1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanAnalysis.h" 61 #include "VPlanHCFGBuilder.h" 62 #include "VPlanPatternMatch.h" 63 #include "VPlanTransforms.h" 64 #include "VPlanUtils.h" 65 #include "VPlanVerifier.h" 66 #include "llvm/ADT/APInt.h" 67 #include "llvm/ADT/ArrayRef.h" 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/DenseMapInfo.h" 70 #include "llvm/ADT/Hashing.h" 71 #include "llvm/ADT/MapVector.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/TypeSwitch.h" 79 #include "llvm/ADT/iterator_range.h" 80 #include "llvm/Analysis/AssumptionCache.h" 81 #include "llvm/Analysis/BasicAliasAnalysis.h" 82 #include "llvm/Analysis/BlockFrequencyInfo.h" 83 #include "llvm/Analysis/CFG.h" 84 #include "llvm/Analysis/CodeMetrics.h" 85 #include "llvm/Analysis/DemandedBits.h" 86 #include "llvm/Analysis/GlobalsModRef.h" 87 #include "llvm/Analysis/LoopAccessAnalysis.h" 88 #include "llvm/Analysis/LoopAnalysisManager.h" 89 #include "llvm/Analysis/LoopInfo.h" 90 #include "llvm/Analysis/LoopIterator.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/ValueTracking.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfo.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/MDBuilder.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/PatternMatch.h" 122 #include "llvm/IR/ProfDataUtils.h" 123 #include "llvm/IR/Type.h" 124 #include "llvm/IR/Use.h" 125 #include "llvm/IR/User.h" 126 #include "llvm/IR/Value.h" 127 #include "llvm/IR/Verifier.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/NativeFormatting.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/Local.h" 139 #include "llvm/Transforms/Utils/LoopSimplify.h" 140 #include "llvm/Transforms/Utils/LoopUtils.h" 141 #include "llvm/Transforms/Utils/LoopVersioning.h" 142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 143 #include "llvm/Transforms/Utils/SizeOpts.h" 144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 145 #include <algorithm> 146 #include <cassert> 147 #include <cstdint> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> VectorizeMemoryCheckThreshold( 202 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<TailFoldingStyle> ForceTailFoldingStyle( 237 "force-tail-folding-style", cl::desc("Force the tail folding style"), 238 cl::init(TailFoldingStyle::None), 239 cl::values( 240 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), 241 clEnumValN( 242 TailFoldingStyle::Data, "data", 243 "Create lane mask for data only, using active.lane.mask intrinsic"), 244 clEnumValN(TailFoldingStyle::DataWithoutLaneMask, 245 "data-without-lane-mask", 246 "Create lane mask with compare/stepvector"), 247 clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", 248 "Create lane mask using active.lane.mask intrinsic, and use " 249 "it for both data and control flow"), 250 clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, 251 "data-and-control-without-rt-check", 252 "Similar to data-and-control, but remove the runtime check"), 253 clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", 254 "Use predicated EVL instructions for tail folding. If EVL " 255 "is unsupported, fallback to data-without-lane-mask."))); 256 257 static cl::opt<bool> MaximizeBandwidth( 258 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 259 cl::desc("Maximize bandwidth when selecting vectorization factor which " 260 "will be determined by the smallest type in loop.")); 261 262 static cl::opt<bool> EnableInterleavedMemAccesses( 263 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 264 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 265 266 /// An interleave-group may need masking if it resides in a block that needs 267 /// predication, or in order to mask away gaps. 268 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 269 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 270 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 271 272 static cl::opt<unsigned> ForceTargetNumScalarRegs( 273 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 274 cl::desc("A flag that overrides the target's number of scalar registers.")); 275 276 static cl::opt<unsigned> ForceTargetNumVectorRegs( 277 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 278 cl::desc("A flag that overrides the target's number of vector registers.")); 279 280 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 281 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 282 cl::desc("A flag that overrides the target's max interleave factor for " 283 "scalar loops.")); 284 285 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 286 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 287 cl::desc("A flag that overrides the target's max interleave factor for " 288 "vectorized loops.")); 289 290 cl::opt<unsigned> ForceTargetInstructionCost( 291 "force-target-instruction-cost", cl::init(0), cl::Hidden, 292 cl::desc("A flag that overrides the target's expected cost for " 293 "an instruction to a single constant value. Mostly " 294 "useful for getting consistent testing.")); 295 296 static cl::opt<bool> ForceTargetSupportsScalableVectors( 297 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 298 cl::desc( 299 "Pretend that scalable vectors are supported, even if the target does " 300 "not support them. This flag should only be used for testing.")); 301 302 static cl::opt<unsigned> SmallLoopCost( 303 "small-loop-cost", cl::init(20), cl::Hidden, 304 cl::desc( 305 "The cost of a loop that is considered 'small' by the interleaver.")); 306 307 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 308 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 309 cl::desc("Enable the use of the block frequency analysis to access PGO " 310 "heuristics minimizing code growth in cold regions and being more " 311 "aggressive in hot regions.")); 312 313 // Runtime interleave loops for load/store throughput. 314 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 315 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 316 cl::desc( 317 "Enable runtime interleaving until load/store ports are saturated")); 318 319 /// The number of stores in a loop that are allowed to need predication. 320 static cl::opt<unsigned> NumberOfStoresToPredicate( 321 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 322 cl::desc("Max number of stores to be predicated behind an if.")); 323 324 static cl::opt<bool> EnableIndVarRegisterHeur( 325 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 326 cl::desc("Count the induction variable only once when interleaving")); 327 328 static cl::opt<bool> EnableCondStoresVectorization( 329 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 330 cl::desc("Enable if predication of stores during vectorization.")); 331 332 static cl::opt<unsigned> MaxNestedScalarReductionIC( 333 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 334 cl::desc("The maximum interleave count to use when interleaving a scalar " 335 "reduction in a nested loop.")); 336 337 static cl::opt<bool> 338 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 339 cl::Hidden, 340 cl::desc("Prefer in-loop vector reductions, " 341 "overriding the targets preference.")); 342 343 static cl::opt<bool> ForceOrderedReductions( 344 "force-ordered-reductions", cl::init(false), cl::Hidden, 345 cl::desc("Enable the vectorisation of loops with in-order (strict) " 346 "FP reductions")); 347 348 static cl::opt<bool> PreferPredicatedReductionSelect( 349 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 350 cl::desc( 351 "Prefer predicating a reduction operation over an after loop select.")); 352 353 namespace llvm { 354 cl::opt<bool> EnableVPlanNativePath( 355 "enable-vplan-native-path", cl::Hidden, 356 cl::desc("Enable VPlan-native vectorization path with " 357 "support for outer loop vectorization.")); 358 } // namespace llvm 359 360 // This flag enables the stress testing of the VPlan H-CFG construction in the 361 // VPlan-native vectorization path. It must be used in conjuction with 362 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 363 // verification of the H-CFGs built. 364 static cl::opt<bool> VPlanBuildStressTest( 365 "vplan-build-stress-test", cl::init(false), cl::Hidden, 366 cl::desc( 367 "Build VPlan for every supported loop nest in the function and bail " 368 "out right after the build (stress test the VPlan H-CFG construction " 369 "in the VPlan-native vectorization path).")); 370 371 cl::opt<bool> llvm::EnableLoopInterleaving( 372 "interleave-loops", cl::init(true), cl::Hidden, 373 cl::desc("Enable loop interleaving in Loop vectorization passes")); 374 cl::opt<bool> llvm::EnableLoopVectorization( 375 "vectorize-loops", cl::init(true), cl::Hidden, 376 cl::desc("Run the Loop vectorization passes")); 377 378 static cl::opt<cl::boolOrDefault> ForceSafeDivisor( 379 "force-widen-divrem-via-safe-divisor", cl::Hidden, 380 cl::desc( 381 "Override cost based safe divisor widening for div/rem instructions")); 382 383 static cl::opt<bool> UseWiderVFIfCallVariantsPresent( 384 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), 385 cl::Hidden, 386 cl::desc("Try wider VFs if they enable the use of vector variants")); 387 388 static cl::opt<bool> EnableEarlyExitVectorization( 389 "enable-early-exit-vectorization", cl::init(false), cl::Hidden, 390 cl::desc( 391 "Enable vectorization of early exit loops with uncountable exits.")); 392 393 // Likelyhood of bypassing the vectorized loop because assumptions about SCEV 394 // variables not overflowing do not hold. See `emitSCEVChecks`. 395 static constexpr uint32_t SCEVCheckBypassWeights[] = {1, 127}; 396 // Likelyhood of bypassing the vectorized loop because pointers overlap. See 397 // `emitMemRuntimeChecks`. 398 static constexpr uint32_t MemCheckBypassWeights[] = {1, 127}; 399 // Likelyhood of bypassing the vectorized loop because there are zero trips left 400 // after prolog. See `emitIterationCountCheck`. 401 static constexpr uint32_t MinItersBypassWeights[] = {1, 127}; 402 403 /// A helper function that returns true if the given type is irregular. The 404 /// type is irregular if its allocated size doesn't equal the store size of an 405 /// element of the corresponding vector type. 406 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 407 // Determine if an array of N elements of type Ty is "bitcast compatible" 408 // with a <N x Ty> vector. 409 // This is only true if there is no padding between the array elements. 410 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 411 } 412 413 /// Returns "best known" trip count for the specified loop \p L as defined by 414 /// the following procedure: 415 /// 1) Returns exact trip count if it is known. 416 /// 2) Returns expected trip count according to profile data if any. 417 /// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax. 418 /// 4) Returns std::nullopt if all of the above failed. 419 static std::optional<unsigned> 420 getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, 421 bool CanUseConstantMax = true) { 422 // Check if exact trip count is known. 423 if (unsigned ExpectedTC = PSE.getSE()->getSmallConstantTripCount(L)) 424 return ExpectedTC; 425 426 // Check if there is an expected trip count available from profile data. 427 if (LoopVectorizeWithBlockFrequency) 428 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 429 return *EstimatedTC; 430 431 if (!CanUseConstantMax) 432 return std::nullopt; 433 434 // Check if upper bound estimate is known. 435 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount()) 436 return ExpectedTC; 437 438 return std::nullopt; 439 } 440 441 namespace { 442 // Forward declare GeneratedRTChecks. 443 class GeneratedRTChecks; 444 445 using SCEV2ValueTy = DenseMap<const SCEV *, Value *>; 446 } // namespace 447 448 namespace llvm { 449 450 AnalysisKey ShouldRunExtraVectorPasses::Key; 451 452 /// InnerLoopVectorizer vectorizes loops which contain only one basic 453 /// block to a specified vectorization factor (VF). 454 /// This class performs the widening of scalars into vectors, or multiple 455 /// scalars. This class also implements the following features: 456 /// * It inserts an epilogue loop for handling loops that don't have iteration 457 /// counts that are known to be a multiple of the vectorization factor. 458 /// * It handles the code generation for reduction variables. 459 /// * Scalarization (implementation using scalars) of un-vectorizable 460 /// instructions. 461 /// InnerLoopVectorizer does not perform any vectorization-legality 462 /// checks, and relies on the caller to check for the different legality 463 /// aspects. The InnerLoopVectorizer relies on the 464 /// LoopVectorizationLegality class to provide information about the induction 465 /// and reduction variables that were found to a given vectorization factor. 466 class InnerLoopVectorizer { 467 public: 468 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 469 LoopInfo *LI, DominatorTree *DT, 470 const TargetLibraryInfo *TLI, 471 const TargetTransformInfo *TTI, AssumptionCache *AC, 472 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 473 ElementCount MinProfitableTripCount, 474 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 475 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 476 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, 477 VPlan &Plan) 478 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 479 AC(AC), ORE(ORE), VF(VecWidth), 480 MinProfitableTripCount(MinProfitableTripCount), UF(UnrollFactor), 481 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 482 PSI(PSI), RTChecks(RTChecks), Plan(Plan), 483 VectorPHVPB(Plan.getEntry()->getSingleSuccessor()) { 484 // Query this against the original loop and save it here because the profile 485 // of the original loop header may change as the transformation happens. 486 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 487 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 488 } 489 490 virtual ~InnerLoopVectorizer() = default; 491 492 /// Create a new empty loop that will contain vectorized instructions later 493 /// on, while the old loop will be used as the scalar remainder. Control flow 494 /// is generated around the vectorized (and scalar epilogue) loops consisting 495 /// of various checks and bypasses. Return the pre-header block of the new 496 /// loop. In the case of epilogue vectorization, this function is overriden to 497 /// handle the more complex control flow around the loops. \p ExpandedSCEVs is 498 /// used to look up SCEV expansions for expressions needed during skeleton 499 /// creation. 500 virtual BasicBlock * 501 createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs); 502 503 /// Fix the vectorized code, taking care of header phi's, and more. 504 void fixVectorizedLoop(VPTransformState &State); 505 506 // Return true if any runtime check is added. 507 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 508 509 /// A helper function to scalarize a single Instruction in the innermost loop. 510 /// Generates a sequence of scalar instances for each lane between \p MinLane 511 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 512 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 513 /// Instr's operands. 514 void scalarizeInstruction(const Instruction *Instr, 515 VPReplicateRecipe *RepRecipe, const VPLane &Lane, 516 VPTransformState &State); 517 518 /// Fix the non-induction PHIs in \p Plan. 519 void fixNonInductionPHIs(VPTransformState &State); 520 521 /// Returns the original loop trip count. 522 Value *getTripCount() const { return TripCount; } 523 524 /// Used to set the trip count after ILV's construction and after the 525 /// preheader block has been executed. Note that this always holds the trip 526 /// count of the original loop for both main loop and epilogue vectorization. 527 void setTripCount(Value *TC) { TripCount = TC; } 528 529 // Retrieve the additional bypass value associated with an original 530 /// induction header phi. 531 Value *getInductionAdditionalBypassValue(PHINode *OrigPhi) const { 532 return Induction2AdditionalBypassValue.at(OrigPhi); 533 } 534 535 /// Return the additional bypass block which targets the scalar loop by 536 /// skipping the epilogue loop after completing the main loop. 537 BasicBlock *getAdditionalBypassBlock() const { 538 assert(AdditionalBypassBlock && 539 "Trying to access AdditionalBypassBlock but it has not been set"); 540 return AdditionalBypassBlock; 541 } 542 543 protected: 544 friend class LoopVectorizationPlanner; 545 546 /// Set up the values of the IVs correctly when exiting the vector loop. 547 virtual void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 548 Value *VectorTripCount, BasicBlock *MiddleBlock, 549 VPTransformState &State); 550 551 /// Iteratively sink the scalarized operands of a predicated instruction into 552 /// the block that was created for it. 553 void sinkScalarOperands(Instruction *PredInst); 554 555 /// Returns (and creates if needed) the trip count of the widened loop. 556 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 557 558 /// Emit a bypass check to see if the vector trip count is zero, including if 559 /// it overflows. 560 void emitIterationCountCheck(BasicBlock *Bypass); 561 562 /// Emit a bypass check to see if all of the SCEV assumptions we've 563 /// had to make are correct. Returns the block containing the checks or 564 /// nullptr if no checks have been added. 565 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 566 567 /// Emit bypass checks to check any memory assumptions we may have made. 568 /// Returns the block containing the checks or nullptr if no checks have been 569 /// added. 570 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 571 572 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 573 /// vector loop preheader, middle block and scalar preheader. 574 void createVectorLoopSkeleton(StringRef Prefix); 575 576 /// Create and record the values for induction variables to resume coming from 577 /// the additional bypass block. 578 void createInductionAdditionalBypassValues(const SCEV2ValueTy &ExpandedSCEVs, 579 Value *MainVectorTripCount); 580 581 /// Allow subclasses to override and print debug traces before/after vplan 582 /// execution, when trace information is requested. 583 virtual void printDebugTracesAtStart() {} 584 virtual void printDebugTracesAtEnd() {} 585 586 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the 587 /// vector preheader and its predecessor, also connecting the new block to the 588 /// scalar preheader. 589 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB); 590 591 /// The original loop. 592 Loop *OrigLoop; 593 594 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 595 /// dynamic knowledge to simplify SCEV expressions and converts them to a 596 /// more usable form. 597 PredicatedScalarEvolution &PSE; 598 599 /// Loop Info. 600 LoopInfo *LI; 601 602 /// Dominator Tree. 603 DominatorTree *DT; 604 605 /// Target Library Info. 606 const TargetLibraryInfo *TLI; 607 608 /// Target Transform Info. 609 const TargetTransformInfo *TTI; 610 611 /// Assumption Cache. 612 AssumptionCache *AC; 613 614 /// Interface to emit optimization remarks. 615 OptimizationRemarkEmitter *ORE; 616 617 /// The vectorization SIMD factor to use. Each vector will have this many 618 /// vector elements. 619 ElementCount VF; 620 621 ElementCount MinProfitableTripCount; 622 623 /// The vectorization unroll factor to use. Each scalar is vectorized to this 624 /// many different vector instructions. 625 unsigned UF; 626 627 /// The builder that we use 628 IRBuilder<> Builder; 629 630 // --- Vectorization state --- 631 632 /// The vector-loop preheader. 633 BasicBlock *LoopVectorPreHeader; 634 635 /// The scalar-loop preheader. 636 BasicBlock *LoopScalarPreHeader; 637 638 /// Middle Block between the vector and the scalar. 639 BasicBlock *LoopMiddleBlock; 640 641 /// A list of all bypass blocks. The first block is the entry of the loop. 642 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 643 644 /// Store instructions that were predicated. 645 SmallVector<Instruction *, 4> PredicatedInstructions; 646 647 /// Trip count of the original loop. 648 Value *TripCount = nullptr; 649 650 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 651 Value *VectorTripCount = nullptr; 652 653 /// The legality analysis. 654 LoopVectorizationLegality *Legal; 655 656 /// The profitablity analysis. 657 LoopVectorizationCostModel *Cost; 658 659 // Record whether runtime checks are added. 660 bool AddedSafetyChecks = false; 661 662 /// BFI and PSI are used to check for profile guided size optimizations. 663 BlockFrequencyInfo *BFI; 664 ProfileSummaryInfo *PSI; 665 666 // Whether this loop should be optimized for size based on profile guided size 667 // optimizatios. 668 bool OptForSizeBasedOnProfile; 669 670 /// Structure to hold information about generated runtime checks, responsible 671 /// for cleaning the checks, if vectorization turns out unprofitable. 672 GeneratedRTChecks &RTChecks; 673 674 /// Mapping of induction phis to their additional bypass values. They 675 /// need to be added as operands to phi nodes in the scalar loop preheader 676 /// after the epilogue skeleton has been created. 677 DenseMap<PHINode *, Value *> Induction2AdditionalBypassValue; 678 679 /// The additional bypass block which conditionally skips over the epilogue 680 /// loop after executing the main loop. Needed to resume inductions and 681 /// reductions during epilogue vectorization. 682 BasicBlock *AdditionalBypassBlock = nullptr; 683 684 VPlan &Plan; 685 686 /// The vector preheader block of \p Plan, used as target for check blocks 687 /// introduced during skeleton creation. 688 VPBlockBase *VectorPHVPB; 689 }; 690 691 /// Encapsulate information regarding vectorization of a loop and its epilogue. 