Numbering[A.first] != Numbering[B.first]) 4357 return Numbering[A.first] < Numbering[B.first]; 4358 const auto &LHS = A.second; 4359 const auto &RHS = B.second; 4360 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 4361 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 4362 }); 4363 4364 // For a list of ordered recipe-VF pairs: 4365 // [(load, VF1), (load, VF2), (store, VF1)] 4366 // group the recipes together to emit separate remarks for: 4367 // load (VF1, VF2) 4368 // store (VF1) 4369 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts); 4370 auto Subset = ArrayRef<RecipeVFPair>(); 4371 do { 4372 if (Subset.empty()) 4373 Subset = Tail.take_front(1); 4374 4375 VPRecipeBase *R = Subset.front().first; 4376 4377 unsigned Opcode = 4378 TypeSwitch<const VPRecipeBase *, unsigned>(R) 4379 .Case<VPHeaderPHIRecipe>( 4380 [](const auto *R) { return Instruction::PHI; }) 4381 .Case<VPWidenSelectRecipe>( 4382 [](const auto *R) { return Instruction::Select; }) 4383 .Case<VPWidenStoreRecipe>( 4384 [](const auto *R) { return Instruction::Store; }) 4385 .Case<VPWidenLoadRecipe>( 4386 [](const auto *R) { return Instruction::Load; }) 4387 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>( 4388 [](const auto *R) { return Instruction::Call; }) 4389 .Case<VPInstruction, VPWidenRecipe, VPReplicateRecipe, 4390 VPWidenCastRecipe>( 4391 [](const auto *R) { return R->getOpcode(); }) 4392 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) { 4393 return R->getStoredValues().empty() ? Instruction::Load 4394 : Instruction::Store; 4395 }); 4396 4397 // If the next recipe is different, or if there are no other pairs, 4398 // emit a remark for the collated subset. e.g. 4399 // [(load, VF1), (load, VF2))] 4400 // to emit: 4401 // remark: invalid costs for 'load' at VF=(VF1, VF2) 4402 if (Subset == Tail || Tail[Subset.size()].first != R) { 4403 std::string OutString; 4404 raw_string_ostream OS(OutString); 4405 assert(!Subset.empty() && "Unexpected empty range"); 4406 OS << "Recipe with invalid costs prevented vectorization at VF=("; 4407 for (const auto &Pair : Subset) 4408 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second; 4409 OS << "):"; 4410 if (Opcode == Instruction::Call) { 4411 StringRef Name = ""; 4412 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) { 4413 Name = Int->getIntrinsicName(); 4414 } else { 4415 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R); 4416 Function *CalledFn = 4417 WidenCall ? WidenCall->getCalledScalarFunction() 4418 : cast<Function>(R->getOperand(R->getNumOperands() - 1) 4419 ->getLiveInIRValue()); 4420 Name = CalledFn->getName(); 4421 } 4422 OS << " call to " << Name; 4423 } else 4424 OS << " " << Instruction::getOpcodeName(Opcode); 4425 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr, 4426 R->getDebugLoc()); 4427 Tail = Tail.drop_front(Subset.size()); 4428 Subset = {}; 4429 } else 4430 // Grow the subset by one element 4431 Subset = Tail.take_front(Subset.size() + 1); 4432 } while (!Tail.empty()); 4433 } 4434 4435 /// Check if any recipe of \p Plan will generate a vector value, which will be 4436 /// assigned a vector register. 4437 static bool willGenerateVectors(VPlan &Plan, ElementCount VF, 4438 const TargetTransformInfo &TTI) { 4439 assert(VF.isVector() && "Checking a scalar VF?"); 4440 VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType()); 4441 DenseSet<VPRecipeBase *> EphemeralRecipes; 4442 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes); 4443 // Set of already visited types. 4444 DenseSet<Type *> Visited; 4445 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 4446 vp_depth_first_shallow(Plan.getVectorLoopRegion()->getEntry()))) { 4447 for (VPRecipeBase &R : *VPBB) { 4448 if (EphemeralRecipes.contains(&R)) 4449 continue; 4450 // Continue early if the recipe is considered to not produce a vector 4451 // result. Note that this includes VPInstruction where some opcodes may 4452 // produce a vector, to preserve existing behavior as VPInstructions model 4453 // aspects not directly mapped to existing IR instructions. 4454 switch (R.getVPDefID()) { 4455 case VPDef::VPDerivedIVSC: 4456 case VPDef::VPScalarIVStepsSC: 4457 case VPDef::VPScalarCastSC: 4458 case VPDef::VPReplicateSC: 4459 case VPDef::VPInstructionSC: 4460 case VPDef::VPCanonicalIVPHISC: 4461 case VPDef::VPVectorPointerSC: 4462 case VPDef::VPReverseVectorPointerSC: 4463 case VPDef::VPExpandSCEVSC: 4464 case VPDef::VPEVLBasedIVPHISC: 4465 case VPDef::VPPredInstPHISC: 4466 case VPDef::VPBranchOnMaskSC: 4467 continue; 4468 case VPDef::VPReductionSC: 4469 case VPDef::VPActiveLaneMaskPHISC: 4470 case VPDef::VPWidenCallSC: 4471 case VPDef::VPWidenCanonicalIVSC: 4472 case VPDef::VPWidenCastSC: 4473 case VPDef::VPWidenGEPSC: 4474 case VPDef::VPWidenIntrinsicSC: 4475 case VPDef::VPWidenSC: 4476 case VPDef::VPWidenSelectSC: 4477 case VPDef::VPBlendSC: 4478 case VPDef::VPFirstOrderRecurrencePHISC: 4479 case VPDef::VPWidenPHISC: 4480 case VPDef::VPWidenIntOrFpInductionSC: 4481 case VPDef::VPWidenPointerInductionSC: 4482 case VPDef::VPReductionPHISC: 4483 case VPDef::VPInterleaveSC: 4484 case VPDef::VPWidenLoadEVLSC: 4485 case VPDef::VPWidenLoadSC: 4486 case VPDef::VPWidenStoreEVLSC: 4487 case VPDef::VPWidenStoreSC: 4488 break; 4489 default: 4490 llvm_unreachable("unhandled recipe"); 4491 } 4492 4493 auto WillWiden = [&TTI, VF](Type *ScalarTy) { 4494 Type *VectorTy = toVectorTy(ScalarTy, VF); 4495 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy); 4496 if (!NumLegalParts) 4497 return false; 4498 if (VF.isScalable()) { 4499 // <vscale x 1 x iN> is assumed to be profitable over iN because 4500 // scalable registers are a distinct register class from scalar 4501 // ones. If we ever find a target which wants to lower scalable 4502 // vectors back to scalars, we'll need to update this code to 4503 // explicitly ask TTI about the register class uses for each part. 4504 return NumLegalParts <= VF.getKnownMinValue(); 4505 } 4506 // Two or more parts that share a register - are vectorized. 4507 return NumLegalParts < VF.getKnownMinValue(); 4508 }; 4509 4510 // If no def nor is a store, e.g., branches, continue - no value to check. 4511 if (R.getNumDefinedValues() == 0 && 4512 !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveRecipe>( 4513 &R)) 4514 continue; 4515 // For multi-def recipes, currently only interleaved loads, suffice to 4516 // check first def only. 4517 // For stores check their stored value; for interleaved stores suffice 4518 // the check first stored value only. In all cases this is the second 4519 // operand. 4520 VPValue *ToCheck = 4521 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1); 4522 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck); 4523 if (!Visited.insert({ScalarTy}).second) 4524 continue; 4525 if (WillWiden(ScalarTy)) 4526 return true; 4527 } 4528 } 4529 4530 return false; 4531 } 4532 4533 #ifndef NDEBUG 4534 VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() { 4535 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1)); 4536 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 4537 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 4538 assert(any_of(VPlans, 4539 [](std::unique_ptr<VPlan> &P) { 4540 return P->hasVF(ElementCount::getFixed(1)); 4541 }) && 4542 "Expected Scalar VF to be a candidate"); 4543 4544 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, 4545 ExpectedCost); 4546 VectorizationFactor ChosenFactor = ScalarCost; 4547 4548 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled; 4549 if (ForceVectorization && 4550 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) { 4551 // Ignore scalar width, because the user explicitly wants vectorization. 4552 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4553 // evaluation. 4554 ChosenFactor.Cost = InstructionCost::getMax(); 4555 } 4556 4557 for (auto &P : VPlans) { 4558 for (ElementCount VF : P->vectorFactors()) { 4559 // The cost for scalar VF=1 is already calculated, so ignore it. 4560 if (VF.isScalar()) 4561 continue; 4562 4563 InstructionCost C = CM.expectedCost(VF); 4564 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost); 4565 4566 unsigned Width = getEstimatedRuntimeVF(OrigLoop, TTI, Candidate.Width); 4567 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF 4568 << " costs: " << (Candidate.Cost / Width)); 4569 if (VF.isScalable()) 4570 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 4571 << getVScaleForTuning(OrigLoop, TTI).value_or(1) 4572 << ")"); 4573 LLVM_DEBUG(dbgs() << ".\n"); 4574 4575 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) { 4576 LLVM_DEBUG( 4577 dbgs() 4578 << "LV: Not considering vector loop of width " << VF 4579 << " because it will not generate any vector instructions.\n"); 4580 continue; 4581 } 4582 4583 if (isMoreProfitable(Candidate, ChosenFactor)) 4584 ChosenFactor = Candidate; 4585 } 4586 } 4587 4588 if (!EnableCondStoresVectorization && CM.hasPredStores()) { 4589 reportVectorizationFailure( 4590 "There are conditional stores.", 4591 "store that is conditionally executed prevents vectorization", 4592 "ConditionalStore", ORE, OrigLoop); 4593 ChosenFactor = ScalarCost; 4594 } 4595 4596 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 4597 !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs() 4598 << "LV: Vectorization seems to be not beneficial, " 4599 << "but was forced by a user.\n"); 4600 return ChosenFactor; 4601 } 4602 #endif 4603 4604 bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization( 4605 ElementCount VF) const { 4606 // Cross iteration phis such as reductions need special handling and are 4607 // currently unsupported. 4608 if (any_of(OrigLoop->getHeader()->phis(), 4609 [&](PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); })) 4610 return false; 4611 4612 // Phis with uses outside of the loop require special handling and are 4613 // currently unsupported. 4614 for (const auto &Entry : Legal->getInductionVars()) { 4615 // Look for uses of the value of the induction at the last iteration. 4616 Value *PostInc = 4617 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 4618 for (User *U : PostInc->users()) 4619 if (!OrigLoop->contains(cast<Instruction>(U))) 4620 return false; 4621 // Look for uses of penultimate value of the induction. 4622 for (User *U : Entry.first->users()) 4623 if (!OrigLoop->contains(cast<Instruction>(U))) 4624 return false; 4625 } 4626 4627 // Epilogue vectorization code has not been auditted to ensure it handles 4628 // non-latch exits properly. It may be fine, but it needs auditted and 4629 // tested. 4630 // TODO: Add support for loops with an early exit. 4631 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch()) 4632 return false; 4633 4634 return true; 4635 } 4636 4637 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 4638 const ElementCount VF, const unsigned IC) const { 4639 // FIXME: We need a much better cost-model to take different parameters such 4640 // as register pressure, code size increase and cost of extra branches into 4641 // account. For now we apply a very crude heuristic and only consider loops 4642 // with vectorization factors larger than a certain value. 4643 4644 // Allow the target to opt out entirely. 4645 if (!TTI.preferEpilogueVectorization()) 4646 return false; 4647 4648 // We also consider epilogue vectorization unprofitable for targets that don't 4649 // consider interleaving beneficial (eg. MVE). 4650 if (TTI.getMaxInterleaveFactor(VF) <= 1) 4651 return false; 4652 4653 // TODO: PR #108190 introduced a discrepancy between fixed-width and scalable 4654 // VFs when deciding profitability. 4655 // See related "TODO: extend to support scalable VFs." in 4656 // selectEpilogueVectorizationFactor. 4657 unsigned Multiplier = VF.isFixed() ? IC : 1; 4658 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0 4659 ? EpilogueVectorizationMinVF 4660 : TTI.getEpilogueVectorizationMinVF(); 4661 return getEstimatedRuntimeVF(TheLoop, TTI, VF * Multiplier) >= MinVFThreshold; 4662 } 4663 4664 VectorizationFactor LoopVectorizationPlanner::selectEpilogueVectorizationFactor( 4665 const ElementCount MainLoopVF, unsigned IC) { 4666 VectorizationFactor Result = VectorizationFactor::Disabled(); 4667 if (!EnableEpilogueVectorization) { 4668 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n"); 4669 return Result; 4670 } 4671 4672 if (!CM.isScalarEpilogueAllowed()) { 4673 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no " 4674 "epilogue is allowed.\n"); 4675 return Result; 4676 } 4677 4678 // Not really a cost consideration, but check for unsupported cases here to 4679 // simplify the logic. 4680 if (!isCandidateForEpilogueVectorization(MainLoopVF)) { 4681 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop " 4682 "is not a supported candidate.\n"); 4683 return Result; 4684 } 4685 4686 if (EpilogueVectorizationForceVF > 1) { 4687 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n"); 4688 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 4689 if (hasPlanWithVF(ForcedEC)) 4690 return {ForcedEC, 0, 0}; 4691 4692 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not " 4693 "viable.\n"); 4694 return Result; 4695 } 4696 4697 if (OrigLoop->getHeader()->getParent()->hasOptSize() || 4698 OrigLoop->getHeader()->getParent()->hasMinSize()) { 4699 LLVM_DEBUG( 4700 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n"); 4701 return Result; 4702 } 4703 4704 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) { 4705 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 4706 "this loop\n"); 4707 return Result; 4708 } 4709 4710 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 4711 // the main loop handles 8 lanes per iteration. We could still benefit from 4712 // vectorizing the epilogue loop with VF=4. 4713 ElementCount EstimatedRuntimeVF = 4714 ElementCount::getFixed(getEstimatedRuntimeVF(OrigLoop, TTI, MainLoopVF)); 4715 4716 ScalarEvolution &SE = *PSE.getSE(); 4717 Type *TCType = Legal->getWidestInductionType(); 4718 const SCEV *RemainingIterations = nullptr; 4719 unsigned MaxTripCount = 0; 4720 for (auto &NextVF : ProfitableVFs) { 4721 // Skip candidate VFs without a corresponding VPlan. 4722 if (!hasPlanWithVF(NextVF.Width)) 4723 continue; 4724 4725 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable 4726 // vectors) or > the VF of the main loop (fixed vectors). 4727 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 4728 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) || 4729 (NextVF.Width.isScalable() && 4730 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) || 4731 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() && 4732 ElementCount::isKnownGT(NextVF.Width, MainLoopVF))) 4733 continue; 4734 4735 // If NextVF is greater than the number of remaining iterations, the 4736 // epilogue loop would be dead. Skip such factors. 4737 if (!MainLoopVF.isScalable() && !NextVF.Width.isScalable()) { 4738 // TODO: extend to support scalable VFs. 4739 if (!RemainingIterations) { 4740 const SCEV *TC = vputils::getSCEVExprForVPValue( 4741 getPlanFor(NextVF.Width).getTripCount(), SE); 4742 assert(!isa<SCEVCouldNotCompute>(TC) && 4743 "Trip count SCEV must be computable"); 4744 RemainingIterations = SE.getURemExpr( 4745 TC, SE.getConstant(TCType, MainLoopVF.getKnownMinValue() * IC)); 4746 MaxTripCount = MainLoopVF.getKnownMinValue() * IC - 1; 4747 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations, 4748 SE.getConstant(TCType, MaxTripCount))) { 4749 MaxTripCount = 4750 SE.getUnsignedRangeMax(RemainingIterations).getZExtValue(); 4751 } 4752 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: " 4753 << MaxTripCount << "\n"); 4754 } 4755 if (SE.isKnownPredicate( 4756 CmpInst::ICMP_UGT, 4757 SE.getConstant(TCType, NextVF.Width.getKnownMinValue()), 4758 RemainingIterations)) 4759 continue; 4760 } 4761 4762 if (Result.Width.isScalar() || 4763 isMoreProfitable(NextVF, Result, MaxTripCount)) 4764 Result = NextVF; 4765 } 4766 4767 if (Result != VectorizationFactor::Disabled()) 4768 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 4769 << Result.Width << "\n"); 4770 return Result; 4771 } 4772 4773 std::pair<unsigned, unsigned> 4774 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4775 unsigned MinWidth = -1U; 4776 unsigned MaxWidth = 8; 4777 const DataLayout &DL = TheFunction->getDataLayout(); 4778 // For in-loop reductions, no element types are added to ElementTypesInLoop 4779 // if there are no loads/stores in the loop. In this case, check through the 4780 // reduction variables to determine the maximum width. 4781 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 4782 // Reset MaxWidth so that we can find the smallest type used by recurrences 4783 // in the loop. 4784 MaxWidth = -1U; 4785 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) { 4786 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 4787 // When finding the min width used by the recurrence we need to account 4788 // for casts on the input operands of the recurrence. 4789 MaxWidth = std::min<unsigned>( 4790 MaxWidth, std::min<unsigned>( 4791 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 4792 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 4793 } 4794 } else { 4795 for (Type *T : ElementTypesInLoop) { 4796 MinWidth = std::min<unsigned>( 4797 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue()); 4798 MaxWidth = std::max<unsigned>( 4799 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue()); 4800 } 4801 } 4802 return {MinWidth, MaxWidth}; 4803 } 4804 4805 void LoopVectorizationCostModel::collectElementTypesForWidening() { 4806 ElementTypesInLoop.clear(); 4807 // For each block. 4808 for (BasicBlock *BB : TheLoop->blocks()) { 4809 // For each instruction in the loop. 4810 for (Instruction &I : BB->instructionsWithoutDebug()) { 4811 Type *T = I.getType(); 4812 4813 // Skip ignored values. 4814 if (ValuesToIgnore.count(&I)) 4815 continue; 4816 4817 // Only examine Loads, Stores and PHINodes. 4818 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4819 continue; 4820 4821 // Examine PHI nodes that are reduction variables. Update the type to 4822 // account for the recurrence type. 4823 if (auto *PN = dyn_cast<PHINode>(&I)) { 4824 if (!Legal->isReductionVariable(PN)) 4825 continue; 4826 const RecurrenceDescriptor &RdxDesc = 4827 Legal->getReductionVars().find(PN)->second; 4828 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 4829 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 4830 RdxDesc.getRecurrenceType(), 4831 TargetTransformInfo::ReductionFlags())) 4832 continue; 4833 T = RdxDesc.getRecurrenceType(); 4834 } 4835 4836 // Examine the stored values. 4837 if (auto *ST = dyn_cast<StoreInst>(&I)) 4838 T = ST->getValueOperand()->getType(); 4839 4840 assert(T->isSized() && 4841 "Expected the load/store/recurrence type to be sized"); 4842 4843 ElementTypesInLoop.insert(T); 4844 } 4845 } 4846 } 4847 4848 unsigned 4849 LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 4850 InstructionCost LoopCost) { 4851 // -- The interleave heuristics -- 4852 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4853 // There are many micro-architectural considerations that we can't predict 4854 // at this level. For example, frontend pressure (on decode or fetch) due to 4855 // code size, or the number and capabilities of the execution ports. 4856 // 4857 // We use the following heuristics to select the interleave count: 4858 // 1. If the code has reductions, then we interleave to break the cross 4859 // iteration dependency. 4860 // 2. If the loop is really small, then we interleave to reduce the loop 4861 // overhead. 4862 // 3. We don't interleave if we think that we will spill registers to memory 4863 // due to the increased register pressure. 4864 4865 if (!isScalarEpilogueAllowed()) 4866 return 1; 4867 4868 // Do not interleave if EVL is preferred and no User IC is specified. 4869 if (foldTailWithEVL()) { 4870 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. " 4871 "Unroll factor forced to be 1.\n"); 4872 return 1; 4873 } 4874 4875 // We used the distance for the interleave count. 4876 if (!Legal->isSafeForAnyVectorWidth()) 4877 return 1; 4878 4879 // We don't attempt to perform interleaving for loops with uncountable early 4880 // exits because the VPInstruction::AnyOf code cannot currently handle 4881 // multiple parts. 4882 if (Legal->hasUncountableEarlyExit()) 4883 return 1; 4884 4885 auto BestKnownTC = getSmallBestKnownTC(PSE, TheLoop); 4886 const bool HasReductions = !Legal->getReductionVars().empty(); 4887 4888 // If we did not calculate the cost for VF (because the user selected the VF) 4889 // then we calculate the cost of VF here. 4890 if (LoopCost == 0) { 4891 LoopCost = expectedCost(VF); 4892 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost"); 4893 4894 // Loop body is free and there is no need for interleaving. 4895 if (LoopCost == 0) 4896 return 1; 4897 } 4898 4899 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4900 // We divide by these constants so assume that we have at least one 4901 // instruction that uses at least one register. 4902 for (auto &Pair : R.MaxLocalUsers) { 4903 Pair.second = std::max(Pair.second, 1U); 4904 } 4905 4906 // We calculate the interleave count using the following formula. 4907 // Subtract the number of loop invariants from the number of available 4908 // registers. These registers are used by all of the interleaved instances. 4909 // Next, divide the remaining registers by the number of registers that is 4910 // required by the loop, in order to estimate how many parallel instances 4911 // fit without causing spills. All of this is rounded down if necessary to be 4912 // a power of two. We want power of two interleave count to simplify any 4913 // addressing operations or alignment considerations. 4914 // We also want power of two interleave counts to ensure that the induction 4915 // variable of the vector loop wraps to zero, when tail is folded by masking; 4916 // this currently happens when OptForSize, in which case IC is set to 1 above. 4917 unsigned IC = UINT_MAX; 4918 4919 for (const auto &Pair : R.MaxLocalUsers) { 4920 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first); 4921 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4922 << " registers of " 4923 << TTI.getRegisterClassName(Pair.first) 4924 << " register class\n"); 4925 if (VF.isScalar()) { 4926 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4927 TargetNumRegisters = ForceTargetNumScalarRegs; 4928 } else { 4929 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4930 TargetNumRegisters = ForceTargetNumVectorRegs; 4931 } 4932 unsigned MaxLocalUsers = Pair.second; 4933 unsigned LoopInvariantRegs = 0; 4934 if (R.LoopInvariantRegs.find(Pair.first) != R.LoopInvariantRegs.end()) 4935 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first]; 4936 4937 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) / 4938 MaxLocalUsers); 4939 // Don't count the induction variable as interleaved. 4940 if (EnableIndVarRegisterHeur) { 4941 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) / 4942 std::max(1U, (MaxLocalUsers - 1))); 4943 } 4944 4945 IC = std::min(IC, TmpIC); 4946 } 4947 4948 // Clamp the interleave ranges to reasonable counts. 4949 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4950 4951 // Check if the user has overridden the max. 4952 if (VF.isScalar()) { 4953 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4954 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4955 } else { 4956 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4957 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4958 } 4959 4960 unsigned EstimatedVF = getEstimatedRuntimeVF(TheLoop, TTI, VF); 4961 unsigned KnownTC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4962 if (KnownTC > 0) { 4963 // At least one iteration must be scalar when this constraint holds. So the 4964 // maximum available iterations for interleaving is one less. 4965 unsigned AvailableTC = 4966 requiresScalarEpilogue(VF.isVector()) ? KnownTC - 1 : KnownTC; 4967 4968 // If trip count is known we select between two prospective ICs, where 4969 // 1) the aggressive IC is capped by the trip count divided by VF 4970 // 2) the conservative IC is capped by the trip count divided by (VF * 2) 4971 // The final IC is selected in a way that the epilogue loop trip count is 4972 // minimized while maximizing the IC itself, so that we either run the 4973 // vector loop at least once if it generates a small epilogue loop, or else 4974 // we run the vector loop at least twice. 4975 4976 unsigned InterleaveCountUB = bit_floor( 4977 std::max(1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount))); 4978 unsigned InterleaveCountLB = bit_floor(std::max( 4979 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount))); 4980 MaxInterleaveCount = InterleaveCountLB; 4981 4982 if (InterleaveCountUB != InterleaveCountLB) { 4983 unsigned TailTripCountUB = 4984 (AvailableTC % (EstimatedVF * InterleaveCountUB)); 4985 unsigned TailTripCountLB = 4986 (AvailableTC % (EstimatedVF * InterleaveCountLB)); 4987 // If both produce same scalar tail, maximize the IC to do the same work 4988 // in fewer vector loop iterations 4989 if (TailTripCountUB == TailTripCountLB) 4990 MaxInterleaveCount = InterleaveCountUB; 4991 } 4992 } else if (BestKnownTC && *BestKnownTC > 0) { 4993 // At least one iteration must be scalar when this constraint holds. So the 4994 // maximum available iterations for interleaving is one less. 4995 unsigned AvailableTC = requiresScalarEpilogue(VF.isVector()) 4996 ? (*BestKnownTC) - 1 4997 : *BestKnownTC; 4998 4999 // If trip count is an estimated compile time constant, limit the 5000 // IC to be capped by the trip count divided by VF * 2, such that the vector 5001 // loop runs at least twice to make interleaving seem profitable when there 5002 // is an epilogue loop present. Since exact Trip count is not known we 5003 // choose to be conservative in our IC estimate. 5004 MaxInterleaveCount = bit_floor(std::max( 5005 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount))); 5006 } 5007 5008 assert(MaxInterleaveCount > 0 && 5009 "Maximum interleave count must be greater than 0"); 5010 5011 // Clamp the calculated IC to be between the 1 and the max interleave count 5012 // that the target and trip count allows. 5013 if (IC > MaxInterleaveCount) 5014 IC = MaxInterleaveCount; 5015 else 5016 // Make sure IC is greater than 0. 5017 IC = std::max(1u, IC); 5018 5019 assert(IC > 0 && "Interleave count must be greater than 0."); 5020 5021 // Interleave if we vectorized this loop and there is a reduction that could 5022 // benefit from interleaving. 5023 if (VF.isVector() && HasReductions) { 5024 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5025 return IC; 5026 } 5027 5028 // For any scalar loop that either requires runtime checks or predication we 5029 // are better off leaving this to the unroller. Note that if we've already 5030 // vectorized the loop we will have done the runtime check and so interleaving 5031 // won't require further checks. 5032 bool ScalarInterleavingRequiresPredication = 5033 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5034 return Legal->blockNeedsPredication(BB); 5035 })); 5036 bool ScalarInterleavingRequiresRuntimePointerCheck = 5037 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5038 5039 // We want to interleave small loops in order to reduce the loop overhead and 5040 // potentially expose ILP opportunities. 5041 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5042 << "LV: IC is " << IC << '\n' 5043 << "LV: VF is " << VF << '\n'); 5044 const bool AggressivelyInterleaveReductions = 5045 TTI.enableAggressiveInterleaving(HasReductions); 5046 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5047 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5048 // We assume that the cost overhead is 1 and we use the cost model 5049 // to estimate the cost of the loop and interleave until the cost of the 5050 // loop overhead is about 5% of the cost of the loop. 5051 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>( 5052 SmallLoopCost / *LoopCost.getValue())); 5053 5054 // Interleave until store/load ports (estimated by max interleave count) are 5055 // saturated. 5056 unsigned NumStores = Legal->getNumStores(); 5057 unsigned NumLoads = Legal->getNumLoads(); 5058 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5059 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5060 5061 // There is little point in interleaving for reductions containing selects 5062 // and compares when VF=1 since it may just create more overhead than it's 5063 // worth for loops with small trip counts. This is because we still have to 5064 // do the final reduction after the loop. 5065 bool HasSelectCmpReductions = 5066 HasReductions && 5067 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5068 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5069 RecurKind RK = RdxDesc.getRecurrenceKind(); 5070 return RecurrenceDescriptor::isAnyOfRecurrenceKind(RK) || 5071 RecurrenceDescriptor::isFindLastIVRecurrenceKind(RK); 5072 }); 5073 if (HasSelectCmpReductions) { 5074 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5075 return 1; 5076 } 5077 5078 // If we have a scalar reduction (vector reductions are already dealt with 5079 // by this point), we can increase the critical path length if the loop 5080 // we're interleaving is inside another loop. For tree-wise reductions 5081 // set the limit to 2, and for ordered reductions it's best to disable 5082 // interleaving entirely. 5083 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5084 bool HasOrderedReductions = 5085 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5086 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5087 return RdxDesc.isOrdered(); 5088 }); 5089 if (HasOrderedReductions) { 5090 LLVM_DEBUG( 5091 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5092 return 1; 5093 } 5094 5095 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5096 SmallIC = std::min(SmallIC, F); 5097 StoresIC = std::min(StoresIC, F); 5098 LoadsIC = std::min(LoadsIC, F); 5099 } 5100 5101 if (EnableLoadStoreRuntimeInterleave && 5102 std::max(StoresIC, LoadsIC) > SmallIC) { 5103 LLVM_DEBUG( 5104 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5105 return std::max(StoresIC, LoadsIC); 5106 } 5107 5108 // If there are scalar reductions and TTI has enabled aggressive 5109 // interleaving for reductions, we will interleave to expose ILP. 5110 if (VF.isScalar() && AggressivelyInterleaveReductions) { 5111 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5112 // Interleave no less than SmallIC but not as aggressive as the normal IC 5113 // to satisfy the rare situation when resources are too limited. 5114 return std::max(IC / 2, SmallIC); 5115 } 5116 5117 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5118 return SmallIC; 5119 } 5120 5121 // Interleave if this is a large loop (small loops are already dealt with by 5122 // this point) that could benefit from interleaving. 5123 if (AggressivelyInterleaveReductions) { 5124 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5125 return IC; 5126 } 5127 5128 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5129 return 1; 5130 } 5131 5132 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5133 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5134 // This function calculates the register usage by measuring the highest number 5135 // of values that are alive at a single location. Obviously, this is a very 5136 // rough estimation. We scan the loop in a topological order in order and 5137 // assign a number to each instruction. We use RPO to ensure that defs are 5138 // met before their users. We assume that each instruction that has in-loop 5139 // users starts an interval. We record every time that an in-loop value is 5140 // used, so we have a list of the first and last occurrences of each 5141 // instruction. Next, we transpose this data structure into a multi map that 5142 // holds the list of intervals that *end* at a specific location. This multi 5143 // map allows us to perform a linear search. We scan the instructions linearly 5144 // and record each time that a new interval starts, by placing it in a set. 5145 // If we find this value in the multi-map then we remove it from the set. 5146 // The max register usage is the maximum size of the set. 5147 // We also search for instructions that are defined outside the loop, but are 5148 // used inside the loop. We need this number separately from the max-interval 5149 // usage number because when we unroll, loop-invariant values do not take 5150 // more register. 5151 LoopBlocksDFS DFS(TheLoop); 5152 DFS.perform(LI); 5153 5154 RegisterUsage RU; 5155 5156 // Each 'key' in the map opens a new interval. The values 5157 // of the map are the index of the 'last seen' usage of the 5158 // instruction that is the key. 5159 using IntervalMap = SmallDenseMap<Instruction *, unsigned, 16>; 5160 5161 // Maps instruction to its index. 5162 SmallVector<Instruction *, 64> IdxToInstr; 5163 // Marks the end of each interval. 5164 IntervalMap EndPoint; 5165 // Saves the list of instruction indices that are used in the loop. 5166 SmallPtrSet<Instruction *, 8> Ends; 5167 // Saves the list of values that are used in the loop but are defined outside 5168 // the loop (not including non-instruction values such as arguments and 5169 // constants). 5170 SmallSetVector<Instruction *, 8> LoopInvariants; 5171 5172 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5173 for (Instruction &I : BB->instructionsWithoutDebug()) { 5174 IdxToInstr.push_back(&I); 5175 5176 // Save the end location of each USE. 5177 for (Value *U : I.operands()) { 5178 auto *Instr = dyn_cast<Instruction>(U); 5179 5180 // Ignore non-instruction values such as arguments, constants, etc. 5181 // FIXME: Might need some motivation why these values are ignored. If 5182 // for example an argument is used inside the loop it will increase the 5183 // register pressure (so shouldn't we add it to LoopInvariants). 5184 if (!Instr) 5185 continue; 5186 5187 // If this instruction is outside the loop then record it and continue. 5188 if (!TheLoop->contains(Instr)) { 5189 LoopInvariants.insert(Instr); 5190 continue; 5191 } 5192 5193 // Overwrite previous end points. 5194 EndPoint[Instr] = IdxToInstr.size(); 5195 Ends.insert(Instr); 5196 } 5197 } 5198 } 5199 5200 // Saves the list of intervals that end with the index in 'key'. 5201 using InstrList = SmallVector<Instruction *, 2>; 5202 SmallDenseMap<unsigned, InstrList, 16> TransposeEnds; 5203 5204 // Transpose the EndPoints to a list of values that end at each index. 5205 for (auto &Interval : EndPoint) 5206 TransposeEnds[Interval.second].push_back(Interval.first); 5207 5208 SmallPtrSet<Instruction *, 8> OpenIntervals; 5209 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5210 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5211 5212 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5213 5214 const auto &TTICapture = TTI; 5215 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5216 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty) || 5217 (VF.isScalable() && 5218 !TTICapture.isElementTypeLegalForScalableVector(Ty))) 5219 return 0; 5220 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5221 }; 5222 5223 for (unsigned int Idx = 0, Sz = IdxToInstr.size(); Idx < Sz; ++Idx) { 5224 Instruction *I = IdxToInstr[Idx]; 5225 5226 // Remove all of the instructions that end at this location. 5227 InstrList &List = TransposeEnds[Idx]; 5228 for (Instruction *ToRemove : List) 5229 OpenIntervals.erase(ToRemove); 5230 5231 // Ignore instructions that are never used within the loop. 5232 if (!Ends.count(I)) 5233 continue; 5234 5235 // Skip ignored values. 5236 if (ValuesToIgnore.count(I)) 5237 continue; 5238 5239 collectInLoopReductions(); 5240 5241 // For each VF find the maximum usage of registers. 5242 for (unsigned J = 0, E = VFs.size(); J < E; ++J) { 5243 // Count the number of registers used, per register class, given all open 5244 // intervals. 5245 // Note that elements in this SmallMapVector will be default constructed 5246 // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if 5247 // there is no previous entry for ClassID. 5248 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5249 5250 if (VFs[J].isScalar()) { 5251 for (auto *Inst : OpenIntervals) { 5252 unsigned ClassID = 5253 TTI.getRegisterClassForType(false, Inst->getType()); 5254 // FIXME: The target might use more than one register for the type 5255 // even in the scalar case. 5256 RegUsage[ClassID] += 1; 5257 } 5258 } else { 5259 collectUniformsAndScalars(VFs[J]); 5260 for (auto *Inst : OpenIntervals) { 5261 // Skip ignored values for VF > 1. 5262 if (VecValuesToIgnore.count(Inst)) 5263 continue; 5264 if (isScalarAfterVectorization(Inst, VFs[J])) { 5265 unsigned ClassID = 5266 TTI.getRegisterClassForType(false, Inst->getType()); 5267 // FIXME: The target might use more than one register for the type 5268 // even in the scalar case. 5269 RegUsage[ClassID] += 1; 5270 } else { 5271 unsigned ClassID = 5272 TTI.getRegisterClassForType(true, Inst->getType()); 5273 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[J]); 5274 } 5275 } 5276 } 5277 5278 for (const auto &Pair : RegUsage) { 5279 auto &Entry = MaxUsages[J][Pair.first]; 5280 Entry = std::max(Entry, Pair.second); 5281 } 5282 } 5283 5284 LLVM_DEBUG(dbgs() << "LV(REG): At #" << Idx << " Interval # " 5285 << OpenIntervals.size() << '\n'); 5286 5287 // Add the current instruction to the list of open intervals. 5288 OpenIntervals.insert(I); 5289 } 5290 5291 for (unsigned Idx = 0, End = VFs.size(); Idx < End; ++Idx) { 5292 // Note that elements in this SmallMapVector will be default constructed 5293 // as 0. So we can use "Invariant[ClassID] += n" in the code below even if 5294 // there is no previous entry for ClassID. 5295 SmallMapVector<unsigned, unsigned, 4> Invariant; 5296 5297 for (auto *Inst : LoopInvariants) { 5298 // FIXME: The target might use more than one register for the type 5299 // even in the scalar case. 5300 bool IsScalar = all_of(Inst->users(), [&](User *U) { 5301 auto *I = cast<Instruction>(U); 5302 return TheLoop != LI->getLoopFor(I->getParent()) || 5303 isScalarAfterVectorization(I, VFs[Idx]); 5304 }); 5305 5306 ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[Idx]; 5307 unsigned ClassID = 5308 TTI.getRegisterClassForType(VF.isVector(), Inst->getType()); 5309 Invariant[ClassID] += GetRegUsage(Inst->getType(), VF); 5310 } 5311 5312 LLVM_DEBUG({ 5313 dbgs() << "LV(REG): VF = " << VFs[Idx] << '\n'; 5314 dbgs() << "LV(REG): Found max usage: " << MaxUsages[Idx].size() 5315 << " item\n"; 5316 for (const auto &pair : MaxUsages[Idx]) { 5317 dbgs() << "LV(REG): RegisterClass: " 5318 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5319 << " registers\n"; 5320 } 5321 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5322 << " item\n"; 5323 for (const auto &pair : Invariant) { 5324 dbgs() << "LV(REG): RegisterClass: " 5325 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5326 << " registers\n"; 5327 } 5328 }); 5329 5330 RU.LoopInvariantRegs = Invariant; 5331 RU.MaxLocalUsers = MaxUsages[Idx]; 5332 RUs[Idx] = RU; 5333 } 5334 5335 return RUs; 5336 } 5337 5338 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 5339 ElementCount VF) { 5340 // TODO: Cost model for emulated masked load/store is completely 5341 // broken. This hack guides the cost model to use an artificially 5342 // high enough value to practically disable vectorization with such 5343 // operations, except where previously deployed legality hack allowed 5344 // using very low cost values. This is to avoid regressions coming simply 5345 // from moving "masked load/store" check from legality to cost model. 5346 // Masked Load/Gather emulation was previously never allowed. 5347 // Limited number of Masked Store/Scatter emulation was allowed. 5348 assert((isPredicatedInst(I)) && 5349 "Expecting a scalar emulated instruction"); 5350 return isa<LoadInst>(I) || 5351 (isa<StoreInst>(I) && 5352 NumPredStores > NumberOfStoresToPredicate); 5353 } 5354 5355 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 5356 // If we aren't vectorizing the loop, or if we've already collected the 5357 // instructions to scalarize, there's nothing to do. Collection may already 5358 // have occurred if we have a user-selected VF and are now computing the 5359 // expected cost for interleaving. 5360 if (VF.isScalar() || VF.isZero() || InstsToScalarize.contains(VF)) 5361 return; 5362 5363 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5364 // not profitable to scalarize any instructions, the presence of VF in the 5365 // map will indicate that we've analyzed it already. 5366 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5367 5368 PredicatedBBsAfterVectorization[VF].clear(); 5369 5370 // Find all the instructions that are scalar with predication in the loop and 5371 // determine if it would be better to not if-convert the blocks they are in. 5372 // If so, we also record the instructions to scalarize. 5373 for (BasicBlock *BB : TheLoop->blocks()) { 5374 if (!blockNeedsPredicationForAnyReason(BB)) 5375 continue; 5376 for (Instruction &I : *BB) 5377 if (isScalarWithPredication(&I, VF)) { 5378 ScalarCostsTy ScalarCosts; 5379 // Do not apply discount logic for: 5380 // 1. Scalars after vectorization, as there will only be a single copy 5381 // of the instruction. 5382 // 2. Scalable VF, as that would lead to invalid scalarization costs. 5383 // 3. Emulated masked memrefs, if a hacked cost is needed. 5384 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() && 5385 !useEmulatedMaskMemRefHack(&I, VF) && 5386 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) { 5387 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5388 // Check if we decided to scalarize a call. If so, update the widening 5389 // decision of the call to CM_Scalarize with the computed scalar cost. 5390 for (const auto &[I, _] : ScalarCosts) { 5391 auto *CI = dyn_cast<CallInst>(I); 5392 if (!CI || !CallWideningDecisions.contains({CI, VF})) 5393 continue; 5394 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize; 5395 CallWideningDecisions[{CI, VF}].Cost = ScalarCosts[CI]; 5396 } 5397 } 5398 // Remember that BB will remain after vectorization. 5399 PredicatedBBsAfterVectorization[VF].insert(BB); 5400 for (auto *Pred : predecessors(BB)) { 5401 if (Pred->getSingleSuccessor() == BB) 5402 PredicatedBBsAfterVectorization[VF].insert(Pred); 5403 } 5404 } 5405 } 5406 } 5407 5408 InstructionCost LoopVectorizationCostModel::computePredInstDiscount( 5409 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 5410 assert(!isUniformAfterVectorization(PredInst, VF) && 5411 "Instruction marked uniform-after-vectorization will be predicated"); 5412 5413 // Initialize the discount to zero, meaning that the scalar version and the 5414 // vector version cost the same. 5415 InstructionCost Discount = 0; 5416 5417 // Holds instructions to analyze. The instructions we visit are mapped in 5418 // ScalarCosts. Those instructions are the ones that would be scalarized if 5419 // we find that the scalar version costs less. 5420 SmallVector<Instruction *, 8> Worklist; 5421 5422 // Returns true if the given instruction can be scalarized. 5423 auto CanBeScalarized = [&](Instruction *I) -> bool { 5424 // We only attempt to scalarize instructions forming a single-use chain 5425 // from the original predicated block that would otherwise be vectorized. 5426 // Although not strictly necessary, we give up on instructions we know will 5427 // already be scalar to avoid traversing chains that are unlikely to be 5428 // beneficial. 5429 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5430 isScalarAfterVectorization(I, VF)) 5431 return false; 5432 5433 // If the instruction is scalar with predication, it will be analyzed 5434 // separately. We ignore it within the context of PredInst. 5435 if (isScalarWithPredication(I, VF)) 5436 return false; 5437 5438 // If any of the instruction's operands are uniform after vectorization, 5439 // the instruction cannot be scalarized. This prevents, for example, a 5440 // masked load from being scalarized. 5441 // 5442 // We assume we will only emit a value for lane zero of an instruction 5443 // marked uniform after vectorization, rather than VF identical values. 5444 // Thus, if we scalarize an instruction that uses a uniform, we would 5445 // create uses of values corresponding to the lanes we aren't emitting code 5446 // for. This behavior can be changed by allowing getScalarValue to clone 5447 // the lane zero values for uniforms rather than asserting. 5448 for (Use &U : I->operands()) 5449 if (auto *J = dyn_cast<Instruction>(U.get())) 5450 if (isUniformAfterVectorization(J, VF)) 5451 return false; 5452 5453 // Otherwise, we can scalarize the instruction. 5454 return true; 5455 }; 5456 5457 // Compute the expected cost discount from scalarizing the entire expression 5458 // feeding the predicated instruction. We currently only consider expressions 5459 // that are single-use instruction chains. 5460 Worklist.push_back(PredInst); 5461 while (!Worklist.empty()) { 5462 Instruction *I = Worklist.pop_back_val(); 5463 5464 // If we've already analyzed the instruction, there's nothing to do. 5465 if (ScalarCosts.contains(I)) 5466 continue; 5467 5468 // Compute the cost of the vector instruction. Note that this cost already 5469 // includes the scalarization overhead of the predicated instruction. 5470 InstructionCost VectorCost = getInstructionCost(I, VF); 5471 5472 // Compute the cost of the scalarized instruction. This cost is the cost of 5473 // the instruction as if it wasn't if-converted and instead remained in the 5474 // predicated block. We will scale this cost by block probability after 5475 // computing the scalarization overhead. 5476 InstructionCost ScalarCost = 5477 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1)); 5478 5479 // Compute the scalarization overhead of needed insertelement instructions 5480 // and phi nodes. 5481 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 5482 ScalarCost += TTI.getScalarizationOverhead( 5483 cast<VectorType>(toVectorTy(I->getType(), VF)), 5484 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ true, 5485 /*Extract*/ false, CostKind); 5486 ScalarCost += 5487 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind); 5488 } 5489 5490 // Compute the scalarization overhead of needed extractelement 5491 // instructions. For each of the instruction's operands, if the operand can 5492 // be scalarized, add it to the worklist; otherwise, account for the 5493 // overhead. 5494 for (Use &U : I->operands()) 5495 if (auto *J = dyn_cast<Instruction>(U.get())) { 5496 assert(VectorType::isValidElementType(J->getType()) && 5497 "Instruction has non-scalar type"); 5498 if (CanBeScalarized(J)) 5499 Worklist.push_back(J); 5500 else if (needsExtract(J, VF)) { 5501 ScalarCost += TTI.getScalarizationOverhead( 5502 cast<VectorType>(toVectorTy(J->getType(), VF)), 5503 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false, 5504 /*Extract*/ true, CostKind); 5505 } 5506 } 5507 5508 // Scale the total scalar cost by block probability. 5509 ScalarCost /= getReciprocalPredBlockProb(); 5510 5511 // Compute the discount. A non-negative discount means the vector version 5512 // of the instruction costs more, and scalarizing would be beneficial. 5513 Discount += VectorCost - ScalarCost; 5514 ScalarCosts[I] = ScalarCost; 5515 } 5516 5517 return Discount; 5518 } 5519 5520 InstructionCost LoopVectorizationCostModel::expectedCost(ElementCount VF) { 5521 InstructionCost Cost; 5522 5523 // If the vector loop gets executed exactly once with the given VF, ignore the 5524 // costs of comparison and induction instructions, as they'll get simplified 5525 // away. 5526 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF; 5527 auto TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5528 if (VF.isFixed() && TC == VF.getFixedValue() && !foldTailByMasking()) 5529 addFullyUnrolledInstructionsToIgnore(TheLoop, Legal->getInductionVars(), 5530 ValuesToIgnoreForVF); 5531 5532 // For each block. 5533 for (BasicBlock *BB : TheLoop->blocks()) { 5534 InstructionCost BlockCost; 5535 5536 // For each instruction in the old loop. 5537 for (Instruction &I : BB->instructionsWithoutDebug()) { 5538 // Skip ignored values. 5539 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) || 5540 (VF.isVector() && VecValuesToIgnore.count(&I))) 5541 continue; 5542 5543 InstructionCost C = getInstructionCost(&I, VF); 5544 5545 // Check if we should override the cost. 5546 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0) 5547 C = InstructionCost(ForceTargetInstructionCost); 5548 5549 BlockCost += C; 5550 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " 5551 << VF << " For instruction: " << I << '\n'); 5552 } 5553 5554 // If we are vectorizing a predicated block, it will have been 5555 // if-converted. This means that the block's instructions (aside from 5556 // stores and instructions that may divide by zero) will now be 5557 // unconditionally executed. For the scalar case, we may not always execute 5558 // the predicated block, if it is an if-else block. Thus, scale the block's 5559 // cost by the probability of executing it. blockNeedsPredication from 5560 // Legal is used so as to not include all blocks in tail folded loops. 5561 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 5562 BlockCost /= getReciprocalPredBlockProb(); 5563 5564 Cost += BlockCost; 5565 } 5566 5567 return Cost; 5568 } 5569 5570 /// Gets Address Access SCEV after verifying that the access pattern 5571 /// is loop invariant except the induction variable dependence. 5572 /// 5573 /// This SCEV can be sent to the Target in order to estimate the address 5574 /// calculation cost. 5575 static const SCEV *getAddressAccessSCEV( 5576 Value *Ptr, 5577 LoopVectorizationLegality *Legal, 5578 PredicatedScalarEvolution &PSE, 5579 const Loop *TheLoop) { 5580 5581 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5582 if (!Gep) 5583 return nullptr; 5584 5585 // We are looking for a gep with all loop invariant indices except for one 5586 // which should be an induction variable. 5587 auto *SE = PSE.getSE(); 5588 unsigned NumOperands = Gep->getNumOperands(); 5589 for (unsigned Idx = 1; Idx < NumOperands; ++Idx) { 5590 Value *Opd = Gep->getOperand(Idx); 5591 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5592 !Legal->isInductionVariable(Opd)) 5593 return nullptr; 5594 } 5595 5596 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5597 return PSE.getSCEV(Ptr); 5598 } 5599 5600 InstructionCost 5601 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5602 ElementCount VF) { 5603 assert(VF.isVector() && 5604 "Scalarization cost of instruction implies vectorization."); 5605 if (VF.isScalable()) 5606 return InstructionCost::getInvalid(); 5607 5608 Type *ValTy = getLoadStoreType(I); 5609 auto *SE = PSE.getSE(); 5610 5611 unsigned AS = getLoadStoreAddressSpace(I); 5612 Value *Ptr = getLoadStorePointerOperand(I); 5613 Type *PtrTy = toVectorTy(Ptr->getType(), VF); 5614 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 5615 // that it is being called from this specific place. 5616 5617 // Figure out whether the access is strided and get the stride value 5618 // if it's known in compile time 5619 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5620 5621 // Get the cost of the scalar memory instruction and address computation. 5622 InstructionCost Cost = 5623 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5624 5625 // Don't pass *I here, since it is scalar but will actually be part of a 5626 // vectorized loop where the user of it is a vectorized instruction. 5627 const Align Alignment = getLoadStoreAlignment(I); 5628 Cost += VF.getKnownMinValue() * TTI.getMemoryOpCost(I->getOpcode(), 5629 ValTy->getScalarType(), 5630 Alignment, AS, CostKind); 5631 5632 // Get the overhead of the extractelement and insertelement instructions 5633 // we might create due to scalarization. 5634 Cost += getScalarizationOverhead(I, VF); 5635 5636 // If we have a predicated load/store, it will need extra i1 extracts and 5637 // conditional branches, but may not be executed for each vector lane. Scale 5638 // the cost by the probability of executing the predicated block. 5639 if (isPredicatedInst(I)) { 5640 Cost /= getReciprocalPredBlockProb(); 5641 5642 // Add the cost of an i1 extract and a branch 5643 auto *VecI1Ty = 5644 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 5645 Cost += TTI.getScalarizationOverhead( 5646 VecI1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 5647 /*Insert=*/false, /*Extract=*/true, CostKind); 5648 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind); 5649 5650 if (useEmulatedMaskMemRefHack(I, VF)) 5651 // Artificially setting to a high enough value to practically disable 5652 // vectorization with such operations. 5653 Cost = 3000000; 5654 } 5655 5656 return Cost; 5657 } 5658 5659 InstructionCost 5660 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5661 ElementCount VF) { 5662 Type *ValTy = getLoadStoreType(I); 5663 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF)); 5664 Value *Ptr = getLoadStorePointerOperand(I); 5665 unsigned AS = getLoadStoreAddressSpace(I); 5666 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 5667 5668 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5669 "Stride should be 1 or -1 for consecutive memory access"); 5670 const Align Alignment = getLoadStoreAlignment(I); 5671 InstructionCost Cost = 0; 5672 if (Legal->isMaskRequired(I)) { 5673 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5674 CostKind); 5675 } else { 5676 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0)); 5677 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5678 CostKind, OpInfo, I); 5679 } 5680 5681 bool Reverse = ConsecutiveStride < 0; 5682 if (Reverse) 5683 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, {}, 5684 CostKind, 0); 5685 return Cost; 5686 } 5687 5688 InstructionCost 5689 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5690 ElementCount VF) { 5691 assert(Legal->isUniformMemOp(*I, VF)); 5692 5693 Type *ValTy = getLoadStoreType(I); 5694 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF)); 5695 const Align Alignment = getLoadStoreAlignment(I); 5696 unsigned AS = getLoadStoreAddressSpace(I); 5697 if (isa<LoadInst>(I)) { 5698 return TTI.getAddressComputationCost(ValTy) + 5699 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5700 CostKind) + 5701 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy, {}, 5702 CostKind); 5703 } 5704 StoreInst *SI = cast<StoreInst>(I); 5705 5706 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand()); 5707 return TTI.getAddressComputationCost(ValTy) + 5708 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5709 CostKind) + 5710 (IsLoopInvariantStoreValue 5711 ? 0 5712 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5713 CostKind, VF.getKnownMinValue() - 1)); 5714 } 5715 5716 InstructionCost 5717 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5718 ElementCount VF) { 5719 Type *ValTy = getLoadStoreType(I); 5720 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF)); 5721 const Align Alignment = getLoadStoreAlignment(I); 5722 const Value *Ptr = getLoadStorePointerOperand(I); 5723 5724 return TTI.getAddressComputationCost(VectorTy) + 5725 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5726 Legal->isMaskRequired(I), Alignment, 5727 CostKind, I); 5728 } 5729 5730 InstructionCost 5731 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5732 ElementCount VF) { 5733 const auto *Group = getInterleavedAccessGroup(I); 5734 assert(Group && "Fail to get an interleaved access group."); 5735 5736 Instruction *InsertPos = Group->getInsertPos(); 5737 Type *ValTy = getLoadStoreType(InsertPos); 5738 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF)); 5739 unsigned AS = getLoadStoreAddressSpace(InsertPos); 5740 5741 unsigned InterleaveFactor = Group->getFactor(); 5742 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5743 5744 // Holds the indices of existing members in the interleaved group. 5745 SmallVector<unsigned, 4> Indices; 5746 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 5747 if (Group->getMember(IF)) 5748 Indices.push_back(IF); 5749 5750 // Calculate the cost of the whole interleaved group. 5751 bool UseMaskForGaps = 5752 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 5753 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 5754 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 5755 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5756 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I), 5757 UseMaskForGaps); 5758 5759 if (Group->isReverse()) { 5760 // TODO: Add support for reversed masked interleaved access. 5761 assert(!Legal->isMaskRequired(I) && 5762 "Reverse masked interleaved access not supported."); 5763 Cost += Group->getNumMembers() * 5764 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, {}, 5765 CostKind, 0); 5766 } 5767 return Cost; 5768 } 5769 5770 std::optional<InstructionCost> 5771 LoopVectorizationCostModel::getReductionPatternCost(Instruction *I, 5772 ElementCount VF, 5773 Type *Ty) const { 5774 using namespace llvm::PatternMatch; 5775 // Early exit for no inloop reductions 5776 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 5777 return std::nullopt; 5778 auto *VectorTy = cast<VectorType>(Ty); 5779 5780 // We are looking for a pattern of, and finding the minimal acceptable cost: 5781 // reduce(mul(ext(A), ext(B))) or 5782 // reduce(mul(A, B)) or 5783 // reduce(ext(A)) or 5784 // reduce(A). 5785 // The basic idea is that we walk down the tree to do that, finding the root 5786 // reduction instruction in InLoopReductionImmediateChains. From there we find 5787 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 5788 // of the components. If the reduction cost is lower then we return it for the 5789 // reduction instruction and 0 for the other instructions in the pattern. If 5790 // it is not we return an invalid cost specifying the orignal cost method 5791 // should be used. 5792 Instruction *RetI = I; 5793 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 5794 if (!RetI->hasOneUser()) 5795 return std::nullopt; 5796 RetI = RetI->user_back(); 5797 } 5798 5799 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) && 5800 RetI->user_back()->getOpcode() == Instruction::Add) { 5801 RetI = RetI->user_back(); 5802 } 5803 5804 // Test if the found instruction is a reduction, and if not return an invalid 5805 // cost specifying the parent to use the original cost modelling. 5806 if (!InLoopReductionImmediateChains.count(RetI)) 5807 return std::nullopt; 5808 5809 // Find the reduction this chain is a part of and calculate the basic cost of 5810 // the reduction on its own. 5811 Instruction *LastChain = InLoopReductionImmediateChains.at(RetI); 5812 Instruction *ReductionPhi = LastChain; 5813 while (!isa<PHINode>(ReductionPhi)) 5814 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi); 5815 5816 const RecurrenceDescriptor &RdxDesc = 5817 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 5818 5819 InstructionCost BaseCost; 5820 RecurKind RK = RdxDesc.getRecurrenceKind(); 5821 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 5822 Intrinsic::ID MinMaxID = getMinMaxReductionIntrinsicOp(RK); 5823 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy, 5824 RdxDesc.getFastMathFlags(), CostKind); 5825 } else { 5826 BaseCost = TTI.getArithmeticReductionCost( 5827 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 5828 } 5829 5830 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 5831 // normal fmul instruction to the cost of the fadd reduction. 5832 if (RK == RecurKind::FMulAdd) 5833 BaseCost += 5834 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 5835 5836 // If we're using ordered reductions then we can just return the base cost 5837 // here, since getArithmeticReductionCost calculates the full ordered 5838 // reduction cost when FP reassociation is not allowed. 5839 if (useOrderedReductions(RdxDesc)) 5840 return BaseCost; 5841 5842 // Get the operand that was not the reduction chain and match it to one of the 5843 // patterns, returning the better cost if it is found. 5844 Instruction *RedOp = RetI->getOperand(1) == LastChain 5845 ? dyn_cast<Instruction>(RetI->getOperand(0)) 5846 : dyn_cast<Instruction>(RetI->getOperand(1)); 5847 5848 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 5849 5850 Instruction *Op0, *Op1; 5851 if (RedOp && RdxDesc.getOpcode() == Instruction::Add && 5852 match(RedOp, 5853 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 5854 match(Op0, m_ZExtOrSExt(m_Value())) && 5855 Op0->getOpcode() == Op1->getOpcode() && 5856 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 5857 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 5858 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 5859 5860 // Matched reduce.add(ext(mul(ext(A), ext(B))) 5861 // Note that the extend opcodes need to all match, or if A==B they will have 5862 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 5863 // which is equally fine. 5864 bool IsUnsigned = isa<ZExtInst>(Op0); 5865 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 5866 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 5867 5868 InstructionCost ExtCost = 5869 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 5870 TTI::CastContextHint::None, CostKind, Op0); 5871 InstructionCost MulCost = 5872 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 5873 InstructionCost Ext2Cost = 5874 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 5875 TTI::CastContextHint::None, CostKind, RedOp); 5876 5877 InstructionCost RedCost = TTI.getMulAccReductionCost( 5878 IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind); 5879 5880 if (RedCost.isValid() && 5881 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 5882 return I == RetI ? RedCost : 0; 5883 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 5884 !TheLoop->isLoopInvariant(RedOp)) { 5885 // Matched reduce(ext(A)) 5886 bool IsUnsigned = isa<ZExtInst>(RedOp); 5887 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 5888 InstructionCost RedCost = TTI.getExtendedReductionCost( 5889 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 5890 RdxDesc.getFastMathFlags(), CostKind); 5891 5892 InstructionCost ExtCost = 5893 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 5894 TTI::CastContextHint::None, CostKind, RedOp); 5895 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 5896 return I == RetI ? RedCost : 0; 5897 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add && 5898 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 5899 if (match(Op0, m_ZExtOrSExt(m_Value())) && 5900 Op0->getOpcode() == Op1->getOpcode() && 5901 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 5902 bool IsUnsigned = isa<ZExtInst>(Op0); 5903 Type *Op0Ty = Op0->getOperand(0)->getType(); 5904 Type *Op1Ty = Op1->getOperand(0)->getType(); 5905 Type *LargestOpTy = 5906 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 5907 : Op0Ty; 5908 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 5909 5910 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of 5911 // different sizes. We take the largest type as the ext to reduce, and add 5912 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 5913 InstructionCost ExtCost0 = TTI.getCastInstrCost( 5914 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 5915 TTI::CastContextHint::None, CostKind, Op0); 5916 InstructionCost ExtCost1 = TTI.getCastInstrCost( 5917 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 5918 TTI::CastContextHint::None, CostKind, Op1); 5919 InstructionCost MulCost = 5920 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 5921 5922 InstructionCost RedCost = TTI.getMulAccReductionCost( 5923 IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind); 5924 InstructionCost ExtraExtCost = 0; 5925 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 5926 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 5927 ExtraExtCost = TTI.getCastInstrCost( 5928 ExtraExtOp->getOpcode(), ExtType, 5929 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 5930 TTI::CastContextHint::None, CostKind, ExtraExtOp); 5931 } 5932 5933 if (RedCost.isValid() && 5934 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 5935 return I == RetI ? RedCost : 0; 5936 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 5937 // Matched reduce.add(mul()) 5938 InstructionCost MulCost = 5939 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 5940 5941 InstructionCost RedCost = TTI.getMulAccReductionCost( 5942 true, RdxDesc.getRecurrenceType(), VectorTy, CostKind); 5943 5944 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 5945 return I == RetI ? RedCost : 0; 5946 } 5947 } 5948 5949 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt; 5950 } 5951 5952 InstructionCost 5953 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5954 ElementCount VF) { 5955 // Calculate scalar cost only. Vectorization cost should be ready at this 5956 // moment. 5957 if (VF.isScalar()) { 5958 Type *ValTy = getLoadStoreType(I); 5959 const Align Alignment = getLoadStoreAlignment(I); 5960 unsigned AS = getLoadStoreAddressSpace(I); 5961 5962 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0)); 5963 return TTI.getAddressComputationCost(ValTy) + 5964 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind, 5965 OpInfo, I); 5966 } 5967 return getWideningCost(I, VF); 5968 } 5969 5970 InstructionCost 5971 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5972 ElementCount VF) const { 5973 5974 // There is no mechanism yet to create a scalable scalarization loop, 5975 // so this is currently Invalid. 5976 if (VF.isScalable()) 5977 return InstructionCost::getInvalid(); 5978 5979 if (VF.isScalar()) 5980 return 0; 5981 5982 InstructionCost Cost = 0; 5983 Type *RetTy = toVectorTy(I->getType(), VF); 5984 if (!RetTy->isVoidTy() && 5985 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5986 Cost += TTI.getScalarizationOverhead( 5987 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), 5988 /*Insert*/ true, 5989 /*Extract*/ false, CostKind); 5990 5991 // Some targets keep addresses scalar. 5992 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5993 return Cost; 5994 5995 // Some targets support efficient element stores. 5996 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 5997 return Cost; 5998 5999 // Collect operands to consider. 6000 CallInst *CI = dyn_cast<CallInst>(I); 6001 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6002 6003 // Skip operands that do not require extraction/scalarization and do not incur 6004 // any overhead. 