692 /// This information is meant to be updated and used across two stages of 693 /// epilogue vectorization. 694 struct EpilogueLoopVectorizationInfo { 695 ElementCount MainLoopVF = ElementCount::getFixed(0); 696 unsigned MainLoopUF = 0; 697 ElementCount EpilogueVF = ElementCount::getFixed(0); 698 unsigned EpilogueUF = 0; 699 BasicBlock *MainLoopIterationCountCheck = nullptr; 700 BasicBlock *EpilogueIterationCountCheck = nullptr; 701 BasicBlock *SCEVSafetyCheck = nullptr; 702 BasicBlock *MemSafetyCheck = nullptr; 703 Value *TripCount = nullptr; 704 Value *VectorTripCount = nullptr; 705 VPlan &EpiloguePlan; 706 707 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 708 ElementCount EVF, unsigned EUF, 709 VPlan &EpiloguePlan) 710 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF), 711 EpiloguePlan(EpiloguePlan) { 712 assert(EUF == 1 && 713 "A high UF for the epilogue loop is likely not beneficial."); 714 } 715 }; 716 717 /// An extension of the inner loop vectorizer that creates a skeleton for a 718 /// vectorized loop that has its epilogue (residual) also vectorized. 719 /// The idea is to run the vplan on a given loop twice, firstly to setup the 720 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 721 /// from the first step and vectorize the epilogue. This is achieved by 722 /// deriving two concrete strategy classes from this base class and invoking 723 /// them in succession from the loop vectorizer planner. 724 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 725 public: 726 InnerLoopAndEpilogueVectorizer( 727 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 728 DominatorTree *DT, const TargetLibraryInfo *TLI, 729 const TargetTransformInfo *TTI, AssumptionCache *AC, 730 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 731 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 732 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 733 GeneratedRTChecks &Checks, VPlan &Plan) 734 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 735 EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, 736 CM, BFI, PSI, Checks, Plan), 737 EPI(EPI) {} 738 739 // Override this function to handle the more complex control flow around the 740 // three loops. 741 BasicBlock * 742 createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final { 743 return createEpilogueVectorizedLoopSkeleton(ExpandedSCEVs); 744 } 745 746 /// The interface for creating a vectorized skeleton using one of two 747 /// different strategies, each corresponding to one execution of the vplan 748 /// as described above. 749 virtual BasicBlock * 750 createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) = 0; 751 752 /// Holds and updates state information required to vectorize the main loop 753 /// and its epilogue in two separate passes. This setup helps us avoid 754 /// regenerating and recomputing runtime safety checks. It also helps us to 755 /// shorten the iteration-count-check path length for the cases where the 756 /// iteration count of the loop is so small that the main vector loop is 757 /// completely skipped. 758 EpilogueLoopVectorizationInfo &EPI; 759 }; 760 761 /// A specialized derived class of inner loop vectorizer that performs 762 /// vectorization of *main* loops in the process of vectorizing loops and their 763 /// epilogues. 764 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 765 public: 766 EpilogueVectorizerMainLoop( 767 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 768 DominatorTree *DT, const TargetLibraryInfo *TLI, 769 const TargetTransformInfo *TTI, AssumptionCache *AC, 770 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 771 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 772 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 773 GeneratedRTChecks &Check, VPlan &Plan) 774 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 775 EPI, LVL, CM, BFI, PSI, Check, Plan) {} 776 /// Implements the interface for creating a vectorized skeleton using the 777 /// *main loop* strategy (ie the first pass of vplan execution). 778 BasicBlock * 779 createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final; 780 781 protected: 782 /// Emits an iteration count bypass check once for the main loop (when \p 783 /// ForEpilogue is false) and once for the epilogue loop (when \p 784 /// ForEpilogue is true). 785 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 786 void printDebugTracesAtStart() override; 787 void printDebugTracesAtEnd() override; 788 789 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 790 Value *VectorTripCount, BasicBlock *MiddleBlock, 791 VPTransformState &State) override {}; 792 }; 793 794 // A specialized derived class of inner loop vectorizer that performs 795 // vectorization of *epilogue* loops in the process of vectorizing loops and 796 // their epilogues. 797 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 798 public: 799 EpilogueVectorizerEpilogueLoop( 800 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 801 DominatorTree *DT, const TargetLibraryInfo *TLI, 802 const TargetTransformInfo *TTI, AssumptionCache *AC, 803 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 804 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 805 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 806 GeneratedRTChecks &Checks, VPlan &Plan) 807 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 808 EPI, LVL, CM, BFI, PSI, Checks, Plan) { 809 TripCount = EPI.TripCount; 810 } 811 /// Implements the interface for creating a vectorized skeleton using the 812 /// *epilogue loop* strategy (ie the second pass of vplan execution). 813 BasicBlock * 814 createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final; 815 816 protected: 817 /// Emits an iteration count bypass check after the main vector loop has 818 /// finished to see if there are any iterations left to execute by either 819 /// the vector epilogue or the scalar epilogue. 820 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 821 BasicBlock *Bypass, 822 BasicBlock *Insert); 823 void printDebugTracesAtStart() override; 824 void printDebugTracesAtEnd() override; 825 }; 826 } // end namespace llvm 827 828 /// Look for a meaningful debug location on the instruction or its operands. 829 static DebugLoc getDebugLocFromInstOrOperands(Instruction *I) { 830 if (!I) 831 return DebugLoc(); 832 833 DebugLoc Empty; 834 if (I->getDebugLoc() != Empty) 835 return I->getDebugLoc(); 836 837 for (Use &Op : I->operands()) { 838 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 839 if (OpInst->getDebugLoc() != Empty) 840 return OpInst->getDebugLoc(); 841 } 842 843 return I->getDebugLoc(); 844 } 845 846 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 847 /// is passed, the message relates to that particular instruction. 848 #ifndef NDEBUG 849 static void debugVectorizationMessage(const StringRef Prefix, 850 const StringRef DebugMsg, 851 Instruction *I) { 852 dbgs() << "LV: " << Prefix << DebugMsg; 853 if (I != nullptr) 854 dbgs() << " " << *I; 855 else 856 dbgs() << '.'; 857 dbgs() << '\n'; 858 } 859 #endif 860 861 /// Create an analysis remark that explains why vectorization failed 862 /// 863 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 864 /// RemarkName is the identifier for the remark. If \p I is passed it is an 865 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 866 /// the location of the remark. If \p DL is passed, use it as debug location for 867 /// the remark. \return the remark object that can be streamed to. 868 static OptimizationRemarkAnalysis 869 createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 870 Instruction *I, DebugLoc DL = {}) { 871 Value *CodeRegion = I ? I->getParent() : TheLoop->getHeader(); 872 // If debug location is attached to the instruction, use it. Otherwise if DL 873 // was not provided, use the loop's. 874 if (I && I->getDebugLoc()) 875 DL = I->getDebugLoc(); 876 else if (!DL) 877 DL = TheLoop->getStartLoc(); 878 879 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 880 } 881 882 namespace llvm { 883 884 /// Return a value for Step multiplied by VF. 885 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 886 int64_t Step) { 887 assert(Ty->isIntegerTy() && "Expected an integer step"); 888 return B.CreateElementCount(Ty, VF.multiplyCoefficientBy(Step)); 889 } 890 891 /// Return the runtime value for VF. 892 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 893 return B.CreateElementCount(Ty, VF); 894 } 895 896 void reportVectorizationFailure(const StringRef DebugMsg, 897 const StringRef OREMsg, const StringRef ORETag, 898 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 899 Instruction *I) { 900 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 901 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 902 ORE->emit( 903 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 904 << "loop not vectorized: " << OREMsg); 905 } 906 907 /// Reports an informative message: print \p Msg for debugging purposes as well 908 /// as an optimization remark. Uses either \p I as location of the remark, or 909 /// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the 910 /// remark. If \p DL is passed, use it as debug location for the remark. 911 static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 912 OptimizationRemarkEmitter *ORE, 913 Loop *TheLoop, Instruction *I = nullptr, 914 DebugLoc DL = {}) { 915 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 916 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 917 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, 918 I, DL) 919 << Msg); 920 } 921 922 /// Report successful vectorization of the loop. In case an outer loop is 923 /// vectorized, prepend "outer" to the vectorization remark. 924 static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, 925 VectorizationFactor VF, unsigned IC) { 926 LLVM_DEBUG(debugVectorizationMessage( 927 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop", 928 nullptr)); 929 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer "; 930 ORE->emit([&]() { 931 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(), 932 TheLoop->getHeader()) 933 << "vectorized " << LoopType << "loop (vectorization width: " 934 << ore::NV("VectorizationFactor", VF.Width) 935 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")"; 936 }); 937 } 938 939 } // end namespace llvm 940 941 namespace llvm { 942 943 // Loop vectorization cost-model hints how the scalar epilogue loop should be 944 // lowered. 945 enum ScalarEpilogueLowering { 946 947 // The default: allowing scalar epilogues. 948 CM_ScalarEpilogueAllowed, 949 950 // Vectorization with OptForSize: don't allow epilogues. 951 CM_ScalarEpilogueNotAllowedOptSize, 952 953 // A special case of vectorisation with OptForSize: loops with a very small 954 // trip count are considered for vectorization under OptForSize, thereby 955 // making sure the cost of their loop body is dominant, free of runtime 956 // guards and scalar iteration overheads. 957 CM_ScalarEpilogueNotAllowedLowTripLoop, 958 959 // Loop hint predicate indicating an epilogue is undesired. 960 CM_ScalarEpilogueNotNeededUsePredicate, 961 962 // Directive indicating we must either tail fold or not vectorize 963 CM_ScalarEpilogueNotAllowedUsePredicate 964 }; 965 966 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 967 968 /// LoopVectorizationCostModel - estimates the expected speedups due to 969 /// vectorization. 970 /// In many cases vectorization is not profitable. This can happen because of 971 /// a number of reasons. In this class we mainly attempt to predict the 972 /// expected speedup/slowdowns due to the supported instruction set. We use the 973 /// TargetTransformInfo to query the different backends for the cost of 974 /// different operations. 975 class LoopVectorizationCostModel { 976 friend class LoopVectorizationPlanner; 977 978 public: 979 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 980 PredicatedScalarEvolution &PSE, LoopInfo *LI, 981 LoopVectorizationLegality *Legal, 982 const TargetTransformInfo &TTI, 983 const TargetLibraryInfo *TLI, DemandedBits *DB, 984 AssumptionCache *AC, 985 OptimizationRemarkEmitter *ORE, const Function *F, 986 const LoopVectorizeHints *Hints, 987 InterleavedAccessInfo &IAI) 988 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 989 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 990 Hints(Hints), InterleaveInfo(IAI) {} 991 992 /// \return An upper bound for the vectorization factors (both fixed and 993 /// scalable). If the factors are 0, vectorization and interleaving should be 994 /// avoided up front. 995 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 996 997 /// \return True if runtime checks are required for vectorization, and false 998 /// otherwise. 999 bool runtimeChecksRequired(); 1000 1001 /// Setup cost-based decisions for user vectorization factor. 1002 /// \return true if the UserVF is a feasible VF to be chosen. 1003 bool selectUserVectorizationFactor(ElementCount UserVF) { 1004 collectUniformsAndScalars(UserVF); 1005 collectInstsToScalarize(UserVF); 1006 return expectedCost(UserVF).isValid(); 1007 } 1008 1009 /// \return The size (in bits) of the smallest and widest types in the code 1010 /// that needs to be vectorized. We ignore values that remain scalar such as 1011 /// 64 bit loop indices. 1012 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1013 1014 /// \return The desired interleave count. 1015 /// If interleave count has been specified by metadata it will be returned. 1016 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1017 /// are the selected vectorization factor and the cost of the selected VF. 1018 unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost); 1019 1020 /// Memory access instruction may be vectorized in more than one way. 1021 /// Form of instruction after vectorization depends on cost. 1022 /// This function takes cost-based decisions for Load/Store instructions 1023 /// and collects them in a map. This decisions map is used for building 1024 /// the lists of loop-uniform and loop-scalar instructions. 1025 /// The calculated cost is saved with widening decision in order to 1026 /// avoid redundant calculations. 1027 void setCostBasedWideningDecision(ElementCount VF); 1028 1029 /// A call may be vectorized in different ways depending on whether we have 1030 /// vectorized variants available and whether the target supports masking. 1031 /// This function analyzes all calls in the function at the supplied VF, 1032 /// makes a decision based on the costs of available options, and stores that 1033 /// decision in a map for use in planning and plan execution. 1034 void setVectorizedCallDecision(ElementCount VF); 1035 1036 /// A struct that represents some properties of the register usage 1037 /// of a loop. 1038 struct RegisterUsage { 1039 /// Holds the number of loop invariant values that are used in the loop. 1040 /// The key is ClassID of target-provided register class. 1041 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1042 /// Holds the maximum number of concurrent live intervals in the loop. 1043 /// The key is ClassID of target-provided register class. 1044 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1045 }; 1046 1047 /// \return Returns information about the register usages of the loop for the 1048 /// given vectorization factors. 1049 SmallVector<RegisterUsage, 8> 1050 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1051 1052 /// Collect values we want to ignore in the cost model. 1053 void collectValuesToIgnore(); 1054 1055 /// Collect all element types in the loop for which widening is needed. 1056 void collectElementTypesForWidening(); 1057 1058 /// Split reductions into those that happen in the loop, and those that happen 1059 /// outside. In loop reductions are collected into InLoopReductions. 1060 void collectInLoopReductions(); 1061 1062 /// Returns true if we should use strict in-order reductions for the given 1063 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1064 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1065 /// of FP operations. 1066 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { 1067 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1068 } 1069 1070 /// \returns The smallest bitwidth each instruction can be represented with. 1071 /// The vector equivalents of these instructions should be truncated to this 1072 /// type. 1073 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1074 return MinBWs; 1075 } 1076 1077 /// \returns True if it is more profitable to scalarize instruction \p I for 1078 /// vectorization factor \p VF. 1079 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1080 assert(VF.isVector() && 1081 "Profitable to scalarize relevant only for VF > 1."); 1082 assert( 1083 TheLoop->isInnermost() && 1084 "cost-model should not be used for outer loops (in VPlan-native path)"); 1085 1086 auto Scalars = InstsToScalarize.find(VF); 1087 assert(Scalars != InstsToScalarize.end() && 1088 "VF not yet analyzed for scalarization profitability"); 1089 return Scalars->second.contains(I); 1090 } 1091 1092 /// Returns true if \p I is known to be uniform after vectorization. 1093 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1094 assert( 1095 TheLoop->isInnermost() && 1096 "cost-model should not be used for outer loops (in VPlan-native path)"); 1097 // Pseudo probe needs to be duplicated for each unrolled iteration and 1098 // vector lane so that profiled loop trip count can be accurately 1099 // accumulated instead of being under counted. 1100 if (isa<PseudoProbeInst>(I)) 1101 return false; 1102 1103 if (VF.isScalar()) 1104 return true; 1105 1106 auto UniformsPerVF = Uniforms.find(VF); 1107 assert(UniformsPerVF != Uniforms.end() && 1108 "VF not yet analyzed for uniformity"); 1109 return UniformsPerVF->second.count(I); 1110 } 1111 1112 /// Returns true if \p I is known to be scalar after vectorization. 1113 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1114 assert( 1115 TheLoop->isInnermost() && 1116 "cost-model should not be used for outer loops (in VPlan-native path)"); 1117 if (VF.isScalar()) 1118 return true; 1119 1120 auto ScalarsPerVF = Scalars.find(VF); 1121 assert(ScalarsPerVF != Scalars.end() && 1122 "Scalar values are not calculated for VF"); 1123 return ScalarsPerVF->second.count(I); 1124 } 1125 1126 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1127 /// for vectorization factor \p VF. 1128 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1129 return VF.isVector() && MinBWs.contains(I) && 1130 !isProfitableToScalarize(I, VF) && 1131 !isScalarAfterVectorization(I, VF); 1132 } 1133 1134 /// Decision that was taken during cost calculation for memory instruction. 1135 enum InstWidening { 1136 CM_Unknown, 1137 CM_Widen, // For consecutive accesses with stride +1. 1138 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1139 CM_Interleave, 1140 CM_GatherScatter, 1141 CM_Scalarize, 1142 CM_VectorCall, 1143 CM_IntrinsicCall 1144 }; 1145 1146 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1147 /// instruction \p I and vector width \p VF. 1148 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1149 InstructionCost Cost) { 1150 assert(VF.isVector() && "Expected VF >=2"); 1151 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1152 } 1153 1154 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1155 /// interleaving group \p Grp and vector width \p VF. 1156 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1157 ElementCount VF, InstWidening W, 1158 InstructionCost Cost) { 1159 assert(VF.isVector() && "Expected VF >=2"); 1160 /// Broadcast this decicion to all instructions inside the group. 1161 /// When interleaving, the cost will only be assigned one instruction, the 1162 /// insert position. For other cases, add the appropriate fraction of the 1163 /// total cost to each instruction. This ensures accurate costs are used, 1164 /// even if the insert position instruction is not used. 1165 InstructionCost InsertPosCost = Cost; 1166 InstructionCost OtherMemberCost = 0; 1167 if (W != CM_Interleave) 1168 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers(); 1169 ; 1170 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) { 1171 if (auto *I = Grp->getMember(Idx)) { 1172 if (Grp->getInsertPos() == I) 1173 WideningDecisions[std::make_pair(I, VF)] = 1174 std::make_pair(W, InsertPosCost); 1175 else 1176 WideningDecisions[std::make_pair(I, VF)] = 1177 std::make_pair(W, OtherMemberCost); 1178 } 1179 } 1180 } 1181 1182 /// Return the cost model decision for the given instruction \p I and vector 1183 /// width \p VF. Return CM_Unknown if this instruction did not pass 1184 /// through the cost modeling. 1185 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1186 assert(VF.isVector() && "Expected VF to be a vector VF"); 1187 assert( 1188 TheLoop->isInnermost() && 1189 "cost-model should not be used for outer loops (in VPlan-native path)"); 1190 1191 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1192 auto Itr = WideningDecisions.find(InstOnVF); 1193 if (Itr == WideningDecisions.end()) 1194 return CM_Unknown; 1195 return Itr->second.first; 1196 } 1197 1198 /// Return the vectorization cost for the given instruction \p I and vector 1199 /// width \p VF. 1200 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1201 assert(VF.isVector() && "Expected VF >=2"); 1202 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1203 assert(WideningDecisions.contains(InstOnVF) && 1204 "The cost is not calculated"); 1205 return WideningDecisions[InstOnVF].second; 1206 } 1207 1208 struct CallWideningDecision { 1209 InstWidening Kind; 1210 Function *Variant; 1211 Intrinsic::ID IID; 1212 std::optional<unsigned> MaskPos; 1213 InstructionCost Cost; 1214 }; 1215 1216 void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, 1217 Function *Variant, Intrinsic::ID IID, 1218 std::optional<unsigned> MaskPos, 1219 InstructionCost Cost) { 1220 assert(!VF.isScalar() && "Expected vector VF"); 1221 CallWideningDecisions[std::make_pair(CI, VF)] = {Kind, Variant, IID, 1222 MaskPos, Cost}; 1223 } 1224 1225 CallWideningDecision getCallWideningDecision(CallInst *CI, 1226 ElementCount VF) const { 1227 assert(!VF.isScalar() && "Expected vector VF"); 1228 return CallWideningDecisions.at(std::make_pair(CI, VF)); 1229 } 1230 1231 /// Return True if instruction \p I is an optimizable truncate whose operand 1232 /// is an induction variable. Such a truncate will be removed by adding a new 1233 /// induction variable with the destination type. 1234 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1235 // If the instruction is not a truncate, return false. 