6005 SmallVector<Type *> Tys; 6006 for (auto *V : filterExtractingOperands(Ops, VF)) 6007 Tys.push_back(maybeVectorizeType(V->getType(), VF)); 6008 return Cost + TTI.getOperandsScalarizationOverhead( 6009 filterExtractingOperands(Ops, VF), Tys, CostKind); 6010 } 6011 6012 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6013 if (VF.isScalar()) 6014 return; 6015 NumPredStores = 0; 6016 for (BasicBlock *BB : TheLoop->blocks()) { 6017 // For each instruction in the old loop. 6018 for (Instruction &I : *BB) { 6019 Value *Ptr = getLoadStorePointerOperand(&I); 6020 if (!Ptr) 6021 continue; 6022 6023 // TODO: We should generate better code and update the cost model for 6024 // predicated uniform stores. Today they are treated as any other 6025 // predicated store (see added test cases in 6026 // invariant-store-vectorization.ll). 6027 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6028 NumPredStores++; 6029 6030 if (Legal->isUniformMemOp(I, VF)) { 6031 auto IsLegalToScalarize = [&]() { 6032 if (!VF.isScalable()) 6033 // Scalarization of fixed length vectors "just works". 6034 return true; 6035 6036 // We have dedicated lowering for unpredicated uniform loads and 6037 // stores. Note that even with tail folding we know that at least 6038 // one lane is active (i.e. generalized predication is not possible 6039 // here), and the logic below depends on this fact. 6040 if (!foldTailByMasking()) 6041 return true; 6042 6043 // For scalable vectors, a uniform memop load is always 6044 // uniform-by-parts and we know how to scalarize that. 6045 if (isa<LoadInst>(I)) 6046 return true; 6047 6048 // A uniform store isn't neccessarily uniform-by-part 6049 // and we can't assume scalarization. 6050 auto &SI = cast<StoreInst>(I); 6051 return TheLoop->isLoopInvariant(SI.getValueOperand()); 6052 }; 6053 6054 const InstructionCost GatherScatterCost = 6055 isLegalGatherOrScatter(&I, VF) ? 6056 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid(); 6057 6058 // Load: Scalar load + broadcast 6059 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6060 // FIXME: This cost is a significant under-estimate for tail folded 6061 // memory ops. 6062 const InstructionCost ScalarizationCost = 6063 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF) 6064 : InstructionCost::getInvalid(); 6065 6066 // Choose better solution for the current VF, Note that Invalid 6067 // costs compare as maximumal large. If both are invalid, we get 6068 // scalable invalid which signals a failure and a vectorization abort. 6069 if (GatherScatterCost < ScalarizationCost) 6070 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost); 6071 else 6072 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost); 6073 continue; 6074 } 6075 6076 // We assume that widening is the best solution when possible. 6077 if (memoryInstructionCanBeWidened(&I, VF)) { 6078 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6079 int ConsecutiveStride = Legal->isConsecutivePtr( 6080 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6081 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6082 "Expected consecutive stride."); 6083 InstWidening Decision = 6084 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6085 setWideningDecision(&I, VF, Decision, Cost); 6086 continue; 6087 } 6088 6089 // Choose between Interleaving, Gather/Scatter or Scalarization. 6090 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6091 unsigned NumAccesses = 1; 6092 if (isAccessInterleaved(&I)) { 6093 const auto *Group = getInterleavedAccessGroup(&I); 6094 assert(Group && "Fail to get an interleaved access group."); 6095 6096 // Make one decision for the whole group. 6097 if (getWideningDecision(&I, VF) != CM_Unknown) 6098 continue; 6099 6100 NumAccesses = Group->getNumMembers(); 6101 if (interleavedAccessCanBeWidened(&I, VF)) 6102 InterleaveCost = getInterleaveGroupCost(&I, VF); 6103 } 6104 6105 InstructionCost GatherScatterCost = 6106 isLegalGatherOrScatter(&I, VF) 6107 ? getGatherScatterCost(&I, VF) * NumAccesses 6108 : InstructionCost::getInvalid(); 6109 6110 InstructionCost ScalarizationCost = 6111 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6112 6113 // Choose better solution for the current VF, 6114 // write down this decision and use it during vectorization. 6115 InstructionCost Cost; 6116 InstWidening Decision; 6117 if (InterleaveCost <= GatherScatterCost && 6118 InterleaveCost < ScalarizationCost) { 6119 Decision = CM_Interleave; 6120 Cost = InterleaveCost; 6121 } else if (GatherScatterCost < ScalarizationCost) { 6122 Decision = CM_GatherScatter; 6123 Cost = GatherScatterCost; 6124 } else { 6125 Decision = CM_Scalarize; 6126 Cost = ScalarizationCost; 6127 } 6128 // If the instructions belongs to an interleave group, the whole group 6129 // receives the same decision. The whole group receives the cost, but 6130 // the cost will actually be assigned to one instruction. 6131 if (const auto *Group = getInterleavedAccessGroup(&I)) 6132 setWideningDecision(Group, VF, Decision, Cost); 6133 else 6134 setWideningDecision(&I, VF, Decision, Cost); 6135 } 6136 } 6137 6138 // Make sure that any load of address and any other address computation 6139 // remains scalar unless there is gather/scatter support. This avoids 6140 // inevitable extracts into address registers, and also has the benefit of 6141 // activating LSR more, since that pass can't optimize vectorized 6142 // addresses. 6143 if (TTI.prefersVectorizedAddressing()) 6144 return; 6145 6146 // Start with all scalar pointer uses. 6147 SmallPtrSet<Instruction *, 8> AddrDefs; 6148 for (BasicBlock *BB : TheLoop->blocks()) 6149 for (Instruction &I : *BB) { 6150 Instruction *PtrDef = 6151 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6152 if (PtrDef && TheLoop->contains(PtrDef) && 6153 getWideningDecision(&I, VF) != CM_GatherScatter) 6154 AddrDefs.insert(PtrDef); 6155 } 6156 6157 // Add all instructions used to generate the addresses. 6158 SmallVector<Instruction *, 4> Worklist; 6159 append_range(Worklist, AddrDefs); 6160 while (!Worklist.empty()) { 6161 Instruction *I = Worklist.pop_back_val(); 6162 for (auto &Op : I->operands()) 6163 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6164 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6165 AddrDefs.insert(InstOp).second) 6166 Worklist.push_back(InstOp); 6167 } 6168 6169 for (auto *I : AddrDefs) { 6170 if (isa<LoadInst>(I)) { 6171 // Setting the desired widening decision should ideally be handled in 6172 // by cost functions, but since this involves the task of finding out 6173 // if the loaded register is involved in an address computation, it is 6174 // instead changed here when we know this is the case. 6175 InstWidening Decision = getWideningDecision(I, VF); 6176 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6177 // Scalarize a widened load of address. 6178 setWideningDecision( 6179 I, VF, CM_Scalarize, 6180 (VF.getKnownMinValue() * 6181 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6182 else if (const auto *Group = getInterleavedAccessGroup(I)) { 6183 // Scalarize an interleave group of address loads. 6184 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6185 if (Instruction *Member = Group->getMember(I)) 6186 setWideningDecision( 6187 Member, VF, CM_Scalarize, 6188 (VF.getKnownMinValue() * 6189 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6190 } 6191 } 6192 } else 6193 // Make sure I gets scalarized and a cost estimate without 6194 // scalarization overhead. 6195 ForcedScalars[VF].insert(I); 6196 } 6197 } 6198 6199 void LoopVectorizationCostModel::setVectorizedCallDecision(ElementCount VF) { 6200 assert(!VF.isScalar() && 6201 "Trying to set a vectorization decision for a scalar VF"); 6202 6203 auto ForcedScalar = ForcedScalars.find(VF); 6204 for (BasicBlock *BB : TheLoop->blocks()) { 6205 // For each instruction in the old loop. 6206 for (Instruction &I : *BB) { 6207 CallInst *CI = dyn_cast<CallInst>(&I); 6208 6209 if (!CI) 6210 continue; 6211 6212 InstructionCost ScalarCost = InstructionCost::getInvalid(); 6213 InstructionCost VectorCost = InstructionCost::getInvalid(); 6214 InstructionCost IntrinsicCost = InstructionCost::getInvalid(); 6215 Function *ScalarFunc = CI->getCalledFunction(); 6216 Type *ScalarRetTy = CI->getType(); 6217 SmallVector<Type *, 4> Tys, ScalarTys; 6218 for (auto &ArgOp : CI->args()) 6219 ScalarTys.push_back(ArgOp->getType()); 6220 6221 // Estimate cost of scalarized vector call. The source operands are 6222 // assumed to be vectors, so we need to extract individual elements from 6223 // there, execute VF scalar calls, and then gather the result into the 6224 // vector return value. 6225 InstructionCost ScalarCallCost = 6226 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind); 6227 6228 // Compute costs of unpacking argument values for the scalar calls and 6229 // packing the return values to a vector. 6230 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 6231 6232 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 6233 // Honor ForcedScalars and UniformAfterVectorization decisions. 6234 // TODO: For calls, it might still be more profitable to widen. Use 6235 // VPlan-based cost model to compare different options. 6236 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() && 6237 ForcedScalar->second.contains(CI)) || 6238 isUniformAfterVectorization(CI, VF))) { 6239 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr, 6240 Intrinsic::not_intrinsic, std::nullopt, 6241 ScalarCost); 6242 continue; 6243 } 6244 6245 bool MaskRequired = Legal->isMaskRequired(CI); 6246 // Compute corresponding vector type for return value and arguments. 6247 Type *RetTy = toVectorTy(ScalarRetTy, VF); 6248 for (Type *ScalarTy : ScalarTys) 6249 Tys.push_back(toVectorTy(ScalarTy, VF)); 6250 6251 // An in-loop reduction using an fmuladd intrinsic is a special case; 6252 // we don't want the normal cost for that intrinsic. 6253 if (RecurrenceDescriptor::isFMulAddIntrinsic(CI)) 6254 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) { 6255 setCallWideningDecision(CI, VF, CM_IntrinsicCall, nullptr, 6256 getVectorIntrinsicIDForCall(CI, TLI), 6257 std::nullopt, *RedCost); 6258 continue; 6259 } 6260 6261 // Find the cost of vectorizing the call, if we can find a suitable 6262 // vector variant of the function. 6263 bool UsesMask = false; 6264 VFInfo FuncInfo; 6265 Function *VecFunc = nullptr; 6266 // Search through any available variants for one we can use at this VF. 6267 for (VFInfo &Info : VFDatabase::getMappings(*CI)) { 6268 // Must match requested VF. 6269 if (Info.Shape.VF != VF) 6270 continue; 6271 6272 // Must take a mask argument if one is required 6273 if (MaskRequired && !Info.isMasked()) 6274 continue; 6275 6276 // Check that all parameter kinds are supported 6277 bool ParamsOk = true; 6278 for (VFParameter Param : Info.Shape.Parameters) { 6279 switch (Param.ParamKind) { 6280 case VFParamKind::Vector: 6281 break; 6282 case VFParamKind::OMP_Uniform: { 6283 Value *ScalarParam = CI->getArgOperand(Param.ParamPos); 6284 // Make sure the scalar parameter in the loop is invariant. 6285 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam), 6286 TheLoop)) 6287 ParamsOk = false; 6288 break; 6289 } 6290 case VFParamKind::OMP_Linear: { 6291 Value *ScalarParam = CI->getArgOperand(Param.ParamPos); 6292 // Find the stride for the scalar parameter in this loop and see if 6293 // it matches the stride for the variant. 6294 // TODO: do we need to figure out the cost of an extract to get the 6295 // first lane? Or do we hope that it will be folded away? 6296 ScalarEvolution *SE = PSE.getSE(); 6297 const auto *SAR = 6298 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(ScalarParam)); 6299 6300 if (!SAR || SAR->getLoop() != TheLoop) { 6301 ParamsOk = false; 6302 break; 6303 } 6304 6305 const SCEVConstant *Step = 6306 dyn_cast<SCEVConstant>(SAR->getStepRecurrence(*SE)); 6307 6308 if (!Step || 6309 Step->getAPInt().getSExtValue() != Param.LinearStepOrPos) 6310 ParamsOk = false; 6311 6312 break; 6313 } 6314 case VFParamKind::GlobalPredicate: 6315 UsesMask = true; 6316 break; 6317 default: 6318 ParamsOk = false; 6319 break; 6320 } 6321 } 6322 6323 if (!ParamsOk) 6324 continue; 6325 6326 // Found a suitable candidate, stop here. 6327 VecFunc = CI->getModule()->getFunction(Info.VectorName); 6328 FuncInfo = Info; 6329 break; 6330 } 6331 6332 // Add in the cost of synthesizing a mask if one wasn't required. 6333 InstructionCost MaskCost = 0; 6334 if (VecFunc && UsesMask && !MaskRequired) 6335 MaskCost = TTI.getShuffleCost( 6336 TargetTransformInfo::SK_Broadcast, 6337 VectorType::get(IntegerType::getInt1Ty( 6338 VecFunc->getFunctionType()->getContext()), 6339 VF), 6340 {}, CostKind); 6341 6342 if (TLI && VecFunc && !CI->isNoBuiltin()) 6343 VectorCost = 6344 TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind) + MaskCost; 6345 6346 // Find the cost of an intrinsic; some targets may have instructions that 6347 // perform the operation without needing an actual call. 6348 Intrinsic::ID IID = getVectorIntrinsicIDForCall(CI, TLI); 6349 if (IID != Intrinsic::not_intrinsic) 6350 IntrinsicCost = getVectorIntrinsicCost(CI, VF); 6351 6352 InstructionCost Cost = ScalarCost; 6353 InstWidening Decision = CM_Scalarize; 6354 6355 if (VectorCost <= Cost) { 6356 Cost = VectorCost; 6357 Decision = CM_VectorCall; 6358 } 6359 6360 if (IntrinsicCost <= Cost) { 6361 Cost = IntrinsicCost; 6362 Decision = CM_IntrinsicCall; 6363 } 6364 6365 setCallWideningDecision(CI, VF, Decision, VecFunc, IID, 6366 FuncInfo.getParamIndexForOptionalMask(), Cost); 6367 } 6368 } 6369 } 6370 6371 bool LoopVectorizationCostModel::shouldConsiderInvariant(Value *Op) { 6372 if (!Legal->isInvariant(Op)) 6373 return false; 6374 // Consider Op invariant, if it or its operands aren't predicated 6375 // instruction in the loop. In that case, it is not trivially hoistable. 6376 auto *OpI = dyn_cast<Instruction>(Op); 6377 return !OpI || !TheLoop->contains(OpI) || 6378 (!isPredicatedInst(OpI) && 6379 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) && 6380 all_of(OpI->operands(), 6381 [this](Value *Op) { return shouldConsiderInvariant(Op); })); 6382 } 6383 6384 InstructionCost 6385 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6386 ElementCount VF) { 6387 // If we know that this instruction will remain uniform, check the cost of 6388 // the scalar version. 6389 if (isUniformAfterVectorization(I, VF)) 6390 VF = ElementCount::getFixed(1); 6391 6392 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6393 return InstsToScalarize[VF][I]; 6394 6395 // Forced scalars do not have any scalarization overhead. 6396 auto ForcedScalar = ForcedScalars.find(VF); 6397 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6398 auto InstSet = ForcedScalar->second; 6399 if (InstSet.count(I)) 6400 return getInstructionCost(I, ElementCount::getFixed(1)) * 6401 VF.getKnownMinValue(); 6402 } 6403 6404 Type *RetTy = I->getType(); 6405 if (canTruncateToMinimalBitwidth(I, VF)) 6406 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6407 auto *SE = PSE.getSE(); 6408 6409 auto HasSingleCopyAfterVectorization = [this](Instruction *I, 6410 ElementCount VF) -> bool { 6411 if (VF.isScalar()) 6412 return true; 6413 6414 auto Scalarized = InstsToScalarize.find(VF); 6415 assert(Scalarized != InstsToScalarize.end() && 6416 "VF not yet analyzed for scalarization profitability"); 6417 return !Scalarized->second.count(I) && 6418 llvm::all_of(I->users(), [&](User *U) { 6419 auto *UI = cast<Instruction>(U); 6420 return !Scalarized->second.count(UI); 6421 }); 6422 }; 6423 (void)HasSingleCopyAfterVectorization; 6424 6425 Type *VectorTy; 6426 if (isScalarAfterVectorization(I, VF)) { 6427 // With the exception of GEPs and PHIs, after scalarization there should 6428 // only be one copy of the instruction generated in the loop. This is 6429 // because the VF is either 1, or any instructions that need scalarizing 6430 // have already been dealt with by the time we get here. As a result, 6431 // it means we don't have to multiply the instruction cost by VF. 6432 assert(I->getOpcode() == Instruction::GetElementPtr || 6433 I->getOpcode() == Instruction::PHI || 6434 (I->getOpcode() == Instruction::BitCast && 6435 I->getType()->isPointerTy()) || 6436 HasSingleCopyAfterVectorization(I, VF)); 6437 VectorTy = RetTy; 6438 } else 6439 VectorTy = toVectorTy(RetTy, VF); 6440 6441 if (VF.isVector() && VectorTy->isVectorTy() && 6442 !TTI.getNumberOfParts(VectorTy)) 6443 return InstructionCost::getInvalid(); 6444 6445 // TODO: We need to estimate the cost of intrinsic calls. 6446 switch (I->getOpcode()) { 6447 case Instruction::GetElementPtr: 6448 // We mark this instruction as zero-cost because the cost of GEPs in 6449 // vectorized code depends on whether the corresponding memory instruction 6450 // is scalarized or not. Therefore, we handle GEPs with the memory 6451 // instruction cost. 6452 return 0; 6453 case Instruction::Br: { 6454 // In cases of scalarized and predicated instructions, there will be VF 6455 // predicated blocks in the vectorized loop. Each branch around these 6456 // blocks requires also an extract of its vector compare i1 element. 6457 // Note that the conditional branch from the loop latch will be replaced by 6458 // a single branch controlling the loop, so there is no extra overhead from 6459 // scalarization. 6460 bool ScalarPredicatedBB = false; 6461 BranchInst *BI = cast<BranchInst>(I); 6462 if (VF.isVector() && BI->isConditional() && 6463 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || 6464 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) && 6465 BI->getParent() != TheLoop->getLoopLatch()) 6466 ScalarPredicatedBB = true; 6467 6468 if (ScalarPredicatedBB) { 6469 // Not possible to scalarize scalable vector with predicated instructions. 6470 if (VF.isScalable()) 6471 return InstructionCost::getInvalid(); 6472 // Return cost for branches around scalarized and predicated blocks. 6473 auto *VecI1Ty = 6474 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6475 return ( 6476 TTI.getScalarizationOverhead( 6477 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()), 6478 /*Insert*/ false, /*Extract*/ true, CostKind) + 6479 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 6480 } 6481 6482 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6483 // The back-edge branch will remain, as will all scalar branches. 6484 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6485 6486 // This branch will be eliminated by if-conversion. 6487 return 0; 6488 // Note: We currently assume zero cost for an unconditional branch inside 6489 // a predicated block since it will become a fall-through, although we 6490 // may decide in the future to call TTI for all branches. 6491 } 6492 case Instruction::Switch: { 6493 if (VF.isScalar()) 6494 return TTI.getCFInstrCost(Instruction::Switch, CostKind); 6495 auto *Switch = cast<SwitchInst>(I); 6496 return Switch->getNumCases() * 6497 TTI.getCmpSelInstrCost( 6498 Instruction::ICmp, 6499 toVectorTy(Switch->getCondition()->getType(), VF), 6500 toVectorTy(Type::getInt1Ty(I->getContext()), VF), 6501 CmpInst::ICMP_EQ, CostKind); 6502 } 6503 case Instruction::PHI: { 6504 auto *Phi = cast<PHINode>(I); 6505 6506 // First-order recurrences are replaced by vector shuffles inside the loop. 6507 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) { 6508 // For <vscale x 1 x i64>, if vscale = 1 we are unable to extract the 6509 // penultimate value of the recurrence. 6510 // TODO: Consider vscale_range info. 6511 if (VF.isScalable() && VF.getKnownMinValue() == 1) 6512 return InstructionCost::getInvalid(); 6513 SmallVector<int> Mask(VF.getKnownMinValue()); 6514 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1); 6515 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice, 6516 cast<VectorType>(VectorTy), Mask, CostKind, 6517 VF.getKnownMinValue() - 1); 6518 } 6519 6520 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6521 // converted into select instructions. We require N - 1 selects per phi 6522 // node, where N is the number of incoming values. 6523 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) { 6524 Type *ResultTy = Phi->getType(); 6525 6526 // All instructions in an Any-of reduction chain are narrowed to bool. 6527 // Check if that is the case for this phi node. 6528 auto *HeaderUser = cast_if_present<PHINode>( 6529 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * { 6530 auto *Phi = dyn_cast<PHINode>(U); 6531 if (Phi && Phi->getParent() == TheLoop->getHeader()) 6532 return Phi; 6533 return nullptr; 6534 })); 6535 if (HeaderUser) { 6536 auto &ReductionVars = Legal->getReductionVars(); 6537 auto Iter = ReductionVars.find(HeaderUser); 6538 if (Iter != ReductionVars.end() && 6539 RecurrenceDescriptor::isAnyOfRecurrenceKind( 6540 Iter->second.getRecurrenceKind())) 6541 ResultTy = Type::getInt1Ty(Phi->getContext()); 6542 } 6543 return (Phi->getNumIncomingValues() - 1) * 6544 TTI.getCmpSelInstrCost( 6545 Instruction::Select, toVectorTy(ResultTy, VF), 6546 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6547 CmpInst::BAD_ICMP_PREDICATE, CostKind); 6548 } 6549 6550 // When tail folding with EVL, if the phi is part of an out of loop 6551 // reduction then it will be transformed into a wide vp_merge. 6552 if (VF.isVector() && foldTailWithEVL() && 6553 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) { 6554 IntrinsicCostAttributes ICA( 6555 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF), 6556 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)}); 6557 return TTI.getIntrinsicInstrCost(ICA, CostKind); 6558 } 6559 6560 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6561 } 6562 case Instruction::UDiv: 6563 case Instruction::SDiv: 6564 case Instruction::URem: 6565 case Instruction::SRem: 6566 if (VF.isVector() && isPredicatedInst(I)) { 6567 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF); 6568 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ? 6569 ScalarCost : SafeDivisorCost; 6570 } 6571 // We've proven all lanes safe to speculate, fall through. 6572 [[fallthrough]]; 6573 case Instruction::Add: 6574 case Instruction::Sub: { 6575 auto Info = Legal->getHistogramInfo(I); 6576 if (Info && VF.isVector()) { 6577 const HistogramInfo *HGram = Info.value(); 6578 // Assume that a non-constant update value (or a constant != 1) requires 6579 // a multiply, and add that into the cost. 6580 InstructionCost MulCost = TTI::TCC_Free; 6581 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1)); 6582 if (!RHS || RHS->getZExtValue() != 1) 6583 MulCost = 6584 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6585 6586 // Find the cost of the histogram operation itself. 6587 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF); 6588 Type *ScalarTy = I->getType(); 6589 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF); 6590 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add, 6591 Type::getVoidTy(I->getContext()), 6592 {PtrTy, ScalarTy, MaskTy}); 6593 6594 // Add the costs together with the add/sub operation. 6595 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost + 6596 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind); 6597 } 6598 [[fallthrough]]; 6599 } 6600 case Instruction::FAdd: 6601 case Instruction::FSub: 6602 case Instruction::Mul: 6603 case Instruction::FMul: 6604 case Instruction::FDiv: 6605 case Instruction::FRem: 6606 case Instruction::Shl: 6607 case Instruction::LShr: 6608 case Instruction::AShr: 6609 case Instruction::And: 6610 case Instruction::Or: 6611 case Instruction::Xor: { 6612 // If we're speculating on the stride being 1, the multiplication may 6613 // fold away. We can generalize this for all operations using the notion 6614 // of neutral elements. (TODO) 6615 if (I->getOpcode() == Instruction::Mul && 6616 (PSE.getSCEV(I->getOperand(0))->isOne() || 6617 PSE.getSCEV(I->getOperand(1))->isOne())) 6618 return 0; 6619 6620 // Detect reduction patterns 6621 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy)) 6622 return *RedCost; 6623 6624 // Certain instructions can be cheaper to vectorize if they have a constant 6625 // second vector operand. One example of this are shifts on x86. 6626 Value *Op2 = I->getOperand(1); 6627 if (!isa<Constant>(Op2) && PSE.getSE()->isSCEVable(Op2->getType()) && 6628 isa<SCEVConstant>(PSE.getSCEV(Op2))) { 6629 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue(); 6630 } 6631 auto Op2Info = TTI.getOperandInfo(Op2); 6632 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && 6633 shouldConsiderInvariant(Op2)) 6634 Op2Info.Kind = TargetTransformInfo::OK_UniformValue; 6635 6636 SmallVector<const Value *, 4> Operands(I->operand_values()); 6637 return TTI.getArithmeticInstrCost( 6638 I->getOpcode(), VectorTy, CostKind, 6639 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, 6640 Op2Info, Operands, I, TLI); 6641 } 6642 case Instruction::FNeg: { 6643 return TTI.getArithmeticInstrCost( 6644 I->getOpcode(), VectorTy, CostKind, 6645 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, 6646 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, 6647 I->getOperand(0), I); 6648 } 6649 case Instruction::Select: { 6650 SelectInst *SI = cast<SelectInst>(I); 6651 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6652 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6653 6654 const Value *Op0, *Op1; 6655 using namespace llvm::PatternMatch; 6656 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 6657 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 6658 // select x, y, false --> x & y 6659 // select x, true, y --> x | y 6660 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0); 6661 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1); 6662 assert(Op0->getType()->getScalarSizeInBits() == 1 && 6663 Op1->getType()->getScalarSizeInBits() == 1); 6664 6665 SmallVector<const Value *, 2> Operands{Op0, Op1}; 6666 return TTI.getArithmeticInstrCost( 6667 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 6668 CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, I); 6669 } 6670 6671 Type *CondTy = SI->getCondition()->getType(); 6672 if (!ScalarCond) 6673 CondTy = VectorType::get(CondTy, VF); 6674 6675 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 6676 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 6677 Pred = Cmp->getPredicate(); 6678 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 6679 CostKind, {TTI::OK_AnyValue, TTI::OP_None}, 6680 {TTI::OK_AnyValue, TTI::OP_None}, I); 6681 } 6682 case Instruction::ICmp: 6683 case Instruction::FCmp: { 6684 Type *ValTy = I->getOperand(0)->getType(); 6685 6686 if (canTruncateToMinimalBitwidth(I, VF)) { 6687 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6688 (void)Op0AsInstruction; 6689 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) || 6690 MinBWs[I] == MinBWs[Op0AsInstruction]) && 6691 "if both the operand and the compare are marked for " 6692 "truncation, they must have the same bitwidth"); 6693 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]); 6694 } 6695 6696 VectorTy = toVectorTy(ValTy, VF); 6697 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 6698 cast<CmpInst>(I)->getPredicate(), CostKind, 6699 {TTI::OK_AnyValue, TTI::OP_None}, 6700 {TTI::OK_AnyValue, TTI::OP_None}, I); 6701 } 6702 case Instruction::Store: 6703 case Instruction::Load: { 6704 ElementCount Width = VF; 6705 if (Width.isVector()) { 6706 InstWidening Decision = getWideningDecision(I, Width); 6707 assert(Decision != CM_Unknown && 6708 "CM decision should be taken at this point"); 6709 if (getWideningCost(I, VF) == InstructionCost::getInvalid()) 6710 return InstructionCost::getInvalid(); 6711 if (Decision == CM_Scalarize) 6712 Width = ElementCount::getFixed(1); 6713 } 6714 VectorTy = toVectorTy(getLoadStoreType(I), Width); 6715 return getMemoryInstructionCost(I, VF); 6716 } 6717 case Instruction::BitCast: 6718 if (I->getType()->isPointerTy()) 6719 return 0; 6720 [[fallthrough]]; 6721 case Instruction::ZExt: 6722 case Instruction::SExt: 6723 case Instruction::FPToUI: 6724 case Instruction::FPToSI: 6725 case Instruction::FPExt: 6726 case Instruction::PtrToInt: 6727 case Instruction::IntToPtr: 6728 case Instruction::SIToFP: 6729 case Instruction::UIToFP: 6730 case Instruction::Trunc: 6731 case Instruction::FPTrunc: { 6732 // Computes the CastContextHint from a Load/Store instruction. 6733 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 6734 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6735 "Expected a load or a store!"); 6736 6737 if (VF.isScalar() || !TheLoop->contains(I)) 6738 return TTI::CastContextHint::Normal; 6739 6740 switch (getWideningDecision(I, VF)) { 6741 case LoopVectorizationCostModel::CM_GatherScatter: 6742 return TTI::CastContextHint::GatherScatter; 6743 case LoopVectorizationCostModel::CM_Interleave: 6744 return TTI::CastContextHint::Interleave; 6745 case LoopVectorizationCostModel::CM_Scalarize: 6746 case LoopVectorizationCostModel::CM_Widen: 6747 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 6748 : TTI::CastContextHint::Normal; 6749 case LoopVectorizationCostModel::CM_Widen_Reverse: 6750 return TTI::CastContextHint::Reversed; 6751 case LoopVectorizationCostModel::CM_Unknown: 6752 llvm_unreachable("Instr did not go through cost modelling?"); 6753 case LoopVectorizationCostModel::CM_VectorCall: 6754 case LoopVectorizationCostModel::CM_IntrinsicCall: 6755 llvm_unreachable_internal("Instr has invalid widening decision"); 6756 } 6757 6758 llvm_unreachable("Unhandled case!"); 6759 }; 6760 6761 unsigned Opcode = I->getOpcode(); 6762 TTI::CastContextHint CCH = TTI::CastContextHint::None; 6763 // For Trunc, the context is the only user, which must be a StoreInst. 6764 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 6765 if (I->hasOneUse()) 6766 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 6767 CCH = ComputeCCH(Store); 6768 } 6769 // For Z/Sext, the context is the operand, which must be a LoadInst. 6770 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 6771 Opcode == Instruction::FPExt) { 6772 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 6773 CCH = ComputeCCH(Load); 6774 } 6775 6776 // We optimize the truncation of induction variables having constant 6777 // integer steps. The cost of these truncations is the same as the scalar 6778 // operation. 6779 if (isOptimizableIVTruncate(I, VF)) { 6780 auto *Trunc = cast<TruncInst>(I); 6781 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6782 Trunc->getSrcTy(), CCH, CostKind, Trunc); 6783 } 6784 6785 // Detect reduction patterns 6786 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy)) 6787 return *RedCost; 6788 6789 Type *SrcScalarTy = I->getOperand(0)->getType(); 6790 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6791 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6792 SrcScalarTy = 6793 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]); 6794 Type *SrcVecTy = 6795 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6796 6797 if (canTruncateToMinimalBitwidth(I, VF)) { 6798 // If the result type is <= the source type, there will be no extend 6799 // after truncating the users to the minimal required bitwidth. 6800 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() && 6801 (I->getOpcode() == Instruction::ZExt || 6802 I->getOpcode() == Instruction::SExt)) 6803 return 0; 6804 } 6805 6806 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 6807 } 6808 case Instruction::Call: 6809 return getVectorCallCost(cast<CallInst>(I), VF); 6810 case Instruction::ExtractValue: 6811 return TTI.getInstructionCost(I, CostKind); 6812 case Instruction::Alloca: 6813 // We cannot easily widen alloca to a scalable alloca, as 6814 // the result would need to be a vector of pointers. 6815 if (VF.isScalable()) 6816 return InstructionCost::getInvalid(); 6817 [[fallthrough]]; 6818 default: 6819 // This opcode is unknown. Assume that it is the same as 'mul'. 6820 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6821 } // end of switch. 6822 } 6823 6824 void LoopVectorizationCostModel::collectValuesToIgnore() { 6825 // Ignore ephemeral values. 6826 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6827 6828 SmallVector<Value *, 4> DeadInterleavePointerOps; 6829 SmallVector<Value *, 4> DeadOps; 6830 6831 // If a scalar epilogue is required, users outside the loop won't use 6832 // live-outs from the vector loop but from the scalar epilogue. Ignore them if 6833 // that is the case. 6834 bool RequiresScalarEpilogue = requiresScalarEpilogue(true); 6835 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) { 6836 return RequiresScalarEpilogue && 6837 !TheLoop->contains(cast<Instruction>(U)->getParent()); 6838 }; 6839 6840 LoopBlocksDFS DFS(TheLoop); 6841 DFS.perform(LI); 6842 MapVector<Value *, SmallVector<Value *>> DeadInvariantStoreOps; 6843 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO()))) 6844 for (Instruction &I : reverse(*BB)) { 6845 // Find all stores to invariant variables. Since they are going to sink 6846 // outside the loop we do not need calculate cost for them. 6847 StoreInst *SI; 6848 if ((SI = dyn_cast<StoreInst>(&I)) && 6849 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) { 6850 ValuesToIgnore.insert(&I); 6851 DeadInvariantStoreOps[SI->getPointerOperand()].push_back( 6852 SI->getValueOperand()); 6853 } 6854 6855 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I)) 6856 continue; 6857 6858 // Add instructions that would be trivially dead and are only used by 6859 // values already ignored to DeadOps to seed worklist. 