1236 auto *Trunc = dyn_cast<TruncInst>(I); 1237 if (!Trunc) 1238 return false; 1239 1240 // Get the source and destination types of the truncate. 1241 Type *SrcTy = toVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1242 Type *DestTy = toVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1243 1244 // If the truncate is free for the given types, return false. Replacing a 1245 // free truncate with an induction variable would add an induction variable 1246 // update instruction to each iteration of the loop. We exclude from this 1247 // check the primary induction variable since it will need an update 1248 // instruction regardless. 1249 Value *Op = Trunc->getOperand(0); 1250 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1251 return false; 1252 1253 // If the truncated value is not an induction variable, return false. 1254 return Legal->isInductionPhi(Op); 1255 } 1256 1257 /// Collects the instructions to scalarize for each predicated instruction in 1258 /// the loop. 1259 void collectInstsToScalarize(ElementCount VF); 1260 1261 /// Collect Uniform and Scalar values for the given \p VF. 1262 /// The sets depend on CM decision for Load/Store instructions 1263 /// that may be vectorized as interleave, gather-scatter or scalarized. 1264 /// Also make a decision on what to do about call instructions in the loop 1265 /// at that VF -- scalarize, call a known vector routine, or call a 1266 /// vector intrinsic. 1267 void collectUniformsAndScalars(ElementCount VF) { 1268 // Do the analysis once. 1269 if (VF.isScalar() || Uniforms.contains(VF)) 1270 return; 1271 setCostBasedWideningDecision(VF); 1272 collectLoopUniforms(VF); 1273 setVectorizedCallDecision(VF); 1274 collectLoopScalars(VF); 1275 } 1276 1277 /// Returns true if the target machine supports masked store operation 1278 /// for the given \p DataType and kind of access to \p Ptr. 1279 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1280 return Legal->isConsecutivePtr(DataType, Ptr) && 1281 TTI.isLegalMaskedStore(DataType, Alignment); 1282 } 1283 1284 /// Returns true if the target machine supports masked load operation 1285 /// for the given \p DataType and kind of access to \p Ptr. 1286 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1287 return Legal->isConsecutivePtr(DataType, Ptr) && 1288 TTI.isLegalMaskedLoad(DataType, Alignment); 1289 } 1290 1291 /// Returns true if the target machine can represent \p V as a masked gather 1292 /// or scatter operation. 1293 bool isLegalGatherOrScatter(Value *V, ElementCount VF) { 1294 bool LI = isa<LoadInst>(V); 1295 bool SI = isa<StoreInst>(V); 1296 if (!LI && !SI) 1297 return false; 1298 auto *Ty = getLoadStoreType(V); 1299 Align Align = getLoadStoreAlignment(V); 1300 if (VF.isVector()) 1301 Ty = VectorType::get(Ty, VF); 1302 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1303 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1304 } 1305 1306 /// Returns true if the target machine supports all of the reduction 1307 /// variables found for the given VF. 1308 bool canVectorizeReductions(ElementCount VF) const { 1309 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1310 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1311 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1312 })); 1313 } 1314 1315 /// Given costs for both strategies, return true if the scalar predication 1316 /// lowering should be used for div/rem. This incorporates an override 1317 /// option so it is not simply a cost comparison. 1318 bool isDivRemScalarWithPredication(InstructionCost ScalarCost, 1319 InstructionCost SafeDivisorCost) const { 1320 switch (ForceSafeDivisor) { 1321 case cl::BOU_UNSET: 1322 return ScalarCost < SafeDivisorCost; 1323 case cl::BOU_TRUE: 1324 return false; 1325 case cl::BOU_FALSE: 1326 return true; 1327 } 1328 llvm_unreachable("impossible case value"); 1329 } 1330 1331 /// Returns true if \p I is an instruction which requires predication and 1332 /// for which our chosen predication strategy is scalarization (i.e. we 1333 /// don't have an alternate strategy such as masking available). 1334 /// \p VF is the vectorization factor that will be used to vectorize \p I. 1335 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1336 1337 /// Returns true if \p I is an instruction that needs to be predicated 1338 /// at runtime. The result is independent of the predication mechanism. 1339 /// Superset of instructions that return true for isScalarWithPredication. 1340 bool isPredicatedInst(Instruction *I) const; 1341 1342 /// Return the costs for our two available strategies for lowering a 1343 /// div/rem operation which requires speculating at least one lane. 1344 /// First result is for scalarization (will be invalid for scalable 1345 /// vectors); second is for the safe-divisor strategy. 1346 std::pair<InstructionCost, InstructionCost> 1347 getDivRemSpeculationCost(Instruction *I, 1348 ElementCount VF) const; 1349 1350 /// Returns true if \p I is a memory instruction with consecutive memory 1351 /// access that can be widened. 1352 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF); 1353 1354 /// Returns true if \p I is a memory instruction in an interleaved-group 1355 /// of memory accesses that can be vectorized with wide vector loads/stores 1356 /// and shuffles. 1357 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const; 1358 1359 /// Check if \p Instr belongs to any interleaved access group. 1360 bool isAccessInterleaved(Instruction *Instr) const { 1361 return InterleaveInfo.isInterleaved(Instr); 1362 } 1363 1364 /// Get the interleaved access group that \p Instr belongs to. 1365 const InterleaveGroup<Instruction> * 1366 getInterleavedAccessGroup(Instruction *Instr) const { 1367 return InterleaveInfo.getInterleaveGroup(Instr); 1368 } 1369 1370 /// Returns true if we're required to use a scalar epilogue for at least 1371 /// the final iteration of the original loop. 1372 bool requiresScalarEpilogue(bool IsVectorizing) const { 1373 if (!isScalarEpilogueAllowed()) { 1374 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n"); 1375 return false; 1376 } 1377 // If we might exit from anywhere but the latch and early exit vectorization 1378 // is disabled, we must run the exiting iteration in scalar form. 1379 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() && 1380 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) { 1381 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting " 1382 "from latch block\n"); 1383 return true; 1384 } 1385 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) { 1386 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: " 1387 "interleaved group requires scalar epilogue\n"); 1388 return true; 1389 } 1390 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n"); 1391 return false; 1392 } 1393 1394 /// Returns true if we're required to use a scalar epilogue for at least 1395 /// the final iteration of the original loop for all VFs in \p Range. 1396 /// A scalar epilogue must either be required for all VFs in \p Range or for 1397 /// none. 1398 bool requiresScalarEpilogue(VFRange Range) const { 1399 auto RequiresScalarEpilogue = [this](ElementCount VF) { 1400 return requiresScalarEpilogue(VF.isVector()); 1401 }; 1402 bool IsRequired = all_of(Range, RequiresScalarEpilogue); 1403 assert( 1404 (IsRequired || none_of(Range, RequiresScalarEpilogue)) && 1405 "all VFs in range must agree on whether a scalar epilogue is required"); 1406 return IsRequired; 1407 } 1408 1409 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1410 /// loop hint annotation. 1411 bool isScalarEpilogueAllowed() const { 1412 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1413 } 1414 1415 /// Returns the TailFoldingStyle that is best for the current loop. 1416 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const { 1417 if (!ChosenTailFoldingStyle) 1418 return TailFoldingStyle::None; 1419 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first 1420 : ChosenTailFoldingStyle->second; 1421 } 1422 1423 /// Selects and saves TailFoldingStyle for 2 options - if IV update may 1424 /// overflow or not. 1425 /// \param IsScalableVF true if scalable vector factors enabled. 1426 /// \param UserIC User specific interleave count. 1427 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) { 1428 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet."); 1429 if (!Legal->canFoldTailByMasking()) { 1430 ChosenTailFoldingStyle = 1431 std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None); 1432 return; 1433 } 1434 1435 if (!ForceTailFoldingStyle.getNumOccurrences()) { 1436 ChosenTailFoldingStyle = std::make_pair( 1437 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true), 1438 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)); 1439 return; 1440 } 1441 1442 // Set styles when forced. 1443 ChosenTailFoldingStyle = std::make_pair(ForceTailFoldingStyle.getValue(), 1444 ForceTailFoldingStyle.getValue()); 1445 if (ForceTailFoldingStyle != TailFoldingStyle::DataWithEVL) 1446 return; 1447 // Override forced styles if needed. 1448 // FIXME: use actual opcode/data type for analysis here. 1449 // FIXME: Investigate opportunity for fixed vector factor. 1450 bool EVLIsLegal = UserIC <= 1 && 1451 TTI.hasActiveVectorLength(0, nullptr, Align()) && 1452 !EnableVPlanNativePath; 1453 if (!EVLIsLegal) { 1454 // If for some reason EVL mode is unsupported, fallback to 1455 // DataWithoutLaneMask to try to vectorize the loop with folded tail 1456 // in a generic way. 1457 ChosenTailFoldingStyle = 1458 std::make_pair(TailFoldingStyle::DataWithoutLaneMask, 1459 TailFoldingStyle::DataWithoutLaneMask); 1460 LLVM_DEBUG( 1461 dbgs() 1462 << "LV: Preference for VP intrinsics indicated. Will " 1463 "not try to generate VP Intrinsics " 1464 << (UserIC > 1 1465 ? "since interleave count specified is greater than 1.\n" 1466 : "due to non-interleaving reasons.\n")); 1467 } 1468 } 1469 1470 /// Returns true if all loop blocks should be masked to fold tail loop. 1471 bool foldTailByMasking() const { 1472 // TODO: check if it is possible to check for None style independent of 1473 // IVUpdateMayOverflow flag in getTailFoldingStyle. 1474 return getTailFoldingStyle() != TailFoldingStyle::None; 1475 } 1476 1477 /// Return maximum safe number of elements to be processed per vector 1478 /// iteration, which do not prevent store-load forwarding and are safe with 1479 /// regard to the memory dependencies. Required for EVL-based VPlans to 1480 /// correctly calculate AVL (application vector length) as min(remaining AVL, 1481 /// MaxSafeElements). 1482 /// TODO: need to consider adjusting cost model to use this value as a 1483 /// vectorization factor for EVL-based vectorization. 1484 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; } 1485 1486 /// Returns true if the instructions in this block requires predication 1487 /// for any reason, e.g. because tail folding now requires a predicate 1488 /// or because the block in the original loop was predicated. 1489 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1490 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1491 } 1492 1493 /// Returns true if VP intrinsics with explicit vector length support should 1494 /// be generated in the tail folded loop. 1495 bool foldTailWithEVL() const { 1496 return getTailFoldingStyle() == TailFoldingStyle::DataWithEVL; 1497 } 1498 1499 /// Returns true if the Phi is part of an inloop reduction. 1500 bool isInLoopReduction(PHINode *Phi) const { 1501 return InLoopReductions.contains(Phi); 1502 } 1503 1504 /// Returns true if the predicated reduction select should be used to set the 1505 /// incoming value for the reduction phi. 1506 bool usePredicatedReductionSelect(unsigned Opcode, Type *PhiTy) const { 1507 // Force to use predicated reduction select since the EVL of the 1508 // second-to-last iteration might not be VF*UF. 1509 if (foldTailWithEVL()) 1510 return true; 1511 return PreferPredicatedReductionSelect || 1512 TTI.preferPredicatedReductionSelect( 1513 Opcode, PhiTy, TargetTransformInfo::ReductionFlags()); 1514 } 1515 1516 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1517 /// with factor VF. Return the cost of the instruction, including 1518 /// scalarization overhead if it's needed. 1519 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1520 1521 /// Estimate cost of a call instruction CI if it were vectorized with factor 1522 /// VF. Return the cost of the instruction, including scalarization overhead 1523 /// if it's needed. 1524 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const; 1525 1526 /// Invalidates decisions already taken by the cost model. 1527 void invalidateCostModelingDecisions() { 1528 WideningDecisions.clear(); 1529 CallWideningDecisions.clear(); 1530 Uniforms.clear(); 1531 Scalars.clear(); 1532 } 1533 1534 /// Returns the expected execution cost. The unit of the cost does 1535 /// not matter because we use the 'cost' units to compare different 1536 /// vector widths. The cost that is returned is *not* normalized by 1537 /// the factor width. 1538 InstructionCost expectedCost(ElementCount VF); 1539 1540 bool hasPredStores() const { return NumPredStores > 0; } 1541 1542 /// Returns true if epilogue vectorization is considered profitable, and 1543 /// false otherwise. 1544 /// \p VF is the vectorization factor chosen for the original loop. 1545 /// \p Multiplier is an aditional scaling factor applied to VF before 1546 /// comparing to EpilogueVectorizationMinVF. 1547 bool isEpilogueVectorizationProfitable(const ElementCount VF, 1548 const unsigned IC) const; 1549 1550 /// Returns the execution time cost of an instruction for a given vector 1551 /// width. Vector width of one means scalar. 1552 InstructionCost getInstructionCost(Instruction *I, ElementCount VF); 1553 1554 /// Return the cost of instructions in an inloop reduction pattern, if I is 1555 /// part of that pattern. 1556 std::optional<InstructionCost> 1557 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1558 TTI::TargetCostKind CostKind) const; 1559 1560 /// Returns true if \p Op should be considered invariant and if it is 1561 /// trivially hoistable. 1562 bool shouldConsiderInvariant(Value *Op); 1563 1564 private: 1565 unsigned NumPredStores = 0; 1566 1567 /// \return An upper bound for the vectorization factors for both 1568 /// fixed and scalable vectorization, where the minimum-known number of 1569 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1570 /// disabled or unsupported, then the scalable part will be equal to 1571 /// ElementCount::getScalable(0). 1572 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount, 1573 ElementCount UserVF, 1574 bool FoldTailByMasking); 1575 1576 /// \return the maximized element count based on the targets vector 1577 /// registers and the loop trip-count, but limited to a maximum safe VF. 1578 /// This is a helper function of computeFeasibleMaxVF. 1579 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount, 1580 unsigned SmallestType, 1581 unsigned WidestType, 1582 ElementCount MaxSafeVF, 1583 bool FoldTailByMasking); 1584 1585 /// Checks if scalable vectorization is supported and enabled. Caches the 1586 /// result to avoid repeated debug dumps for repeated queries. 1587 bool isScalableVectorizationAllowed(); 1588 1589 /// \return the maximum legal scalable VF, based on the safe max number 1590 /// of elements. 1591 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1592 1593 /// Calculate vectorization cost of memory instruction \p I. 1594 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1595 1596 /// The cost computation for scalarized memory instruction. 1597 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1598 1599 /// The cost computation for interleaving group of memory instructions. 1600 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1601 1602 /// The cost computation for Gather/Scatter instruction. 1603 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1604 1605 /// The cost computation for widening instruction \p I with consecutive 1606 /// memory access. 1607 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1608 1609 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1610 /// Load: scalar load + broadcast. 1611 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1612 /// element) 1613 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1614 1615 /// Estimate the overhead of scalarizing an instruction. This is a 1616 /// convenience wrapper for the type-based getScalarizationOverhead API. 1617 InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF, 1618 TTI::TargetCostKind CostKind) const; 1619 1620 /// Returns true if an artificially high cost for emulated masked memrefs 1621 /// should be used. 1622 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1623 1624 /// Map of scalar integer values to the smallest bitwidth they can be legally 1625 /// represented as. The vector equivalents of these values should be truncated 1626 /// to this type. 1627 MapVector<Instruction *, uint64_t> MinBWs; 1628 1629 /// A type representing the costs for instructions if they were to be 1630 /// scalarized rather than vectorized. The entries are Instruction-Cost 1631 /// pairs. 1632 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1633 1634 /// A set containing all BasicBlocks that are known to present after 1635 /// vectorization as a predicated block. 1636 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> 1637 PredicatedBBsAfterVectorization; 1638 1639 /// Records whether it is allowed to have the original scalar loop execute at 1640 /// least once. This may be needed as a fallback loop in case runtime 1641 /// aliasing/dependence checks fail, or to handle the tail/remainder 1642 /// iterations when the trip count is unknown or doesn't divide by the VF, 1643 /// or as a peel-loop to handle gaps in interleave-groups. 1644 /// Under optsize and when the trip count is very small we don't allow any 1645 /// iterations to execute in the scalar loop. 1646 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1647 1648 /// Control finally chosen tail folding style. The first element is used if 1649 /// the IV update may overflow, the second element - if it does not. 1650 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>> 1651 ChosenTailFoldingStyle; 1652 1653 /// true if scalable vectorization is supported and enabled. 1654 std::optional<bool> IsScalableVectorizationAllowed; 1655 1656 /// Maximum safe number of elements to be processed per vector iteration, 1657 /// which do not prevent store-load forwarding and are safe with regard to the 1658 /// memory dependencies. Required for EVL-based veectorization, where this 1659 /// value is used as the upper bound of the safe AVL. 1660 std::optional<unsigned> MaxSafeElements; 1661 1662 /// A map holding scalar costs for different vectorization factors. The 1663 /// presence of a cost for an instruction in the mapping indicates that the 1664 /// instruction will be scalarized when vectorizing with the associated 1665 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1666 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1667 1668 /// Holds the instructions known to be uniform after vectorization. 1669 /// The data is collected per VF. 1670 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1671 1672 /// Holds the instructions known to be scalar after vectorization. 1673 /// The data is collected per VF. 1674 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1675 1676 /// Holds the instructions (address computations) that are forced to be 1677 /// scalarized. 1678 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1679 1680 /// PHINodes of the reductions that should be expanded in-loop. 1681 SmallPtrSet<PHINode *, 4> InLoopReductions; 1682 1683 /// A Map of inloop reduction operations and their immediate chain operand. 1684 /// FIXME: This can be removed once reductions can be costed correctly in 1685 /// VPlan. This was added to allow quick lookup of the inloop operations. 1686 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1687 1688 /// Returns the expected difference in cost from scalarizing the expression 1689 /// feeding a predicated instruction \p PredInst. The instructions to 1690 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1691 /// non-negative return value implies the expression will be scalarized. 1692 /// Currently, only single-use chains are considered for scalarization. 