6860 if (wouldInstructionBeTriviallyDead(&I, TLI) && 6861 all_of(I.users(), [this, IsLiveOutDead](User *U) { 6862 return VecValuesToIgnore.contains(U) || 6863 ValuesToIgnore.contains(U) || IsLiveOutDead(U); 6864 })) 6865 DeadOps.push_back(&I); 6866 6867 // For interleave groups, we only create a pointer for the start of the 6868 // interleave group. Queue up addresses of group members except the insert 6869 // position for further processing. 6870 if (isAccessInterleaved(&I)) { 6871 auto *Group = getInterleavedAccessGroup(&I); 6872 if (Group->getInsertPos() == &I) 6873 continue; 6874 Value *PointerOp = getLoadStorePointerOperand(&I); 6875 DeadInterleavePointerOps.push_back(PointerOp); 6876 } 6877 6878 // Queue branches for analysis. They are dead, if their successors only 6879 // contain dead instructions. 6880 if (auto *Br = dyn_cast<BranchInst>(&I)) { 6881 if (Br->isConditional()) 6882 DeadOps.push_back(&I); 6883 } 6884 } 6885 6886 // Mark ops feeding interleave group members as free, if they are only used 6887 // by other dead computations. 6888 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) { 6889 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]); 6890 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) { 6891 Instruction *UI = cast<Instruction>(U); 6892 return !VecValuesToIgnore.contains(U) && 6893 (!isAccessInterleaved(UI) || 6894 getInterleavedAccessGroup(UI)->getInsertPos() == UI); 6895 })) 6896 continue; 6897 VecValuesToIgnore.insert(Op); 6898 DeadInterleavePointerOps.append(Op->op_begin(), Op->op_end()); 6899 } 6900 6901 for (const auto &[_, Ops] : DeadInvariantStoreOps) { 6902 for (Value *Op : ArrayRef(Ops).drop_back()) 6903 DeadOps.push_back(Op); 6904 } 6905 // Mark ops that would be trivially dead and are only used by ignored 6906 // instructions as free. 6907 BasicBlock *Header = TheLoop->getHeader(); 6908 6909 // Returns true if the block contains only dead instructions. Such blocks will 6910 // be removed by VPlan-to-VPlan transforms and won't be considered by the 6911 // VPlan-based cost model, so skip them in the legacy cost-model as well. 6912 auto IsEmptyBlock = [this](BasicBlock *BB) { 6913 return all_of(*BB, [this](Instruction &I) { 6914 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) || 6915 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional()); 6916 }); 6917 }; 6918 for (unsigned I = 0; I != DeadOps.size(); ++I) { 6919 auto *Op = dyn_cast<Instruction>(DeadOps[I]); 6920 6921 // Check if the branch should be considered dead. 6922 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) { 6923 BasicBlock *ThenBB = Br->getSuccessor(0); 6924 BasicBlock *ElseBB = Br->getSuccessor(1); 6925 // Don't considers branches leaving the loop for simplification. 6926 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB)) 6927 continue; 6928 bool ThenEmpty = IsEmptyBlock(ThenBB); 6929 bool ElseEmpty = IsEmptyBlock(ElseBB); 6930 if ((ThenEmpty && ElseEmpty) || 6931 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB && 6932 ElseBB->phis().empty()) || 6933 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB && 6934 ThenBB->phis().empty())) { 6935 VecValuesToIgnore.insert(Br); 6936 DeadOps.push_back(Br->getCondition()); 6937 } 6938 continue; 6939 } 6940 6941 // Skip any op that shouldn't be considered dead. 6942 if (!Op || !TheLoop->contains(Op) || 6943 (isa<PHINode>(Op) && Op->getParent() == Header) || 6944 !wouldInstructionBeTriviallyDead(Op, TLI) || 6945 any_of(Op->users(), [this, IsLiveOutDead](User *U) { 6946 return !VecValuesToIgnore.contains(U) && 6947 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U); 6948 })) 6949 continue; 6950 6951 if (!TheLoop->contains(Op->getParent())) 6952 continue; 6953 6954 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore 6955 // which applies for both scalar and vector versions. Otherwise it is only 6956 // dead in vector versions, so only add it to VecValuesToIgnore. 6957 if (all_of(Op->users(), 6958 [this](User *U) { return ValuesToIgnore.contains(U); })) 6959 ValuesToIgnore.insert(Op); 6960 6961 VecValuesToIgnore.insert(Op); 6962 DeadOps.append(Op->op_begin(), Op->op_end()); 6963 } 6964 6965 // Ignore type-promoting instructions we identified during reduction 6966 // detection. 6967 for (const auto &Reduction : Legal->getReductionVars()) { 6968 const RecurrenceDescriptor &RedDes = Reduction.second; 6969 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6970 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6971 } 6972 // Ignore type-casting instructions we identified during induction 6973 // detection. 6974 for (const auto &Induction : Legal->getInductionVars()) { 6975 const InductionDescriptor &IndDes = Induction.second; 6976 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6977 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6978 } 6979 } 6980 6981 void LoopVectorizationCostModel::collectInLoopReductions() { 6982 for (const auto &Reduction : Legal->getReductionVars()) { 6983 PHINode *Phi = Reduction.first; 6984 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6985 6986 // We don't collect reductions that are type promoted (yet). 6987 if (RdxDesc.getRecurrenceType() != Phi->getType()) 6988 continue; 6989 6990 // If the target would prefer this reduction to happen "in-loop", then we 6991 // want to record it as such. 6992 unsigned Opcode = RdxDesc.getOpcode(); 6993 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 6994 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 6995 TargetTransformInfo::ReductionFlags())) 6996 continue; 6997 6998 // Check that we can correctly put the reductions into the loop, by 6999 // finding the chain of operations that leads from the phi to the loop 7000 // exit value. 7001 SmallVector<Instruction *, 4> ReductionOperations = 7002 RdxDesc.getReductionOpChain(Phi, TheLoop); 7003 bool InLoop = !ReductionOperations.empty(); 7004 7005 if (InLoop) { 7006 InLoopReductions.insert(Phi); 7007 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7008 Instruction *LastChain = Phi; 7009 for (auto *I : ReductionOperations) { 7010 InLoopReductionImmediateChains[I] = LastChain; 7011 LastChain = I; 7012 } 7013 } 7014 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7015 << " reduction for phi: " << *Phi << "\n"); 7016 } 7017 } 7018 7019 // This function will select a scalable VF if the target supports scalable 7020 // vectors and a fixed one otherwise. 7021 // TODO: we could return a pair of values that specify the max VF and 7022 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7023 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7024 // doesn't have a cost model that can choose which plan to execute if 7025 // more than one is generated. 7026 static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, 7027 LoopVectorizationCostModel &CM) { 7028 unsigned WidestType; 7029 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7030 7031 TargetTransformInfo::RegisterKind RegKind = 7032 TTI.enableScalableVectorization() 7033 ? TargetTransformInfo::RGK_ScalableVector 7034 : TargetTransformInfo::RGK_FixedWidthVector; 7035 7036 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind); 7037 unsigned N = RegSize.getKnownMinValue() / WidestType; 7038 return ElementCount::get(N, RegSize.isScalable()); 7039 } 7040 7041 VectorizationFactor 7042 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7043 ElementCount VF = UserVF; 7044 // Outer loop handling: They may require CFG and instruction level 7045 // transformations before even evaluating whether vectorization is profitable. 7046 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7047 // the vectorization pipeline. 7048 if (!OrigLoop->isInnermost()) { 7049 // If the user doesn't provide a vectorization factor, determine a 7050 // reasonable one. 7051 if (UserVF.isZero()) { 7052 VF = determineVPlanVF(TTI, CM); 7053 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7054 7055 // Make sure we have a VF > 1 for stress testing. 7056 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7057 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7058 << "overriding computed VF.\n"); 7059 VF = ElementCount::getFixed(4); 7060 } 7061 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() && 7062 !ForceTargetSupportsScalableVectors) { 7063 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but " 7064 << "not supported by the target.\n"); 7065 reportVectorizationFailure( 7066 "Scalable vectorization requested but not supported by the target", 7067 "the scalable user-specified vectorization width for outer-loop " 7068 "vectorization cannot be used because the target does not support " 7069 "scalable vectors.", 7070 "ScalableVFUnfeasible", ORE, OrigLoop); 7071 return VectorizationFactor::Disabled(); 7072 } 7073 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7074 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7075 "VF needs to be a power of two"); 7076 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7077 << "VF " << VF << " to build VPlans.\n"); 7078 buildVPlans(VF, VF); 7079 7080 // For VPlan build stress testing, we bail out after VPlan construction. 7081 if (VPlanBuildStressTest) 7082 return VectorizationFactor::Disabled(); 7083 7084 return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; 7085 } 7086 7087 LLVM_DEBUG( 7088 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7089 "VPlan-native path.\n"); 7090 return VectorizationFactor::Disabled(); 7091 } 7092 7093 void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7094 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7095 CM.collectValuesToIgnore(); 7096 CM.collectElementTypesForWidening(); 7097 7098 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7099 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7100 return; 7101 7102 // Invalidate interleave groups if all blocks of loop will be predicated. 7103 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7104 !useMaskedInterleavedAccesses(TTI)) { 7105 LLVM_DEBUG( 7106 dbgs() 7107 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7108 "which requires masked-interleaved support.\n"); 7109 if (CM.InterleaveInfo.invalidateGroups()) 7110 // Invalidating interleave groups also requires invalidating all decisions 7111 // based on them, which includes widening decisions and uniform and scalar 7112 // values. 7113 CM.invalidateCostModelingDecisions(); 7114 } 7115 7116 if (CM.foldTailByMasking()) 7117 Legal->prepareToFoldTailByMasking(); 7118 7119 ElementCount MaxUserVF = 7120 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7121 if (UserVF) { 7122 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) { 7123 reportVectorizationInfo( 7124 "UserVF ignored because it may be larger than the maximal safe VF", 7125 "InvalidUserVF", ORE, OrigLoop); 7126 } else { 7127 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7128 "VF needs to be a power of two"); 7129 // Collect the instructions (and their associated costs) that will be more 7130 // profitable to scalarize. 7131 CM.collectInLoopReductions(); 7132 if (CM.selectUserVectorizationFactor(UserVF)) { 7133 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7134 buildVPlansWithVPRecipes(UserVF, UserVF); 7135 LLVM_DEBUG(printPlans(dbgs())); 7136 return; 7137 } 7138 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7139 "InvalidCost", ORE, OrigLoop); 7140 } 7141 } 7142 7143 // Collect the Vectorization Factor Candidates. 7144 SmallVector<ElementCount> VFCandidates; 7145 for (auto VF = ElementCount::getFixed(1); 7146 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7147 VFCandidates.push_back(VF); 7148 for (auto VF = ElementCount::getScalable(1); 7149 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7150 VFCandidates.push_back(VF); 7151 7152 CM.collectInLoopReductions(); 7153 for (const auto &VF : VFCandidates) { 7154 // Collect Uniform and Scalar instructions after vectorization with VF. 7155 CM.collectUniformsAndScalars(VF); 7156 7157 // Collect the instructions (and their associated costs) that will be more 7158 // profitable to scalarize. 7159 if (VF.isVector()) 7160 CM.collectInstsToScalarize(VF); 7161 } 7162 7163 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7164 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7165 7166 LLVM_DEBUG(printPlans(dbgs())); 7167 } 7168 7169 InstructionCost VPCostContext::getLegacyCost(Instruction *UI, 7170 ElementCount VF) const { 7171 if (ForceTargetInstructionCost.getNumOccurrences()) 7172 return InstructionCost(ForceTargetInstructionCost.getNumOccurrences()); 7173 return CM.getInstructionCost(UI, VF); 7174 } 7175 7176 bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const { 7177 return CM.ValuesToIgnore.contains(UI) || 7178 (IsVector && CM.VecValuesToIgnore.contains(UI)) || 7179 SkipCostComputation.contains(UI); 7180 } 7181 7182 InstructionCost 7183 LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF, 7184 VPCostContext &CostCtx) const { 7185 InstructionCost Cost; 7186 // Cost modeling for inductions is inaccurate in the legacy cost model 7187 // compared to the recipes that are generated. To match here initially during 7188 // VPlan cost model bring up directly use the induction costs from the legacy 7189 // cost model. Note that we do this as pre-processing; the VPlan may not have 7190 // any recipes associated with the original induction increment instruction 7191 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute 7192 // the cost of induction phis and increments (both that are represented by 7193 // recipes and those that are not), to avoid distinguishing between them here, 7194 // and skip all recipes that represent induction phis and increments (the 7195 // former case) later on, if they exist, to avoid counting them twice. 7196 // Similarly we pre-compute the cost of any optimized truncates. 7197 // TODO: Switch to more accurate costing based on VPlan. 7198 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) { 7199 Instruction *IVInc = cast<Instruction>( 7200 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch())); 7201 SmallVector<Instruction *> IVInsts = {IVInc}; 7202 for (unsigned I = 0; I != IVInsts.size(); I++) { 7203 for (Value *Op : IVInsts[I]->operands()) { 7204 auto *OpI = dyn_cast<Instruction>(Op); 7205 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse()) 7206 continue; 7207 IVInsts.push_back(OpI); 7208 } 7209 } 7210 IVInsts.push_back(IV); 7211 for (User *U : IV->users()) { 7212 auto *CI = cast<Instruction>(U); 7213 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF)) 7214 continue; 7215 IVInsts.push_back(CI); 7216 } 7217 7218 // If the vector loop gets executed exactly once with the given VF, ignore 7219 // the costs of comparison and induction instructions, as they'll get 7220 // simplified away. 7221 // TODO: Remove this code after stepping away from the legacy cost model and 7222 // adding code to simplify VPlans before calculating their costs. 7223 auto TC = PSE.getSE()->getSmallConstantTripCount(OrigLoop); 7224 if (VF.isFixed() && TC == VF.getFixedValue() && !CM.foldTailByMasking()) 7225 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(), 7226 CostCtx.SkipCostComputation); 7227 7228 for (Instruction *IVInst : IVInsts) { 7229 if (CostCtx.skipCostComputation(IVInst, VF.isVector())) 7230 continue; 7231 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF); 7232 LLVM_DEBUG({ 7233 dbgs() << "Cost of " << InductionCost << " for VF " << VF 7234 << ": induction instruction " << *IVInst << "\n"; 7235 }); 7236 Cost += InductionCost; 7237 CostCtx.SkipCostComputation.insert(IVInst); 7238 } 7239 } 7240 7241 /// Compute the cost of all exiting conditions of the loop using the legacy 7242 /// cost model. This is to match the legacy behavior, which adds the cost of 7243 /// all exit conditions. Note that this over-estimates the cost, as there will 7244 /// be a single condition to control the vector loop. 7245 SmallVector<BasicBlock *> Exiting; 7246 CM.TheLoop->getExitingBlocks(Exiting); 7247 SetVector<Instruction *> ExitInstrs; 7248 // Collect all exit conditions. 7249 for (BasicBlock *EB : Exiting) { 7250 auto *Term = dyn_cast<BranchInst>(EB->getTerminator()); 7251 if (!Term) 7252 continue; 7253 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) { 7254 ExitInstrs.insert(CondI); 7255 } 7256 } 7257 // Compute the cost of all instructions only feeding the exit conditions. 7258 for (unsigned I = 0; I != ExitInstrs.size(); ++I) { 7259 Instruction *CondI = ExitInstrs[I]; 7260 if (!OrigLoop->contains(CondI) || 7261 !CostCtx.SkipCostComputation.insert(CondI).second) 7262 continue; 7263 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF); 7264 LLVM_DEBUG({ 7265 dbgs() << "Cost of " << CondICost << " for VF " << VF 7266 << ": exit condition instruction " << *CondI << "\n"; 7267 }); 7268 Cost += CondICost; 7269 for (Value *Op : CondI->operands()) { 7270 auto *OpI = dyn_cast<Instruction>(Op); 7271 if (!OpI || any_of(OpI->users(), [&ExitInstrs, this](User *U) { 7272 return OrigLoop->contains(cast<Instruction>(U)->getParent()) && 7273 !ExitInstrs.contains(cast<Instruction>(U)); 7274 })) 7275 continue; 7276 ExitInstrs.insert(OpI); 7277 } 7278 } 7279 7280 // The legacy cost model has special logic to compute the cost of in-loop 7281 // reductions, which may be smaller than the sum of all instructions involved 7282 // in the reduction. 7283 // TODO: Switch to costing based on VPlan once the logic has been ported. 7284 for (const auto &[RedPhi, RdxDesc] : Legal->getReductionVars()) { 7285 if (ForceTargetInstructionCost.getNumOccurrences()) 7286 continue; 7287 7288 if (!CM.isInLoopReduction(RedPhi)) 7289 continue; 7290 7291 const auto &ChainOps = RdxDesc.getReductionOpChain(RedPhi, OrigLoop); 7292 SetVector<Instruction *> ChainOpsAndOperands(ChainOps.begin(), 7293 ChainOps.end()); 7294 auto IsZExtOrSExt = [](const unsigned Opcode) -> bool { 7295 return Opcode == Instruction::ZExt || Opcode == Instruction::SExt; 7296 }; 7297 // Also include the operands of instructions in the chain, as the cost-model 7298 // may mark extends as free. 7299 // 7300 // For ARM, some of the instruction can folded into the reducion 7301 // instruction. So we need to mark all folded instructions free. 7302 // For example: We can fold reduce(mul(ext(A), ext(B))) into one 7303 // instruction. 7304 for (auto *ChainOp : ChainOps) { 7305 for (Value *Op : ChainOp->operands()) { 7306 if (auto *I = dyn_cast<Instruction>(Op)) { 7307 ChainOpsAndOperands.insert(I); 7308 if (I->getOpcode() == Instruction::Mul) { 7309 auto *Ext0 = dyn_cast<Instruction>(I->getOperand(0)); 7310 auto *Ext1 = dyn_cast<Instruction>(I->getOperand(1)); 7311 if (Ext0 && IsZExtOrSExt(Ext0->getOpcode()) && Ext1 && 7312 Ext0->getOpcode() == Ext1->getOpcode()) { 7313 ChainOpsAndOperands.insert(Ext0); 7314 ChainOpsAndOperands.insert(Ext1); 7315 } 7316 } 7317 } 7318 } 7319 } 7320 7321 // Pre-compute the cost for I, if it has a reduction pattern cost. 7322 for (Instruction *I : ChainOpsAndOperands) { 7323 auto ReductionCost = 7324 CM.getReductionPatternCost(I, VF, toVectorTy(I->getType(), VF)); 7325 if (!ReductionCost) 7326 continue; 7327 7328 assert(!CostCtx.SkipCostComputation.contains(I) && 7329 "reduction op visited multiple times"); 7330 CostCtx.SkipCostComputation.insert(I); 7331 LLVM_DEBUG(dbgs() << "Cost of " << ReductionCost << " for VF " << VF 7332 << ":\n in-loop reduction " << *I << "\n"); 7333 Cost += *ReductionCost; 7334 } 7335 } 7336 7337 // Pre-compute the costs for branches except for the backedge, as the number 7338 // of replicate regions in a VPlan may not directly match the number of 7339 // branches, which would lead to different decisions. 7340 // TODO: Compute cost of branches for each replicate region in the VPlan, 7341 // which is more accurate than the legacy cost model. 7342 for (BasicBlock *BB : OrigLoop->blocks()) { 7343 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector())) 7344 continue; 7345 CostCtx.SkipCostComputation.insert(BB->getTerminator()); 7346 if (BB == OrigLoop->getLoopLatch()) 7347 continue; 7348 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF); 7349 Cost += BranchCost; 7350 } 7351 7352 // Pre-compute costs for instructions that are forced-scalar or profitable to 7353 // scalarize. Their costs will be computed separately in the legacy cost 7354 // model. 7355 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) { 7356 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector())) 7357 continue; 7358 CostCtx.SkipCostComputation.insert(ForcedScalar); 7359 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF); 7360 LLVM_DEBUG({ 7361 dbgs() << "Cost of " << ForcedCost << " for VF " << VF 7362 << ": forced scalar " << *ForcedScalar << "\n"; 7363 }); 7364 Cost += ForcedCost; 7365 } 7366 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) { 7367 if (CostCtx.skipCostComputation(Scalarized, VF.isVector())) 7368 continue; 7369 CostCtx.SkipCostComputation.insert(Scalarized); 7370 LLVM_DEBUG({ 7371 dbgs() << "Cost of " << ScalarCost << " for VF " << VF 7372 << ": profitable to scalarize " << *Scalarized << "\n"; 7373 }); 7374 Cost += ScalarCost; 7375 } 7376 7377 return Cost; 7378 } 7379 7380 InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan, 7381 ElementCount VF) const { 7382 VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(), CM, 7383 CM.CostKind); 7384 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx); 7385 7386 // Now compute and add the VPlan-based cost. 7387 Cost += Plan.cost(VF, CostCtx); 7388 #ifndef NDEBUG 7389 unsigned EstimatedWidth = getEstimatedRuntimeVF(OrigLoop, CM.TTI, VF); 7390 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost 7391 << " (Estimated cost per lane: "); 7392 if (Cost.isValid()) { 7393 double CostPerLane = double(*Cost.getValue()) / EstimatedWidth; 7394 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane)); 7395 } else /* No point dividing an invalid cost - it will still be invalid */ 7396 LLVM_DEBUG(dbgs() << "Invalid"); 7397 LLVM_DEBUG(dbgs() << ")\n"); 7398 #endif 7399 return Cost; 7400 } 7401 7402 #ifndef NDEBUG 7403 /// Return true if the original loop \ TheLoop contains any instructions that do 7404 /// not have corresponding recipes in \p Plan and are not marked to be ignored 7405 /// in \p CostCtx. This means the VPlan contains simplification that the legacy 7406 /// cost-model did not account for. 7407 static bool planContainsAdditionalSimplifications(VPlan &Plan, 7408 VPCostContext &CostCtx, 7409 Loop *TheLoop) { 7410 // First collect all instructions for the recipes in Plan. 7411 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * { 7412 if (auto *S = dyn_cast<VPSingleDefRecipe>(R)) 7413 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue()); 7414 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R)) 7415 return &WidenMem->getIngredient(); 7416 return nullptr; 7417 }; 7418 7419 DenseSet<Instruction *> SeenInstrs; 7420 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry()); 7421 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 7422 for (VPRecipeBase &R : *VPBB) { 7423 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) { 7424 auto *IG = IR->getInterleaveGroup(); 7425 unsigned NumMembers = IG->getNumMembers(); 7426 for (unsigned I = 0; I != NumMembers; ++I) { 7427 if (Instruction *M = IG->getMember(I)) 7428 SeenInstrs.insert(M); 7429 } 7430 continue; 7431 } 7432 // The VPlan-based cost model is more accurate for partial reduction and 7433 // comparing against the legacy cost isn't desirable. 7434 if (isa<VPPartialReductionRecipe>(&R)) 7435 return true; 7436 if (Instruction *UI = GetInstructionForCost(&R)) 7437 SeenInstrs.insert(UI); 7438 } 7439 } 7440 7441 // Return true if the loop contains any instructions that are not also part of 7442 // the VPlan or are skipped for VPlan-based cost computations. This indicates 7443 // that the VPlan contains extra simplifications. 7444 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx, 7445 TheLoop](BasicBlock *BB) { 7446 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) { 7447 if (isa<PHINode>(&I) && BB == TheLoop->getHeader()) 7448 return false; 7449 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true); 7450 }); 7451 }); 7452 } 7453 #endif 7454 7455 VectorizationFactor LoopVectorizationPlanner::computeBestVF() { 7456 if (VPlans.empty()) 7457 return VectorizationFactor::Disabled(); 7458 // If there is a single VPlan with a single VF, return it directly. 7459 VPlan &FirstPlan = *VPlans[0]; 7460 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1) 7461 return {*FirstPlan.vectorFactors().begin(), 0, 0}; 7462 7463 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: " 7464 << (CM.CostKind == TTI::TCK_RecipThroughput 7465 ? "Reciprocal Throughput\n" 7466 : CM.CostKind == TTI::TCK_Latency 7467 ? "Instruction Latency\n" 7468 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n" 7469 : CM.CostKind == TTI::TCK_SizeAndLatency 7470 ? "Code Size and Latency\n" 7471 : "Unknown\n")); 7472 7473 ElementCount ScalarVF = ElementCount::getFixed(1); 7474 assert(hasPlanWithVF(ScalarVF) && 7475 "More than a single plan/VF w/o any plan having scalar VF"); 7476 7477 // TODO: Compute scalar cost using VPlan-based cost model. 7478 InstructionCost ScalarCost = CM.expectedCost(ScalarVF); 7479 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n"); 7480 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost); 7481 VectorizationFactor BestFactor = ScalarFactor; 7482 7483 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled; 7484 if (ForceVectorization) { 7485 // Ignore scalar width, because the user explicitly wants vectorization. 7486 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 7487 // evaluation. 7488 BestFactor.Cost = InstructionCost::getMax(); 7489 } 7490 7491 for (auto &P : VPlans) { 7492 for (ElementCount VF : P->vectorFactors()) { 7493 if (VF.isScalar()) 7494 continue; 7495 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) { 7496 LLVM_DEBUG( 7497 dbgs() 7498 << "LV: Not considering vector loop of width " << VF 7499 << " because it will not generate any vector instructions.\n"); 7500 continue; 7501 } 7502 7503 InstructionCost Cost = cost(*P, VF); 7504 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost); 7505 if (isMoreProfitable(CurrentFactor, BestFactor)) 7506 BestFactor = CurrentFactor; 7507 7508 // If profitable add it to ProfitableVF list. 7509 if (isMoreProfitable(CurrentFactor, ScalarFactor)) 7510 ProfitableVFs.push_back(CurrentFactor); 7511 } 7512 } 7513 7514 #ifndef NDEBUG 7515 // Select the optimal vectorization factor according to the legacy cost-model. 7516 // This is now only used to verify the decisions by the new VPlan-based 7517 // cost-model and will be retired once the VPlan-based cost-model is 7518 // stabilized. 7519 VectorizationFactor LegacyVF = selectVectorizationFactor(); 7520 VPlan &BestPlan = getPlanFor(BestFactor.Width); 7521 7522 // Pre-compute the cost and use it to check if BestPlan contains any 7523 // simplifications not accounted for in the legacy cost model. If that's the 7524 // case, don't trigger the assertion, as the extra simplifications may cause a 7525 // different VF to be picked by the VPlan-based cost model. 7526 VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(), CM, 7527 CM.CostKind); 7528 precomputeCosts(BestPlan, BestFactor.Width, CostCtx); 7529 assert((BestFactor.Width == LegacyVF.Width || 7530 planContainsAdditionalSimplifications(getPlanFor(BestFactor.Width), 7531 CostCtx, OrigLoop) || 7532 planContainsAdditionalSimplifications(getPlanFor(LegacyVF.Width), 7533 CostCtx, OrigLoop)) && 7534 " VPlan cost model and legacy cost model disagreed"); 7535 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) && 7536 "when vectorizing, the scalar cost must be computed."); 7537 #endif 7538 7539 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n"); 7540 return BestFactor; 7541 } 7542 7543 static void addRuntimeUnrollDisableMetaData(Loop *L) { 7544 SmallVector<Metadata *, 4> MDs; 7545 // Reserve first location for self reference to the LoopID metadata node. 7546 MDs.push_back(nullptr); 7547 bool IsUnrollMetadata = false; 7548 MDNode *LoopID = L->getLoopID(); 7549 if (LoopID) { 7550 // First find existing loop unrolling disable metadata. 7551 for (unsigned I = 1, IE = LoopID->getNumOperands(); I < IE; ++I) { 7552 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(I)); 7553 if (MD) { 7554 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7555 IsUnrollMetadata = 7556 S && S->getString().starts_with("llvm.loop.unroll.disable"); 7557 } 7558 MDs.push_back(LoopID->getOperand(I)); 7559 } 7560 } 7561 7562 if (!IsUnrollMetadata) { 7563 // Add runtime unroll disable metadata. 7564 LLVMContext &Context = L->getHeader()->getContext(); 7565 SmallVector<Metadata *, 1> DisableOperands; 7566 DisableOperands.push_back( 7567 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7568 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7569 MDs.push_back(DisableNode); 7570 MDNode *NewLoopID = MDNode::get(Context, MDs); 7571 // Set operand 0 to refer to the loop id itself. 7572 NewLoopID->replaceOperandWith(0, NewLoopID); 7573 L->setLoopID(NewLoopID); 7574 } 7575 } 7576 7577 // If \p R is a ComputeReductionResult when vectorizing the epilog loop, 7578 // fix the reduction's scalar PHI node by adding the incoming value from the 7579 // main vector loop. 7580 static void fixReductionScalarResumeWhenVectorizingEpilog( 7581 VPRecipeBase *R, VPTransformState &State, BasicBlock *LoopMiddleBlock, 7582 BasicBlock *BypassBlock) { 7583 auto *EpiRedResult = dyn_cast<VPInstruction>(R); 7584 if (!EpiRedResult || 7585 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult) 7586 return; 7587 7588 auto *EpiRedHeaderPhi = 7589 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0)); 7590 const RecurrenceDescriptor &RdxDesc = 7591 EpiRedHeaderPhi->getRecurrenceDescriptor(); 7592 Value *MainResumeValue = 7593 EpiRedHeaderPhi->getStartValue()->getUnderlyingValue(); 7594 if (RecurrenceDescriptor::isAnyOfRecurrenceKind( 7595 RdxDesc.getRecurrenceKind())) { 7596 auto *Cmp = cast<ICmpInst>(MainResumeValue); 7597 assert(Cmp->getPredicate() == CmpInst::ICMP_NE && 7598 "AnyOf expected to start with ICMP_NE"); 7599 assert(Cmp->getOperand(1) == RdxDesc.getRecurrenceStartValue() && 7600 "AnyOf expected to start by comparing main resume value to original " 7601 "start value"); 7602 MainResumeValue = Cmp->getOperand(0); 7603 } else if (RecurrenceDescriptor::isFindLastIVRecurrenceKind( 7604 RdxDesc.getRecurrenceKind())) { 7605 using namespace llvm::PatternMatch; 7606 Value *Cmp, *OrigResumeV; 7607 bool IsExpectedPattern = 7608 match(MainResumeValue, m_Select(m_OneUse(m_Value(Cmp)), 7609 m_Specific(RdxDesc.getSentinelValue()), 7610 m_Value(OrigResumeV))) && 7611 match(Cmp, 7612 m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(OrigResumeV), 7613 m_Specific(RdxDesc.getRecurrenceStartValue()))); 7614 assert(IsExpectedPattern && "Unexpected reduction resume pattern"); 7615 (void)IsExpectedPattern; 7616 MainResumeValue = OrigResumeV; 7617 } 7618 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue); 7619 7620 // When fixing reductions in the epilogue loop we should already have 7621 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry 7622 // over the incoming values correctly. 7623 using namespace VPlanPatternMatch; 7624 auto IsResumePhi = [](VPUser *U) { 7625 return match( 7626 U, m_VPInstruction<VPInstruction::ResumePhi>(m_VPValue(), m_VPValue())); 7627 }; 7628 assert(count_if(EpiRedResult->users(), IsResumePhi) == 1 && 7629 "ResumePhi must have a single user"); 7630 auto *EpiResumePhiVPI = 7631 cast<VPInstruction>(*find_if(EpiRedResult->users(), IsResumePhi)); 7632 auto *EpiResumePhi = cast<PHINode>(State.get(EpiResumePhiVPI, true)); 7633 EpiResumePhi->setIncomingValueForBlock( 7634 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock)); 7635 } 7636 7637 DenseMap<const SCEV *, Value *> LoopVectorizationPlanner::executePlan( 7638 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan, 7639 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue, 7640 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs) { 7641 assert(BestVPlan.hasVF(BestVF) && 7642 "Trying to execute plan with unsupported VF"); 7643 assert(BestVPlan.hasUF(BestUF) && 7644 "Trying to execute plan with unsupported UF"); 7645 assert( 7646 ((VectorizingEpilogue && ExpandedSCEVs) || 7647 (!VectorizingEpilogue && !ExpandedSCEVs)) && 7648 "expanded SCEVs to reuse can only be used during epilogue vectorization"); 7649 7650 // TODO: Move to VPlan transform stage once the transition to the VPlan-based 7651 // cost model is complete for better cost estimates. 7652 VPlanTransforms::unrollByUF(BestVPlan, BestUF, 7653 OrigLoop->getHeader()->getContext()); 7654 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE); 7655 VPlanTransforms::convertToConcreteRecipes(BestVPlan); 7656 7657 // Perform the actual loop transformation. 7658 VPTransformState State(&TTI, BestVF, BestUF, LI, DT, ILV.Builder, &ILV, 7659 &BestVPlan, OrigLoop->getParentLoop(), 7660 Legal->getWidestInductionType()); 7661 7662 #ifdef EXPENSIVE_CHECKS 7663 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 7664 #endif 7665 7666 // 0. Generate SCEV-dependent code in the entry, including TripCount, before 7667 // making any changes to the CFG. 7668 if (!BestVPlan.getEntry()->empty()) 7669 BestVPlan.getEntry()->execute(&State); 7670 7671 if (!ILV.getTripCount()) 7672 ILV.setTripCount(State.get(BestVPlan.getTripCount(), VPLane(0))); 7673 else 7674 assert(VectorizingEpilogue && "should only re-use the existing trip " 7675 "count during epilogue vectorization"); 7676 7677 // 1. Set up the skeleton for vectorization, including vector pre-header and 7678 // middle block. The vector loop is created during VPlan execution. 