1693 InstructionCost computePredInstDiscount(Instruction *PredInst, 1694 ScalarCostsTy &ScalarCosts, 1695 ElementCount VF); 1696 1697 /// Collect the instructions that are uniform after vectorization. An 1698 /// instruction is uniform if we represent it with a single scalar value in 1699 /// the vectorized loop corresponding to each vector iteration. Examples of 1700 /// uniform instructions include pointer operands of consecutive or 1701 /// interleaved memory accesses. Note that although uniformity implies an 1702 /// instruction will be scalar, the reverse is not true. In general, a 1703 /// scalarized instruction will be represented by VF scalar values in the 1704 /// vectorized loop, each corresponding to an iteration of the original 1705 /// scalar loop. 1706 void collectLoopUniforms(ElementCount VF); 1707 1708 /// Collect the instructions that are scalar after vectorization. An 1709 /// instruction is scalar if it is known to be uniform or will be scalarized 1710 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1711 /// to the list if they are used by a load/store instruction that is marked as 1712 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1713 /// VF values in the vectorized loop, each corresponding to an iteration of 1714 /// the original scalar loop. 1715 void collectLoopScalars(ElementCount VF); 1716 1717 /// Keeps cost model vectorization decision and cost for instructions. 1718 /// Right now it is used for memory instructions only. 1719 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1720 std::pair<InstWidening, InstructionCost>>; 1721 1722 DecisionList WideningDecisions; 1723 1724 using CallDecisionList = 1725 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>; 1726 1727 CallDecisionList CallWideningDecisions; 1728 1729 /// Returns true if \p V is expected to be vectorized and it needs to be 1730 /// extracted. 1731 bool needsExtract(Value *V, ElementCount VF) const { 1732 Instruction *I = dyn_cast<Instruction>(V); 1733 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1734 TheLoop->isLoopInvariant(I) || 1735 getWideningDecision(I, VF) == CM_Scalarize) 1736 return false; 1737 1738 // Assume we can vectorize V (and hence we need extraction) if the 1739 // scalars are not computed yet. This can happen, because it is called 1740 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1741 // the scalars are collected. That should be a safe assumption in most 1742 // cases, because we check if the operands have vectorizable types 1743 // beforehand in LoopVectorizationLegality. 1744 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF); 1745 }; 1746 1747 /// Returns a range containing only operands needing to be extracted. 1748 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1749 ElementCount VF) const { 1750 return SmallVector<Value *, 4>(make_filter_range( 1751 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1752 } 1753 1754 public: 1755 /// The loop that we evaluate. 1756 Loop *TheLoop; 1757 1758 /// Predicated scalar evolution analysis. 1759 PredicatedScalarEvolution &PSE; 1760 1761 /// Loop Info analysis. 1762 LoopInfo *LI; 1763 1764 /// Vectorization legality. 1765 LoopVectorizationLegality *Legal; 1766 1767 /// Vector target information. 1768 const TargetTransformInfo &TTI; 1769 1770 /// Target Library Info. 1771 const TargetLibraryInfo *TLI; 1772 1773 /// Demanded bits analysis. 1774 DemandedBits *DB; 1775 1776 /// Assumption cache. 1777 AssumptionCache *AC; 1778 1779 /// Interface to emit optimization remarks. 1780 OptimizationRemarkEmitter *ORE; 1781 1782 const Function *TheFunction; 1783 1784 /// Loop Vectorize Hint. 1785 const LoopVectorizeHints *Hints; 1786 1787 /// The interleave access information contains groups of interleaved accesses 1788 /// with the same stride and close to each other. 1789 InterleavedAccessInfo &InterleaveInfo; 1790 1791 /// Values to ignore in the cost model. 1792 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1793 1794 /// Values to ignore in the cost model when VF > 1. 1795 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1796 1797 /// All element types found in the loop. 1798 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1799 }; 1800 } // end namespace llvm 1801 1802 namespace { 1803 /// Helper struct to manage generating runtime checks for vectorization. 1804 /// 1805 /// The runtime checks are created up-front in temporary blocks to allow better 1806 /// estimating the cost and un-linked from the existing IR. After deciding to 1807 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1808 /// temporary blocks are completely removed. 1809 class GeneratedRTChecks { 1810 /// Basic block which contains the generated SCEV checks, if any. 1811 BasicBlock *SCEVCheckBlock = nullptr; 1812 1813 /// The value representing the result of the generated SCEV checks. If it is 1814 /// nullptr, either no SCEV checks have been generated or they have been used. 1815 Value *SCEVCheckCond = nullptr; 1816 1817 /// Basic block which contains the generated memory runtime checks, if any. 1818 BasicBlock *MemCheckBlock = nullptr; 1819 1820 /// The value representing the result of the generated memory runtime checks. 1821 /// If it is nullptr, either no memory runtime checks have been generated or 1822 /// they have been used. 1823 Value *MemRuntimeCheckCond = nullptr; 1824 1825 DominatorTree *DT; 1826 LoopInfo *LI; 1827 TargetTransformInfo *TTI; 1828 1829 SCEVExpander SCEVExp; 1830 SCEVExpander MemCheckExp; 1831 1832 bool CostTooHigh = false; 1833 const bool AddBranchWeights; 1834 1835 Loop *OuterLoop = nullptr; 1836 1837 PredicatedScalarEvolution &PSE; 1838 1839 public: 1840 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT, 1841 LoopInfo *LI, TargetTransformInfo *TTI, 1842 const DataLayout &DL, bool AddBranchWeights) 1843 : DT(DT), LI(LI), TTI(TTI), SCEVExp(*PSE.getSE(), DL, "scev.check"), 1844 MemCheckExp(*PSE.getSE(), DL, "scev.check"), 1845 AddBranchWeights(AddBranchWeights), PSE(PSE) {} 1846 1847 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1848 /// accurately estimate the cost of the runtime checks. The blocks are 1849 /// un-linked from the IR and are added back during vector code generation. If 1850 /// there is no vector code generation, the check blocks are removed 1851 /// completely. 1852 void create(Loop *L, const LoopAccessInfo &LAI, 1853 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1854 1855 // Hard cutoff to limit compile-time increase in case a very large number of 1856 // runtime checks needs to be generated. 1857 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to 1858 // profile info. 1859 CostTooHigh = 1860 LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; 1861 if (CostTooHigh) 1862 return; 1863 1864 BasicBlock *LoopHeader = L->getHeader(); 1865 BasicBlock *Preheader = L->getLoopPreheader(); 1866 1867 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1868 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1869 // may be used by SCEVExpander. The blocks will be un-linked from their 1870 // predecessors and removed from LI & DT at the end of the function. 1871 if (!UnionPred.isAlwaysTrue()) { 1872 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1873 nullptr, "vector.scevcheck"); 1874 1875 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1876 &UnionPred, SCEVCheckBlock->getTerminator()); 1877 } 1878 1879 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1880 if (RtPtrChecking.Need) { 1881 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1882 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1883 "vector.memcheck"); 1884 1885 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1886 if (DiffChecks) { 1887 Value *RuntimeVF = nullptr; 1888 MemRuntimeCheckCond = addDiffRuntimeChecks( 1889 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp, 1890 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) { 1891 if (!RuntimeVF) 1892 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF); 1893 return RuntimeVF; 1894 }, 1895 IC); 1896 } else { 1897 MemRuntimeCheckCond = addRuntimeChecks( 1898 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(), 1899 MemCheckExp, VectorizerParams::HoistRuntimeChecks); 1900 } 1901 assert(MemRuntimeCheckCond && 1902 "no RT checks generated although RtPtrChecking " 1903 "claimed checks are required"); 1904 } 1905 1906 if (!MemCheckBlock && !SCEVCheckBlock) 1907 return; 1908 1909 // Unhook the temporary block with the checks, update various places 1910 // accordingly. 1911 if (SCEVCheckBlock) 1912 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1913 if (MemCheckBlock) 1914 MemCheckBlock->replaceAllUsesWith(Preheader); 1915 1916 if (SCEVCheckBlock) { 1917 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1918 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1919 Preheader->getTerminator()->eraseFromParent(); 1920 } 1921 if (MemCheckBlock) { 1922 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1923 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1924 Preheader->getTerminator()->eraseFromParent(); 1925 } 1926 1927 DT->changeImmediateDominator(LoopHeader, Preheader); 1928 if (MemCheckBlock) { 1929 DT->eraseNode(MemCheckBlock); 1930 LI->removeBlock(MemCheckBlock); 1931 } 1932 if (SCEVCheckBlock) { 1933 DT->eraseNode(SCEVCheckBlock); 1934 LI->removeBlock(SCEVCheckBlock); 1935 } 1936 1937 // Outer loop is used as part of the later cost calculations. 1938 OuterLoop = L->getParentLoop(); 1939 } 1940 1941 InstructionCost getCost() { 1942 if (SCEVCheckBlock || MemCheckBlock) 1943 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n"); 1944 1945 if (CostTooHigh) { 1946 InstructionCost Cost; 1947 Cost.setInvalid(); 1948 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n"); 1949 return Cost; 1950 } 1951 1952 InstructionCost RTCheckCost = 0; 1953 if (SCEVCheckBlock) 1954 for (Instruction &I : *SCEVCheckBlock) { 1955 if (SCEVCheckBlock->getTerminator() == &I) 1956 continue; 1957 InstructionCost C = 1958 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1959 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1960 RTCheckCost += C; 1961 } 1962 if (MemCheckBlock) { 1963 InstructionCost MemCheckCost = 0; 1964 for (Instruction &I : *MemCheckBlock) { 1965 if (MemCheckBlock->getTerminator() == &I) 1966 continue; 1967 InstructionCost C = 1968 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1969 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1970 MemCheckCost += C; 1971 } 1972 1973 // If the runtime memory checks are being created inside an outer loop 1974 // we should find out if these checks are outer loop invariant. If so, 1975 // the checks will likely be hoisted out and so the effective cost will 1976 // reduce according to the outer loop trip count. 1977 if (OuterLoop) { 1978 ScalarEvolution *SE = MemCheckExp.getSE(); 1979 // TODO: If profitable, we could refine this further by analysing every 1980 // individual memory check, since there could be a mixture of loop 1981 // variant and invariant checks that mean the final condition is 1982 // variant. 1983 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond); 1984 if (SE->isLoopInvariant(Cond, OuterLoop)) { 1985 // It seems reasonable to assume that we can reduce the effective 1986 // cost of the checks even when we know nothing about the trip 1987 // count. Assume that the outer loop executes at least twice. 1988 unsigned BestTripCount = 2; 1989 1990 // Get the best known TC estimate. 1991 if (auto EstimatedTC = getSmallBestKnownTC( 1992 PSE, OuterLoop, /* CanUseConstantMax = */ false)) 1993 BestTripCount = *EstimatedTC; 1994 1995 BestTripCount = std::max(BestTripCount, 1U); 1996 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount; 1997 1998 // Let's ensure the cost is always at least 1. 1999 NewMemCheckCost = std::max(*NewMemCheckCost.getValue(), 2000 (InstructionCost::CostType)1); 2001 2002 if (BestTripCount > 1) 2003 LLVM_DEBUG(dbgs() 2004 << "We expect runtime memory checks to be hoisted " 2005 << "out of the outer loop. Cost reduced from " 2006 << MemCheckCost << " to " << NewMemCheckCost << '\n'); 2007 2008 MemCheckCost = NewMemCheckCost; 2009 } 2010 } 2011 2012 RTCheckCost += MemCheckCost; 2013 } 2014 2015 if (SCEVCheckBlock || MemCheckBlock) 2016 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost 2017 << "\n"); 2018 2019 return RTCheckCost; 2020 } 2021 2022 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2023 /// unused. 2024 ~GeneratedRTChecks() { 2025 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2026 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2027 if (!SCEVCheckCond) 2028 SCEVCleaner.markResultUsed(); 2029 2030 if (!MemRuntimeCheckCond) 2031 MemCheckCleaner.markResultUsed(); 2032 2033 if (MemRuntimeCheckCond) { 2034 auto &SE = *MemCheckExp.getSE(); 2035 // Memory runtime check generation creates compares that use expanded 2036 // values. Remove them before running the SCEVExpanderCleaners. 2037 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2038 if (MemCheckExp.isInsertedInstruction(&I)) 2039 continue; 2040 SE.forgetValue(&I); 2041 I.eraseFromParent(); 2042 } 2043 } 2044 MemCheckCleaner.cleanup(); 2045 SCEVCleaner.cleanup(); 2046 2047 if (SCEVCheckCond) 2048 SCEVCheckBlock->eraseFromParent(); 2049 if (MemRuntimeCheckCond) 2050 MemCheckBlock->eraseFromParent(); 2051 } 2052 2053 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2054 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2055 /// depending on the generated condition. 2056 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2057 BasicBlock *LoopVectorPreHeader) { 2058 if (!SCEVCheckCond) 2059 return nullptr; 2060 2061 Value *Cond = SCEVCheckCond; 2062 // Mark the check as used, to prevent it from being removed during cleanup. 2063 SCEVCheckCond = nullptr; 2064 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2065 if (C->isZero()) 2066 return nullptr; 2067 2068 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2069 2070 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2071 // Create new preheader for vector loop. 2072 if (OuterLoop) 2073 OuterLoop->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2074 2075 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2076 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2077 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2078 SCEVCheckBlock); 2079 2080 DT->addNewBlock(SCEVCheckBlock, Pred); 2081 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2082 2083 BranchInst &BI = *BranchInst::Create(Bypass, LoopVectorPreHeader, Cond); 2084 if (AddBranchWeights) 2085 setBranchWeights(BI, SCEVCheckBypassWeights, /*IsExpected=*/false); 2086 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), &BI); 2087 return SCEVCheckBlock; 2088 } 2089 2090 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2091 /// the branches to branch to the vector preheader or \p Bypass, depending on 2092 /// the generated condition. 2093 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2094 BasicBlock *LoopVectorPreHeader) { 2095 // Check if we generated code that checks in runtime if arrays overlap. 2096 if (!MemRuntimeCheckCond) 2097 return nullptr; 2098 2099 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2100 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2101 MemCheckBlock); 2102 2103 DT->addNewBlock(MemCheckBlock, Pred); 2104 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2105 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2106 2107 if (OuterLoop) 2108 OuterLoop->addBasicBlockToLoop(MemCheckBlock, *LI); 2109 2110 BranchInst &BI = 2111 *BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond); 2112 if (AddBranchWeights) { 2113 setBranchWeights(BI, MemCheckBypassWeights, /*IsExpected=*/false); 2114 } 2115 ReplaceInstWithInst(MemCheckBlock->getTerminator(), &BI); 2116 MemCheckBlock->getTerminator()->setDebugLoc( 2117 Pred->getTerminator()->getDebugLoc()); 2118 2119 // Mark the check as used, to prevent it from being removed during cleanup. 2120 MemRuntimeCheckCond = nullptr; 2121 return MemCheckBlock; 2122 } 2123 }; 2124 } // namespace 2125 2126 static bool useActiveLaneMask(TailFoldingStyle Style) { 2127 return Style == TailFoldingStyle::Data || 2128 Style == TailFoldingStyle::DataAndControlFlow || 2129 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck; 2130 } 2131 2132 static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style) { 2133 return Style == TailFoldingStyle::DataAndControlFlow || 2134 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck; 2135 } 2136 2137 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2138 // vectorization. The loop needs to be annotated with #pragma omp simd 2139 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2140 // vector length information is not provided, vectorization is not considered 2141 // explicit. Interleave hints are not allowed either. These limitations will be 2142 // relaxed in the future. 2143 // Please, note that we are currently forced to abuse the pragma 'clang 2144 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2145 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2146 // provides *explicit vectorization hints* (LV can bypass legal checks and 2147 // assume that vectorization is legal). However, both hints are implemented 2148 // using the same metadata (llvm.loop.vectorize, processed by 2149 // LoopVectorizeHints). This will be fixed in the future when the native IR 2150 // representation for pragma 'omp simd' is introduced. 2151 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2152 OptimizationRemarkEmitter *ORE) { 2153 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2154 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2155 2156 // Only outer loops with an explicit vectorization hint are supported. 2157 // Unannotated outer loops are ignored. 2158 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2159 return false; 2160 2161 Function *Fn = OuterLp->getHeader()->getParent(); 2162 if (!Hints.allowVectorization(Fn, OuterLp, 2163 true /*VectorizeOnlyWhenForced*/)) { 2164 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2165 return false; 2166 } 2167 2168 if (Hints.getInterleave() > 1) { 2169 // TODO: Interleave support is future work. 2170 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2171 "outer loops.\n"); 2172 Hints.emitRemarkWithHints(); 2173 return false; 2174 } 2175 2176 return true; 2177 } 2178 2179 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2180 OptimizationRemarkEmitter *ORE, 2181 SmallVectorImpl<Loop *> &V) { 2182 // Collect inner loops and outer loops without irreducible control flow. For 2183 // now, only collect outer loops that have explicit vectorization hints. If we 2184 // are stress testing the VPlan H-CFG construction, we collect the outermost 2185 // loop of every loop nest. 2186 if (L.isInnermost() || VPlanBuildStressTest || 2187 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2188 LoopBlocksRPO RPOT(&L); 2189 RPOT.perform(LI); 2190 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2191 V.push_back(&L); 2192 // TODO: Collect inner loops inside marked outer loops in case 2193 // vectorization fails for the outer loop. Do not invoke 2194 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2195 // already known to be reducible. We can use an inherited attribute for 2196 // that. 2197 return; 2198 } 2199 } 2200 for (Loop *InnerL : L) 2201 collectSupportedLoops(*InnerL, LI, ORE, V); 2202 } 2203 2204 //===----------------------------------------------------------------------===// 2205 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2206 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2207 //===----------------------------------------------------------------------===// 2208 2209 /// Compute the transformed value of Index at offset StartValue using step 2210 /// StepValue. 2211 /// For integer induction, returns StartValue + Index * StepValue. 2212 /// For pointer induction, returns StartValue[Index * StepValue]. 2213 /// FIXME: The newly created binary instructions should contain nsw/nuw 2214 /// flags, which can be found from the original scalar operations. 2215 static Value * 2216 emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, 2217 Value *Step, 2218 InductionDescriptor::InductionKind InductionKind, 2219 const BinaryOperator *InductionBinOp) { 2220 Type *StepTy = Step->getType(); 2221 Value *CastedIndex = StepTy->isIntegerTy() 2222 ? B.CreateSExtOrTrunc(Index, StepTy) 2223 : B.CreateCast(Instruction::SIToFP, Index, StepTy); 2224 if (CastedIndex != Index) { 2225 CastedIndex->setName(CastedIndex->getName() + ".cast"); 2226 Index = CastedIndex; 2227 } 2228 2229 // Note: the IR at this point is broken. We cannot use SE to create any new 2230 // SCEV and then expand it, hoping that SCEV's simplification will give us 2231 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2232 // lead to various SCEV crashes. So all we can do is to use builder and rely 2233 // on InstCombine for future simplifications. Here we handle some trivial 2234 // cases only. 2235 auto CreateAdd = [&B](Value *X, Value *Y) { 2236 assert(X->getType() == Y->getType() && "Types don't match!"); 2237 if (auto *CX = dyn_cast<ConstantInt>(X)) 2238 if (CX->isZero()) 2239 return Y; 2240 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2241 if (CY->isZero()) 2242 return X; 2243 return B.CreateAdd(X, Y); 2244 }; 2245 2246 // We allow X to be a vector type, in which case Y will potentially be 2247 // splatted into a vector with the same element count. 2248 auto CreateMul = [&B](Value *X, Value *Y) { 2249 assert(X->getType()->getScalarType() == Y->getType() && 2250 "Types don't match!"); 2251 if (auto *CX = dyn_cast<ConstantInt>(X)) 2252 if (CX->isOne()) 2253 return Y; 2254 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2255 if (CY->isOne()) 2256 return X; 2257 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2258 if (XVTy && !isa<VectorType>(Y->getType())) 2259 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2260 return B.CreateMul(X, Y); 2261 }; 2262 2263 switch (InductionKind) { 2264 case InductionDescriptor::IK_IntInduction: { 2265 assert(!isa<VectorType>(Index->getType()) && 2266 "Vector indices not supported for integer inductions yet"); 2267 assert(Index->getType() == StartValue->getType() && 2268 "Index type does not match StartValue type"); 2269 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2270 return B.CreateSub(StartValue, Index); 2271 auto *Offset = CreateMul(Index, Step); 2272 return CreateAdd(StartValue, Offset); 2273 } 2274 case InductionDescriptor::IK_PtrInduction: 2275 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step)); 2276 case InductionDescriptor::IK_FpInduction: { 2277 assert(!isa<VectorType>(Index->getType()) && 2278 "Vector indices not supported for FP inductions yet"); 2279 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2280 assert(InductionBinOp && 2281 (InductionBinOp->getOpcode() == Instruction::FAdd || 2282 InductionBinOp->getOpcode() == Instruction::FSub) && 2283 "Original bin op should be defined for FP induction"); 2284 2285 Value *MulExp = B.CreateFMul(Step, Index); 2286 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2287 "induction"); 2288 } 2289 case InductionDescriptor::IK_NoInduction: 2290 return nullptr; 2291 } 2292 llvm_unreachable("invalid enum"); 2293 } 2294 2295 std::optional<unsigned> getMaxVScale(const Function &F, 2296 const TargetTransformInfo &TTI) { 2297 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale()) 2298 return MaxVScale; 2299 2300 if (F.hasFnAttribute(Attribute::VScaleRange)) 2301 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 2302 2303 return std::nullopt; 2304 } 2305 2306 /// For the given VF and UF and maximum trip count computed for the loop, return 2307 /// whether the induction variable might overflow in the vectorized loop. If not, 2308 /// then we know a runtime overflow check always evaluates to false and can be 2309 /// removed. 2310 static bool isIndvarOverflowCheckKnownFalse( 2311 const LoopVectorizationCostModel *Cost, 2312 ElementCount VF, std::optional<unsigned> UF = std::nullopt) { 2313 // Always be conservative if we don't know the exact unroll factor. 2314 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF); 2315 2316 Type *IdxTy = Cost->Legal->getWidestInductionType(); 2317 APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask(); 2318 2319 // We know the runtime overflow check is known false iff the (max) trip-count 2320 // is known and (max) trip-count + (VF * UF) does not overflow in the type of 2321 // the vector loop induction variable. 2322 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) { 2323 uint64_t MaxVF = VF.getKnownMinValue(); 2324 if (VF.isScalable()) { 2325 std::optional<unsigned> MaxVScale = 2326 getMaxVScale(*Cost->TheFunction, Cost->TTI); 2327 if (!MaxVScale) 2328 return false; 2329 MaxVF *= *MaxVScale; 2330 } 2331 2332 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF); 2333 } 2334 2335 return false; 2336 } 2337 2338 // Return whether we allow using masked interleave-groups (for dealing with 2339 // strided loads/stores that reside in predicated blocks, or for dealing 2340 // with gaps). 2341 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2342 // If an override option has been passed in for interleaved accesses, use it. 2343 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2344 return EnableMaskedInterleavedMemAccesses; 2345 2346 return TTI.enableMaskedInterleavedAccessVectorization(); 2347 } 2348 2349 void InnerLoopVectorizer::scalarizeInstruction(const Instruction *Instr, 2350 VPReplicateRecipe *RepRecipe, 2351 const VPLane &Lane, 2352 VPTransformState &State) { 2353 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2354 2355 // Does this instruction return a value ? 2356 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2357 2358 Instruction *Cloned = Instr->clone(); 2359 if (!IsVoidRetTy) { 2360 Cloned->setName(Instr->getName() + ".cloned"); 2361 #if !defined(NDEBUG) 2362 // Verify that VPlan type inference results agree with the type of the 2363 // generated values. 2364 assert(State.TypeAnalysis.inferScalarType(RepRecipe) == Cloned->getType() && 2365 "inferred type and type from generated instructions do not match"); 2366 #endif 2367 } 2368 2369 RepRecipe->setFlags(Cloned); 2370 2371 if (auto DL = Instr->getDebugLoc()) 2372 State.setDebugLocFrom(DL); 2373 2374 // Replace the operands of the cloned instructions with their scalar 2375 // equivalents in the new loop. 2376 for (const auto &I : enumerate(RepRecipe->operands())) { 2377 auto InputLane = Lane; 2378 VPValue *Operand = I.value(); 2379 if (vputils::isUniformAfterVectorization(Operand)) 2380 InputLane = VPLane::getFirstLane(); 2381 Cloned->setOperand(I.index(), State.get(Operand, InputLane)); 2382 } 2383 State.addNewMetadata(Cloned, Instr); 2384 2385 // Place the cloned scalar in the new loop. 2386 State.Builder.Insert(Cloned); 2387 2388 State.set(RepRecipe, Cloned, Lane); 2389 2390 // If we just cloned a new assumption, add it the assumption cache. 2391 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2392 AC->registerAssumption(II); 2393 2394 // End if-block. 2395 VPRegionBlock *Parent = RepRecipe->getParent()->getParent(); 2396 bool IfPredicateInstr = Parent ? Parent->isReplicator() : false; 2397 assert( 2398 (Parent || !RepRecipe->getParent()->getPlan()->getVectorLoopRegion() || 2399 all_of(RepRecipe->operands(), 2400 [](VPValue *Op) { return Op->isDefinedOutsideLoopRegions(); })) && 2401 "Expected a recipe is either within a region or all of its operands " 2402 "are defined outside the vectorized region."); 2403 if (IfPredicateInstr) 2404 PredicatedInstructions.push_back(Cloned); 2405 } 2406 2407 Value * 2408 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2409 if (VectorTripCount) 2410 return VectorTripCount; 2411 2412 Value *TC = getTripCount(); 2413 IRBuilder<> Builder(InsertBlock->getTerminator()); 2414 2415 Type *Ty = TC->getType(); 2416 // This is where we can make the step a runtime constant. 2417 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2418 2419 // If the tail is to be folded by masking, round the number of iterations N 2420 // up to a multiple of Step instead of rounding down. This is done by first 2421 // adding Step-1 and then rounding down. Note that it's ok if this addition 2422 // overflows: the vector induction variable will eventually wrap to zero given 2423 // that it starts at zero and its Step is a power of two; the loop will then 2424 // exit, with the last early-exit vector comparison also producing all-true. 2425 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2426 // is accounted for in emitIterationCountCheck that adds an overflow check. 2427 if (Cost->foldTailByMasking()) { 2428 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2429 "VF*UF must be a power of 2 when folding tail by masking"); 2430 TC = Builder.CreateAdd(TC, Builder.CreateSub(Step, ConstantInt::get(Ty, 1)), 2431 "n.rnd.up"); 2432 } 2433 2434 // Now we need to generate the expression for the part of the loop that the 2435 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2436 // iterations are not required for correctness, or N - Step, otherwise. Step 2437 // is equal to the vectorization factor (number of SIMD elements) times the 2438 // unroll factor (number of SIMD instructions). 2439 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2440 2441 // There are cases where we *must* run at least one iteration in the remainder 2442 // loop. See the cost model for when this can happen. If the step evenly 2443 // divides the trip count, we set the remainder to be equal to the step. If 2444 // the step does not evenly divide the trip count, no adjustment is necessary 2445 // since there will already be scalar iterations. Note that the minimum 2446 // iterations check ensures that N >= Step. 2447 if (Cost->requiresScalarEpilogue(VF.isVector())) { 2448 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2449 R = Builder.CreateSelect(IsZero, Step, R); 2450 } 2451 2452 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2453 2454 return VectorTripCount; 2455 } 2456 2457 void InnerLoopVectorizer::introduceCheckBlockInVPlan(BasicBlock *CheckIRBB) { 2458 VPBlockBase *ScalarPH = Plan.getScalarPreheader(); 2459 VPBlockBase *PreVectorPH = VectorPHVPB->getSinglePredecessor(); 2460 if (PreVectorPH->getNumSuccessors() != 1) { 2461 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors"); 2462 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && 2463 "Unexpected successor"); 2464 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB); 2465 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPB, CheckVPIRBB); 2466 PreVectorPH = CheckVPIRBB; 2467 } 2468 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH); 2469 PreVectorPH->swapSuccessors(); 2470 } 2471 2472 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2473 Value *Count = getTripCount(); 2474 // Reuse existing vector loop preheader for TC checks. 2475 // Note that new preheader block is generated for vector loop. 2476 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2477 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2478 2479 // Generate code to check if the loop's trip count is less than VF * UF, or 2480 // equal to it in case a scalar epilogue is required; this implies that the 2481 // vector trip count is zero. This check also covers the case where adding one 2482 // to the backedge-taken count overflowed leading to an incorrect trip count 2483 // of zero. In this case we will also jump to the scalar loop. 2484 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE 2485 : ICmpInst::ICMP_ULT; 2486 2487 // If tail is to be folded, vector loop takes care of all iterations. 2488 Type *CountTy = Count->getType(); 2489 Value *CheckMinIters = Builder.getFalse(); 2490 auto CreateStep = [&]() -> Value * { 2491 // Create step with max(MinProTripCount, UF * VF). 2492 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue()) 2493 return createStepForVF(Builder, CountTy, VF, UF); 2494 2495 Value *MinProfTC = 2496 createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); 2497 if (!VF.isScalable()) 2498 return MinProfTC; 2499 return Builder.CreateBinaryIntrinsic( 2500 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF)); 2501 }; 2502 2503 TailFoldingStyle Style = Cost->getTailFoldingStyle(); 2504 if (Style == TailFoldingStyle::None) { 2505 Value *Step = CreateStep(); 2506 ScalarEvolution &SE = *PSE.getSE(); 2507 // TODO: Emit unconditional branch to vector preheader instead of 2508 // conditional branch with known condition. 2509 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop); 2510 // Check if the trip count is < the step. 2511 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) { 2512 // TODO: Ensure step is at most the trip count when determining max VF and 2513 // UF, w/o tail folding. 2514 CheckMinIters = Builder.getTrue(); 2515 } else if (!SE.isKnownPredicate(CmpInst::getInversePredicate(P), 2516 TripCountSCEV, SE.getSCEV(Step))) { 2517 // Generate the minimum iteration check only if we cannot prove the 2518 // check is known to be true, or known to be false. 2519 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2520 } // else step known to be < trip count, use CheckMinIters preset to false. 2521 } else if (VF.isScalable() && 2522 !isIndvarOverflowCheckKnownFalse(Cost, VF, UF) && 2523 Style != TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck) { 2524 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2525 // an overflow to zero when updating induction variables and so an 2526 // additional overflow check is required before entering the vector loop. 2527 2528 // Get the maximum unsigned value for the type. 2529 Value *MaxUIntTripCount = 2530 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2531 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2532 2533 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2534 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); 2535 } 2536 2537 // Create new preheader for vector loop. 2538 LoopVectorPreHeader = 2539 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2540 "vector.ph"); 2541 2542 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2543 DT->getNode(Bypass)->getIDom()) && 2544 "TC check is expected to dominate Bypass"); 2545 2546 BranchInst &BI = 2547 *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters); 2548 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) 2549 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false); 2550 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI); 2551 LoopBypassBlocks.push_back(TCCheckBlock); 2552 2553 // TODO: Wrap LoopVectorPreHeader in VPIRBasicBlock here. 2554 introduceCheckBlockInVPlan(TCCheckBlock); 2555 } 2556 2557 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 2558 BasicBlock *const SCEVCheckBlock = 2559 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader); 2560 if (!SCEVCheckBlock) 2561 return nullptr; 2562 2563 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2564 (OptForSizeBasedOnProfile && 2565 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 2566 "Cannot SCEV check stride or overflow when optimizing for size"); 2567 assert(!LoopBypassBlocks.empty() && 2568 "Should already be a bypass block due to iteration count check"); 2569 LoopBypassBlocks.push_back(SCEVCheckBlock); 2570 AddedSafetyChecks = true; 2571 2572 introduceCheckBlockInVPlan(SCEVCheckBlock); 2573 return SCEVCheckBlock; 2574 } 2575 2576 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 2577 // VPlan-native path does not do any analysis for runtime checks currently. 2578 if (EnableVPlanNativePath) 2579 return nullptr; 2580 2581 BasicBlock *const MemCheckBlock = 2582 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 2583 2584 // Check if we generated code that checks in runtime if arrays overlap. We put 2585 // the checks into a separate block to make the more common case of few 2586 // elements faster. 2587 if (!MemCheckBlock) 2588 return nullptr; 2589 2590 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2591 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2592 "Cannot emit memory checks when optimizing for size, unless forced " 2593 "to vectorize."); 2594 ORE->emit([&]() { 2595 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2596 OrigLoop->getStartLoc(), 2597 OrigLoop->getHeader()) 2598 << "Code-size may be reduced by not forcing " 2599 "vectorization, or by source-code modifications " 2600 "eliminating the need for runtime checks " 2601 "(e.g., adding 'restrict')."; 2602 }); 2603 } 2604 2605 LoopBypassBlocks.push_back(MemCheckBlock); 2606 2607 AddedSafetyChecks = true; 2608 2609 introduceCheckBlockInVPlan(MemCheckBlock); 2610 return MemCheckBlock; 2611 } 2612 2613 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 2614 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 2615 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 2616 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 2617 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 2618 VPIRBasicBlock *IRVPBB = VPBB->getPlan()->createVPIRBasicBlock(IRBB); 2619 for (auto &R : make_early_inc_range(*VPBB)) { 2620 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 2621 R.moveBefore(*IRVPBB, IRVPBB->end()); 2622 } 2623 2624 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB); 2625 // VPBB is now dead and will be cleaned up when the plan gets destroyed. 2626 } 2627 2628 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 2629 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2630 assert(LoopVectorPreHeader && "Invalid loop structure"); 2631 assert((OrigLoop->getUniqueLatchExitBlock() || 2632 Cost->requiresScalarEpilogue(VF.isVector())) && 2633 "loops not exiting via the latch without required epilogue?"); 2634 2635 LoopMiddleBlock = 2636 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2637 LI, nullptr, Twine(Prefix) + "middle.block"); 2638 replaceVPBBWithIRVPBB(Plan.getMiddleBlock(), LoopMiddleBlock); 2639 LoopScalarPreHeader = 2640 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 2641 nullptr, Twine(Prefix) + "scalar.ph"); 2642 replaceVPBBWithIRVPBB(Plan.getScalarPreheader(), LoopScalarPreHeader); 2643 } 2644 2645 /// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV 2646 /// expansion results. 2647 static Value *getExpandedStep(const InductionDescriptor &ID, 2648 const SCEV2ValueTy &ExpandedSCEVs) { 2649 const SCEV *Step = ID.getStep(); 2650 if (auto *C = dyn_cast<SCEVConstant>(Step)) 2651 return C->getValue(); 2652 if (auto *U = dyn_cast<SCEVUnknown>(Step)) 2653 return U->getValue(); 2654 auto I = ExpandedSCEVs.find(Step); 2655 assert(I != ExpandedSCEVs.end() && "SCEV must be expanded at this point"); 2656 return I->second; 2657 } 2658 2659 /// Knowing that loop \p L executes a single vector iteration, add instructions 2660 /// that will get simplified and thus should not have any cost to \p 2661 /// InstsToIgnore. 2662 static void addFullyUnrolledInstructionsToIgnore( 2663 Loop *L, const LoopVectorizationLegality::InductionList &IL, 2664 SmallPtrSetImpl<Instruction *> &InstsToIgnore) { 2665 auto *Cmp = L->getLatchCmpInst(); 2666 if (Cmp) 2667 InstsToIgnore.insert(Cmp); 2668 for (const auto &KV : IL) { 2669 // Extract the key by hand so that it can be used in the lambda below. Note 2670 // that captured structured bindings are a C++20 extension. 2671 const PHINode *IV = KV.first; 2672 2673 // Get next iteration value of the induction variable. 2674 Instruction *IVInst = 2675 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch())); 2676 if (all_of(IVInst->users(), 2677 [&](const User *U) { return U == IV || U == Cmp; })) 2678 InstsToIgnore.insert(IVInst); 2679 } 2680 } 2681 2682 void InnerLoopVectorizer::createInductionAdditionalBypassValues( 2683 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount) { 2684 assert(MainVectorTripCount && "Must have bypass information"); 2685 2686 Instruction *OldInduction = Legal->getPrimaryInduction(); 2687 IRBuilder<> BypassBuilder(getAdditionalBypassBlock(), 2688 getAdditionalBypassBlock()->getFirstInsertionPt()); 2689 for (const auto &InductionEntry : Legal->getInductionVars()) { 2690 PHINode *OrigPhi = InductionEntry.first; 2691 const InductionDescriptor &II = InductionEntry.second; 2692 Value *Step = getExpandedStep(II, ExpandedSCEVs); 2693 // For the primary induction the additional bypass end value is known. 2694 // Otherwise it is computed. 2695 Value *EndValueFromAdditionalBypass = MainVectorTripCount; 2696 if (OrigPhi != OldInduction) { 2697 auto *BinOp = II.getInductionBinOp(); 2698 // Fast-math-flags propagate from the original induction instruction. 2699 if (isa_and_nonnull<FPMathOperator>(BinOp)) 2700 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags()); 2701 2702 // Compute the end value for the additional bypass. 2703 EndValueFromAdditionalBypass = 2704 emitTransformedIndex(BypassBuilder, MainVectorTripCount, 2705 II.getStartValue(), Step, II.getKind(), BinOp); 2706 EndValueFromAdditionalBypass->setName("ind.end"); 2707 } 2708 2709 // Store the bypass value here, as it needs to be added as operand to its 2710 // scalar preheader phi node after the epilogue skeleton has been created. 2711 // TODO: Directly add as extra operand to the VPResumePHI recipe. 2712 assert(!Induction2AdditionalBypassValue.contains(OrigPhi) && 2713 "entry for OrigPhi already exits"); 2714 Induction2AdditionalBypassValue[OrigPhi] = EndValueFromAdditionalBypass; 2715 } 2716 } 2717 2718 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton( 2719 const SCEV2ValueTy &ExpandedSCEVs) { 2720 /* 2721 In this function we generate a new loop. The new loop will contain 2722 the vectorized instructions while the old loop will continue to run the 2723 scalar remainder. 2724 2725 [ ] <-- old preheader - loop iteration number check and SCEVs in Plan's 2726 / | preheader are expanded here. Eventually all required SCEV 2727 / | expansion should happen here. 2728 / v 2729 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2730 | / | 2731 | / v 2732 || [ ] <-- vector pre header. 2733 |/ | 2734 | v 2735 | [ ] \ 2736 | [ ]_| <-- vector loop (created during VPlan execution). 2737 | | 2738 | v 2739 \ -[ ] <--- middle-block (wrapped in VPIRBasicBlock with the branch to 2740 | | successors created during VPlan execution) 2741 \/ | 2742 /\ v 2743 | ->[ ] <--- new preheader (wrapped in VPIRBasicBlock). 2744 | | 2745 (opt) v <-- edge from middle to exit iff epilogue is not required. 2746 | [ ] \ 2747 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue, header 2748 | | wrapped in VPIRBasicBlock). 2749 \ | 2750 \ v 2751 >[ ] <-- exit block(s). (wrapped in VPIRBasicBlock) 2752 ... 2753 */ 2754 2755 // Create an empty vector loop, and prepare basic blocks for the runtime 2756 // checks. 2757 createVectorLoopSkeleton(""); 2758 2759 // Now, compare the new count to zero. If it is zero skip the vector loop and 2760 // jump to the scalar loop. This check also covers the case where the 2761 // backedge-taken count is uint##_max: adding one to it will overflow leading 2762 // to an incorrect trip count of zero. In this (rare) case we will also jump 2763 // to the scalar loop. 2764 emitIterationCountCheck(LoopScalarPreHeader); 2765 2766 // Generate the code to check any assumptions that we've made for SCEV 2767 // expressions. 2768 emitSCEVChecks(LoopScalarPreHeader); 2769 2770 // Generate the code that checks in runtime if arrays overlap. We put the 2771 // checks into a separate block to make the more common case of few elements 2772 // faster. 2773 emitMemRuntimeChecks(LoopScalarPreHeader); 2774 2775 return LoopVectorPreHeader; 2776 } 2777 2778 // Fix up external users of the induction variable. At this point, we are 2779 // in LCSSA form, with all external PHIs that use the IV having one input value, 2780 // coming from the remainder loop. We need those PHIs to also have a correct 2781 // value for the IV when arriving directly from the middle block. 