7679 VPBasicBlock *VectorPH = 7680 cast<VPBasicBlock>(BestVPlan.getEntry()->getSingleSuccessor()); 7681 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton( 7682 ExpandedSCEVs ? *ExpandedSCEVs : State.ExpandedSCEVs); 7683 if (VectorizingEpilogue) 7684 VPlanTransforms::removeDeadRecipes(BestVPlan); 7685 7686 // Only use noalias metadata when using memory checks guaranteeing no overlap 7687 // across all iterations. 7688 const LoopAccessInfo *LAI = ILV.Legal->getLAI(); 7689 std::unique_ptr<LoopVersioning> LVer = nullptr; 7690 if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && 7691 !LAI->getRuntimePointerChecking()->getDiffChecks()) { 7692 7693 // We currently don't use LoopVersioning for the actual loop cloning but we 7694 // still use it to add the noalias metadata. 7695 // TODO: Find a better way to re-use LoopVersioning functionality to add 7696 // metadata. 7697 LVer = std::make_unique<LoopVersioning>( 7698 *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, 7699 PSE.getSE()); 7700 State.LVer = &*LVer; 7701 State.LVer->prepareNoAliasMetadata(); 7702 } 7703 7704 ILV.printDebugTracesAtStart(); 7705 7706 //===------------------------------------------------===// 7707 // 7708 // Notice: any optimization or new instruction that go 7709 // into the code below should also be implemented in 7710 // the cost-model. 7711 // 7712 //===------------------------------------------------===// 7713 7714 // 2. Copy and widen instructions from the old loop into the new loop. 7715 BestVPlan.prepareToExecute( 7716 ILV.getTripCount(), 7717 ILV.getOrCreateVectorTripCount(ILV.LoopVectorPreHeader), State); 7718 replaceVPBBWithIRVPBB(VectorPH, State.CFG.PrevBB); 7719 7720 BestVPlan.execute(&State); 7721 7722 auto *MiddleVPBB = BestVPlan.getMiddleBlock(); 7723 // 2.5 When vectorizing the epilogue, fix reduction and induction resume 7724 // values from the additional bypass block. 7725 if (VectorizingEpilogue) { 7726 assert(!ILV.Legal->hasUncountableEarlyExit() && 7727 "Epilogue vectorisation not yet supported with early exits"); 7728 BasicBlock *BypassBlock = ILV.getAdditionalBypassBlock(); 7729 for (VPRecipeBase &R : *MiddleVPBB) { 7730 fixReductionScalarResumeWhenVectorizingEpilog( 7731 &R, State, State.CFG.VPBB2IRBB[MiddleVPBB], BypassBlock); 7732 } 7733 BasicBlock *PH = OrigLoop->getLoopPreheader(); 7734 for (const auto &[IVPhi, _] : Legal->getInductionVars()) { 7735 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH)); 7736 Value *V = ILV.getInductionAdditionalBypassValue(IVPhi); 7737 Inc->setIncomingValueForBlock(BypassBlock, V); 7738 } 7739 } 7740 7741 // 2.6. Maintain Loop Hints 7742 // Keep all loop hints from the original loop on the vector loop (we'll 7743 // replace the vectorizer-specific hints below). 7744 if (auto *LoopRegion = BestVPlan.getVectorLoopRegion()) { 7745 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7746 7747 std::optional<MDNode *> VectorizedLoopID = 7748 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7749 LLVMLoopVectorizeFollowupVectorized}); 7750 7751 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock(); 7752 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7753 if (VectorizedLoopID) { 7754 L->setLoopID(*VectorizedLoopID); 7755 } else { 7756 // Keep all loop hints from the original loop on the vector loop (we'll 7757 // replace the vectorizer-specific hints below). 7758 if (MDNode *LID = OrigLoop->getLoopID()) 7759 L->setLoopID(LID); 7760 7761 LoopVectorizeHints Hints(L, true, *ORE); 7762 Hints.setAlreadyVectorized(); 7763 } 7764 TargetTransformInfo::UnrollingPreferences UP; 7765 TTI.getUnrollingPreferences(L, *PSE.getSE(), UP, ORE); 7766 if (!UP.UnrollVectorizedLoop || VectorizingEpilogue) 7767 addRuntimeUnrollDisableMetaData(L); 7768 } 7769 7770 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7771 // predication, updating analyses. 7772 ILV.fixVectorizedLoop(State); 7773 7774 ILV.printDebugTracesAtEnd(); 7775 7776 // 4. Adjust branch weight of the branch in the middle block. 7777 if (BestVPlan.getVectorLoopRegion()) { 7778 auto *MiddleVPBB = BestVPlan.getMiddleBlock(); 7779 auto *MiddleTerm = 7780 cast<BranchInst>(State.CFG.VPBB2IRBB[MiddleVPBB]->getTerminator()); 7781 if (MiddleTerm->isConditional() && 7782 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) { 7783 // Assume that `Count % VectorTripCount` is equally distributed. 7784 unsigned TripCount = BestVPlan.getUF() * State.VF.getKnownMinValue(); 7785 assert(TripCount > 0 && "trip count should not be zero"); 7786 const uint32_t Weights[] = {1, TripCount - 1}; 7787 setBranchWeights(*MiddleTerm, Weights, /*IsExpected=*/false); 7788 } 7789 } 7790 7791 return State.ExpandedSCEVs; 7792 } 7793 7794 //===--------------------------------------------------------------------===// 7795 // EpilogueVectorizerMainLoop 7796 //===--------------------------------------------------------------------===// 7797 7798 /// This function is partially responsible for generating the control flow 7799 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7800 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton( 7801 const SCEV2ValueTy &ExpandedSCEVs) { 7802 createVectorLoopSkeleton(""); 7803 7804 // Generate the code to check the minimum iteration count of the vector 7805 // epilogue (see below). 7806 EPI.EpilogueIterationCountCheck = 7807 emitIterationCountCheck(LoopScalarPreHeader, true); 7808 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7809 7810 // Generate the code to check any assumptions that we've made for SCEV 7811 // expressions. 7812 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7813 7814 // Generate the code that checks at runtime if arrays overlap. We put the 7815 // checks into a separate block to make the more common case of few elements 7816 // faster. 7817 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7818 7819 // Generate the iteration count check for the main loop, *after* the check 7820 // for the epilogue loop, so that the path-length is shorter for the case 7821 // that goes directly through the vector epilogue. The longer-path length for 7822 // the main loop is compensated for, by the gain from vectorizing the larger 7823 // trip count. Note: the branch will get updated later on when we vectorize 7824 // the epilogue. 7825 EPI.MainLoopIterationCountCheck = 7826 emitIterationCountCheck(LoopScalarPreHeader, false); 7827 7828 // Generate the induction variable. 7829 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7830 7831 return LoopVectorPreHeader; 7832 } 7833 7834 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7835 LLVM_DEBUG({ 7836 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7837 << "Main Loop VF:" << EPI.MainLoopVF 7838 << ", Main Loop UF:" << EPI.MainLoopUF 7839 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7840 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7841 }); 7842 } 7843 7844 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7845 DEBUG_WITH_TYPE(VerboseDebug, { 7846 dbgs() << "intermediate fn:\n" 7847 << *OrigLoop->getHeader()->getParent() << "\n"; 7848 }); 7849 } 7850 7851 BasicBlock * 7852 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7853 bool ForEpilogue) { 7854 assert(Bypass && "Expected valid bypass basic block."); 7855 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7856 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7857 Value *Count = getTripCount(); 7858 // Reuse existing vector loop preheader for TC checks. 7859 // Note that new preheader block is generated for vector loop. 7860 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7861 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7862 7863 // Generate code to check if the loop's trip count is less than VF * UF of the 7864 // main vector loop. 7865 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF.isVector() 7866 : VF.isVector()) 7867 ? ICmpInst::ICMP_ULE 7868 : ICmpInst::ICMP_ULT; 7869 7870 Value *CheckMinIters = Builder.CreateICmp( 7871 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7872 "min.iters.check"); 7873 7874 if (!ForEpilogue) 7875 TCCheckBlock->setName("vector.main.loop.iter.check"); 7876 7877 // Create new preheader for vector loop. 7878 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7879 DT, LI, nullptr, "vector.ph"); 7880 7881 if (ForEpilogue) { 7882 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7883 DT->getNode(Bypass)->getIDom()) && 7884 "TC check is expected to dominate Bypass"); 7885 7886 LoopBypassBlocks.push_back(TCCheckBlock); 7887 7888 // Save the trip count so we don't have to regenerate it in the 7889 // vec.epilog.iter.check. This is safe to do because the trip count 7890 // generated here dominates the vector epilog iter check. 7891 EPI.TripCount = Count; 7892 } 7893 7894 BranchInst &BI = 7895 *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters); 7896 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) 7897 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false); 7898 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI); 7899 7900 introduceCheckBlockInVPlan(TCCheckBlock); 7901 return TCCheckBlock; 7902 } 7903 7904 //===--------------------------------------------------------------------===// 7905 // EpilogueVectorizerEpilogueLoop 7906 //===--------------------------------------------------------------------===// 7907 7908 /// This function is partially responsible for generating the control flow 7909 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7910 BasicBlock * 7911 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton( 7912 const SCEV2ValueTy &ExpandedSCEVs) { 7913 createVectorLoopSkeleton("vec.epilog."); 7914 7915 // Now, compare the remaining count and if there aren't enough iterations to 7916 // execute the vectorized epilogue skip to the scalar part. 7917 LoopVectorPreHeader->setName("vec.epilog.ph"); 7918 BasicBlock *VecEpilogueIterationCountCheck = 7919 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->begin(), DT, LI, 7920 nullptr, "vec.epilog.iter.check", true); 7921 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7922 VecEpilogueIterationCountCheck); 7923 AdditionalBypassBlock = VecEpilogueIterationCountCheck; 7924 7925 // Adjust the control flow taking the state info from the main loop 7926 // vectorization into account. 7927 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7928 "expected this to be saved from the previous pass."); 7929 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7930 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7931 7932 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7933 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7934 7935 if (EPI.SCEVSafetyCheck) 7936 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7937 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7938 if (EPI.MemSafetyCheck) 7939 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7940 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7941 7942 DT->changeImmediateDominator(LoopScalarPreHeader, 7943 EPI.EpilogueIterationCountCheck); 7944 // Keep track of bypass blocks, as they feed start values to the induction and 7945 // reduction phis in the scalar loop preheader. 7946 if (EPI.SCEVSafetyCheck) 7947 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7948 if (EPI.MemSafetyCheck) 7949 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7950 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7951 7952 // The vec.epilog.iter.check block may contain Phi nodes from inductions or 7953 // reductions which merge control-flow from the latch block and the middle 7954 // block. Update the incoming values here and move the Phi into the preheader. 7955 SmallVector<PHINode *, 4> PhisInBlock; 7956 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7957 PhisInBlock.push_back(&Phi); 7958 7959 for (PHINode *Phi : PhisInBlock) { 7960 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7961 Phi->replaceIncomingBlockWith( 7962 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7963 VecEpilogueIterationCountCheck); 7964 7965 // If the phi doesn't have an incoming value from the 7966 // EpilogueIterationCountCheck, we are done. Otherwise remove the incoming 7967 // value and also those from other check blocks. This is needed for 7968 // reduction phis only. 7969 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) { 7970 return EPI.EpilogueIterationCountCheck == IncB; 7971 })) 7972 continue; 7973 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7974 if (EPI.SCEVSafetyCheck) 7975 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7976 if (EPI.MemSafetyCheck) 7977 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7978 } 7979 7980 // Generate bypass values from the additional bypass block. Note that when the 7981 // vectorized epilogue is skipped due to iteration count check, then the 7982 // resume value for the induction variable comes from the trip count of the 7983 // main vector loop, passed as the second argument. 7984 createInductionAdditionalBypassValues(ExpandedSCEVs, EPI.VectorTripCount); 7985 return LoopVectorPreHeader; 7986 } 7987 7988 BasicBlock * 7989 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7990 BasicBlock *Bypass, BasicBlock *Insert) { 7991 7992 assert(EPI.TripCount && 7993 "Expected trip count to have been saved in the first pass."); 7994 assert( 7995 (!isa<Instruction>(EPI.TripCount) || 7996 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7997 "saved trip count does not dominate insertion point."); 7998 Value *TC = EPI.TripCount; 7999 IRBuilder<> Builder(Insert->getTerminator()); 8000 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8001 8002 // Generate code to check if the loop's trip count is less than VF * UF of the 8003 // vector epilogue loop. 8004 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector()) 8005 ? ICmpInst::ICMP_ULE 8006 : ICmpInst::ICMP_ULT; 8007 8008 Value *CheckMinIters = 8009 Builder.CreateICmp(P, Count, 8010 createStepForVF(Builder, Count->getType(), 8011 EPI.EpilogueVF, EPI.EpilogueUF), 8012 "min.epilog.iters.check"); 8013 8014 BranchInst &BI = 8015 *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters); 8016 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) { 8017 unsigned MainLoopStep = UF * VF.getKnownMinValue(); 8018 unsigned EpilogueLoopStep = 8019 EPI.EpilogueUF * EPI.EpilogueVF.getKnownMinValue(); 8020 // We assume the remaining `Count` is equally distributed in 8021 // [0, MainLoopStep) 8022 // So the probability for `Count < EpilogueLoopStep` should be 8023 // min(MainLoopStep, EpilogueLoopStep) / MainLoopStep 8024 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep); 8025 const uint32_t Weights[] = {EstimatedSkipCount, 8026 MainLoopStep - EstimatedSkipCount}; 8027 setBranchWeights(BI, Weights, /*IsExpected=*/false); 8028 } 8029 ReplaceInstWithInst(Insert->getTerminator(), &BI); 8030 LoopBypassBlocks.push_back(Insert); 8031 8032 // A new entry block has been created for the epilogue VPlan. Hook it in, as 8033 // otherwise we would try to modify the entry to the main vector loop. 8034 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(Insert); 8035 VPBasicBlock *OldEntry = Plan.getEntry(); 8036 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry); 8037 Plan.setEntry(NewEntry); 8038 // OldEntry is now dead and will be cleaned up when the plan gets destroyed. 8039 8040 introduceCheckBlockInVPlan(Insert); 8041 return Insert; 8042 } 8043 8044 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8045 LLVM_DEBUG({ 8046 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8047 << "Epilogue Loop VF:" << EPI.EpilogueVF 8048 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8049 }); 8050 } 8051 8052 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8053 DEBUG_WITH_TYPE(VerboseDebug, { 8054 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8055 }); 8056 } 8057 8058 iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> 8059 VPRecipeBuilder::mapToVPValues(User::op_range Operands) { 8060 std::function<VPValue *(Value *)> Fn = [this](Value *Op) { 8061 return getVPValueOrAddLiveIn(Op); 8062 }; 8063 return map_range(Operands, Fn); 8064 } 8065 8066 void VPRecipeBuilder::createSwitchEdgeMasks(SwitchInst *SI) { 8067 BasicBlock *Src = SI->getParent(); 8068 assert(!OrigLoop->isLoopExiting(Src) && 8069 all_of(successors(Src), 8070 [this](BasicBlock *Succ) { 8071 return OrigLoop->getHeader() != Succ; 8072 }) && 8073 "unsupported switch either exiting loop or continuing to header"); 8074 // Create masks where the terminator in Src is a switch. We create mask for 8075 // all edges at the same time. This is more efficient, as we can create and 8076 // collect compares for all cases once. 8077 VPValue *Cond = getVPValueOrAddLiveIn(SI->getCondition()); 8078 BasicBlock *DefaultDst = SI->getDefaultDest(); 8079 MapVector<BasicBlock *, SmallVector<VPValue *>> Dst2Compares; 8080 for (auto &C : SI->cases()) { 8081 BasicBlock *Dst = C.getCaseSuccessor(); 8082 assert(!EdgeMaskCache.contains({Src, Dst}) && "Edge masks already created"); 8083 // Cases whose destination is the same as default are redundant and can be 8084 // ignored - they will get there anyhow. 8085 if (Dst == DefaultDst) 8086 continue; 8087 auto &Compares = Dst2Compares[Dst]; 8088 VPValue *V = getVPValueOrAddLiveIn(C.getCaseValue()); 8089 Compares.push_back(Builder.createICmp(CmpInst::ICMP_EQ, Cond, V)); 8090 } 8091 8092 // We need to handle 2 separate cases below for all entries in Dst2Compares, 8093 // which excludes destinations matching the default destination. 8094 VPValue *SrcMask = getBlockInMask(Src); 8095 VPValue *DefaultMask = nullptr; 8096 for (const auto &[Dst, Conds] : Dst2Compares) { 8097 // 1. Dst is not the default destination. Dst is reached if any of the cases 8098 // with destination == Dst are taken. Join the conditions for each case 8099 // whose destination == Dst using an OR. 8100 VPValue *Mask = Conds[0]; 8101 for (VPValue *V : ArrayRef<VPValue *>(Conds).drop_front()) 8102 Mask = Builder.createOr(Mask, V); 8103 if (SrcMask) 8104 Mask = Builder.createLogicalAnd(SrcMask, Mask); 8105 EdgeMaskCache[{Src, Dst}] = Mask; 8106 8107 // 2. Create the mask for the default destination, which is reached if none 8108 // of the cases with destination != default destination are taken. Join the 8109 // conditions for each case where the destination is != Dst using an OR and 8110 // negate it. 8111 DefaultMask = DefaultMask ? Builder.createOr(DefaultMask, Mask) : Mask; 8112 } 8113 8114 if (DefaultMask) { 8115 DefaultMask = Builder.createNot(DefaultMask); 8116 if (SrcMask) 8117 DefaultMask = Builder.createLogicalAnd(SrcMask, DefaultMask); 8118 } 8119 EdgeMaskCache[{Src, DefaultDst}] = DefaultMask; 8120 } 8121 8122 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 8123 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8124 8125 // Look for cached value. 8126 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8127 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8128 if (ECEntryIt != EdgeMaskCache.end()) 8129 return ECEntryIt->second; 8130 8131 if (auto *SI = dyn_cast<SwitchInst>(Src->getTerminator())) { 8132 createSwitchEdgeMasks(SI); 8133 assert(EdgeMaskCache.contains(Edge) && "Mask for Edge not created?"); 8134 return EdgeMaskCache[Edge]; 8135 } 8136 8137 VPValue *SrcMask = getBlockInMask(Src); 8138 8139 // The terminator has to be a branch inst! 8140 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8141 assert(BI && "Unexpected terminator found"); 8142 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8143 return EdgeMaskCache[Edge] = SrcMask; 8144 8145 // If source is an exiting block, we know the exit edge is dynamically dead 8146 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8147 // adding uses of an otherwise potentially dead instruction unless we are 8148 // vectorizing a loop with uncountable exits. In that case, we always 8149 // materialize the mask. 8150 if (OrigLoop->isLoopExiting(Src) && 8151 Src != Legal->getUncountableEarlyExitingBlock()) 8152 return EdgeMaskCache[Edge] = SrcMask; 8153 8154 VPValue *EdgeMask = getVPValueOrAddLiveIn(BI->getCondition()); 8155 assert(EdgeMask && "No Edge Mask found for condition"); 8156 8157 if (BI->getSuccessor(0) != Dst) 8158 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8159 8160 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8161 // The bitwise 'And' of SrcMask and EdgeMask introduces new UB if SrcMask 8162 // is false and EdgeMask is poison. Avoid that by using 'LogicalAnd' 8163 // instead which generates 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8164 EdgeMask = Builder.createLogicalAnd(SrcMask, EdgeMask, BI->getDebugLoc()); 8165 } 8166 8167 return EdgeMaskCache[Edge] = EdgeMask; 8168 } 8169 8170 VPValue *VPRecipeBuilder::getEdgeMask(BasicBlock *Src, BasicBlock *Dst) const { 8171 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8172 8173 // Look for cached value. 8174 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8175 EdgeMaskCacheTy::const_iterator ECEntryIt = EdgeMaskCache.find(Edge); 8176 assert(ECEntryIt != EdgeMaskCache.end() && 8177 "looking up mask for edge which has not been created"); 8178 return ECEntryIt->second; 8179 } 8180 8181 void VPRecipeBuilder::createHeaderMask() { 8182 BasicBlock *Header = OrigLoop->getHeader(); 8183 8184 // When not folding the tail, use nullptr to model all-true mask. 8185 if (!CM.foldTailByMasking()) { 8186 BlockMaskCache[Header] = nullptr; 8187 return; 8188 } 8189 8190 // Introduce the early-exit compare IV <= BTC to form header block mask. 8191 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8192 // constructing the desired canonical IV in the header block as its first 8193 // non-phi instructions. 8194 8195 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 8196 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8197 auto *IV = new VPWidenCanonicalIVRecipe(Plan.getCanonicalIV()); 8198 HeaderVPBB->insert(IV, NewInsertionPoint); 8199 8200 VPBuilder::InsertPointGuard Guard(Builder); 8201 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8202 VPValue *BlockMask = nullptr; 8203 VPValue *BTC = Plan.getOrCreateBackedgeTakenCount(); 8204 BlockMask = Builder.createICmp(CmpInst::ICMP_ULE, IV, BTC); 8205 BlockMaskCache[Header] = BlockMask; 8206 } 8207 8208 VPValue *VPRecipeBuilder::getBlockInMask(BasicBlock *BB) const { 8209 // Return the cached value. 8210 BlockMaskCacheTy::const_iterator BCEntryIt = BlockMaskCache.find(BB); 8211 assert(BCEntryIt != BlockMaskCache.end() && 8212 "Trying to access mask for block without one."); 8213 return BCEntryIt->second; 8214 } 8215 8216 void VPRecipeBuilder::createBlockInMask(BasicBlock *BB) { 8217 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8218 assert(BlockMaskCache.count(BB) == 0 && "Mask for block already computed"); 8219 assert(OrigLoop->getHeader() != BB && 8220 "Loop header must have cached block mask"); 8221 8222 // All-one mask is modelled as no-mask following the convention for masked 8223 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8224 VPValue *BlockMask = nullptr; 8225 // This is the block mask. We OR all unique incoming edges. 8226 for (auto *Predecessor : 8227 SetVector<BasicBlock *>(pred_begin(BB), pred_end(BB))) { 8228 VPValue *EdgeMask = createEdgeMask(Predecessor, BB); 8229 if (!EdgeMask) { // Mask of predecessor is all-one so mask of block is too. 8230 BlockMaskCache[BB] = EdgeMask; 8231 return; 8232 } 8233 8234 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8235 BlockMask = EdgeMask; 8236 continue; 8237 } 8238 8239 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8240 } 8241 8242 BlockMaskCache[BB] = BlockMask; 8243 } 8244 8245 VPWidenMemoryRecipe * 8246 VPRecipeBuilder::tryToWidenMemory(Instruction *I, ArrayRef<VPValue *> Operands, 8247 VFRange &Range) { 8248 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8249 "Must be called with either a load or store"); 8250 8251 auto WillWiden = [&](ElementCount VF) -> bool { 8252 LoopVectorizationCostModel::InstWidening Decision = 8253 CM.getWideningDecision(I, VF); 8254 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8255 "CM decision should be taken at this point."); 8256 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8257 return true; 8258 if (CM.isScalarAfterVectorization(I, VF) || 8259 CM.isProfitableToScalarize(I, VF)) 8260 return false; 8261 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8262 }; 8263 8264 if (!LoopVectorizationPlanner::getDecisionAndClampRange(WillWiden, Range)) 8265 return nullptr; 8266 8267 VPValue *Mask = nullptr; 8268 if (Legal->isMaskRequired(I)) 8269 Mask = getBlockInMask(I->getParent()); 8270 8271 // Determine if the pointer operand of the access is either consecutive or 8272 // reverse consecutive. 8273 LoopVectorizationCostModel::InstWidening Decision = 8274 CM.getWideningDecision(I, Range.Start); 8275 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8276 bool Consecutive = 8277 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8278 8279 VPValue *Ptr = isa<LoadInst>(I) ? Operands[0] : Operands[1]; 8280 if (Consecutive) { 8281 auto *GEP = dyn_cast<GetElementPtrInst>( 8282 Ptr->getUnderlyingValue()->stripPointerCasts()); 8283 VPSingleDefRecipe *VectorPtr; 8284 if (Reverse) { 8285 // When folding the tail, we may compute an address that we don't in the 8286 // original scalar loop and it may not be inbounds. Drop Inbounds in that 8287 // case. 8288 GEPNoWrapFlags Flags = 8289 (CM.foldTailByMasking() || !GEP || !GEP->isInBounds()) 8290 ? GEPNoWrapFlags::none() 8291 : GEPNoWrapFlags::inBounds(); 8292 VectorPtr = new VPReverseVectorPointerRecipe( 8293 Ptr, &Plan.getVF(), getLoadStoreType(I), Flags, I->getDebugLoc()); 8294 } else { 8295 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I), 8296 GEP ? GEP->getNoWrapFlags() 8297 : GEPNoWrapFlags::none(), 8298 I->getDebugLoc()); 8299 } 8300 Builder.getInsertBlock()->appendRecipe(VectorPtr); 8301 Ptr = VectorPtr; 8302 } 8303 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8304 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse, 8305 I->getDebugLoc()); 8306 8307 StoreInst *Store = cast<StoreInst>(I); 8308 return new VPWidenStoreRecipe(*Store, Ptr, Operands[0], Mask, Consecutive, 8309 Reverse, I->getDebugLoc()); 8310 } 8311 8312 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8313 /// insert a recipe to expand the step for the induction recipe. 8314 static VPWidenIntOrFpInductionRecipe * 8315 createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, 8316 VPValue *Start, const InductionDescriptor &IndDesc, 8317 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop) { 8318 assert(IndDesc.getStartValue() == 8319 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8320 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8321 "step must be loop invariant"); 8322 8323 VPValue *Step = 8324 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8325 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8326 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(), 8327 IndDesc, TruncI, 8328 TruncI->getDebugLoc()); 8329 } 8330 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8331 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(), 8332 IndDesc, Phi->getDebugLoc()); 8333 } 8334 8335 VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8336 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) { 8337 8338 // Check if this is an integer or fp induction. If so, build the recipe that 8339 // produces its scalar and vector values. 8340 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8341 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, Plan, 8342 *PSE.getSE(), *OrigLoop); 8343 8344 // Check if this is pointer induction. If so, build the recipe for it. 8345 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) { 8346 VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep(), 8347 *PSE.getSE()); 8348 return new VPWidenPointerInductionRecipe( 8349 Phi, Operands[0], Step, *II, 8350 LoopVectorizationPlanner::getDecisionAndClampRange( 8351 [&](ElementCount VF) { 8352 return CM.isScalarAfterVectorization(Phi, VF); 8353 }, 8354 Range), 8355 Phi->getDebugLoc()); 8356 } 8357 return nullptr; 8358 } 8359 8360 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8361 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range) { 8362 // Optimize the special case where the source is a constant integer 8363 // induction variable. Notice that we can only optimize the 'trunc' case 8364 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8365 // (c) other casts depend on pointer size. 8366 8367 // Determine whether \p K is a truncation based on an induction variable that 8368 // can be optimized. 8369 auto IsOptimizableIVTruncate = 8370 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8371 return [=](ElementCount VF) -> bool { 8372 return CM.isOptimizableIVTruncate(K, VF); 8373 }; 8374 }; 8375 8376 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8377 IsOptimizableIVTruncate(I), Range)) { 8378 8379 auto *Phi = cast<PHINode>(I->getOperand(0)); 8380 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8381 VPValue *Start = Plan.getOrAddLiveIn(II.getStartValue()); 8382 return createWidenInductionRecipes(Phi, I, Start, II, Plan, *PSE.getSE(), 8383 *OrigLoop); 8384 } 8385 return nullptr; 8386 } 8387 8388 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, 8389 ArrayRef<VPValue *> Operands) { 8390 unsigned NumIncoming = Phi->getNumIncomingValues(); 8391 8392 // We know that all PHIs in non-header blocks are converted into selects, so 8393 // we don't have to worry about the insertion order and we can just use the 8394 // builder. At this point we generate the predication tree. There may be 8395 // duplications since this is a simple recursive scan, but future 8396 // optimizations will clean it up. 8397 SmallVector<VPValue *, 2> OperandsWithMask; 8398 8399 for (unsigned In = 0; In < NumIncoming; In++) { 8400 OperandsWithMask.push_back(Operands[In]); 8401 VPValue *EdgeMask = 8402 getEdgeMask(Phi->getIncomingBlock(In), Phi->getParent()); 8403 if (!EdgeMask) { 8404 assert(In == 0 && "Both null and non-null edge masks found"); 8405 assert(all_equal(Operands) && 8406 "Distinct incoming values with one having a full mask"); 8407 break; 8408 } 8409 OperandsWithMask.push_back(EdgeMask); 8410 } 8411 return new VPBlendRecipe(Phi, OperandsWithMask); 8412 } 8413 8414 VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8415 ArrayRef<VPValue *> Operands, 8416 VFRange &Range) { 8417 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8418 [this, CI](ElementCount VF) { 8419 return CM.isScalarWithPredication(CI, VF); 8420 }, 8421 Range); 8422 8423 if (IsPredicated) 8424 return nullptr; 8425 8426 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8427 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8428 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8429 ID == Intrinsic::pseudoprobe || 8430 ID == Intrinsic::experimental_noalias_scope_decl)) 8431 return nullptr; 8432 8433 SmallVector<VPValue *, 4> Ops(Operands.take_front(CI->arg_size())); 8434 8435 // Is it beneficial to perform intrinsic call compared to lib call? 8436 bool ShouldUseVectorIntrinsic = 8437 ID && LoopVectorizationPlanner::getDecisionAndClampRange( 8438 [&](ElementCount VF) -> bool { 8439 return CM.getCallWideningDecision(CI, VF).Kind == 8440 LoopVectorizationCostModel::CM_IntrinsicCall; 8441 }, 8442 Range); 8443 if (ShouldUseVectorIntrinsic) 8444 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(), 8445 CI->getDebugLoc()); 8446 8447 Function *Variant = nullptr; 8448 std::optional<unsigned> MaskPos; 8449 // Is better to call a vectorized version of the function than to to scalarize 8450 // the call? 8451 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange( 8452 [&](ElementCount VF) -> bool { 8453 // The following case may be scalarized depending on the VF. 8454 // The flag shows whether we can use a usual Call for vectorized 8455 // version of the instruction. 8456 8457 // If we've found a variant at a previous VF, then stop looking. A 8458 // vectorized variant of a function expects input in a certain shape 8459 // -- basically the number of input registers, the number of lanes 8460 // per register, and whether there's a mask required. 8461 // We store a pointer to the variant in the VPWidenCallRecipe, so 8462 // once we have an appropriate variant it's only valid for that VF. 8463 // This will force a different vplan to be generated for each VF that 8464 // finds a valid variant. 8465 if (Variant) 8466 return false; 8467 LoopVectorizationCostModel::CallWideningDecision Decision = 8468 CM.getCallWideningDecision(CI, VF); 8469 if (Decision.Kind == LoopVectorizationCostModel::CM_VectorCall) { 8470 Variant = Decision.Variant; 8471 MaskPos = Decision.MaskPos; 8472 return true; 8473 } 8474 8475 return false; 8476 }, 8477 Range); 8478 if (ShouldUseVectorCall) { 8479 if (MaskPos.has_value()) { 8480 // We have 2 cases that would require a mask: 8481 // 1) The block needs to be predicated, either due to a conditional 8482 // in the scalar loop or use of an active lane mask with 8483 // tail-folding, and we use the appropriate mask for the block. 