2782 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2783 const InductionDescriptor &II, 2784 Value *VectorTripCount, 2785 BasicBlock *MiddleBlock, 2786 VPTransformState &State) { 2787 // There are two kinds of external IV usages - those that use the value 2788 // computed in the last iteration (the PHI) and those that use the penultimate 2789 // value (the value that feeds into the phi from the loop latch). 2790 // We allow both, but they, obviously, have different values. 2791 2792 DenseMap<Value *, Value *> MissingVals; 2793 2794 Value *EndValue = cast<PHINode>(OrigPhi->getIncomingValueForBlock( 2795 OrigLoop->getLoopPreheader())) 2796 ->getIncomingValueForBlock(MiddleBlock); 2797 2798 // An external user of the last iteration's value should see the value that 2799 // the remainder loop uses to initialize its own IV. 2800 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2801 for (User *U : PostInc->users()) { 2802 Instruction *UI = cast<Instruction>(U); 2803 if (!OrigLoop->contains(UI)) { 2804 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2805 MissingVals[UI] = EndValue; 2806 } 2807 } 2808 2809 // An external user of the penultimate value need to see EndValue - Step. 2810 // The simplest way to get this is to recompute it from the constituent SCEVs, 2811 // that is Start + (Step * (CRD - 1)). 2812 for (User *U : OrigPhi->users()) { 2813 auto *UI = cast<Instruction>(U); 2814 if (!OrigLoop->contains(UI)) { 2815 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2816 IRBuilder<> B(MiddleBlock->getTerminator()); 2817 2818 // Fast-math-flags propagate from the original induction instruction. 2819 if (isa_and_nonnull<FPMathOperator>(II.getInductionBinOp())) 2820 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 2821 2822 VPValue *StepVPV = Plan.getSCEVExpansion(II.getStep()); 2823 assert(StepVPV && "step must have been expanded during VPlan execution"); 2824 Value *Step = StepVPV->isLiveIn() ? StepVPV->getLiveInIRValue() 2825 : State.get(StepVPV, VPLane(0)); 2826 Value *Escape = nullptr; 2827 if (EndValue->getType()->isIntegerTy()) 2828 Escape = B.CreateSub(EndValue, Step); 2829 else if (EndValue->getType()->isPointerTy()) 2830 Escape = B.CreatePtrAdd(EndValue, B.CreateNeg(Step)); 2831 else { 2832 assert(EndValue->getType()->isFloatingPointTy() && 2833 "Unexpected induction type"); 2834 Escape = B.CreateBinOp(II.getInductionBinOp()->getOpcode() == 2835 Instruction::FAdd 2836 ? Instruction::FSub 2837 : Instruction::FAdd, 2838 EndValue, Step); 2839 } 2840 Escape->setName("ind.escape"); 2841 MissingVals[UI] = Escape; 2842 } 2843 } 2844 2845 assert((MissingVals.empty() || 2846 all_of(MissingVals, 2847 [MiddleBlock, this](const std::pair<Value *, Value *> &P) { 2848 return all_of( 2849 predecessors(cast<Instruction>(P.first)->getParent()), 2850 [MiddleBlock, this](BasicBlock *Pred) { 2851 return Pred == MiddleBlock || 2852 Pred == OrigLoop->getLoopLatch(); 2853 }); 2854 })) && 2855 "Expected escaping values from latch/middle.block only"); 2856 2857 for (auto &I : MissingVals) { 2858 PHINode *PHI = cast<PHINode>(I.first); 2859 // One corner case we have to handle is two IVs "chasing" each-other, 2860 // that is %IV2 = phi [...], [ %IV1, %latch ] 2861 // In this case, if IV1 has an external use, we need to avoid adding both 2862 // "last value of IV1" and "penultimate value of IV2". So, verify that we 2863 // don't already have an incoming value for the middle block. 2864 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 2865 PHI->addIncoming(I.second, MiddleBlock); 2866 } 2867 } 2868 2869 namespace { 2870 2871 struct CSEDenseMapInfo { 2872 static bool canHandle(const Instruction *I) { 2873 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2874 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2875 } 2876 2877 static inline Instruction *getEmptyKey() { 2878 return DenseMapInfo<Instruction *>::getEmptyKey(); 2879 } 2880 2881 static inline Instruction *getTombstoneKey() { 2882 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2883 } 2884 2885 static unsigned getHashValue(const Instruction *I) { 2886 assert(canHandle(I) && "Unknown instruction!"); 2887 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2888 I->value_op_end())); 2889 } 2890 2891 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 2892 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2893 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2894 return LHS == RHS; 2895 return LHS->isIdenticalTo(RHS); 2896 } 2897 }; 2898 2899 } // end anonymous namespace 2900 2901 ///Perform cse of induction variable instructions. 2902 static void cse(BasicBlock *BB) { 2903 // Perform simple cse. 2904 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2905 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 2906 if (!CSEDenseMapInfo::canHandle(&In)) 2907 continue; 2908 2909 // Check if we can replace this instruction with any of the 2910 // visited instructions. 2911 if (Instruction *V = CSEMap.lookup(&In)) { 2912 In.replaceAllUsesWith(V); 2913 In.eraseFromParent(); 2914 continue; 2915 } 2916 2917 CSEMap[&In] = &In; 2918 } 2919 } 2920 2921 InstructionCost 2922 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 2923 ElementCount VF) const { 2924 // We only need to calculate a cost if the VF is scalar; for actual vectors 2925 // we should already have a pre-calculated cost at each VF. 2926 if (!VF.isScalar()) 2927 return CallWideningDecisions.at(std::make_pair(CI, VF)).Cost; 2928 2929 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 2930 Type *RetTy = CI->getType(); 2931 if (RecurrenceDescriptor::isFMulAddIntrinsic(CI)) 2932 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy, CostKind)) 2933 return *RedCost; 2934 2935 SmallVector<Type *, 4> Tys; 2936 for (auto &ArgOp : CI->args()) 2937 Tys.push_back(ArgOp->getType()); 2938 2939 InstructionCost ScalarCallCost = 2940 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind); 2941 2942 // If this is an intrinsic we may have a lower cost for it. 2943 if (getVectorIntrinsicIDForCall(CI, TLI)) { 2944 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 2945 return std::min(ScalarCallCost, IntrinsicCost); 2946 } 2947 return ScalarCallCost; 2948 } 2949 2950 static Type *maybeVectorizeType(Type *Elt, ElementCount VF) { 2951 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 2952 return Elt; 2953 return VectorType::get(Elt, VF); 2954 } 2955 2956 InstructionCost 2957 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 2958 ElementCount VF) const { 2959 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2960 assert(ID && "Expected intrinsic call!"); 2961 Type *RetTy = maybeVectorizeType(CI->getType(), VF); 2962 FastMathFlags FMF; 2963 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2964 FMF = FPMO->getFastMathFlags(); 2965 2966 SmallVector<const Value *> Arguments(CI->args()); 2967 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 2968 SmallVector<Type *> ParamTys; 2969 std::transform(FTy->param_begin(), FTy->param_end(), 2970 std::back_inserter(ParamTys), 2971 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); }); 2972 2973 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 2974 dyn_cast<IntrinsicInst>(CI)); 2975 return TTI.getIntrinsicInstrCost(CostAttrs, 2976 TargetTransformInfo::TCK_RecipThroughput); 2977 } 2978 2979 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 2980 // Fix widened non-induction PHIs by setting up the PHI operands. 2981 if (EnableVPlanNativePath) 2982 fixNonInductionPHIs(State); 2983 2984 // Forget the original basic block. 2985 PSE.getSE()->forgetLoop(OrigLoop); 2986 PSE.getSE()->forgetBlockAndLoopDispositions(); 2987 2988 // After vectorization, the exit blocks of the original loop will have 2989 // additional predecessors. Invalidate SCEVs for the exit phis in case SE 2990 // looked through single-entry phis. 2991 SmallVector<BasicBlock *> ExitBlocks; 2992 OrigLoop->getExitBlocks(ExitBlocks); 2993 for (BasicBlock *Exit : ExitBlocks) 2994 for (PHINode &PN : Exit->phis()) 2995 PSE.getSE()->forgetLcssaPhiWithNewPredecessor(OrigLoop, &PN); 2996 2997 if (Cost->requiresScalarEpilogue(VF.isVector())) { 2998 // No edge from the middle block to the unique exit block has been inserted 2999 // and there is nothing to fix from vector loop; phis should have incoming 3000 // from scalar loop only. 3001 } else { 3002 // TODO: Check in VPlan to see if IV users need fixing instead of checking 3003 // the cost model. 3004 3005 // If we inserted an edge from the middle block to the unique exit block, 3006 // update uses outside the loop (phis) to account for the newly inserted 3007 // edge. 3008 3009 // Fix-up external users of the induction variables. 3010 for (const auto &Entry : Legal->getInductionVars()) 3011 fixupIVUsers(Entry.first, Entry.second, 3012 getOrCreateVectorTripCount(nullptr), LoopMiddleBlock, State); 3013 } 3014 3015 // Don't apply optimizations below when no vector region remains, as they all 3016 // require a vector loop at the moment. 3017 if (!State.Plan->getVectorLoopRegion()) 3018 return; 3019 3020 for (Instruction *PI : PredicatedInstructions) 3021 sinkScalarOperands(&*PI); 3022 3023 VPRegionBlock *VectorRegion = State.Plan->getVectorLoopRegion(); 3024 VPBasicBlock *HeaderVPBB = VectorRegion->getEntryBasicBlock(); 3025 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB]; 3026 3027 // Remove redundant induction instructions. 3028 cse(HeaderBB); 3029 3030 // Set/update profile weights for the vector and remainder loops as original 3031 // loop iterations are now distributed among them. Note that original loop 3032 // becomes the scalar remainder loop after vectorization. 3033 // 3034 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3035 // end up getting slightly roughened result but that should be OK since 3036 // profile is not inherently precise anyway. Note also possible bypass of 3037 // vector code caused by legality checks is ignored, assigning all the weight 3038 // to the vector loop, optimistically. 3039 // 3040 // For scalable vectorization we can't know at compile time how many 3041 // iterations of the loop are handled in one vector iteration, so instead 3042 // assume a pessimistic vscale of '1'. 3043 Loop *VectorLoop = LI->getLoopFor(HeaderBB); 3044 setProfileInfoAfterUnrolling(OrigLoop, VectorLoop, OrigLoop, 3045 VF.getKnownMinValue() * UF); 3046 } 3047 3048 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3049 // The basic block and loop containing the predicated instruction. 3050 auto *PredBB = PredInst->getParent(); 3051 auto *VectorLoop = LI->getLoopFor(PredBB); 3052 3053 // Initialize a worklist with the operands of the predicated instruction. 3054 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3055 3056 // Holds instructions that we need to analyze again. An instruction may be 3057 // reanalyzed if we don't yet know if we can sink it or not. 3058 SmallVector<Instruction *, 8> InstsToReanalyze; 3059 3060 // Returns true if a given use occurs in the predicated block. Phi nodes use 3061 // their operands in their corresponding predecessor blocks. 3062 auto IsBlockOfUsePredicated = [&](Use &U) -> bool { 3063 auto *I = cast<Instruction>(U.getUser()); 3064 BasicBlock *BB = I->getParent(); 3065 if (auto *Phi = dyn_cast<PHINode>(I)) 3066 BB = Phi->getIncomingBlock( 3067 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3068 return BB == PredBB; 3069 }; 3070 3071 // Iteratively sink the scalarized operands of the predicated instruction 3072 // into the block we created for it. When an instruction is sunk, it's 3073 // operands are then added to the worklist. The algorithm ends after one pass 3074 // through the worklist doesn't sink a single instruction. 3075 bool Changed; 3076 do { 3077 // Add the instructions that need to be reanalyzed to the worklist, and 3078 // reset the changed indicator. 3079 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3080 InstsToReanalyze.clear(); 3081 Changed = false; 3082 3083 while (!Worklist.empty()) { 3084 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3085 3086 // We can't sink an instruction if it is a phi node, is not in the loop, 3087 // may have side effects or may read from memory. 3088 // TODO: Could do more granular checking to allow sinking 3089 // a load past non-store instructions. 3090 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 3091 I->mayHaveSideEffects() || I->mayReadFromMemory()) 3092 continue; 3093 3094 // If the instruction is already in PredBB, check if we can sink its 3095 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 3096 // sinking the scalar instruction I, hence it appears in PredBB; but it 3097 // may have failed to sink I's operands (recursively), which we try 3098 // (again) here. 3099 if (I->getParent() == PredBB) { 3100 Worklist.insert(I->op_begin(), I->op_end()); 3101 continue; 3102 } 3103 3104 // It's legal to sink the instruction if all its uses occur in the 3105 // predicated block. Otherwise, there's nothing to do yet, and we may 3106 // need to reanalyze the instruction. 3107 if (!llvm::all_of(I->uses(), IsBlockOfUsePredicated)) { 3108 InstsToReanalyze.push_back(I); 3109 continue; 3110 } 3111 3112 // Move the instruction to the beginning of the predicated block, and add 3113 // it's operands to the worklist. 3114 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3115 Worklist.insert(I->op_begin(), I->op_end()); 3116 3117 // The sinking may have enabled other instructions to be sunk, so we will 3118 // need to iterate. 3119 Changed = true; 3120 } 3121 } while (Changed); 3122 } 3123 3124 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 3125 auto Iter = vp_depth_first_deep(Plan.getEntry()); 3126 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 3127 for (VPRecipeBase &P : VPBB->phis()) { 3128 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); 3129 if (!VPPhi) 3130 continue; 3131 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi)); 3132 // Make sure the builder has a valid insert point. 3133 Builder.SetInsertPoint(NewPhi); 3134 for (unsigned Idx = 0; Idx < VPPhi->getNumOperands(); ++Idx) { 3135 VPValue *Inc = VPPhi->getIncomingValue(Idx); 3136 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(Idx); 3137 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]); 3138 } 3139 } 3140 } 3141 } 3142 3143 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 3144 // We should not collect Scalars more than once per VF. Right now, this 3145 // function is called from collectUniformsAndScalars(), which already does 3146 // this check. Collecting Scalars for VF=1 does not make any sense. 3147 assert(VF.isVector() && !Scalars.contains(VF) && 3148 "This function should not be visited twice for the same VF"); 3149 3150 // This avoids any chances of creating a REPLICATE recipe during planning 3151 // since that would result in generation of scalarized code during execution, 3152 // which is not supported for scalable vectors. 3153 if (VF.isScalable()) { 3154 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 3155 return; 3156 } 3157 3158 SmallSetVector<Instruction *, 8> Worklist; 3159 3160 // These sets are used to seed the analysis with pointers used by memory 3161 // accesses that will remain scalar. 3162 SmallSetVector<Instruction *, 8> ScalarPtrs; 3163 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 3164 auto *Latch = TheLoop->getLoopLatch(); 3165 3166 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 3167 // The pointer operands of loads and stores will be scalar as long as the 3168 // memory access is not a gather or scatter operation. The value operand of a 3169 // store will remain scalar if the store is scalarized. 3170 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 3171 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 3172 assert(WideningDecision != CM_Unknown && 3173 "Widening decision should be ready at this moment"); 3174 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 3175 if (Ptr == Store->getValueOperand()) 3176 return WideningDecision == CM_Scalarize; 3177 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 3178 "Ptr is neither a value or pointer operand"); 3179 return WideningDecision != CM_GatherScatter; 3180 }; 3181 3182 // A helper that returns true if the given value is a getelementptr 3183 // instruction contained in the loop. 3184 auto IsLoopVaryingGEP = [&](Value *V) { 3185 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V); 3186 }; 3187 3188 // A helper that evaluates a memory access's use of a pointer. If the use will 3189 // be a scalar use and the pointer is only used by memory accesses, we place 3190 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 3191 // PossibleNonScalarPtrs. 3192 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 3193 // We only care about bitcast and getelementptr instructions contained in 3194 // the loop. 3195 if (!IsLoopVaryingGEP(Ptr)) 3196 return; 3197 3198 // If the pointer has already been identified as scalar (e.g., if it was 3199 // also identified as uniform), there's nothing to do. 3200 auto *I = cast<Instruction>(Ptr); 3201 if (Worklist.count(I)) 3202 return; 3203 3204 // If the use of the pointer will be a scalar use, and all users of the 3205 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 3206 // place the pointer in PossibleNonScalarPtrs. 3207 if (IsScalarUse(MemAccess, Ptr) && 3208 all_of(I->users(), IsaPred<LoadInst, StoreInst>)) 3209 ScalarPtrs.insert(I); 3210 else 3211 PossibleNonScalarPtrs.insert(I); 3212 }; 3213 3214 // We seed the scalars analysis with three classes of instructions: (1) 3215 // instructions marked uniform-after-vectorization and (2) bitcast, 3216 // getelementptr and (pointer) phi instructions used by memory accesses 3217 // requiring a scalar use. 3218 // 3219 // (1) Add to the worklist all instructions that have been identified as 3220 // uniform-after-vectorization. 3221 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 3222 3223 // (2) Add to the worklist all bitcast and getelementptr instructions used by 3224 // memory accesses requiring a scalar use. The pointer operands of loads and 3225 // stores will be scalar unless the operation is a gather or scatter. 3226 // The value operand of a store will remain scalar if the store is scalarized. 3227 for (auto *BB : TheLoop->blocks()) 3228 for (auto &I : *BB) { 3229 if (auto *Load = dyn_cast<LoadInst>(&I)) { 3230 EvaluatePtrUse(Load, Load->getPointerOperand()); 3231 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 3232 EvaluatePtrUse(Store, Store->getPointerOperand()); 3233 EvaluatePtrUse(Store, Store->getValueOperand()); 3234 } 3235 } 3236 for (auto *I : ScalarPtrs) 3237 if (!PossibleNonScalarPtrs.count(I)) { 3238 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 3239 Worklist.insert(I); 3240 } 3241 3242 // Insert the forced scalars. 3243 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector 3244 // induction variable when the PHI user is scalarized. 3245 auto ForcedScalar = ForcedScalars.find(VF); 3246 if (ForcedScalar != ForcedScalars.end()) 3247 for (auto *I : ForcedScalar->second) { 3248 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n"); 3249 Worklist.insert(I); 3250 } 3251 3252 // Expand the worklist by looking through any bitcasts and getelementptr 3253 // instructions we've already identified as scalar. This is similar to the 3254 // expansion step in collectLoopUniforms(); however, here we're only 3255 // expanding to include additional bitcasts and getelementptr instructions. 3256 unsigned Idx = 0; 3257 while (Idx != Worklist.size()) { 3258 Instruction *Dst = Worklist[Idx++]; 3259 if (!IsLoopVaryingGEP(Dst->getOperand(0))) 3260 continue; 3261 auto *Src = cast<Instruction>(Dst->getOperand(0)); 3262 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 3263 auto *J = cast<Instruction>(U); 3264 return !TheLoop->contains(J) || Worklist.count(J) || 3265 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 3266 IsScalarUse(J, Src)); 3267 })) { 3268 Worklist.insert(Src); 3269 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 3270 } 3271 } 3272 3273 // An induction variable will remain scalar if all users of the induction 3274 // variable and induction variable update remain scalar. 3275 for (const auto &Induction : Legal->getInductionVars()) { 3276 auto *Ind = Induction.first; 3277 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 3278 3279 // If tail-folding is applied, the primary induction variable will be used 3280 // to feed a vector compare. 3281 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 3282 continue; 3283 3284 // Returns true if \p Indvar is a pointer induction that is used directly by 3285 // load/store instruction \p I. 3286 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 3287 Instruction *I) { 3288 return Induction.second.getKind() == 3289 InductionDescriptor::IK_PtrInduction && 3290 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 3291 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar); 3292 }; 3293 3294 // Determine if all users of the induction variable are scalar after 3295 // vectorization. 3296 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 3297 auto *I = cast<Instruction>(U); 3298 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 3299 IsDirectLoadStoreFromPtrIndvar(Ind, I); 3300 }); 3301 if (!ScalarInd) 3302 continue; 3303 3304 // If the induction variable update is a fixed-order recurrence, neither the 3305 // induction variable or its update should be marked scalar after 3306 // vectorization. 3307 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate); 3308 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi)) 3309 continue; 3310 3311 // Determine if all users of the induction variable update instruction are 3312 // scalar after vectorization. 3313 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 3314 auto *I = cast<Instruction>(U); 3315 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 3316 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 3317 }); 3318 if (!ScalarIndUpdate) 3319 continue; 3320 3321 // The induction variable and its update instruction will remain scalar. 