8484 // 2) No mask is required for the block, but the only available 8485 // vector variant at this VF requires a mask, so we synthesize an 8486 // all-true mask. 8487 VPValue *Mask = nullptr; 8488 if (Legal->isMaskRequired(CI)) 8489 Mask = getBlockInMask(CI->getParent()); 8490 else 8491 Mask = Plan.getOrAddLiveIn( 8492 ConstantInt::getTrue(IntegerType::getInt1Ty(CI->getContext()))); 8493 8494 Ops.insert(Ops.begin() + *MaskPos, Mask); 8495 } 8496 8497 Ops.push_back(Operands.back()); 8498 return new VPWidenCallRecipe(CI, Variant, Ops, CI->getDebugLoc()); 8499 } 8500 8501 return nullptr; 8502 } 8503 8504 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8505 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8506 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8507 // Instruction should be widened, unless it is scalar after vectorization, 8508 // scalarization is profitable or it is predicated. 8509 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8510 return CM.isScalarAfterVectorization(I, VF) || 8511 CM.isProfitableToScalarize(I, VF) || 8512 CM.isScalarWithPredication(I, VF); 8513 }; 8514 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8515 Range); 8516 } 8517 8518 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8519 ArrayRef<VPValue *> Operands, 8520 VPBasicBlock *VPBB) { 8521 switch (I->getOpcode()) { 8522 default: 8523 return nullptr; 8524 case Instruction::SDiv: 8525 case Instruction::UDiv: 8526 case Instruction::SRem: 8527 case Instruction::URem: { 8528 // If not provably safe, use a select to form a safe divisor before widening the 8529 // div/rem operation itself. Otherwise fall through to general handling below. 8530 if (CM.isPredicatedInst(I)) { 8531 SmallVector<VPValue *> Ops(Operands); 8532 VPValue *Mask = getBlockInMask(I->getParent()); 8533 VPValue *One = 8534 Plan.getOrAddLiveIn(ConstantInt::get(I->getType(), 1u, false)); 8535 auto *SafeRHS = Builder.createSelect(Mask, Ops[1], One, I->getDebugLoc()); 8536 Ops[1] = SafeRHS; 8537 return new VPWidenRecipe(*I, make_range(Ops.begin(), Ops.end())); 8538 } 8539 [[fallthrough]]; 8540 } 8541 case Instruction::Add: 8542 case Instruction::And: 8543 case Instruction::AShr: 8544 case Instruction::FAdd: 8545 case Instruction::FCmp: 8546 case Instruction::FDiv: 8547 case Instruction::FMul: 8548 case Instruction::FNeg: 8549 case Instruction::FRem: 8550 case Instruction::FSub: 8551 case Instruction::ICmp: 8552 case Instruction::LShr: 8553 case Instruction::Mul: 8554 case Instruction::Or: 8555 case Instruction::Select: 8556 case Instruction::Shl: 8557 case Instruction::Sub: 8558 case Instruction::Xor: 8559 case Instruction::Freeze: 8560 SmallVector<VPValue *> NewOps(Operands); 8561 if (Instruction::isBinaryOp(I->getOpcode())) { 8562 // The legacy cost model uses SCEV to check if some of the operands are 8563 // constants. To match the legacy cost model's behavior, use SCEV to try 8564 // to replace operands with constants. 8565 ScalarEvolution &SE = *PSE.getSE(); 8566 auto GetConstantViaSCEV = [this, &SE](VPValue *Op) { 8567 Value *V = Op->getUnderlyingValue(); 8568 if (isa<Constant>(V) || !SE.isSCEVable(V->getType())) 8569 return Op; 8570 auto *C = dyn_cast<SCEVConstant>(SE.getSCEV(V)); 8571 if (!C) 8572 return Op; 8573 return Plan.getOrAddLiveIn(C->getValue()); 8574 }; 8575 // For Mul, the legacy cost model checks both operands. 8576 if (I->getOpcode() == Instruction::Mul) 8577 NewOps[0] = GetConstantViaSCEV(NewOps[0]); 8578 // For other binops, the legacy cost model only checks the second operand. 8579 NewOps[1] = GetConstantViaSCEV(NewOps[1]); 8580 } 8581 return new VPWidenRecipe(*I, make_range(NewOps.begin(), NewOps.end())); 8582 }; 8583 } 8584 8585 VPHistogramRecipe * 8586 VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI, 8587 ArrayRef<VPValue *> Operands) { 8588 // FIXME: Support other operations. 8589 unsigned Opcode = HI->Update->getOpcode(); 8590 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) && 8591 "Histogram update operation must be an Add or Sub"); 8592 8593 SmallVector<VPValue *, 3> HGramOps; 8594 // Bucket address. 8595 HGramOps.push_back(Operands[1]); 8596 // Increment value. 8597 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1))); 8598 8599 // In case of predicated execution (due to tail-folding, or conditional 8600 // execution, or both), pass the relevant mask. 8601 if (Legal->isMaskRequired(HI->Store)) 8602 HGramOps.push_back(getBlockInMask(HI->Store->getParent())); 8603 8604 return new VPHistogramRecipe(Opcode, 8605 make_range(HGramOps.begin(), HGramOps.end()), 8606 HI->Store->getDebugLoc()); 8607 } 8608 8609 void VPRecipeBuilder::fixHeaderPhis() { 8610 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8611 for (VPHeaderPHIRecipe *R : PhisToFix) { 8612 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8613 VPRecipeBase *IncR = 8614 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8615 R->addOperand(IncR->getVPSingleValue()); 8616 } 8617 } 8618 8619 VPReplicateRecipe *VPRecipeBuilder::handleReplication(Instruction *I, 8620 VFRange &Range) { 8621 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8622 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8623 Range); 8624 8625 bool IsPredicated = CM.isPredicatedInst(I); 8626 8627 // Even if the instruction is not marked as uniform, there are certain 8628 // intrinsic calls that can be effectively treated as such, so we check for 8629 // them here. Conservatively, we only do this for scalable vectors, since 8630 // for fixed-width VFs we can always fall back on full scalarization. 8631 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8632 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8633 case Intrinsic::assume: 8634 case Intrinsic::lifetime_start: 8635 case Intrinsic::lifetime_end: 8636 // For scalable vectors if one of the operands is variant then we still 8637 // want to mark as uniform, which will generate one instruction for just 8638 // the first lane of the vector. We can't scalarize the call in the same 8639 // way as for fixed-width vectors because we don't know how many lanes 8640 // there are. 8641 // 8642 // The reasons for doing it this way for scalable vectors are: 8643 // 1. For the assume intrinsic generating the instruction for the first 8644 // lane is still be better than not generating any at all. For 8645 // example, the input may be a splat across all lanes. 8646 // 2. For the lifetime start/end intrinsics the pointer operand only 8647 // does anything useful when the input comes from a stack object, 8648 // which suggests it should always be uniform. For non-stack objects 8649 // the effect is to poison the object, which still allows us to 8650 // remove the call. 8651 IsUniform = true; 8652 break; 8653 default: 8654 break; 8655 } 8656 } 8657 VPValue *BlockInMask = nullptr; 8658 if (!IsPredicated) { 8659 // Finalize the recipe for Instr, first if it is not predicated. 8660 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8661 } else { 8662 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8663 // Instructions marked for predication are replicated and a mask operand is 8664 // added initially. Masked replicate recipes will later be placed under an 8665 // if-then construct to prevent side-effects. Generate recipes to compute 8666 // the block mask for this region. 8667 BlockInMask = getBlockInMask(I->getParent()); 8668 } 8669 8670 // Note that there is some custom logic to mark some intrinsics as uniform 8671 // manually above for scalable vectors, which this assert needs to account for 8672 // as well. 8673 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated || 8674 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) && 8675 "Should not predicate a uniform recipe"); 8676 auto *Recipe = new VPReplicateRecipe(I, mapToVPValues(I->operands()), 8677 IsUniform, BlockInMask); 8678 return Recipe; 8679 } 8680 8681 /// Find all possible partial reductions in the loop and track all of those that 8682 /// are valid so recipes can be formed later. 8683 void VPRecipeBuilder::collectScaledReductions(VFRange &Range) { 8684 // Find all possible partial reductions. 8685 SmallVector<std::pair<PartialReductionChain, unsigned>, 1> 8686 PartialReductionChains; 8687 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) 8688 if (std::optional<std::pair<PartialReductionChain, unsigned>> Pair = 8689 getScaledReduction(Phi, RdxDesc, Range)) 8690 PartialReductionChains.push_back(*Pair); 8691 8692 // A partial reduction is invalid if any of its extends are used by 8693 // something that isn't another partial reduction. This is because the 8694 // extends are intended to be lowered along with the reduction itself. 8695 8696 // Build up a set of partial reduction bin ops for efficient use checking. 8697 SmallSet<User *, 4> PartialReductionBinOps; 8698 for (const auto &[PartialRdx, _] : PartialReductionChains) 8699 PartialReductionBinOps.insert(PartialRdx.BinOp); 8700 8701 auto ExtendIsOnlyUsedByPartialReductions = 8702 [&PartialReductionBinOps](Instruction *Extend) { 8703 return all_of(Extend->users(), [&](const User *U) { 8704 return PartialReductionBinOps.contains(U); 8705 }); 8706 }; 8707 8708 // Check if each use of a chain's two extends is a partial reduction 8709 // and only add those that don't have non-partial reduction users. 8710 for (auto Pair : PartialReductionChains) { 8711 PartialReductionChain Chain = Pair.first; 8712 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) && 8713 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)) 8714 ScaledReductionMap.insert(std::make_pair(Chain.Reduction, Pair.second)); 8715 } 8716 } 8717 8718 std::optional<std::pair<PartialReductionChain, unsigned>> 8719 VPRecipeBuilder::getScaledReduction(PHINode *PHI, 8720 const RecurrenceDescriptor &Rdx, 8721 VFRange &Range) { 8722 // TODO: Allow scaling reductions when predicating. The select at 8723 // the end of the loop chooses between the phi value and most recent 8724 // reduction result, both of which have different VFs to the active lane 8725 // mask when scaling. 8726 if (CM.blockNeedsPredicationForAnyReason(Rdx.getLoopExitInstr()->getParent())) 8727 return std::nullopt; 8728 8729 auto *Update = dyn_cast<BinaryOperator>(Rdx.getLoopExitInstr()); 8730 if (!Update) 8731 return std::nullopt; 8732 8733 Value *Op = Update->getOperand(0); 8734 Value *PhiOp = Update->getOperand(1); 8735 if (Op == PHI) { 8736 Op = Update->getOperand(1); 8737 PhiOp = Update->getOperand(0); 8738 } 8739 if (PhiOp != PHI) 8740 return std::nullopt; 8741 8742 auto *BinOp = dyn_cast<BinaryOperator>(Op); 8743 if (!BinOp || !BinOp->hasOneUse()) 8744 return std::nullopt; 8745 8746 using namespace llvm::PatternMatch; 8747 Value *A, *B; 8748 if (!match(BinOp->getOperand(0), m_ZExtOrSExt(m_Value(A))) || 8749 !match(BinOp->getOperand(1), m_ZExtOrSExt(m_Value(B)))) 8750 return std::nullopt; 8751 8752 Instruction *ExtA = cast<Instruction>(BinOp->getOperand(0)); 8753 Instruction *ExtB = cast<Instruction>(BinOp->getOperand(1)); 8754 8755 TTI::PartialReductionExtendKind OpAExtend = 8756 TargetTransformInfo::getPartialReductionExtendKind(ExtA); 8757 TTI::PartialReductionExtendKind OpBExtend = 8758 TargetTransformInfo::getPartialReductionExtendKind(ExtB); 8759 8760 PartialReductionChain Chain(Rdx.getLoopExitInstr(), ExtA, ExtB, BinOp); 8761 8762 unsigned TargetScaleFactor = 8763 PHI->getType()->getPrimitiveSizeInBits().getKnownScalarFactor( 8764 A->getType()->getPrimitiveSizeInBits()); 8765 8766 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8767 [&](ElementCount VF) { 8768 InstructionCost Cost = TTI->getPartialReductionCost( 8769 Update->getOpcode(), A->getType(), B->getType(), PHI->getType(), 8770 VF, OpAExtend, OpBExtend, 8771 std::make_optional(BinOp->getOpcode())); 8772 return Cost.isValid(); 8773 }, 8774 Range)) 8775 return std::make_pair(Chain, TargetScaleFactor); 8776 8777 return std::nullopt; 8778 } 8779 8780 VPRecipeBase * 8781 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8782 ArrayRef<VPValue *> Operands, 8783 VFRange &Range, VPBasicBlock *VPBB) { 8784 // First, check for specific widening recipes that deal with inductions, Phi 8785 // nodes, calls and memory operations. 8786 VPRecipeBase *Recipe; 8787 if (auto *Phi = dyn_cast<PHINode>(Instr)) { 8788 if (Phi->getParent() != OrigLoop->getHeader()) 8789 return tryToBlend(Phi, Operands); 8790 8791 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8792 return Recipe; 8793 8794 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8795 assert((Legal->isReductionVariable(Phi) || 8796 Legal->isFixedOrderRecurrence(Phi)) && 8797 "can only widen reductions and fixed-order recurrences here"); 8798 VPValue *StartV = Operands[0]; 8799 if (Legal->isReductionVariable(Phi)) { 8800 const RecurrenceDescriptor &RdxDesc = 8801 Legal->getReductionVars().find(Phi)->second; 8802 assert(RdxDesc.getRecurrenceStartValue() == 8803 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8804 8805 // If the PHI is used by a partial reduction, set the scale factor. 8806 unsigned ScaleFactor = 8807 getScalingForReduction(RdxDesc.getLoopExitInstr()).value_or(1); 8808 PhiRecipe = new VPReductionPHIRecipe( 8809 Phi, RdxDesc, *StartV, CM.isInLoopReduction(Phi), 8810 CM.useOrderedReductions(RdxDesc), ScaleFactor); 8811 } else { 8812 // TODO: Currently fixed-order recurrences are modeled as chains of 8813 // first-order recurrences. If there are no users of the intermediate 8814 // recurrences in the chain, the fixed order recurrence should be modeled 8815 // directly, enabling more efficient codegen. 8816 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8817 } 8818 8819 PhisToFix.push_back(PhiRecipe); 8820 return PhiRecipe; 8821 } 8822 8823 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate( 8824 cast<TruncInst>(Instr), Operands, Range))) 8825 return Recipe; 8826 8827 // All widen recipes below deal only with VF > 1. 8828 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8829 [&](ElementCount VF) { return VF.isScalar(); }, Range)) 8830 return nullptr; 8831 8832 if (auto *CI = dyn_cast<CallInst>(Instr)) 8833 return tryToWidenCall(CI, Operands, Range); 8834 8835 if (StoreInst *SI = dyn_cast<StoreInst>(Instr)) 8836 if (auto HistInfo = Legal->getHistogramInfo(SI)) 8837 return tryToWidenHistogram(*HistInfo, Operands); 8838 8839 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8840 return tryToWidenMemory(Instr, Operands, Range); 8841 8842 if (getScalingForReduction(Instr)) 8843 return tryToCreatePartialReduction(Instr, Operands); 8844 8845 if (!shouldWiden(Instr, Range)) 8846 return nullptr; 8847 8848 if (auto *GEP = dyn_cast<GetElementPtrInst>(Instr)) 8849 return new VPWidenGEPRecipe(GEP, 8850 make_range(Operands.begin(), Operands.end())); 8851 8852 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8853 return new VPWidenSelectRecipe( 8854 *SI, make_range(Operands.begin(), Operands.end())); 8855 } 8856 8857 if (auto *CI = dyn_cast<CastInst>(Instr)) { 8858 return new VPWidenCastRecipe(CI->getOpcode(), Operands[0], CI->getType(), 8859 *CI); 8860 } 8861 8862 return tryToWiden(Instr, Operands, VPBB); 8863 } 8864 8865 VPRecipeBase * 8866 VPRecipeBuilder::tryToCreatePartialReduction(Instruction *Reduction, 8867 ArrayRef<VPValue *> Operands) { 8868 assert(Operands.size() == 2 && 8869 "Unexpected number of operands for partial reduction"); 8870 8871 VPValue *BinOp = Operands[0]; 8872 VPValue *Phi = Operands[1]; 8873 if (isa<VPReductionPHIRecipe>(BinOp->getDefiningRecipe())) 8874 std::swap(BinOp, Phi); 8875 8876 return new VPPartialReductionRecipe(Reduction->getOpcode(), BinOp, Phi, 8877 Reduction); 8878 } 8879 8880 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8881 ElementCount MaxVF) { 8882 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8883 8884 auto MaxVFTimes2 = MaxVF * 2; 8885 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 8886 VFRange SubRange = {VF, MaxVFTimes2}; 8887 if (auto Plan = tryToBuildVPlanWithVPRecipes(SubRange)) { 8888 // Now optimize the initial VPlan. 8889 if (!Plan->hasVF(ElementCount::getFixed(1))) 8890 VPlanTransforms::truncateToMinimalBitwidths(*Plan, 8891 CM.getMinimalBitwidths()); 8892 VPlanTransforms::optimize(*Plan); 8893 // TODO: try to put it close to addActiveLaneMask(). 8894 // Discard the plan if it is not EVL-compatible 8895 if (CM.foldTailWithEVL() && !VPlanTransforms::tryAddExplicitVectorLength( 8896 *Plan, CM.getMaxSafeElements())) 8897 break; 8898 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid"); 8899 VPlans.push_back(std::move(Plan)); 8900 } 8901 VF = SubRange.End; 8902 } 8903 } 8904 8905 // Add the necessary canonical IV and branch recipes required to control the 8906 // loop. 8907 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, bool HasNUW, 8908 DebugLoc DL) { 8909 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8910 auto *StartV = Plan.getOrAddLiveIn(StartIdx); 8911 8912 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. 8913 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8914 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8915 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8916 Header->insert(CanonicalIVPHI, Header->begin()); 8917 8918 VPBuilder Builder(TopRegion->getExitingBasicBlock()); 8919 // Add a VPInstruction to increment the scalar canonical IV by VF * UF. 8920 auto *CanonicalIVIncrement = Builder.createOverflowingOp( 8921 Instruction::Add, {CanonicalIVPHI, &Plan.getVFxUF()}, {HasNUW, false}, DL, 8922 "index.next"); 8923 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8924 8925 // Add the BranchOnCount VPInstruction to the latch. 8926 Builder.createNaryOp(VPInstruction::BranchOnCount, 8927 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8928 } 8929 8930 /// Create and return a ResumePhi for \p WideIV, unless it is truncated. If the 8931 /// induction recipe is not canonical, creates a VPDerivedIVRecipe to compute 8932 /// the end value of the induction. 8933 static VPInstruction *addResumePhiRecipeForInduction( 8934 VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, 8935 VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC) { 8936 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV); 8937 // Truncated wide inductions resume from the last lane of their vector value 8938 // in the last vector iteration which is handled elsewhere. 8939 if (WideIntOrFp && WideIntOrFp->getTruncInst()) 8940 return nullptr; 8941 8942 VPValue *Start = WideIV->getStartValue(); 8943 VPValue *Step = WideIV->getStepValue(); 8944 const InductionDescriptor &ID = WideIV->getInductionDescriptor(); 8945 VPValue *EndValue = VectorTC; 8946 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) { 8947 EndValue = VectorPHBuilder.createDerivedIV( 8948 ID.getKind(), dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), 8949 Start, VectorTC, Step); 8950 } 8951 8952 // EndValue is derived from the vector trip count (which has the same type as 8953 // the widest induction) and thus may be wider than the induction here. 8954 Type *ScalarTypeOfWideIV = TypeInfo.inferScalarType(WideIV); 8955 if (ScalarTypeOfWideIV != TypeInfo.inferScalarType(EndValue)) { 8956 EndValue = VectorPHBuilder.createScalarCast(Instruction::Trunc, EndValue, 8957 ScalarTypeOfWideIV, 8958 WideIV->getDebugLoc()); 8959 } 8960 8961 auto *ResumePhiRecipe = 8962 ScalarPHBuilder.createNaryOp(VPInstruction::ResumePhi, {EndValue, Start}, 8963 WideIV->getDebugLoc(), "bc.resume.val"); 8964 return ResumePhiRecipe; 8965 } 8966 8967 /// Create resume phis in the scalar preheader for first-order recurrences, 8968 /// reductions and inductions, and update the VPIRInstructions wrapping the 8969 /// original phis in the scalar header. End values for inductions are added to 8970 /// \p IVEndValues. 8971 static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, 8972 DenseMap<VPValue *, VPValue *> &IVEndValues) { 8973 VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType()); 8974 auto *ScalarPH = Plan.getScalarPreheader(); 8975 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getSinglePredecessor()); 8976 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); 8977 VPBuilder VectorPHBuilder( 8978 cast<VPBasicBlock>(VectorRegion->getSinglePredecessor())); 8979 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi()); 8980 VPBuilder ScalarPHBuilder(ScalarPH); 8981 VPValue *OneVPV = Plan.getOrAddLiveIn( 8982 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 1)); 8983 for (VPRecipeBase &ScalarPhiR : *Plan.getScalarHeader()) { 8984 auto *ScalarPhiIRI = cast<VPIRInstruction>(&ScalarPhiR); 8985 auto *ScalarPhiI = dyn_cast<PHINode>(&ScalarPhiIRI->getInstruction()); 8986 if (!ScalarPhiI) 8987 break; 8988 8989 // TODO: Extract final value from induction recipe initially, optimize to 8990 // pre-computed end value together in optimizeInductionExitUsers. 8991 auto *VectorPhiR = cast<VPHeaderPHIRecipe>(Builder.getRecipe(ScalarPhiI)); 8992 if (auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) { 8993 if (VPInstruction *ResumePhi = addResumePhiRecipeForInduction( 8994 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo, 8995 &Plan.getVectorTripCount())) { 8996 assert(ResumePhi->getOpcode() == VPInstruction::ResumePhi && 8997 "Expected a ResumePhi"); 8998 IVEndValues[WideIVR] = ResumePhi->getOperand(0); 8999 ScalarPhiIRI->addOperand(ResumePhi); 9000 continue; 9001 } 9002 // TODO: Also handle truncated inductions here. Computing end-values 9003 // separately should be done as VPlan-to-VPlan optimization, after 9004 // legalizing all resume values to use the last lane from the loop. 9005 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() && 9006 "should only skip truncated wide inductions"); 9007 continue; 9008 } 9009 9010 // The backedge value provides the value to resume coming out of a loop, 9011 // which for FORs is a vector whose last element needs to be extracted. The 9012 // start value provides the value if the loop is bypassed. 9013 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR); 9014 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue(); 9015 assert(VectorRegion->getSingleSuccessor() == Plan.getMiddleBlock() && 9016 "Cannot handle loops with uncountable early exits"); 9017 if (IsFOR) 9018 ResumeFromVectorLoop = MiddleBuilder.createNaryOp( 9019 VPInstruction::ExtractFromEnd, {ResumeFromVectorLoop, OneVPV}, {}, 9020 "vector.recur.extract"); 9021 StringRef Name = IsFOR ? "scalar.recur.init" : "bc.merge.rdx"; 9022 auto *ResumePhiR = ScalarPHBuilder.createNaryOp( 9023 VPInstruction::ResumePhi, 9024 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name); 9025 ScalarPhiIRI->addOperand(ResumePhiR); 9026 } 9027 } 9028 9029 // Collect VPIRInstructions for phis in the exit blocks that are modeled 9030 // in VPlan and add the exiting VPValue as operand. 9031 static SetVector<VPIRInstruction *> 9032 collectUsersInExitBlocks(Loop *OrigLoop, VPRecipeBuilder &Builder, 9033 VPlan &Plan) { 9034 auto *MiddleVPBB = Plan.getMiddleBlock(); 9035 SetVector<VPIRInstruction *> ExitUsersToFix; 9036 for (VPIRBasicBlock *ExitVPBB : Plan.getExitBlocks()) { 9037 for (VPRecipeBase &R : *ExitVPBB) { 9038 auto *ExitIRI = dyn_cast<VPIRInstruction>(&R); 9039 if (!ExitIRI) 9040 continue; 9041 auto *ExitPhi = dyn_cast<PHINode>(&ExitIRI->getInstruction()); 9042 if (!ExitPhi) 9043 break; 9044 for (VPBlockBase *PredVPBB : ExitVPBB->getPredecessors()) { 9045 BasicBlock *ExitingBB = OrigLoop->getLoopLatch(); 9046 if (PredVPBB != MiddleVPBB) { 9047 SmallVector<BasicBlock *> ExitingBlocks; 9048 OrigLoop->getExitingBlocks(ExitingBlocks); 9049 assert(ExitingBlocks.size() == 2 && "only support 2 exiting blocks"); 9050 ExitingBB = ExitingBB == ExitingBlocks[0] ? ExitingBlocks[1] 9051 : ExitingBlocks[0]; 9052 } 9053 Value *IncomingValue = ExitPhi->getIncomingValueForBlock(ExitingBB); 9054 VPValue *V = Builder.getVPValueOrAddLiveIn(IncomingValue); 9055 ExitUsersToFix.insert(ExitIRI); 9056 ExitIRI->addOperand(V); 9057 } 9058 } 9059 } 9060 return ExitUsersToFix; 9061 } 9062 9063 // Add exit values to \p Plan. Extracts are added for each entry in \p 9064 // ExitUsersToFix if needed and their operands are updated. Returns true if all 9065 // exit users can be handled, otherwise return false. 9066 static bool 9067 addUsersInExitBlocks(VPlan &Plan, 9068 const SetVector<VPIRInstruction *> &ExitUsersToFix) { 9069 if (ExitUsersToFix.empty()) 9070 return true; 9071 9072 auto *MiddleVPBB = Plan.getMiddleBlock(); 9073 VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi()); 9074 VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType()); 9075 9076 // Introduce extract for exiting values and update the VPIRInstructions 9077 // modeling the corresponding LCSSA phis. 9078 for (VPIRInstruction *ExitIRI : ExitUsersToFix) { 9079 for (const auto &[Idx, Op] : enumerate(ExitIRI->operands())) { 9080 // Pass live-in values used by exit phis directly through to their users 9081 // in the exit block. 9082 if (Op->isLiveIn()) 9083 continue; 9084 9085 // Currently only live-ins can be used by exit values from blocks not 9086 // exiting via the vector latch through to the middle block. 9087 if (ExitIRI->getParent()->getSinglePredecessor() != MiddleVPBB) 9088 return false; 9089 9090 LLVMContext &Ctx = ExitIRI->getInstruction().getContext(); 9091 VPValue *Ext = B.createNaryOp(VPInstruction::ExtractFromEnd, 9092 {Op, Plan.getOrAddLiveIn(ConstantInt::get( 9093 IntegerType::get(Ctx, 32), 1))}); 9094 ExitIRI->setOperand(Idx, Ext); 9095 } 9096 } 9097 return true; 9098 } 9099 9100 /// Handle users in the exit block for first order reductions in the original 9101 /// exit block. The penultimate value of recurrences is fed to their LCSSA phi 9102 /// users in the original exit block using the VPIRInstruction wrapping to the 9103 /// LCSSA phi. 9104 static void addExitUsersForFirstOrderRecurrences( 9105 VPlan &Plan, SetVector<VPIRInstruction *> &ExitUsersToFix) { 9106 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); 9107 auto *ScalarPHVPBB = Plan.getScalarPreheader(); 9108 auto *MiddleVPBB = Plan.getMiddleBlock(); 9109 VPBuilder ScalarPHBuilder(ScalarPHVPBB); 9110 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi()); 9111 VPValue *TwoVPV = Plan.getOrAddLiveIn( 9112 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 2)); 9113 9114 for (auto &HeaderPhi : VectorRegion->getEntryBasicBlock()->phis()) { 9115 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi); 9116 if (!FOR) 9117 continue; 9118 9119 assert(VectorRegion->getSingleSuccessor() == Plan.getMiddleBlock() && 9120 "Cannot handle loops with uncountable early exits"); 9121 9122 // This is the second phase of vectorizing first-order recurrences, creating 9123 // extract for users outside the loop. An overview of the transformation is 9124 // described below. Suppose we have the following loop with some use after 9125 // the loop of the last a[i-1], 9126 // 9127 // for (int i = 0; i < n; ++i) { 9128 // t = a[i - 1]; 9129 // b[i] = a[i] - t; 9130 // } 9131 // use t; 9132 // 9133 // There is a first-order recurrence on "a". For this loop, the shorthand 9134 // scalar IR looks like: 9135 // 9136 // scalar.ph: 9137 // s.init = a[-1] 9138 // br scalar.body 9139 // 9140 // scalar.body: 9141 // i = phi [0, scalar.ph], [i+1, scalar.body] 9142 // s1 = phi [s.init, scalar.ph], [s2, scalar.body] 9143 // s2 = a[i] 9144 // b[i] = s2 - s1 9145 // br cond, scalar.body, exit.block 9146 // 9147 // exit.block: 9148 // use = lcssa.phi [s1, scalar.body] 9149 // 9150 // In this example, s1 is a recurrence because it's value depends on the 9151 // previous iteration. In the first phase of vectorization, we created a 9152 // VPFirstOrderRecurrencePHIRecipe v1 for s1. Now we create the extracts 9153 // for users in the scalar preheader and exit block. 9154 // 9155 // vector.ph: 9156 // v_init = vector(..., ..., ..., a[-1]) 9157 // br vector.body 9158 // 9159 // vector.body 9160 // i = phi [0, vector.ph], [i+4, vector.body] 9161 // v1 = phi [v_init, vector.ph], [v2, vector.body] 9162 // v2 = a[i, i+1, i+2, i+3] 9163 // b[i] = v2 - v1 9164 // // Next, third phase will introduce v1' = splice(v1(3), v2(0, 1, 2)) 9165 // b[i, i+1, i+2, i+3] = v2 - v1 9166 // br cond, vector.body, middle.block 9167 // 9168 // middle.block: 9169 // vector.recur.extract.for.phi = v2(2) 9170 // vector.recur.extract = v2(3) 9171 // br cond, scalar.ph, exit.block 9172 // 9173 // scalar.ph: 9174 // scalar.recur.init = phi [vector.recur.extract, middle.block], 9175 // [s.init, otherwise] 9176 // br scalar.body 9177 // 9178 // scalar.body: 9179 // i = phi [0, scalar.ph], [i+1, scalar.body] 9180 // s1 = phi [scalar.recur.init, scalar.ph], [s2, scalar.body] 9181 // s2 = a[i] 9182 // b[i] = s2 - s1 9183 // br cond, scalar.body, exit.block 9184 // 9185 // exit.block: 9186 // lo = lcssa.phi [s1, scalar.body], 9187 // [vector.recur.extract.for.phi, middle.block] 9188 // 9189 // Now update VPIRInstructions modeling LCSSA phis in the exit block. 9190 // Extract the penultimate value of the recurrence and use it as operand for 9191 // the VPIRInstruction modeling the phi. 9192 for (VPIRInstruction *ExitIRI : ExitUsersToFix) { 9193 if (ExitIRI->getOperand(0) != FOR) 9194 continue; 9195 VPValue *PenultimateElement = MiddleBuilder.createNaryOp( 9196 VPInstruction::ExtractFromEnd, {FOR->getBackedgeValue(), TwoVPV}, {}, 9197 "vector.recur.extract.for.phi"); 9198 ExitIRI->setOperand(0, PenultimateElement); 9199 ExitUsersToFix.remove(ExitIRI); 9200 } 9201 } 9202 } 9203 9204 VPlanPtr 9205 LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(VFRange &Range) { 9206 9207 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9208 9209 // --------------------------------------------------------------------------- 9210 // Build initial VPlan: Scan the body of the loop in a topological order to 9211 // visit each basic block after having visited its predecessor basic blocks. 9212 // --------------------------------------------------------------------------- 9213 9214 // Create initial VPlan skeleton, having a basic block for the pre-header 9215 // which contains SCEV expansions that need to happen before the CFG is 9216 // modified; a basic block for the vector pre-header, followed by a region for 9217 // the vector loop, followed by the middle basic block. The skeleton vector 9218 // loop region contains a header and latch basic blocks. 9219 9220 bool RequiresScalarEpilogueCheck = 9221 LoopVectorizationPlanner::getDecisionAndClampRange( 9222 [this](ElementCount VF) { 9223 return !CM.requiresScalarEpilogue(VF.isVector()); 9224 }, 9225 Range); 9226 VPlanPtr Plan = VPlan::createInitialVPlan(Legal->getWidestInductionType(), 9227 PSE, RequiresScalarEpilogueCheck, 9228 CM.foldTailByMasking(), OrigLoop); 9229 9230 // Don't use getDecisionAndClampRange here, because we don't know the UF 9231 // so this function is better to be conservative, rather than to split 9232 // it up into different VPlans. 9233 // TODO: Consider using getDecisionAndClampRange here to split up VPlans. 9234 bool IVUpdateMayOverflow = false; 9235 for (ElementCount VF : Range) 9236 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF); 9237 9238 DebugLoc DL = getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9239 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow); 9240 // Use NUW for the induction increment if we proved that it won't overflow in 9241 // the vector loop or when not folding the tail. In the later case, we know 9242 // that the canonical induction increment will not overflow as the vector trip 9243 // count is >= increment and a multiple of the increment. 9244 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None; 9245 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), HasNUW, DL); 9246 9247 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE, 9248 Builder); 9249 9250 // --------------------------------------------------------------------------- 9251 // Pre-construction: record ingredients whose recipes we'll need to further 9252 // process after constructing the initial VPlan. 9253 // --------------------------------------------------------------------------- 9254 9255 // For each interleave group which is relevant for this (possibly trimmed) 9256 // Range, add it to the set of groups to be later applied to the VPlan and add 9257 // placeholders for its members' Recipes which we'll be replacing with a 9258 // single VPInterleaveRecipe. 9259 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9260 auto ApplyIG = [IG, this](ElementCount VF) -> bool { 9261 bool Result = (VF.isVector() && // Query is illegal for VF == 1 9262 CM.getWideningDecision(IG->getInsertPos(), VF) == 9263 LoopVectorizationCostModel::CM_Interleave); 9264 // For scalable vectors, the only interleave factor currently supported 9265 // is 2 since we require the (de)interleave2 intrinsics instead of 9266 // shufflevectors. 9267 assert((!Result || !VF.isScalable() || IG->getFactor() == 2) && 9268 "Unsupported interleave factor for scalable vectors"); 9269 return Result; 9270 }; 9271 if (!getDecisionAndClampRange(ApplyIG, Range)) 9272 continue; 9273 InterleaveGroups.insert(IG); 9274 } 9275 9276 // --------------------------------------------------------------------------- 9277 // Construct recipes for the instructions in the loop 9278 // --------------------------------------------------------------------------- 9279 9280 // Scan the body of the loop in a topological order to visit each basic block 9281 // after having visited its predecessor basic blocks. 9282 LoopBlocksDFS DFS(OrigLoop); 9283 DFS.perform(LI); 9284 9285 VPBasicBlock *HeaderVPBB = Plan->getVectorLoopRegion()->getEntryBasicBlock(); 9286 VPBasicBlock *VPBB = HeaderVPBB; 9287 BasicBlock *HeaderBB = OrigLoop->getHeader(); 9288 bool NeedsMasks = 9289 CM.foldTailByMasking() || 9290 any_of(OrigLoop->blocks(), [this, HeaderBB](BasicBlock *BB) { 9291 bool NeedsBlends = BB != HeaderBB && !BB->phis().empty(); 9292 return Legal->blockNeedsPredication(BB) || NeedsBlends; 9293 }); 9294 9295 RecipeBuilder.collectScaledReductions(Range); 9296 9297 auto *MiddleVPBB = Plan->getMiddleBlock(); 9298 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi(); 9299 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9300 // Relevant instructions from basic block BB will be grouped into VPRecipe 9301 // ingredients and fill a new VPBasicBlock. 9302 if (VPBB != HeaderVPBB) 9303 VPBB->setName(BB->getName()); 9304 Builder.setInsertPoint(VPBB); 9305 9306 if (VPBB == HeaderVPBB) 9307 RecipeBuilder.createHeaderMask(); 9308 else if (NeedsMasks) 9309 RecipeBuilder.createBlockInMask(BB); 9310 9311 // Introduce each ingredient into VPlan. 9312 // TODO: Model and preserve debug intrinsics in VPlan. 9313 for (Instruction &I : drop_end(BB->instructionsWithoutDebug(false))) { 9314 Instruction *Instr = &I; 9315 SmallVector<VPValue *, 4> Operands; 9316 auto *Phi = dyn_cast<PHINode>(Instr); 9317 if (Phi && Phi->getParent() == HeaderBB) { 9318 Operands.push_back(Plan->getOrAddLiveIn( 9319 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9320 } else { 9321 auto OpRange = RecipeBuilder.mapToVPValues(Instr->operands()); 9322 Operands = {OpRange.begin(), OpRange.end()}; 9323 } 9324 9325 // The stores with invariant address inside the loop will be deleted, and 9326 // in the exit block, a uniform store recipe will be created for the final 9327 // invariant store of the reduction. 9328 StoreInst *SI; 9329 if ((SI = dyn_cast<StoreInst>(&I)) && 9330 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) { 9331 // Only create recipe for the final invariant store of the reduction. 9332 if (!Legal->isInvariantStoreOfReduction(SI)) 9333 continue; 9334 auto *Recipe = new VPReplicateRecipe( 9335 SI, RecipeBuilder.mapToVPValues(Instr->operands()), 9336 true /* IsUniform */); 9337 Recipe->insertBefore(*MiddleVPBB, MBIP); 9338 continue; 9339 } 9340 9341 VPRecipeBase *Recipe = 9342 RecipeBuilder.tryToCreateWidenRecipe(Instr, Operands, Range, VPBB); 9343 if (!Recipe) 9344 Recipe = RecipeBuilder.handleReplication(Instr, Range); 9345 9346 RecipeBuilder.setRecipe(Instr, Recipe); 9347 if (isa<VPHeaderPHIRecipe>(Recipe)) { 9348 // VPHeaderPHIRecipes must be kept in the phi section of HeaderVPBB. In 9349 // the following cases, VPHeaderPHIRecipes may be created after non-phi 9350 // recipes and need to be moved to the phi section of HeaderVPBB: 9351 // * tail-folding (non-phi recipes computing the header mask are 9352 // introduced earlier than regular header phi recipes, and should appear 9353 // after them) 9354 // * Optimizing truncates to VPWidenIntOrFpInductionRecipe. 9355 9356 assert((HeaderVPBB->getFirstNonPhi() == VPBB->end() || 9357 CM.foldTailByMasking() || isa<TruncInst>(Instr)) && 9358 "unexpected recipe needs moving"); 9359 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9360 } else 9361 VPBB->appendRecipe(Recipe); 9362 } 9363 9364 VPBlockUtils::insertBlockAfter(Plan->createVPBasicBlock(""), VPBB); 9365 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9366 } 9367 9368 // After here, VPBB should not be used. 9369 VPBB = nullptr; 9370 9371 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 9372 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 9373 "entry block must be set to a VPRegionBlock having a non-empty entry " 9374 "VPBasicBlock"); 9375 RecipeBuilder.fixHeaderPhis(); 9376 9377 // Update wide induction increments to use the same step as the corresponding 9378 // wide induction. This enables detecting induction increments directly in 9379 // VPlan and removes redundant splats. 9380 for (const auto &[Phi, ID] : Legal->getInductionVars()) { 9381 auto *IVInc = cast<Instruction>( 9382 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())); 9383 if (IVInc->getOperand(0) != Phi || IVInc->getOpcode() != Instruction::Add) 9384 continue; 9385 VPWidenInductionRecipe *WideIV = 9386 cast<VPWidenInductionRecipe>(RecipeBuilder.getRecipe(Phi)); 9387 VPRecipeBase *R = RecipeBuilder.getRecipe(IVInc); 9388 R->setOperand(1, WideIV->getStepValue()); 9389 } 9390 9391 if (auto *UncountableExitingBlock = 9392 Legal->getUncountableEarlyExitingBlock()) { 9393 VPlanTransforms::handleUncountableEarlyExit( 9394 *Plan, *PSE.getSE(), OrigLoop, UncountableExitingBlock, RecipeBuilder); 9395 } 9396 DenseMap<VPValue *, VPValue *> IVEndValues; 9397 addScalarResumePhis(RecipeBuilder, *Plan, IVEndValues); 9398 SetVector<VPIRInstruction *> ExitUsersToFix = 9399 collectUsersInExitBlocks(OrigLoop, RecipeBuilder, *Plan); 9400 addExitUsersForFirstOrderRecurrences(*Plan, ExitUsersToFix); 9401 if (!addUsersInExitBlocks(*Plan, ExitUsersToFix)) { 9402 reportVectorizationFailure( 9403 "Some exit values in loop with uncountable exit not supported yet", 9404 "UncountableEarlyExitLoopsUnsupportedExitValue", ORE, OrigLoop); 9405 return nullptr; 9406 } 9407 9408 // --------------------------------------------------------------------------- 9409 // Transform initial VPlan: Apply previously taken decisions, in order, to 9410 // bring the VPlan to its final state. 9411 // --------------------------------------------------------------------------- 9412 9413 // Adjust the recipes for any inloop reductions. 9414 adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start); 9415 9416 // Interleave memory: for each Interleave Group we marked earlier as relevant 9417 // for this VPlan, replace the Recipes widening its memory instructions with a 9418 // single VPInterleaveRecipe at its insertion point. 9419 VPlanTransforms::createInterleaveGroups( 9420 *Plan, InterleaveGroups, RecipeBuilder, CM.isScalarEpilogueAllowed()); 9421 9422 for (ElementCount VF : Range) 9423 Plan->addVF(VF); 9424 Plan->setName("Initial VPlan"); 9425 9426 // Replace VPValues for known constant strides guaranteed by predicate scalar 9427 // evolution. 9428 auto CanUseVersionedStride = [&Plan](VPUser &U, unsigned) { 9429 auto *R = cast<VPRecipeBase>(&U); 9430 return R->getParent()->getParent() || 9431 R->getParent() == 9432 Plan->getVectorLoopRegion()->getSinglePredecessor(); 9433 }; 9434 for (auto [_, Stride] : Legal->getLAI()->getSymbolicStrides()) { 9435 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue(); 9436 auto *ScevStride = dyn_cast<SCEVConstant>(PSE.getSCEV(StrideV)); 9437 // Only handle constant strides for now. 9438 if (!ScevStride) 9439 continue; 9440 9441 auto *CI = Plan->getOrAddLiveIn( 9442 ConstantInt::get(Stride->getType(), ScevStride->getAPInt())); 9443 if (VPValue *StrideVPV = Plan->getLiveIn(StrideV)) 9444 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride); 9445 9446 // The versioned value may not be used in the loop directly but through a 9447 // sext/zext. Add new live-ins in those cases. 9448 for (Value *U : StrideV->users()) { 9449 if (!isa<SExtInst, ZExtInst>(U)) 9450 continue; 9451 VPValue *StrideVPV = Plan->getLiveIn(U); 9452 if (!StrideVPV) 9453 continue; 9454 unsigned BW = U->getType()->getScalarSizeInBits(); 9455 APInt C = isa<SExtInst>(U) ? ScevStride->getAPInt().sext(BW) 9456 : ScevStride->getAPInt().zext(BW); 9457 VPValue *CI = Plan->getOrAddLiveIn(ConstantInt::get(U->getType(), C)); 9458 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride); 9459 } 9460 } 9461 9462 VPlanTransforms::dropPoisonGeneratingRecipes(*Plan, [this](BasicBlock *BB) { 9463 return Legal->blockNeedsPredication(BB); 9464 }); 9465 9466 // Sink users of fixed-order recurrence past the recipe defining the previous 9467 // value and introduce FirstOrderRecurrenceSplice VPInstructions. 9468 if (!VPlanTransforms::adjustFixedOrderRecurrences(*Plan, Builder)) 9469 return nullptr; 9470 9471 if (useActiveLaneMask(Style)) { 9472 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once 9473 // TailFoldingStyle is visible there. 9474 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style); 9475 bool WithoutRuntimeCheck = 9476 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck; 9477 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow, 9478 WithoutRuntimeCheck); 9479 } 9480 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues); 9481 9482 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid"); 9483 return Plan; 9484 } 9485 9486 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9487 // Outer loop handling: They may require CFG and instruction level 9488 // transformations before even evaluating whether vectorization is profitable. 9489 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9490 // the vectorization pipeline. 9491 assert(!OrigLoop->isInnermost()); 9492 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9493 9494 // Create new empty VPlan 9495 auto Plan = VPlan::createInitialVPlan(Legal->getWidestInductionType(), PSE, 9496 true, false, OrigLoop); 9497 9498 // Build hierarchical CFG 9499 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9500 HCFGBuilder.buildHierarchicalCFG(); 9501 9502 for (ElementCount VF : Range) 9503 Plan->addVF(VF); 9504 9505 VPlanTransforms::VPInstructionsToVPRecipes( 9506 Plan, 9507 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9508 *PSE.getSE(), *TLI); 9509 9510 // Remove the existing terminator of the exiting block of the top-most region. 9511 // A BranchOnCount will be added instead when adding the canonical IV recipes. 9512 auto *Term = 9513 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); 9514 Term->eraseFromParent(); 9515 9516 // Tail folding is not supported for outer loops, so the induction increment 9517 // is guaranteed to not wrap. 9518 bool HasNUW = true; 9519 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), HasNUW, 9520 DebugLoc()); 9521 9522 // Collect mapping of IR header phis to header phi recipes, to be used in 9523 // addScalarResumePhis. 9524 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE, 9525 Builder); 9526 for (auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9527 if (isa<VPCanonicalIVPHIRecipe>(&R)) 9528 continue; 9529 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R); 9530 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR); 9531 } 9532 DenseMap<VPValue *, VPValue *> IVEndValues; 9533 // TODO: IVEndValues are not used yet in the native path, to optimize exit 9534 // values. 9535 addScalarResumePhis(RecipeBuilder, *Plan, IVEndValues); 9536 9537 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid"); 9538 return Plan; 9539 } 9540 9541 // Adjust the recipes for reductions. For in-loop reductions the chain of 9542 // instructions leading from the loop exit instr to the phi need to be converted 9543 // to reductions, with one operand being vector and the other being the scalar 9544 // reduction chain. For other reductions, a select is introduced between the phi 9545 // and users outside the vector region when folding the tail. 9546 // 9547 // A ComputeReductionResult recipe is added to the middle block, also for 9548 // in-loop reductions which compute their result in-loop, because generating 9549 // the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes. 9550 // 9551 // Adjust AnyOf reductions; replace the reduction phi for the selected value 9552 // with a boolean reduction phi node to check if the condition is true in any 9553 // iteration. The final value is selected by the final ComputeReductionResult. 9554 void LoopVectorizationPlanner::adjustRecipesForReductions( 9555 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) { 9556 using namespace VPlanPatternMatch; 9557 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion(); 9558 VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock(); 9559 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock(); 9560 SmallVector<VPRecipeBase *> ToDelete; 9561 9562 for (VPRecipeBase &R : Header->phis()) { 9563 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9564 if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered())) 9565 continue; 9566 9567 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 9568 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9569 assert( 9570 !RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind) && 9571 !RecurrenceDescriptor::isFindLastIVRecurrenceKind(Kind) && 9572 "AnyOf and FindLast reductions are not allowed for in-loop reductions"); 9573 9574 // Collect the chain of "link" recipes for the reduction starting at PhiR. 9575 SetVector<VPSingleDefRecipe *> Worklist; 9576 Worklist.insert(PhiR); 9577 for (unsigned I = 0; I != Worklist.size(); ++I) { 9578 VPSingleDefRecipe *Cur = Worklist[I]; 9579 for (VPUser *U : Cur->users()) { 9580 auto *UserRecipe = cast<VPSingleDefRecipe>(U); 9581 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) { 9582 assert((UserRecipe->getParent() == MiddleVPBB || 9583 UserRecipe->getParent() == Plan->getScalarPreheader()) && 9584 "U must be either in the loop region, the middle block or the " 9585 "scalar preheader."); 9586 continue; 9587 } 9588 Worklist.insert(UserRecipe); 9589 } 9590 } 9591 9592 // Visit operation "Links" along the reduction chain top-down starting from 9593 // the phi until LoopExitValue. We keep track of the previous item 9594 // (PreviousLink) to tell which of the two operands of a Link will remain 9595 // scalar and which will be reduced. For minmax by select(cmp), Link will be 9596 // the select instructions. Blend recipes of in-loop reduction phi's will 9597 // get folded to their non-phi operand, as the reduction recipe handles the 9598 // condition directly. 9599 VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0]. 9600 for (VPSingleDefRecipe *CurrentLink : Worklist.getArrayRef().drop_front()) { 9601 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr(); 9602 9603 // Index of the first operand which holds a non-mask vector operand. 9604 unsigned IndexOfFirstOperand; 9605 // Recognize a call to the llvm.fmuladd intrinsic. 9606 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9607 VPValue *VecOp; 9608 VPBasicBlock *LinkVPBB = CurrentLink->getParent(); 9609 if (IsFMulAdd) { 9610 assert( 9611 RecurrenceDescriptor::isFMulAddIntrinsic(CurrentLinkI) && 9612 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9613 assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) || 9614 isa<VPWidenIntrinsicRecipe>(CurrentLink)) && 9615 CurrentLink->getOperand(2) == PreviousLink && 9616 "expected a call where the previous link is the added operand"); 9617 9618 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9619 // need to create an fmul recipe (multiplying the first two operands of 9620 // the fmuladd together) to use as the vector operand for the fadd 9621 // reduction. 9622 VPInstruction *FMulRecipe = new VPInstruction( 9623 Instruction::FMul, 9624 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)}, 9625 CurrentLinkI->getFastMathFlags()); 9626 LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator()); 9627 VecOp = FMulRecipe; 9628 } else { 9629 auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink); 9630 if (PhiR->isInLoop() && Blend) { 9631 assert(Blend->getNumIncomingValues() == 2 && 9632 "Blend must have 2 incoming values"); 9633 if (Blend->getIncomingValue(0) == PhiR) 9634 Blend->replaceAllUsesWith(Blend->getIncomingValue(1)); 9635 else { 9636 assert(Blend->getIncomingValue(1) == PhiR && 9637 "PhiR must be an operand of the blend"); 9638 Blend->replaceAllUsesWith(Blend->getIncomingValue(0)); 9639 } 9640 continue; 9641 } 9642 9643 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9644 if (isa<VPWidenRecipe>(CurrentLink)) { 9645 assert(isa<CmpInst>(CurrentLinkI) && 9646 "need to have the compare of the select"); 9647 continue; 9648 } 9649 assert(isa<VPWidenSelectRecipe>(CurrentLink) && 9650 "must be a select recipe"); 9651 IndexOfFirstOperand = 1; 9652 } else { 9653 assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) && 9654 "Expected to replace a VPWidenSC"); 9655 IndexOfFirstOperand = 0; 9656 } 9657 // Note that for non-commutable operands (cmp-selects), the semantics of 9658 // the cmp-select are captured in the recurrence kind. 9659 unsigned VecOpId = 9660 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink 9661 ? IndexOfFirstOperand + 1 9662 : IndexOfFirstOperand; 9663 VecOp = CurrentLink->getOperand(VecOpId); 9664 assert(VecOp != PreviousLink && 9665 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 - 9666 (VecOpId - IndexOfFirstOperand)) == 9667 PreviousLink && 9668 "PreviousLink must be the operand other than VecOp"); 9669 } 9670 9671 BasicBlock *BB = CurrentLinkI->getParent(); 9672 VPValue *CondOp = nullptr; 9673 if (CM.blockNeedsPredicationForAnyReason(BB)) 9674 CondOp = RecipeBuilder.getBlockInMask(BB); 9675 9676 auto *RedRecipe = new VPReductionRecipe( 9677 RdxDesc, CurrentLinkI, PreviousLink, VecOp, CondOp, 9678 CM.useOrderedReductions(RdxDesc), CurrentLinkI->getDebugLoc()); 9679 // Append the recipe to the end of the VPBasicBlock because we need to 9680 // ensure that it comes after all of it's inputs, including CondOp. 9681 // Delete CurrentLink as it will be invalid if its operand is replaced 9682 // with a reduction defined at the bottom of the block in the next link. 9683 LinkVPBB->appendRecipe(RedRecipe); 9684 CurrentLink->replaceAllUsesWith(RedRecipe); 9685 ToDelete.push_back(CurrentLink); 9686 PreviousLink = RedRecipe; 9687 } 9688 } 9689 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock(); 9690 Builder.setInsertPoint(&*LatchVPBB->begin()); 9691 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi(); 9692 for (VPRecipeBase &R : 9693 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9694 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9695 if (!PhiR) 9696 continue; 9697 9698 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 9699 // If tail is folded by masking, introduce selects between the phi 9700 // and the users outside the vector region of each reduction, at the 9701 // beginning of the dedicated latch block. 9702 auto *OrigExitingVPV = PhiR->getBackedgeValue(); 9703 auto *NewExitingVPV = PhiR->getBackedgeValue(); 9704 if (!PhiR->isInLoop() && CM.foldTailByMasking()) { 9705 VPValue *Cond = RecipeBuilder.getBlockInMask(OrigLoop->getHeader()); 9706 assert(OrigExitingVPV->getDefiningRecipe()->getParent() != LatchVPBB && 9707 "reduction recipe must be defined before latch"); 9708 Type *PhiTy = PhiR->getOperand(0)->getLiveInIRValue()->getType(); 9709 std::optional<FastMathFlags> FMFs = 9710 PhiTy->isFloatingPointTy() 9711 ? std::make_optional(RdxDesc.getFastMathFlags()) 9712 : std::nullopt; 9713 NewExitingVPV = 9714 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs); 9715 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) { 9716 return isa<VPInstruction>(&U) && 9717 cast<VPInstruction>(&U)->getOpcode() == 9718 VPInstruction::ComputeReductionResult; 9719 }); 9720 if (CM.usePredicatedReductionSelect( 9721 PhiR->getRecurrenceDescriptor().getOpcode(), PhiTy)) 9722 PhiR->setOperand(1, NewExitingVPV); 9723 } 9724 9725 // If the vector reduction can be performed in a smaller type, we truncate 9726 // then extend the loop exit value to enable InstCombine to evaluate the 9727 // entire expression in the smaller type. 9728 Type *PhiTy = PhiR->getStartValue()->getLiveInIRValue()->getType(); 9729 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() && 9730 !RecurrenceDescriptor::isAnyOfRecurrenceKind( 9731 RdxDesc.getRecurrenceKind())) { 9732 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 9733 Type *RdxTy = RdxDesc.getRecurrenceType(); 9734 auto *Trunc = 9735 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy); 9736 auto *Extnd = 9737 RdxDesc.isSigned() 9738 ? new VPWidenCastRecipe(Instruction::SExt, Trunc, PhiTy) 9739 : new VPWidenCastRecipe(Instruction::ZExt, Trunc, PhiTy); 9740 9741 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe()); 9742 Extnd->insertAfter(Trunc); 9743 if (PhiR->getOperand(1) == NewExitingVPV) 9744 PhiR->setOperand(1, Extnd->getVPSingleValue()); 9745 NewExitingVPV = Extnd; 9746 } 9747 9748 // We want code in the middle block to appear to execute on the location of 9749 // the scalar loop's latch terminator because: (a) it is all compiler 9750 // generated, (b) these instructions are always executed after evaluating 9751 // the latch conditional branch, and (c) other passes may add new 9752 // predecessors which terminate on this line. This is the easiest way to 9753 // ensure we don't accidentally cause an extra step back into the loop while 9754 // debugging. 9755 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc(); 9756 9757 // TODO: At the moment ComputeReductionResult also drives creation of the 9758 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here 9759 // even for in-loop reductions, until the reduction resume value handling is 9760 // also modeled in VPlan. 9761 auto *FinalReductionResult = new VPInstruction( 9762 VPInstruction::ComputeReductionResult, {PhiR, NewExitingVPV}, ExitDL); 9763 // Update all users outside the vector region. 9764 OrigExitingVPV->replaceUsesWithIf( 9765 FinalReductionResult, [](VPUser &User, unsigned) { 9766 auto *Parent = cast<VPRecipeBase>(&User)->getParent(); 9767 return Parent && !Parent->getParent(); 9768 }); 9769 FinalReductionResult->insertBefore(*MiddleVPBB, IP); 9770 9771 // Adjust AnyOf reductions; replace the reduction phi for the selected value 9772 // with a boolean reduction phi node to check if the condition is true in 9773 // any iteration. The final value is selected by the final 9774 // ComputeReductionResult. 9775 if (RecurrenceDescriptor::isAnyOfRecurrenceKind( 9776 RdxDesc.getRecurrenceKind())) { 9777 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) { 9778 return isa<VPWidenSelectRecipe>(U) || 9779 (isa<VPReplicateRecipe>(U) && 9780 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() == 9781 Instruction::Select); 9782 })); 9783 VPValue *Cmp = Select->getOperand(0); 9784 // If the compare is checking the reduction PHI node, adjust it to check 9785 // the start value. 9786 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe()) { 9787 for (unsigned I = 0; I != CmpR->getNumOperands(); ++I) 9788 if (CmpR->getOperand(I) == PhiR) 9789 CmpR->setOperand(I, PhiR->getStartValue()); 9790 } 9791 VPBuilder::InsertPointGuard Guard(Builder); 9792 Builder.setInsertPoint(Select); 9793 9794 // If the true value of the select is the reduction phi, the new value is 9795 // selected if the negated condition is true in any iteration. 9796 if (Select->getOperand(1) == PhiR) 9797 Cmp = Builder.createNot(Cmp); 9798 VPValue *Or = Builder.createOr(PhiR, Cmp); 9799 Select->getVPSingleValue()->replaceAllUsesWith(Or); 9800 // Delete Select now that it has invalid types. 9801 ToDelete.push_back(Select); 9802 9803 // Convert the reduction phi to operate on bools. 9804 PhiR->setOperand(0, Plan->getOrAddLiveIn(ConstantInt::getFalse( 9805 OrigLoop->getHeader()->getContext()))); 9806 continue; 9807 } 9808 9809 if (RecurrenceDescriptor::isFindLastIVRecurrenceKind( 9810 RdxDesc.getRecurrenceKind())) { 9811 // Adjust the start value for FindLastIV recurrences to use the sentinel 9812 // value after generating the ResumePhi recipe, which uses the original 9813 // start value. 9814 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue())); 9815 } 9816 } 9817 9818 VPlanTransforms::clearReductionWrapFlags(*Plan); 9819 for (VPRecipeBase *R : ToDelete) 9820 R->eraseFromParent(); 9821 } 9822 9823 void VPDerivedIVRecipe::execute(VPTransformState &State) { 9824 assert(!State.Lane && "VPDerivedIVRecipe being replicated."); 9825 9826 // Fast-math-flags propagate from the original induction instruction. 9827 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9828 if (FPBinOp) 9829 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags()); 9830 9831 Value *Step = State.get(getStepValue(), VPLane(0)); 9832 Value *Index = State.get(getOperand(1), VPLane(0)); 9833 Value *DerivedIV = emitTransformedIndex( 9834 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind, 9835 cast_if_present<BinaryOperator>(FPBinOp)); 9836 DerivedIV->setName(Name); 9837 // If index is the vector trip count, the concrete value will only be set in 9838 // prepareToExecute, leading to missed simplifications, e.g. if it is 0. 9839 // TODO: Remove the special case for the vector trip count once it is computed 9840 // in VPlan and can be used during VPlan simplification. 9841 assert((DerivedIV != Index || 9842 getOperand(1) == &getParent()->getPlan()->getVectorTripCount()) && 9843 "IV didn't need transforming?"); 9844 State.set(this, DerivedIV, VPLane(0)); 9845 } 9846 9847 void VPReplicateRecipe::execute(VPTransformState &State) { 9848 Instruction *UI = getUnderlyingInstr(); 9849 if (State.Lane) { // Generate a single instance. 9850 assert((State.VF.isScalar() || !isUniform()) && 9851 "uniform recipe shouldn't be predicated"); 9852 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9853 State.ILV->scalarizeInstruction(UI, this, *State.Lane, State); 9854 // Insert scalar instance packing it into a vector. 9855 if (State.VF.isVector() && shouldPack()) { 9856 // If we're constructing lane 0, initialize to start from poison. 9857 if (State.Lane->isFirstLane()) { 9858 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9859 Value *Poison = PoisonValue::get( 9860 VectorType::get(UI->getType(), State.VF)); 9861 State.set(this, Poison); 9862 } 9863 State.packScalarIntoVectorValue(this, *State.Lane); 9864 } 9865 return; 9866 } 9867 9868 if (IsUniform) { 9869 // Uniform within VL means we need to generate lane 0. 9870 State.ILV->scalarizeInstruction(UI, this, VPLane(0), State); 9871 return; 9872 } 9873 9874 // A store of a loop varying value to a uniform address only needs the last 9875 // copy of the store. 9876 if (isa<StoreInst>(UI) && 9877 vputils::isUniformAfterVectorization(getOperand(1))) { 9878 auto Lane = VPLane::getLastLaneForVF(State.VF); 9879 State.ILV->scalarizeInstruction(UI, this, VPLane(Lane), State); 9880 return; 9881 } 9882 9883 // Generate scalar instances for all VF lanes. 9884 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9885 const unsigned EndLane = State.VF.getKnownMinValue(); 9886 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9887 State.ILV->scalarizeInstruction(UI, this, VPLane(Lane), State); 9888 } 9889 9890 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9891 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9892 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9893 // for predication. 9894 static ScalarEpilogueLowering getScalarEpilogueLowering( 9895 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9896 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9897 LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI) { 9898 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9899 // don't look at hints or options, and don't request a scalar epilogue. 9900 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9901 // LoopAccessInfo (due to code dependency and not being able to reliably get 9902 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9903 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9904 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9905 // back to the old way and vectorize with versioning when forced. See D81345.) 9906 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9907 PGSOQueryType::IRPass) && 9908 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9909 return CM_ScalarEpilogueNotAllowedOptSize; 9910 9911 // 2) If set, obey the directives 9912 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9913 switch (PreferPredicateOverEpilogue) { 9914 case PreferPredicateTy::ScalarEpilogue: 9915 return CM_ScalarEpilogueAllowed; 9916 case PreferPredicateTy::PredicateElseScalarEpilogue: 9917 return CM_ScalarEpilogueNotNeededUsePredicate; 9918 case PreferPredicateTy::PredicateOrDontVectorize: 9919 return CM_ScalarEpilogueNotAllowedUsePredicate; 9920 }; 9921 } 9922 9923 // 3) If set, obey the hints 9924 switch (Hints.getPredicate()) { 9925 case LoopVectorizeHints::FK_Enabled: 9926 return CM_ScalarEpilogueNotNeededUsePredicate; 9927 case LoopVectorizeHints::FK_Disabled: 9928 return CM_ScalarEpilogueAllowed; 9929 }; 9930 9931 // 4) if the TTI hook indicates this is profitable, request predication. 9932 TailFoldingInfo TFI(TLI, &LVL, IAI); 9933 if (TTI->preferPredicateOverEpilogue(&TFI)) 9934 return CM_ScalarEpilogueNotNeededUsePredicate; 9935 9936 return CM_ScalarEpilogueAllowed; 9937 } 9938 9939 // Process the loop in the VPlan-native vectorization path. This path builds 9940 // VPlan upfront in the vectorization pipeline, which allows to apply 9941 // VPlan-to-VPlan transformations from the very beginning without modifying the 9942 // input LLVM IR. 9943 static bool processLoopInVPlanNativePath( 9944 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9945 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9946 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9947 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9948 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9949 LoopVectorizationRequirements &Requirements) { 9950 9951 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9952 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9953 return false; 9954 } 9955 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9956 Function *F = L->getHeader()->getParent(); 9957 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9958 9959 ScalarEpilogueLowering SEL = 9960 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, *LVL, &IAI); 9961 9962 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9963 &Hints, IAI); 9964 // Use the planner for outer loop vectorization. 9965 // TODO: CM is not used at this point inside the planner. Turn CM into an 9966 // optional argument if we don't need it in the future. 9967 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints, 9968 ORE); 9969 9970 // Get user vectorization factor. 9971 ElementCount UserVF = Hints.getWidth(); 9972 9973 CM.collectElementTypesForWidening(); 9974 9975 // Plan how to best vectorize, return the best VF and its cost. 9976 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9977 9978 // If we are stress testing VPlan builds, do not attempt to generate vector 9979 // code. Masked vector code generation support will follow soon. 9980 // Also, do not attempt to vectorize if no vector code will be produced. 9981 if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) 9982 return false; 9983 9984 VPlan &BestPlan = LVP.getPlanFor(VF.Width); 9985 9986 { 9987 bool AddBranchWeights = 9988 hasBranchWeightMD(*L->getLoopLatch()->getTerminator()); 9989 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), 9990 AddBranchWeights, CM.CostKind); 9991 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 9992 VF.Width, 1, LVL, &CM, BFI, PSI, Checks, BestPlan); 9993 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9994 << L->getHeader()->getParent()->getName() << "\"\n"); 9995 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); 9996 } 9997 9998 reportVectorization(ORE, L, VF, 1); 9999 10000 // Mark the loop as already vectorized to avoid vectorizing again. 10001 Hints.setAlreadyVectorized(); 10002 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10003 return true; 10004 } 10005 10006 // Emit a remark if there are stores to floats that required a floating point 10007 // extension. If the vectorized loop was generated with floating point there 10008 // will be a performance penalty from the conversion overhead and the change in 10009 // the vector width. 10010 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10011 SmallVector<Instruction *, 4> Worklist; 10012 for (BasicBlock *BB : L->getBlocks()) { 10013 for (Instruction &Inst : *BB) { 10014 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10015 if (S->getValueOperand()->getType()->isFloatTy()) 10016 Worklist.push_back(S); 10017 } 10018 } 10019 } 10020 10021 // Traverse the floating point stores upwards searching, for floating point 10022 // conversions. 10023 SmallPtrSet<const Instruction *, 4> Visited; 10024 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10025 while (!Worklist.empty()) { 10026 auto *I = Worklist.pop_back_val(); 10027 if (!L->contains(I)) 10028 continue; 10029 if (!Visited.insert(I).second) 10030 continue; 10031 10032 // Emit a remark if the floating point store required a floating 10033 // point conversion. 10034 // TODO: More work could be done to identify the root cause such as a 10035 // constant or a function return type and point the user to it. 10036 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10037 ORE->emit([&]() { 10038 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10039 I->getDebugLoc(), L->getHeader()) 10040 << "floating point conversion changes vector width. " 10041 << "Mixed floating point precision requires an up/down " 10042 << "cast that will negatively impact performance."; 10043 }); 10044 10045 for (Use &Op : I->operands()) 10046 if (auto *OpI = dyn_cast<Instruction>(Op)) 10047 Worklist.push_back(OpI); 10048 } 10049 } 10050 10051 static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, 10052 VectorizationFactor &VF, Loop *L, 10053 const TargetTransformInfo &TTI, 10054 PredicatedScalarEvolution &PSE, 10055 ScalarEpilogueLowering SEL) { 10056 InstructionCost CheckCost = Checks.getCost(); 10057 if (!CheckCost.isValid()) 10058 return false; 10059 10060 // When interleaving only scalar and vector cost will be equal, which in turn 10061 // would lead to a divide by 0. Fall back to hard threshold. 