3322 Worklist.insert(Ind); 3323 Worklist.insert(IndUpdate); 3324 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 3325 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 3326 << "\n"); 3327 } 3328 3329 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 3330 } 3331 3332 bool LoopVectorizationCostModel::isScalarWithPredication( 3333 Instruction *I, ElementCount VF) const { 3334 if (!isPredicatedInst(I)) 3335 return false; 3336 3337 // Do we have a non-scalar lowering for this predicated 3338 // instruction? No - it is scalar with predication. 3339 switch(I->getOpcode()) { 3340 default: 3341 return true; 3342 case Instruction::Call: 3343 if (VF.isScalar()) 3344 return true; 3345 return CallWideningDecisions.at(std::make_pair(cast<CallInst>(I), VF)) 3346 .Kind == CM_Scalarize; 3347 case Instruction::Load: 3348 case Instruction::Store: { 3349 auto *Ptr = getLoadStorePointerOperand(I); 3350 auto *Ty = getLoadStoreType(I); 3351 Type *VTy = Ty; 3352 if (VF.isVector()) 3353 VTy = VectorType::get(Ty, VF); 3354 const Align Alignment = getLoadStoreAlignment(I); 3355 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 3356 TTI.isLegalMaskedGather(VTy, Alignment)) 3357 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 3358 TTI.isLegalMaskedScatter(VTy, Alignment)); 3359 } 3360 case Instruction::UDiv: 3361 case Instruction::SDiv: 3362 case Instruction::SRem: 3363 case Instruction::URem: { 3364 // We have the option to use the safe-divisor idiom to avoid predication. 3365 // The cost based decision here will always select safe-divisor for 3366 // scalable vectors as scalarization isn't legal. 3367 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF); 3368 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost); 3369 } 3370 } 3371 } 3372 3373 // TODO: Fold into LoopVectorizationLegality::isMaskRequired. 3374 bool LoopVectorizationCostModel::isPredicatedInst(Instruction *I) const { 3375 // If predication is not needed, avoid it. 3376 // TODO: We can use the loop-preheader as context point here and get 3377 // context sensitive reasoning for isSafeToSpeculativelyExecute. 3378 if (!blockNeedsPredicationForAnyReason(I->getParent()) || 3379 isSafeToSpeculativelyExecute(I) || 3380 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) || 3381 isa<BranchInst, SwitchInst, PHINode, AllocaInst>(I)) 3382 return false; 3383 3384 // If the instruction was executed conditionally in the original scalar loop, 3385 // predication is needed with a mask whose lanes are all possibly inactive. 3386 if (Legal->blockNeedsPredication(I->getParent())) 3387 return true; 3388 3389 // All that remain are instructions with side-effects originally executed in 3390 // the loop unconditionally, but now execute under a tail-fold mask (only) 3391 // having at least one active lane (the first). If the side-effects of the 3392 // instruction are invariant, executing it w/o (the tail-folding) mask is safe 3393 // - it will cause the same side-effects as when masked. 3394 switch(I->getOpcode()) { 3395 default: 3396 llvm_unreachable( 3397 "instruction should have been considered by earlier checks"); 3398 case Instruction::Call: 3399 // Side-effects of a Call are assumed to be non-invariant, needing a 3400 // (fold-tail) mask. 3401 assert(Legal->isMaskRequired(I) && 3402 "should have returned earlier for calls not needing a mask"); 3403 return true; 3404 case Instruction::Load: 3405 // If the address is loop invariant no predication is needed. 3406 return !Legal->isInvariant(getLoadStorePointerOperand(I)); 3407 case Instruction::Store: { 3408 // For stores, we need to prove both speculation safety (which follows from 3409 // the same argument as loads), but also must prove the value being stored 3410 // is correct. The easiest form of the later is to require that all values 3411 // stored are the same. 3412 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) && 3413 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand())); 3414 } 3415 case Instruction::UDiv: 3416 case Instruction::SDiv: 3417 case Instruction::SRem: 3418 case Instruction::URem: 3419 // If the divisor is loop-invariant no predication is needed. 3420 return !TheLoop->isLoopInvariant(I->getOperand(1)); 3421 } 3422 } 3423 3424 std::pair<InstructionCost, InstructionCost> 3425 LoopVectorizationCostModel::getDivRemSpeculationCost(Instruction *I, 3426 ElementCount VF) const { 3427 assert(I->getOpcode() == Instruction::UDiv || 3428 I->getOpcode() == Instruction::SDiv || 3429 I->getOpcode() == Instruction::SRem || 3430 I->getOpcode() == Instruction::URem); 3431 assert(!isSafeToSpeculativelyExecute(I)); 3432 3433 const TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3434 3435 // Scalarization isn't legal for scalable vector types 3436 InstructionCost ScalarizationCost = InstructionCost::getInvalid(); 3437 if (!VF.isScalable()) { 3438 // Get the scalarization cost and scale this amount by the probability of 3439 // executing the predicated block. If the instruction is not predicated, 3440 // we fall through to the next case. 3441 ScalarizationCost = 0; 3442 3443 // These instructions have a non-void type, so account for the phi nodes 3444 // that we will create. This cost is likely to be zero. The phi node 3445 // cost, if any, should be scaled by the block probability because it 3446 // models a copy at the end of each predicated block. 3447 ScalarizationCost += VF.getKnownMinValue() * 3448 TTI.getCFInstrCost(Instruction::PHI, CostKind); 3449 3450 // The cost of the non-predicated instruction. 3451 ScalarizationCost += VF.getKnownMinValue() * 3452 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind); 3453 3454 // The cost of insertelement and extractelement instructions needed for 3455 // scalarization. 3456 ScalarizationCost += getScalarizationOverhead(I, VF, CostKind); 3457 3458 // Scale the cost by the probability of executing the predicated blocks. 3459 // This assumes the predicated block for each vector lane is equally 3460 // likely. 3461 ScalarizationCost = ScalarizationCost / getReciprocalPredBlockProb(); 3462 } 3463 InstructionCost SafeDivisorCost = 0; 3464 3465 auto *VecTy = toVectorTy(I->getType(), VF); 3466 3467 // The cost of the select guard to ensure all lanes are well defined 3468 // after we speculate above any internal control flow. 3469 SafeDivisorCost += 3470 TTI.getCmpSelInstrCost(Instruction::Select, VecTy, 3471 toVectorTy(Type::getInt1Ty(I->getContext()), VF), 3472 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3473 3474 // Certain instructions can be cheaper to vectorize if they have a constant 3475 // second vector operand. One example of this are shifts on x86. 3476 Value *Op2 = I->getOperand(1); 3477 auto Op2Info = TTI.getOperandInfo(Op2); 3478 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && 3479 Legal->isInvariant(Op2)) 3480 Op2Info.Kind = TargetTransformInfo::OK_UniformValue; 3481 3482 SmallVector<const Value *, 4> Operands(I->operand_values()); 3483 SafeDivisorCost += TTI.getArithmeticInstrCost( 3484 I->getOpcode(), VecTy, CostKind, 3485 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, 3486 Op2Info, Operands, I); 3487 return {ScalarizationCost, SafeDivisorCost}; 3488 } 3489 3490 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 3491 Instruction *I, ElementCount VF) const { 3492 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 3493 assert(getWideningDecision(I, VF) == CM_Unknown && 3494 "Decision should not be set yet."); 3495 auto *Group = getInterleavedAccessGroup(I); 3496 assert(Group && "Must have a group."); 3497 unsigned InterleaveFactor = Group->getFactor(); 3498 3499 // If the instruction's allocated size doesn't equal its type size, it 3500 // requires padding and will be scalarized. 3501 auto &DL = I->getDataLayout(); 3502 auto *ScalarTy = getLoadStoreType(I); 3503 if (hasIrregularType(ScalarTy, DL)) 3504 return false; 3505 3506 // We currently only know how to emit interleave/deinterleave with 3507 // Factor=2 for scalable vectors. This is purely an implementation 3508 // limit. 3509 if (VF.isScalable() && InterleaveFactor != 2) 3510 return false; 3511 3512 // If the group involves a non-integral pointer, we may not be able to 3513 // losslessly cast all values to a common type. 3514 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 3515 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) { 3516 Instruction *Member = Group->getMember(Idx); 3517 if (!Member) 3518 continue; 3519 auto *MemberTy = getLoadStoreType(Member); 3520 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 3521 // Don't coerce non-integral pointers to integers or vice versa. 3522 if (MemberNI != ScalarNI) 3523 // TODO: Consider adding special nullptr value case here 3524 return false; 3525 if (MemberNI && ScalarNI && 3526 ScalarTy->getPointerAddressSpace() != 3527 MemberTy->getPointerAddressSpace()) 3528 return false; 3529 } 3530 3531 // Check if masking is required. 3532 // A Group may need masking for one of two reasons: it resides in a block that 3533 // needs predication, or it was decided to use masking to deal with gaps 3534 // (either a gap at the end of a load-access that may result in a speculative 3535 // load, or any gaps in a store-access). 3536 bool PredicatedAccessRequiresMasking = 3537 blockNeedsPredicationForAnyReason(I->getParent()) && 3538 Legal->isMaskRequired(I); 3539 bool LoadAccessWithGapsRequiresEpilogMasking = 3540 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 3541 !isScalarEpilogueAllowed(); 3542 bool StoreAccessWithGapsRequiresMasking = 3543 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 3544 if (!PredicatedAccessRequiresMasking && 3545 !LoadAccessWithGapsRequiresEpilogMasking && 3546 !StoreAccessWithGapsRequiresMasking) 3547 return true; 3548 3549 // If masked interleaving is required, we expect that the user/target had 3550 // enabled it, because otherwise it either wouldn't have been created or 3551 // it should have been invalidated by the CostModel. 3552 assert(useMaskedInterleavedAccesses(TTI) && 3553 "Masked interleave-groups for predicated accesses are not enabled."); 3554 3555 if (Group->isReverse()) 3556 return false; 3557 3558 auto *Ty = getLoadStoreType(I); 3559 const Align Alignment = getLoadStoreAlignment(I); 3560 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 3561 : TTI.isLegalMaskedStore(Ty, Alignment); 3562 } 3563 3564 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 3565 Instruction *I, ElementCount VF) { 3566 // Get and ensure we have a valid memory instruction. 3567 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 3568 3569 auto *Ptr = getLoadStorePointerOperand(I); 3570 auto *ScalarTy = getLoadStoreType(I); 3571 3572 // In order to be widened, the pointer should be consecutive, first of all. 3573 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 3574 return false; 3575 3576 // If the instruction is a store located in a predicated block, it will be 3577 // scalarized. 3578 if (isScalarWithPredication(I, VF)) 3579 return false; 3580 3581 // If the instruction's allocated size doesn't equal it's type size, it 3582 // requires padding and will be scalarized. 3583 auto &DL = I->getDataLayout(); 3584 if (hasIrregularType(ScalarTy, DL)) 3585 return false; 3586 3587 return true; 3588 } 3589 3590 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 3591 // We should not collect Uniforms more than once per VF. Right now, 3592 // this function is called from collectUniformsAndScalars(), which 3593 // already does this check. Collecting Uniforms for VF=1 does not make any 3594 // sense. 3595 3596 assert(VF.isVector() && !Uniforms.contains(VF) && 3597 "This function should not be visited twice for the same VF"); 3598 3599 // Visit the list of Uniforms. If we find no uniform value, we won't 3600 // analyze again. Uniforms.count(VF) will return 1. 3601 Uniforms[VF].clear(); 3602 3603 // Now we know that the loop is vectorizable! 3604 // Collect instructions inside the loop that will remain uniform after 3605 // vectorization. 3606 3607 // Global values, params and instructions outside of current loop are out of 3608 // scope. 3609 auto IsOutOfScope = [&](Value *V) -> bool { 3610 Instruction *I = dyn_cast<Instruction>(V); 3611 return (!I || !TheLoop->contains(I)); 3612 }; 3613 3614 // Worklist containing uniform instructions demanding lane 0. 3615 SetVector<Instruction *> Worklist; 3616 3617 // Add uniform instructions demanding lane 0 to the worklist. Instructions 3618 // that require predication must not be considered uniform after 3619 // vectorization, because that would create an erroneous replicating region 3620 // where only a single instance out of VF should be formed. 3621 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void { 3622 if (IsOutOfScope(I)) { 3623 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 3624 << *I << "\n"); 3625 return; 3626 } 3627 if (isPredicatedInst(I)) { 3628 LLVM_DEBUG( 3629 dbgs() << "LV: Found not uniform due to requiring predication: " << *I 3630 << "\n"); 3631 return; 3632 } 3633 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 3634 Worklist.insert(I); 3635 }; 3636 3637 // Start with the conditional branches exiting the loop. If the branch 3638 // condition is an instruction contained in the loop that is only used by the 3639 // branch, it is uniform. Note conditions from uncountable early exits are not 3640 // uniform. 3641 SmallVector<BasicBlock *> Exiting; 3642 TheLoop->getExitingBlocks(Exiting); 3643 for (BasicBlock *E : Exiting) { 3644 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E) 3645 continue; 3646 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0)); 3647 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 3648 AddToWorklistIfAllowed(Cmp); 3649 } 3650 3651 auto PrevVF = VF.divideCoefficientBy(2); 3652 // Return true if all lanes perform the same memory operation, and we can 3653 // thus choose to execute only one. 3654 auto IsUniformMemOpUse = [&](Instruction *I) { 3655 // If the value was already known to not be uniform for the previous 3656 // (smaller VF), it cannot be uniform for the larger VF. 3657 if (PrevVF.isVector()) { 3658 auto Iter = Uniforms.find(PrevVF); 3659 if (Iter != Uniforms.end() && !Iter->second.contains(I)) 3660 return false; 3661 } 3662 if (!Legal->isUniformMemOp(*I, VF)) 3663 return false; 3664 if (isa<LoadInst>(I)) 3665 // Loading the same address always produces the same result - at least 3666 // assuming aliasing and ordering which have already been checked. 3667 return true; 3668 // Storing the same value on every iteration. 3669 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()); 3670 }; 3671 3672 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) { 3673 InstWidening WideningDecision = getWideningDecision(I, VF); 3674 assert(WideningDecision != CM_Unknown && 3675 "Widening decision should be ready at this moment"); 3676 3677 if (IsUniformMemOpUse(I)) 3678 return true; 3679 3680 return (WideningDecision == CM_Widen || 3681 WideningDecision == CM_Widen_Reverse || 3682 WideningDecision == CM_Interleave); 3683 }; 3684 3685 // Returns true if Ptr is the pointer operand of a memory access instruction 3686 // I, I is known to not require scalarization, and the pointer is not also 3687 // stored. 3688 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 3689 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr) 3690 return false; 3691 return getLoadStorePointerOperand(I) == Ptr && 3692 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr)); 3693 }; 3694 3695 // Holds a list of values which are known to have at least one uniform use. 3696 // Note that there may be other uses which aren't uniform. A "uniform use" 3697 // here is something which only demands lane 0 of the unrolled iterations; 3698 // it does not imply that all lanes produce the same value (e.g. this is not 3699 // the usual meaning of uniform) 3700 SetVector<Value *> HasUniformUse; 3701 3702 // Scan the loop for instructions which are either a) known to have only 3703 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 3704 for (auto *BB : TheLoop->blocks()) 3705 for (auto &I : *BB) { 3706 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 3707 switch (II->getIntrinsicID()) { 3708 case Intrinsic::sideeffect: 3709 case Intrinsic::experimental_noalias_scope_decl: 3710 case Intrinsic::assume: 3711 case Intrinsic::lifetime_start: 3712 case Intrinsic::lifetime_end: 3713 if (TheLoop->hasLoopInvariantOperands(&I)) 3714 AddToWorklistIfAllowed(&I); 3715 break; 3716 default: 3717 break; 3718 } 3719 } 3720 3721 // ExtractValue instructions must be uniform, because the operands are 3722 // known to be loop-invariant. 3723 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 3724 assert(IsOutOfScope(EVI->getAggregateOperand()) && 3725 "Expected aggregate value to be loop invariant"); 3726 AddToWorklistIfAllowed(EVI); 3727 continue; 3728 } 3729 3730 // If there's no pointer operand, there's nothing to do. 3731 auto *Ptr = getLoadStorePointerOperand(&I); 3732 if (!Ptr) 3733 continue; 3734 3735 if (IsUniformMemOpUse(&I)) 3736 AddToWorklistIfAllowed(&I); 3737 3738 if (IsVectorizedMemAccessUse(&I, Ptr)) 3739 HasUniformUse.insert(Ptr); 3740 } 3741 3742 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 3743 // demanding) users. Since loops are assumed to be in LCSSA form, this 3744 // disallows uses outside the loop as well. 3745 for (auto *V : HasUniformUse) { 3746 if (IsOutOfScope(V)) 3747 continue; 3748 auto *I = cast<Instruction>(V); 3749 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool { 3750 auto *UI = cast<Instruction>(U); 3751 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V); 3752 }); 3753 if (UsersAreMemAccesses) 3754 AddToWorklistIfAllowed(I); 3755 } 3756 3757 // Expand Worklist in topological order: whenever a new instruction 3758 // is added , its users should be already inside Worklist. It ensures 3759 // a uniform instruction will only be used by uniform instructions. 3760 unsigned Idx = 0; 3761 while (Idx != Worklist.size()) { 3762 Instruction *I = Worklist[Idx++]; 3763 3764 for (auto *OV : I->operand_values()) { 3765 // isOutOfScope operands cannot be uniform instructions. 3766 if (IsOutOfScope(OV)) 3767 continue; 3768 // First order recurrence Phi's should typically be considered 3769 // non-uniform. 3770 auto *OP = dyn_cast<PHINode>(OV); 3771 if (OP && Legal->isFixedOrderRecurrence(OP)) 3772 continue; 3773 // If all the users of the operand are uniform, then add the 3774 // operand into the uniform worklist. 3775 auto *OI = cast<Instruction>(OV); 3776 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 3777 auto *J = cast<Instruction>(U); 3778 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI); 3779 })) 3780 AddToWorklistIfAllowed(OI); 3781 } 3782 } 3783 3784 // For an instruction to be added into Worklist above, all its users inside 3785 // the loop should also be in Worklist. However, this condition cannot be 3786 // true for phi nodes that form a cyclic dependence. We must process phi 3787 // nodes separately. An induction variable will remain uniform if all users 3788 // of the induction variable and induction variable update remain uniform. 3789 // The code below handles both pointer and non-pointer induction variables. 3790 BasicBlock *Latch = TheLoop->getLoopLatch(); 3791 for (const auto &Induction : Legal->getInductionVars()) { 3792 auto *Ind = Induction.first; 3793 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 3794 3795 // Determine if all users of the induction variable are uniform after 3796 // vectorization. 3797 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 3798 auto *I = cast<Instruction>(U); 3799 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 3800 IsVectorizedMemAccessUse(I, Ind); 3801 }); 3802 if (!UniformInd) 3803 continue; 3804 3805 // Determine if all users of the induction variable update instruction are 3806 // uniform after vectorization. 3807 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 3808 auto *I = cast<Instruction>(U); 3809 return I == Ind || Worklist.count(I) || 3810 IsVectorizedMemAccessUse(I, IndUpdate); 3811 }); 3812 if (!UniformIndUpdate) 3813 continue; 3814 3815 // The induction variable and its update instruction will remain uniform. 3816 AddToWorklistIfAllowed(Ind); 3817 AddToWorklistIfAllowed(IndUpdate); 3818 } 3819 3820 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 3821 } 3822 3823 bool LoopVectorizationCostModel::runtimeChecksRequired() { 3824 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 3825 3826 if (Legal->getRuntimePointerChecking()->Need) { 3827 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 3828 "runtime pointer checks needed. Enable vectorization of this " 3829 "loop with '#pragma clang loop vectorize(enable)' when " 3830 "compiling with -Os/-Oz", 3831 "CantVersionLoopWithOptForSize", ORE, TheLoop); 3832 return true; 3833 } 3834 3835 if (!PSE.getPredicate().isAlwaysTrue()) { 3836 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 3837 "runtime SCEV checks needed. Enable vectorization of this " 3838 "loop with '#pragma clang loop vectorize(enable)' when " 3839 "compiling with -Os/-Oz", 3840 "CantVersionLoopWithOptForSize", ORE, TheLoop); 3841 return true; 3842 } 3843 3844 // FIXME: Avoid specializing for stride==1 instead of bailing out. 3845 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 3846 reportVectorizationFailure("Runtime stride check for small trip count", 3847 "runtime stride == 1 checks needed. Enable vectorization of " 3848 "this loop without such check by compiling with -Os/-Oz", 3849 "CantVersionLoopWithOptForSize", ORE, TheLoop); 3850 return true; 3851 } 3852 3853 return false; 3854 } 3855 3856 bool LoopVectorizationCostModel::isScalableVectorizationAllowed() { 3857 if (IsScalableVectorizationAllowed) 3858 return *IsScalableVectorizationAllowed; 3859 3860 IsScalableVectorizationAllowed = false; 3861 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 3862 return false; 3863 3864 if (Hints->isScalableVectorizationDisabled()) { 3865 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 3866 "ScalableVectorizationDisabled", ORE, TheLoop); 3867 return false; 3868 } 3869 3870 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 3871 3872 auto MaxScalableVF = ElementCount::getScalable( 3873 std::numeric_limits<ElementCount::ScalarTy>::max()); 3874 3875 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 3876 // FIXME: While for scalable vectors this is currently sufficient, this should 3877 // be replaced by a more detailed mechanism that filters out specific VFs, 3878 // instead of invalidating vectorization for a whole set of VFs based on the 3879 // MaxVF. 