10062 if (VF.Width.isScalar()) { 10063 if (CheckCost > VectorizeMemoryCheckThreshold) { 10064 LLVM_DEBUG( 10065 dbgs() 10066 << "LV: Interleaving only is not profitable due to runtime checks\n"); 10067 return false; 10068 } 10069 return true; 10070 } 10071 10072 // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. 10073 uint64_t ScalarC = *VF.ScalarCost.getValue(); 10074 if (ScalarC == 0) 10075 return true; 10076 10077 // First, compute the minimum iteration count required so that the vector 10078 // loop outperforms the scalar loop. 10079 // The total cost of the scalar loop is 10080 // ScalarC * TC 10081 // where 10082 // * TC is the actual trip count of the loop. 10083 // * ScalarC is the cost of a single scalar iteration. 10084 // 10085 // The total cost of the vector loop is 10086 // RtC + VecC * (TC / VF) + EpiC 10087 // where 10088 // * RtC is the cost of the generated runtime checks 10089 // * VecC is the cost of a single vector iteration. 10090 // * TC is the actual trip count of the loop 10091 // * VF is the vectorization factor 10092 // * EpiCost is the cost of the generated epilogue, including the cost 10093 // of the remaining scalar operations. 10094 // 10095 // Vectorization is profitable once the total vector cost is less than the 10096 // total scalar cost: 10097 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC 10098 // 10099 // Now we can compute the minimum required trip count TC as 10100 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC 10101 // 10102 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that 10103 // the computations are performed on doubles, not integers and the result 10104 // is rounded up, hence we get an upper estimate of the TC. 10105 unsigned IntVF = getEstimatedRuntimeVF(L, TTI, VF.Width); 10106 uint64_t RtC = *CheckCost.getValue(); 10107 uint64_t Div = ScalarC * IntVF - *VF.Cost.getValue(); 10108 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div); 10109 10110 // Second, compute a minimum iteration count so that the cost of the 10111 // runtime checks is only a fraction of the total scalar loop cost. This 10112 // adds a loop-dependent bound on the overhead incurred if the runtime 10113 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC 10114 // * TC. To bound the runtime check to be a fraction 1/X of the scalar 10115 // cost, compute 10116 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC 10117 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC); 10118 10119 // Now pick the larger minimum. If it is not a multiple of VF and a scalar 10120 // epilogue is allowed, choose the next closest multiple of VF. This should 10121 // partly compensate for ignoring the epilogue cost. 10122 uint64_t MinTC = std::max(MinTC1, MinTC2); 10123 if (SEL == CM_ScalarEpilogueAllowed) 10124 MinTC = alignTo(MinTC, IntVF); 10125 VF.MinProfitableTripCount = ElementCount::getFixed(MinTC); 10126 10127 LLVM_DEBUG( 10128 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" 10129 << VF.MinProfitableTripCount << "\n"); 10130 10131 // Skip vectorization if the expected trip count is less than the minimum 10132 // required trip count. 10133 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) { 10134 if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), 10135 VF.MinProfitableTripCount)) { 10136 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected " 10137 "trip count < minimum profitable VF (" 10138 << *ExpectedTC << " < " << VF.MinProfitableTripCount 10139 << ")\n"); 10140 10141 return false; 10142 } 10143 } 10144 return true; 10145 } 10146 10147 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10148 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10149 !EnableLoopInterleaving), 10150 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10151 !EnableLoopVectorization) {} 10152 10153 /// Prepare \p MainPlan for vectorizing the main vector loop during epilogue 10154 /// vectorization. Remove ResumePhis from \p MainPlan for inductions that 10155 /// don't have a corresponding wide induction in \p EpiPlan. 10156 static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) { 10157 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those 10158 // will need their resume-values computed in the main vector loop. Others 10159 // can be removed from the main VPlan. 10160 SmallPtrSet<PHINode *, 2> EpiWidenedPhis; 10161 for (VPRecipeBase &R : 10162 EpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 10163 if (isa<VPCanonicalIVPHIRecipe>(&R)) 10164 continue; 10165 EpiWidenedPhis.insert( 10166 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue())); 10167 } 10168 for (VPRecipeBase &R : make_early_inc_range( 10169 *cast<VPIRBasicBlock>(MainPlan.getScalarHeader()))) { 10170 auto *VPIRInst = cast<VPIRInstruction>(&R); 10171 auto *IRI = dyn_cast<PHINode>(&VPIRInst->getInstruction()); 10172 if (!IRI) 10173 break; 10174 if (EpiWidenedPhis.contains(IRI)) 10175 continue; 10176 // There is no corresponding wide induction in the epilogue plan that would 10177 // need a resume value. Remove the VPIRInst wrapping the scalar header phi 10178 // together with the corresponding ResumePhi. The resume values for the 10179 // scalar loop will be created during execution of EpiPlan. 10180 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe(); 10181 VPIRInst->eraseFromParent(); 10182 ResumePhi->eraseFromParent(); 10183 } 10184 VPlanTransforms::removeDeadRecipes(MainPlan); 10185 10186 using namespace VPlanPatternMatch; 10187 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader(); 10188 VPValue *VectorTC = &MainPlan.getVectorTripCount(); 10189 // If there is a suitable resume value for the canonical induction in the 10190 // scalar (which will become vector) epilogue loop we are done. Otherwise 10191 // create it below. 10192 if (any_of(*MainScalarPH, [VectorTC](VPRecipeBase &R) { 10193 return match(&R, m_VPInstruction<VPInstruction::ResumePhi>( 10194 m_Specific(VectorTC), m_SpecificInt(0))); 10195 })) 10196 return; 10197 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin()); 10198 ScalarPHBuilder.createNaryOp( 10199 VPInstruction::ResumePhi, 10200 {VectorTC, MainPlan.getCanonicalIV()->getStartValue()}, {}, 10201 "vec.epilog.resume.val"); 10202 } 10203 10204 /// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded 10205 /// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. 10206 static void 10207 preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, 10208 const SCEV2ValueTy &ExpandedSCEVs, 10209 const EpilogueLoopVectorizationInfo &EPI) { 10210 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion(); 10211 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10212 Header->setName("vec.epilog.vector.body"); 10213 10214 // Re-use the trip count and steps expanded for the main loop, as 10215 // skeleton creation needs it as a value that dominates both the scalar 10216 // and vector epilogue loops 10217 // TODO: This is a workaround needed for epilogue vectorization and it 10218 // should be removed once induction resume value creation is done 10219 // directly in VPlan. 10220 for (auto &R : make_early_inc_range(*Plan.getEntry())) { 10221 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R); 10222 if (!ExpandR) 10223 continue; 10224 auto *ExpandedVal = 10225 Plan.getOrAddLiveIn(ExpandedSCEVs.find(ExpandR->getSCEV())->second); 10226 ExpandR->replaceAllUsesWith(ExpandedVal); 10227 if (Plan.getTripCount() == ExpandR) 10228 Plan.resetTripCount(ExpandedVal); 10229 ExpandR->eraseFromParent(); 10230 } 10231 10232 // Ensure that the start values for all header phi recipes are updated before 10233 // vectorizing the epilogue loop. 10234 for (VPRecipeBase &R : Header->phis()) { 10235 if (auto *IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) { 10236 // When vectorizing the epilogue loop, the canonical induction start 10237 // value needs to be changed from zero to the value after the main 10238 // vector loop. Find the resume value created during execution of the main 10239 // VPlan. 10240 // FIXME: Improve modeling for canonical IV start values in the epilogue 10241 // loop. 10242 BasicBlock *MainMiddle = find_singleton<BasicBlock>( 10243 predecessors(L->getLoopPreheader()), 10244 [&EPI](BasicBlock *BB, bool) -> BasicBlock * { 10245 if (BB != EPI.MainLoopIterationCountCheck && 10246 BB != EPI.EpilogueIterationCountCheck && 10247 BB != EPI.SCEVSafetyCheck && BB != EPI.MemSafetyCheck) 10248 return BB; 10249 return nullptr; 10250 }); 10251 using namespace llvm::PatternMatch; 10252 Type *IdxTy = IV->getScalarType(); 10253 PHINode *EPResumeVal = find_singleton<PHINode>( 10254 L->getLoopPreheader()->phis(), 10255 [&EPI, IdxTy, MainMiddle](PHINode &P, bool) -> PHINode * { 10256 if (P.getType() == IdxTy && 10257 P.getIncomingValueForBlock(MainMiddle) == EPI.VectorTripCount && 10258 match( 10259 P.getIncomingValueForBlock(EPI.MainLoopIterationCountCheck), 10260 m_SpecificInt(0))) 10261 return &P; 10262 return nullptr; 10263 }); 10264 assert(EPResumeVal && "must have a resume value for the canonical IV"); 10265 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal); 10266 assert(all_of(IV->users(), 10267 [](const VPUser *U) { 10268 return isa<VPScalarIVStepsRecipe>(U) || 10269 isa<VPScalarCastRecipe>(U) || 10270 isa<VPDerivedIVRecipe>(U) || 10271 cast<VPInstruction>(U)->getOpcode() == 10272 Instruction::Add; 10273 }) && 10274 "the canonical IV should only be used by its increment or " 10275 "ScalarIVSteps when resetting the start value"); 10276 IV->setOperand(0, VPV); 10277 continue; 10278 } 10279 10280 Value *ResumeV = nullptr; 10281 // TODO: Move setting of resume values to prepareToExecute. 10282 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10283 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr()) 10284 ->getIncomingValueForBlock(L->getLoopPreheader()); 10285 const RecurrenceDescriptor &RdxDesc = 10286 ReductionPhi->getRecurrenceDescriptor(); 10287 RecurKind RK = RdxDesc.getRecurrenceKind(); 10288 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) { 10289 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as 10290 // start value; compare the final value from the main vector loop 10291 // to the start value. 10292 IRBuilder<> Builder( 10293 cast<Instruction>(ResumeV)->getParent()->getFirstNonPHI()); 10294 ResumeV = 10295 Builder.CreateICmpNE(ResumeV, RdxDesc.getRecurrenceStartValue()); 10296 } else if (RecurrenceDescriptor::isFindLastIVRecurrenceKind(RK)) { 10297 // VPReductionPHIRecipe for FindLastIV reductions requires an adjustment 10298 // to the resume value. The resume value is adjusted to the sentinel 10299 // value when the final value from the main vector loop equals the start 10300 // value. This ensures correctness when the start value might not be 10301 // less than the minimum value of a monotonically increasing induction 10302 // variable. 10303 IRBuilder<> Builder( 10304 cast<Instruction>(ResumeV)->getParent()->getFirstNonPHI()); 10305 Value *Cmp = 10306 Builder.CreateICmpEQ(ResumeV, RdxDesc.getRecurrenceStartValue()); 10307 ResumeV = 10308 Builder.CreateSelect(Cmp, RdxDesc.getSentinelValue(), ResumeV); 10309 } 10310 } else { 10311 // Retrieve the induction resume values for wide inductions from 10312 // their original phi nodes in the scalar loop. 10313 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode(); 10314 // Hook up to the PHINode generated by a ResumePhi recipe of main 10315 // loop VPlan, which feeds the scalar loop. 10316 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader()); 10317 } 10318 assert(ResumeV && "Must have a resume value"); 10319 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV); 10320 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal); 10321 } 10322 } 10323 10324 bool LoopVectorizePass::processLoop(Loop *L) { 10325 assert((EnableVPlanNativePath || L->isInnermost()) && 10326 "VPlan-native path is not enabled. Only process inner loops."); 10327 10328 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10329 << L->getHeader()->getParent()->getName() << "' from " 10330 << L->getLocStr() << "\n"); 10331 10332 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10333 10334 LLVM_DEBUG( 10335 dbgs() << "LV: Loop hints:" 10336 << " force=" 10337 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10338 ? "disabled" 10339 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10340 ? "enabled" 10341 : "?")) 10342 << " width=" << Hints.getWidth() 10343 << " interleave=" << Hints.getInterleave() << "\n"); 10344 10345 // Function containing loop 10346 Function *F = L->getHeader()->getParent(); 10347 10348 // Looking at the diagnostic output is the only way to determine if a loop 10349 // was vectorized (other than looking at the IR or machine code), so it 10350 // is important to generate an optimization remark for each loop. Most of 10351 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10352 // generated as OptimizationRemark and OptimizationRemarkMissed are 10353 // less verbose reporting vectorized loops and unvectorized loops that may 10354 // benefit from vectorization, respectively. 10355 10356 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10357 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10358 return false; 10359 } 10360 10361 PredicatedScalarEvolution PSE(*SE, *L); 10362 10363 // Check if it is legal to vectorize the loop. 10364 LoopVectorizationRequirements Requirements; 10365 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE, 10366 &Requirements, &Hints, DB, AC, BFI, PSI); 10367 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10368 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10369 Hints.emitRemarkWithHints(); 10370 return false; 10371 } 10372 10373 if (LVL.hasUncountableEarlyExit() && !EnableEarlyExitVectorization) { 10374 reportVectorizationFailure("Auto-vectorization of loops with uncountable " 10375 "early exit is not enabled", 10376 "UncountableEarlyExitLoopsDisabled", ORE, L); 10377 return false; 10378 } 10379 10380 if (LVL.hasStructVectorCall()) { 10381 reportVectorizationFailure("Auto-vectorization of calls that return struct " 10382 "types is not yet supported", 10383 "StructCallVectorizationUnsupported", ORE, L); 10384 return false; 10385 } 10386 10387 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10388 // here. They may require CFG and instruction level transformations before 10389 // even evaluating whether vectorization is profitable. Since we cannot modify 10390 // the incoming IR, we need to build VPlan upfront in the vectorization 10391 // pipeline. 10392 if (!L->isInnermost()) 10393 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10394 ORE, BFI, PSI, Hints, Requirements); 10395 10396 assert(L->isInnermost() && "Inner loop expected."); 10397 10398 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10399 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10400 10401 // If an override option has been passed in for interleaved accesses, use it. 10402 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10403 UseInterleaved = EnableInterleavedMemAccesses; 10404 10405 // Analyze interleaved memory accesses. 10406 if (UseInterleaved) 10407 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10408 10409 if (LVL.hasUncountableEarlyExit()) { 10410 BasicBlock *LoopLatch = L->getLoopLatch(); 10411 if (IAI.requiresScalarEpilogue() || 10412 any_of(LVL.getCountableExitingBlocks(), 10413 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) { 10414 reportVectorizationFailure("Auto-vectorization of early exit loops " 10415 "requiring a scalar epilogue is unsupported", 10416 "UncountableEarlyExitUnsupported", ORE, L); 10417 return false; 10418 } 10419 } 10420 10421 // Check the function attributes and profiles to find out if this function 10422 // should be optimized for size. 10423 ScalarEpilogueLowering SEL = 10424 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, LVL, &IAI); 10425 10426 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10427 // count by optimizing for size, to minimize overheads. 10428 auto ExpectedTC = getSmallBestKnownTC(PSE, L); 10429 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10430 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10431 << "This loop is worth vectorizing only if no scalar " 10432 << "iteration overheads are incurred."); 10433 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10434 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10435 else { 10436 if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) { 10437 LLVM_DEBUG(dbgs() << "\n"); 10438 // Predicate tail-folded loops are efficient even when the loop 10439 // iteration count is low. However, setting the epilogue policy to 10440 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops 10441 // with runtime checks. It's more effective to let 10442 // `areRuntimeChecksProfitable` determine if vectorization is beneficial 10443 // for the loop. 10444 if (SEL != CM_ScalarEpilogueNotNeededUsePredicate) 10445 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10446 } else { 10447 LLVM_DEBUG(dbgs() << " But the target considers the trip count too " 10448 "small to consider vectorizing.\n"); 10449 reportVectorizationFailure( 10450 "The trip count is below the minial threshold value.", 10451 "loop trip count is too low, avoiding vectorization", 10452 "LowTripCount", ORE, L); 10453 Hints.emitRemarkWithHints(); 10454 return false; 10455 } 10456 } 10457 } 10458 10459 // Check the function attributes to see if implicit floats or vectors are 10460 // allowed. 10461 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10462 reportVectorizationFailure( 10463 "Can't vectorize when the NoImplicitFloat attribute is used", 10464 "loop not vectorized due to NoImplicitFloat attribute", 10465 "NoImplicitFloat", ORE, L); 10466 Hints.emitRemarkWithHints(); 10467 return false; 10468 } 10469 10470 // Check if the target supports potentially unsafe FP vectorization. 10471 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10472 // for the target we're vectorizing for, to make sure none of the 10473 // additional fp-math flags can help. 10474 if (Hints.isPotentiallyUnsafe() && 10475 TTI->isFPVectorizationPotentiallyUnsafe()) { 10476 reportVectorizationFailure( 10477 "Potentially unsafe FP op prevents vectorization", 10478 "loop not vectorized due to unsafe FP support.", 10479 "UnsafeFP", ORE, L); 10480 Hints.emitRemarkWithHints(); 10481 return false; 10482 } 10483 10484 bool AllowOrderedReductions; 10485 // If the flag is set, use that instead and override the TTI behaviour. 10486 if (ForceOrderedReductions.getNumOccurrences() > 0) 10487 AllowOrderedReductions = ForceOrderedReductions; 10488 else 10489 AllowOrderedReductions = TTI->enableOrderedReductions(); 10490 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10491 ORE->emit([&]() { 10492 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10493 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10494 ExactFPMathInst->getDebugLoc(), 10495 ExactFPMathInst->getParent()) 10496 << "loop not vectorized: cannot prove it is safe to reorder " 10497 "floating-point operations"; 10498 }); 10499 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10500 "reorder floating-point operations\n"); 10501 Hints.emitRemarkWithHints(); 10502 return false; 10503 } 10504 10505 // Use the cost model. 10506 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10507 F, &Hints, IAI); 10508 // Use the planner for vectorization. 10509 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints, 10510 ORE); 10511 10512 // Get user vectorization factor and interleave count. 10513 ElementCount UserVF = Hints.getWidth(); 10514 unsigned UserIC = Hints.getInterleave(); 10515 10516 // Plan how to best vectorize. 10517 LVP.plan(UserVF, UserIC); 10518 VectorizationFactor VF = LVP.computeBestVF(); 10519 unsigned IC = 1; 10520 10521 if (ORE->allowExtraAnalysis(LV_NAME)) 10522 LVP.emitInvalidCostRemarks(ORE); 10523 10524 bool AddBranchWeights = 10525 hasBranchWeightMD(*L->getLoopLatch()->getTerminator()); 10526 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), 10527 AddBranchWeights, CM.CostKind); 10528 if (LVP.hasPlanWithVF(VF.Width)) { 10529 // Select the interleave count. 10530 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 10531 10532 unsigned SelectedIC = std::max(IC, UserIC); 10533 // Optimistically generate runtime checks if they are needed. Drop them if 10534 // they turn out to not be profitable. 10535 if (VF.Width.isVector() || SelectedIC > 1) 10536 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); 10537 10538 // Check if it is profitable to vectorize with runtime checks. 10539 bool ForceVectorization = 10540 Hints.getForce() == LoopVectorizeHints::FK_Enabled; 10541 if (!ForceVectorization && 10542 !areRuntimeChecksProfitable(Checks, VF, L, *TTI, PSE, SEL)) { 10543 ORE->emit([&]() { 10544 return OptimizationRemarkAnalysisAliasing( 10545 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10546 L->getHeader()) 10547 << "loop not vectorized: cannot prove it is safe to reorder " 10548 "memory operations"; 10549 }); 10550 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10551 Hints.emitRemarkWithHints(); 10552 return false; 10553 } 10554 } 10555 10556 // Identify the diagnostic messages that should be produced. 10557 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10558 bool VectorizeLoop = true, InterleaveLoop = true; 10559 if (VF.Width.isScalar()) { 10560 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10561 VecDiagMsg = std::make_pair( 10562 "VectorizationNotBeneficial", 10563 "the cost-model indicates that vectorization is not beneficial"); 10564 VectorizeLoop = false; 10565 } 10566 10567 if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) { 10568 // Tell the user interleaving was avoided up-front, despite being explicitly 10569 // requested. 10570 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10571 "interleaving should be avoided up front\n"); 10572 IntDiagMsg = std::make_pair( 10573 "InterleavingAvoided", 10574 "Ignoring UserIC, because interleaving was avoided up front"); 10575 InterleaveLoop = false; 10576 } else if (IC == 1 && UserIC <= 1) { 10577 // Tell the user interleaving is not beneficial. 10578 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10579 IntDiagMsg = std::make_pair( 10580 "InterleavingNotBeneficial", 10581 "the cost-model indicates that interleaving is not beneficial"); 10582 InterleaveLoop = false; 10583 if (UserIC == 1) { 10584 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10585 IntDiagMsg.second += 10586 " and is explicitly disabled or interleave count is set to 1"; 10587 } 10588 } else if (IC > 1 && UserIC == 1) { 10589 // Tell the user interleaving is beneficial, but it explicitly disabled. 10590 LLVM_DEBUG( 10591 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10592 IntDiagMsg = std::make_pair( 10593 "InterleavingBeneficialButDisabled", 10594 "the cost-model indicates that interleaving is beneficial " 10595 "but is explicitly disabled or interleave count is set to 1"); 10596 InterleaveLoop = false; 10597 } 10598 10599 // If there is a histogram in the loop, do not just interleave without 10600 // vectorizing. The order of operations will be incorrect without the 10601 // histogram intrinsics, which are only used for recipes with VF > 1. 10602 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) { 10603 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due " 10604 << "to histogram operations.\n"); 10605 IntDiagMsg = std::make_pair( 10606 "HistogramPreventsScalarInterleaving", 10607 "Unable to interleave without vectorization due to constraints on " 10608 "the order of histogram operations"); 10609 InterleaveLoop = false; 10610 } 10611 10612 // Override IC if user provided an interleave count. 10613 IC = UserIC > 0 ? UserIC : IC; 10614 10615 // Emit diagnostic messages, if any. 10616 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10617 if (!VectorizeLoop && !InterleaveLoop) { 10618 // Do not vectorize or interleaving the loop. 10619 ORE->emit([&]() { 10620 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10621 L->getStartLoc(), L->getHeader()) 10622 << VecDiagMsg.second; 10623 }); 10624 ORE->emit([&]() { 10625 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10626 L->getStartLoc(), L->getHeader()) 10627 << IntDiagMsg.second; 10628 }); 10629 return false; 10630 } 10631 10632 if (!VectorizeLoop && InterleaveLoop) { 10633 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10634 ORE->emit([&]() { 10635 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10636 L->getStartLoc(), L->getHeader()) 10637 << VecDiagMsg.second; 10638 }); 10639 } else if (VectorizeLoop && !InterleaveLoop) { 10640 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10641 << ") in " << L->getLocStr() << '\n'); 10642 ORE->emit([&]() { 10643 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10644 L->getStartLoc(), L->getHeader()) 10645 << IntDiagMsg.second; 10646 }); 10647 } else if (VectorizeLoop && InterleaveLoop) { 10648 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10649 << ") in " << L->getLocStr() << '\n'); 10650 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10651 } 10652 10653 bool DisableRuntimeUnroll = false; 10654 MDNode *OrigLoopID = L->getLoopID(); 10655 { 10656 using namespace ore; 10657 if (!VectorizeLoop) { 10658 assert(IC > 1 && "interleave count should not be 1 or 0"); 10659 // If we decided that it is not legal to vectorize the loop, then 10660 // interleave it. 10661 VPlan &BestPlan = LVP.getPlanFor(VF.Width); 10662 InnerLoopVectorizer Unroller( 10663 L, PSE, LI, DT, TLI, TTI, AC, ORE, ElementCount::getFixed(1), 10664 ElementCount::getFixed(1), IC, &LVL, &CM, BFI, PSI, Checks, BestPlan); 10665 10666 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); 10667 10668 ORE->emit([&]() { 10669 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10670 L->getHeader()) 10671 << "interleaved loop (interleaved count: " 10672 << NV("InterleaveCount", IC) << ")"; 10673 }); 10674 } else { 10675 // If we decided that it is *legal* to vectorize the loop, then do it. 10676 10677 VPlan &BestPlan = LVP.getPlanFor(VF.Width); 10678 // Consider vectorizing the epilogue too if it's profitable. 10679 VectorizationFactor EpilogueVF = 10680 LVP.selectEpilogueVectorizationFactor(VF.Width, IC); 10681 if (EpilogueVF.Width.isVector()) { 10682 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate()); 10683 10684 // The first pass vectorizes the main loop and creates a scalar epilogue 10685 // to be vectorized by executing the plan (potentially with a different 10686 // factor) again shortly afterwards. 10687 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width); 10688 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan); 10689 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1, 10690 BestEpiPlan); 10691 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10692 EPI, &LVL, &CM, BFI, PSI, Checks, 10693 *BestMainPlan); 10694 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, 10695 *BestMainPlan, MainILV, DT, false); 10696 ++LoopsVectorized; 10697 10698 // Second pass vectorizes the epilogue and adjusts the control flow 10699 // edges from the first pass. 10700 EPI.MainLoopVF = EPI.EpilogueVF; 10701 EPI.MainLoopUF = EPI.EpilogueUF; 10702 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10703 ORE, EPI, &LVL, &CM, BFI, PSI, 10704 Checks, BestEpiPlan); 10705 EpilogILV.setTripCount(MainILV.getTripCount()); 10706 preparePlanForEpilogueVectorLoop(BestEpiPlan, L, ExpandedSCEVs, EPI); 10707 10708 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10709 DT, true, &ExpandedSCEVs); 10710 ++LoopsEpilogueVectorized; 10711 10712 if (!MainILV.areSafetyChecksAdded()) 10713 DisableRuntimeUnroll = true; 10714 } else { 10715 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 10716 VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, 10717 PSI, Checks, BestPlan); 10718 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); 10719 ++LoopsVectorized; 10720 10721 // Add metadata to disable runtime unrolling a scalar loop when there 10722 // are no runtime checks about strides and memory. A scalar loop that is 10723 // rarely used is not worth unrolling. 10724 if (!LB.areSafetyChecksAdded()) 10725 DisableRuntimeUnroll = true; 10726 } 10727 // Report the vectorization decision. 10728 reportVectorization(ORE, L, VF, IC); 10729 } 10730 10731 if (ORE->allowExtraAnalysis(LV_NAME)) 10732 checkMixedPrecision(L, ORE); 10733 } 10734 10735 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 10736 "DT not preserved correctly"); 10737 10738 std::optional<MDNode *> RemainderLoopID = 10739 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10740 LLVMLoopVectorizeFollowupEpilogue}); 10741 if (RemainderLoopID) { 10742 L->setLoopID(*RemainderLoopID); 10743 } else { 10744 if (DisableRuntimeUnroll) 10745 addRuntimeUnrollDisableMetaData(L); 10746 10747 // Mark the loop as already vectorized to avoid vectorizing again. 10748 Hints.setAlreadyVectorized(); 10749 } 10750 10751 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10752 return true; 10753 } 10754 10755 LoopVectorizeResult LoopVectorizePass::runImpl(Function &F) { 10756 10757 // Don't attempt if 10758 // 1. the target claims to have no vector registers, and 10759 // 2. interleaving won't help ILP. 10760 // 10761 // The second condition is necessary because, even if the target has no 10762 // vector registers, loop vectorization may still enable scalar 10763 // interleaving. 10764 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10765 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2) 10766 return LoopVectorizeResult(false, false); 10767 10768 bool Changed = false, CFGChanged = false; 10769 10770 // The vectorizer requires loops to be in simplified form. 10771 // Since simplification may add new inner loops, it has to run before the 10772 // legality and profitability checks. This means running the loop vectorizer 10773 // will simplify all loops, regardless of whether anything end up being 10774 // vectorized. 10775 for (const auto &L : *LI) 10776 Changed |= CFGChanged |= 10777 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10778 10779 // Build up a worklist of inner-loops to vectorize. This is necessary as 10780 // the act of vectorizing or partially unrolling a loop creates new loops 10781 // and can invalidate iterators across the loops. 10782 SmallVector<Loop *, 8> Worklist; 10783 10784 for (Loop *L : *LI) 10785 collectSupportedLoops(*L, LI, ORE, Worklist); 10786 10787 LoopsAnalyzed += Worklist.size(); 10788 10789 // Now walk the identified inner loops. 10790 while (!Worklist.empty()) { 10791 Loop *L = Worklist.pop_back_val(); 10792 10793 // For the inner loops we actually process, form LCSSA to simplify the 10794 // transform. 10795 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10796 10797 Changed |= CFGChanged |= processLoop(L); 10798 10799 if (Changed) { 10800 LAIs->clear(); 10801 10802 #ifndef NDEBUG 10803 if (VerifySCEV) 10804 SE->verify(); 10805 #endif 10806 } 10807 } 10808 10809 // Process each loop nest in the function. 10810 return LoopVectorizeResult(Changed, CFGChanged); 10811 } 10812 10813 PreservedAnalyses LoopVectorizePass::run(Function &F, 10814 FunctionAnalysisManager &AM) { 10815 LI = &AM.getResult<LoopAnalysis>(F); 10816 // There are no loops in the function. Return before computing other 10817 // expensive analyses. 10818 if (LI->empty()) 10819 return PreservedAnalyses::all(); 10820 SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 10821 TTI = &AM.getResult<TargetIRAnalysis>(F); 10822 DT = &AM.getResult<DominatorTreeAnalysis>(F); 10823 TLI = &AM.getResult<TargetLibraryAnalysis>(F); 10824 AC = &AM.getResult<AssumptionAnalysis>(F); 10825 DB = &AM.getResult<DemandedBitsAnalysis>(F); 10826 ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10827 LAIs = &AM.getResult<LoopAccessAnalysis>(F); 10828 10829 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10830 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10831 BFI = nullptr; 10832 if (PSI && PSI->hasProfileSummary()) 10833 BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 10834 LoopVectorizeResult Result = runImpl(F); 10835 if (!Result.MadeAnyChange) 10836 return PreservedAnalyses::all(); 10837 PreservedAnalyses PA; 10838 10839 if (isAssignmentTrackingEnabled(*F.getParent())) { 10840 for (auto &BB : F) 10841 RemoveRedundantDbgInstrs(&BB); 10842 } 10843 10844 PA.preserve<LoopAnalysis>(); 10845 PA.preserve<DominatorTreeAnalysis>(); 10846 PA.preserve<ScalarEvolutionAnalysis>(); 10847 PA.preserve<LoopAccessAnalysis>(); 10848 10849 if (Result.MadeCFGChange) { 10850 // Making CFG changes likely means a loop got vectorized. Indicate that 10851 // extra simplification passes should be run. 10852 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10853 // be run if runtime checks have been added. 10854 AM.getResult<ShouldRunExtraVectorPasses>(F); 10855 PA.preserve<ShouldRunExtraVectorPasses>(); 10856 } else { 10857 PA.preserveSet<CFGAnalyses>(); 10858 } 10859 return PA; 10860 } 10861 10862 void LoopVectorizePass::printPipeline( 10863 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10864 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10865 OS, MapClassName2PassName); 10866 10867 OS << '<'; 10868 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10869 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10870 OS << '>'; 10871 } 10872