3880 3881 // Disable scalable vectorization if the loop contains unsupported reductions. 3882 if (!canVectorizeReductions(MaxScalableVF)) { 3883 reportVectorizationInfo( 3884 "Scalable vectorization not supported for the reduction " 3885 "operations found in this loop.", 3886 "ScalableVFUnfeasible", ORE, TheLoop); 3887 return false; 3888 } 3889 3890 // Disable scalable vectorization if the loop contains any instructions 3891 // with element types not supported for scalable vectors. 3892 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 3893 return !Ty->isVoidTy() && 3894 !this->TTI.isElementTypeLegalForScalableVector(Ty); 3895 })) { 3896 reportVectorizationInfo("Scalable vectorization is not supported " 3897 "for all element types found in this loop.", 3898 "ScalableVFUnfeasible", ORE, TheLoop); 3899 return false; 3900 } 3901 3902 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) { 3903 reportVectorizationInfo("The target does not provide maximum vscale value " 3904 "for safe distance analysis.", 3905 "ScalableVFUnfeasible", ORE, TheLoop); 3906 return false; 3907 } 3908 3909 IsScalableVectorizationAllowed = true; 3910 return true; 3911 } 3912 3913 ElementCount 3914 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 3915 if (!isScalableVectorizationAllowed()) 3916 return ElementCount::getScalable(0); 3917 3918 auto MaxScalableVF = ElementCount::getScalable( 3919 std::numeric_limits<ElementCount::ScalarTy>::max()); 3920 if (Legal->isSafeForAnyVectorWidth()) 3921 return MaxScalableVF; 3922 3923 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI); 3924 // Limit MaxScalableVF by the maximum safe dependence distance. 3925 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale); 3926 3927 if (!MaxScalableVF) 3928 reportVectorizationInfo( 3929 "Max legal vector width too small, scalable vectorization " 3930 "unfeasible.", 3931 "ScalableVFUnfeasible", ORE, TheLoop); 3932 3933 return MaxScalableVF; 3934 } 3935 3936 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 3937 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) { 3938 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 3939 unsigned SmallestType, WidestType; 3940 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 3941 3942 // Get the maximum safe dependence distance in bits computed by LAA. 3943 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 3944 // the memory accesses that is most restrictive (involved in the smallest 3945 // dependence distance). 3946 unsigned MaxSafeElements = 3947 llvm::bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 3948 3949 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 3950 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 3951 if (!Legal->isSafeForAnyVectorWidth()) 3952 this->MaxSafeElements = MaxSafeElements; 3953 3954 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 3955 << ".\n"); 3956 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 3957 << ".\n"); 3958 3959 // First analyze the UserVF, fall back if the UserVF should be ignored. 3960 if (UserVF) { 3961 auto MaxSafeUserVF = 3962 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 3963 3964 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 3965 // If `VF=vscale x N` is safe, then so is `VF=N` 3966 if (UserVF.isScalable()) 3967 return FixedScalableVFPair( 3968 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 3969 3970 return UserVF; 3971 } 3972 3973 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 3974 3975 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 3976 // is better to ignore the hint and let the compiler choose a suitable VF. 3977 if (!UserVF.isScalable()) { 3978 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 3979 << " is unsafe, clamping to max safe VF=" 3980 << MaxSafeFixedVF << ".\n"); 3981 ORE->emit([&]() { 3982 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 3983 TheLoop->getStartLoc(), 3984 TheLoop->getHeader()) 3985 << "User-specified vectorization factor " 3986 << ore::NV("UserVectorizationFactor", UserVF) 3987 << " is unsafe, clamping to maximum safe vectorization factor " 3988 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 3989 }); 3990 return MaxSafeFixedVF; 3991 } 3992 3993 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 3994 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 3995 << " is ignored because scalable vectors are not " 3996 "available.\n"); 3997 ORE->emit([&]() { 3998 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 3999 TheLoop->getStartLoc(), 4000 TheLoop->getHeader()) 4001 << "User-specified vectorization factor " 4002 << ore::NV("UserVectorizationFactor", UserVF) 4003 << " is ignored because the target does not support scalable " 4004 "vectors. The compiler will pick a more suitable value."; 4005 }); 4006 } else { 4007 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4008 << " is unsafe. Ignoring scalable UserVF.\n"); 4009 ORE->emit([&]() { 4010 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4011 TheLoop->getStartLoc(), 4012 TheLoop->getHeader()) 4013 << "User-specified vectorization factor " 4014 << ore::NV("UserVectorizationFactor", UserVF) 4015 << " is unsafe. Ignoring the hint to let the compiler pick a " 4016 "more suitable value."; 4017 }); 4018 } 4019 } 4020 4021 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4022 << " / " << WidestType << " bits.\n"); 4023 4024 FixedScalableVFPair Result(ElementCount::getFixed(1), 4025 ElementCount::getScalable(0)); 4026 if (auto MaxVF = 4027 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType, 4028 MaxSafeFixedVF, FoldTailByMasking)) 4029 Result.FixedVF = MaxVF; 4030 4031 if (auto MaxVF = 4032 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType, 4033 MaxSafeScalableVF, FoldTailByMasking)) 4034 if (MaxVF.isScalable()) { 4035 Result.ScalableVF = MaxVF; 4036 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4037 << "\n"); 4038 } 4039 4040 return Result; 4041 } 4042 4043 FixedScalableVFPair 4044 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 4045 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4046 // TODO: It may be useful to do since it's still likely to be dynamically 4047 // uniform if the target can skip. 4048 reportVectorizationFailure( 4049 "Not inserting runtime ptr check for divergent target", 4050 "runtime pointer checks needed. Not enabled for divergent target", 4051 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4052 return FixedScalableVFPair::getNone(); 4053 } 4054 4055 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4056 unsigned MaxTC = PSE.getSmallConstantMaxTripCount(); 4057 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4058 if (TC != MaxTC) 4059 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n'); 4060 if (TC == 1) { 4061 reportVectorizationFailure("Single iteration (non) loop", 4062 "loop trip count is one, irrelevant for vectorization", 4063 "SingleIterationLoop", ORE, TheLoop); 4064 return FixedScalableVFPair::getNone(); 4065 } 4066 4067 switch (ScalarEpilogueStatus) { 4068 case CM_ScalarEpilogueAllowed: 4069 return computeFeasibleMaxVF(MaxTC, UserVF, false); 4070 case CM_ScalarEpilogueNotAllowedUsePredicate: 4071 [[fallthrough]]; 4072 case CM_ScalarEpilogueNotNeededUsePredicate: 4073 LLVM_DEBUG( 4074 dbgs() << "LV: vector predicate hint/switch found.\n" 4075 << "LV: Not allowing scalar epilogue, creating predicated " 4076 << "vector loop.\n"); 4077 break; 4078 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4079 // fallthrough as a special case of OptForSize 4080 case CM_ScalarEpilogueNotAllowedOptSize: 4081 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4082 LLVM_DEBUG( 4083 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4084 else 4085 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4086 << "count.\n"); 4087 4088 // Bail if runtime checks are required, which are not good when optimising 4089 // for size. 4090 if (runtimeChecksRequired()) 4091 return FixedScalableVFPair::getNone(); 4092 4093 break; 4094 } 4095 4096 // The only loops we can vectorize without a scalar epilogue, are loops with 4097 // a bottom-test and a single exiting block. We'd have to handle the fact 4098 // that not every instruction executes on the last iteration. This will 4099 // require a lane mask which varies through the vector loop body. (TODO) 4100 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4101 // If there was a tail-folding hint/switch, but we can't fold the tail by 4102 // masking, fallback to a vectorization with a scalar epilogue. 4103 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 4104 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 4105 "scalar epilogue instead.\n"); 4106 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 4107 return computeFeasibleMaxVF(MaxTC, UserVF, false); 4108 } 4109 return FixedScalableVFPair::getNone(); 4110 } 4111 4112 // Now try the tail folding 4113 4114 // Invalidate interleave groups that require an epilogue if we can't mask 4115 // the interleave-group. 4116 if (!useMaskedInterleavedAccesses(TTI)) { 4117 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 4118 "No decisions should have been taken at this point"); 4119 // Note: There is no need to invalidate any cost modeling decisions here, as 4120 // none were taken so far. 4121 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4122 } 4123 4124 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true); 4125 4126 // Avoid tail folding if the trip count is known to be a multiple of any VF 4127 // we choose. 4128 std::optional<unsigned> MaxPowerOf2RuntimeVF = 4129 MaxFactors.FixedVF.getFixedValue(); 4130 if (MaxFactors.ScalableVF) { 4131 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI); 4132 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) { 4133 MaxPowerOf2RuntimeVF = std::max<unsigned>( 4134 *MaxPowerOf2RuntimeVF, 4135 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue()); 4136 } else 4137 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now. 4138 } 4139 4140 if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) { 4141 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) && 4142 "MaxFixedVF must be a power of 2"); 4143 unsigned MaxVFtimesIC = 4144 UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF; 4145 ScalarEvolution *SE = PSE.getSE(); 4146 // Currently only loops with countable exits are vectorized, but calling 4147 // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with 4148 // uncountable exits whilst also ensuring the symbolic maximum and known 4149 // back-edge taken count remain identical for loops with countable exits. 4150 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount(); 4151 assert(BackedgeTakenCount == PSE.getBackedgeTakenCount() && 4152 "Invalid loop count"); 4153 const SCEV *ExitCount = SE->getAddExpr( 4154 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 4155 const SCEV *Rem = SE->getURemExpr( 4156 SE->applyLoopGuards(ExitCount, TheLoop), 4157 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 4158 if (Rem->isZero()) { 4159 // Accept MaxFixedVF if we do not have a tail. 4160 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4161 return MaxFactors; 4162 } 4163 } 4164 4165 // If we don't know the precise trip count, or if the trip count that we 4166 // found modulo the vectorization factor is not zero, try to fold the tail 4167 // by masking. 4168 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4169 setTailFoldingStyles(MaxFactors.ScalableVF.isScalable(), UserIC); 4170 if (foldTailByMasking()) { 4171 if (getTailFoldingStyle() == TailFoldingStyle::DataWithEVL) { 4172 LLVM_DEBUG( 4173 dbgs() 4174 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will " 4175 "try to generate VP Intrinsics with scalable vector " 4176 "factors only.\n"); 4177 // Tail folded loop using VP intrinsics restricts the VF to be scalable 4178 // for now. 4179 // TODO: extend it for fixed vectors, if required. 4180 assert(MaxFactors.ScalableVF.isScalable() && 4181 "Expected scalable vector factor."); 4182 4183 MaxFactors.FixedVF = ElementCount::getFixed(1); 4184 } 4185 return MaxFactors; 4186 } 4187 4188 // If there was a tail-folding hint/switch, but we can't fold the tail by 4189 // masking, fallback to a vectorization with a scalar epilogue. 4190 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 4191 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 4192 "scalar epilogue instead.\n"); 4193 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 4194 return MaxFactors; 4195 } 4196 4197 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 4198 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 4199 return FixedScalableVFPair::getNone(); 4200 } 4201 4202 if (TC == 0) { 4203 reportVectorizationFailure( 4204 "unable to calculate the loop count due to complex control flow", 4205 "UnknownLoopCountComplexCFG", ORE, TheLoop); 4206 return FixedScalableVFPair::getNone(); 4207 } 4208 4209 reportVectorizationFailure( 4210 "Cannot optimize for size and vectorize at the same time.", 4211 "cannot optimize for size and vectorize at the same time. " 4212 "Enable vectorization of this loop with '#pragma clang loop " 4213 "vectorize(enable)' when compiling with -Os/-Oz", 4214 "NoTailLoopWithOptForSize", ORE, TheLoop); 4215 return FixedScalableVFPair::getNone(); 4216 } 4217 4218 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 4219 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType, 4220 ElementCount MaxSafeVF, bool FoldTailByMasking) { 4221 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 4222 const TypeSize WidestRegister = TTI.getRegisterBitWidth( 4223 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 4224 : TargetTransformInfo::RGK_FixedWidthVector); 4225 4226 // Convenience function to return the minimum of two ElementCounts. 4227 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 4228 assert((LHS.isScalable() == RHS.isScalable()) && 4229 "Scalable flags must match"); 4230 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 4231 }; 4232 4233 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 4234 // Note that both WidestRegister and WidestType may not be a powers of 2. 4235 auto MaxVectorElementCount = ElementCount::get( 4236 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType), 4237 ComputeScalableMaxVF); 4238 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 4239 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4240 << (MaxVectorElementCount * WidestType) << " bits.\n"); 4241 4242 if (!MaxVectorElementCount) { 4243 LLVM_DEBUG(dbgs() << "LV: The target has no " 4244 << (ComputeScalableMaxVF ? "scalable" : "fixed") 4245 << " vector registers.\n"); 4246 return ElementCount::getFixed(1); 4247 } 4248 4249 unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue(); 4250 if (MaxVectorElementCount.isScalable() && 4251 TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 4252 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 4253 auto Min = Attr.getVScaleRangeMin(); 4254 WidestRegisterMinEC *= Min; 4255 } 4256 4257 // When a scalar epilogue is required, at least one iteration of the scalar 4258 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a 4259 // max VF that results in a dead vector loop. 4260 if (MaxTripCount > 0 && requiresScalarEpilogue(true)) 4261 MaxTripCount -= 1; 4262 4263 if (MaxTripCount && MaxTripCount <= WidestRegisterMinEC && 4264 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) { 4265 // If upper bound loop trip count (TC) is known at compile time there is no 4266 // point in choosing VF greater than TC (as done in the loop below). Select 4267 // maximum power of two which doesn't exceed TC. If MaxVectorElementCount is 4268 // scalable, we only fall back on a fixed VF when the TC is less than or 4269 // equal to the known number of lanes. 4270 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount); 4271 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 4272 "exceeding the constant trip count: " 4273 << ClampedUpperTripCount << "\n"); 4274 return ElementCount::get( 4275 ClampedUpperTripCount, 4276 FoldTailByMasking ? MaxVectorElementCount.isScalable() : false); 4277 } 4278 4279 TargetTransformInfo::RegisterKind RegKind = 4280 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 4281 : TargetTransformInfo::RGK_FixedWidthVector; 4282 ElementCount MaxVF = MaxVectorElementCount; 4283 if (MaximizeBandwidth || 4284 (MaximizeBandwidth.getNumOccurrences() == 0 && 4285 (TTI.shouldMaximizeVectorBandwidth(RegKind) || 4286 (UseWiderVFIfCallVariantsPresent && Legal->hasVectorCallVariants())))) { 4287 auto MaxVectorElementCountMaxBW = ElementCount::get( 4288 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType), 4289 ComputeScalableMaxVF); 4290 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 4291 4292 // Collect all viable vectorization factors larger than the default MaxVF 4293 // (i.e. MaxVectorElementCount). 4294 SmallVector<ElementCount, 8> VFs; 4295 for (ElementCount VS = MaxVectorElementCount * 2; 4296 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 4297 VFs.push_back(VS); 4298 4299 // For each VF calculate its register usage. 4300 auto RUs = calculateRegisterUsage(VFs); 4301 4302 // Select the largest VF which doesn't require more registers than existing 4303 // ones. 4304 for (int I = RUs.size() - 1; I >= 0; --I) { 4305 const auto &MLU = RUs[I].MaxLocalUsers; 4306 if (all_of(MLU, [&](decltype(MLU.front()) &LU) { 4307 return LU.second <= TTI.getNumberOfRegisters(LU.first); 4308 })) { 4309 MaxVF = VFs[I]; 4310 break; 4311 } 4312 } 4313 if (ElementCount MinVF = 4314 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 4315 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 4316 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4317 << ") with target's minimum: " << MinVF << '\n'); 4318 MaxVF = MinVF; 4319 } 4320 } 4321 4322 // Invalidate any widening decisions we might have made, in case the loop 4323 // requires prediction (decided later), but we have already made some 4324 // load/store widening decisions. 4325 invalidateCostModelingDecisions(); 4326 } 4327 return MaxVF; 4328 } 4329 4330 /// Convenience function that returns the value of vscale_range iff 4331 /// vscale_range.min == vscale_range.max or otherwise returns the value 4332 /// returned by the corresponding TTI method. 4333 static std::optional<unsigned> 4334 getVScaleForTuning(const Loop *L, const TargetTransformInfo &TTI) { 4335 const Function *Fn = L->getHeader()->getParent(); 4336 if (Fn->hasFnAttribute(Attribute::VScaleRange)) { 4337 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange); 4338 auto Min = Attr.getVScaleRangeMin(); 4339 auto Max = Attr.getVScaleRangeMax(); 4340 if (Max && Min == Max) 4341 return Max; 4342 } 4343 4344 return TTI.getVScaleForTuning(); 4345 } 4346 4347 /// This function attempts to return a value that represents the vectorization 4348 /// factor at runtime. For fixed-width VFs we know this precisely at compile 4349 /// time, but for scalable VFs we calculate it based on an estimate of the 4350 /// vscale value. 4351 static unsigned getEstimatedRuntimeVF(const Loop *L, 4352 const TargetTransformInfo &TTI, 4353 ElementCount VF) { 4354 unsigned EstimatedVF = VF.getKnownMinValue(); 4355 if (VF.isScalable()) 4356 if (std::optional<unsigned> VScale = getVScaleForTuning(L, TTI)) 4357 EstimatedVF *= *VScale; 4358 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1"); 4359 return EstimatedVF; 4360 } 4361 4362 bool LoopVectorizationPlanner::isMoreProfitable( 4363 const VectorizationFactor &A, const VectorizationFactor &B, 4364 const unsigned MaxTripCount) const { 4365 InstructionCost CostA = A.Cost; 4366 InstructionCost CostB = B.Cost; 4367 4368 // Improve estimate for the vector width if it is scalable. 4369 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 4370 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 4371 if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI)) { 4372 if (A.Width.isScalable()) 4373 EstimatedWidthA *= *VScale; 4374 if (B.Width.isScalable()) 4375 EstimatedWidthB *= *VScale; 4376 } 4377 4378 // Assume vscale may be larger than 1 (or the value being tuned for), 4379 // so that scalable vectorization is slightly favorable over fixed-width 4380 // vectorization. 4381 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost() && 4382 A.Width.isScalable() && !B.Width.isScalable(); 4383 4384 auto CmpFn = [PreferScalable](const InstructionCost &LHS, 4385 const InstructionCost &RHS) { 4386 return PreferScalable ? LHS <= RHS : LHS < RHS; 4387 }; 4388 4389 // To avoid the need for FP division: 4390 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB) 4391 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA) 4392 if (!MaxTripCount) 4393 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA); 4394 4395 auto GetCostForTC = [MaxTripCount, this](unsigned VF, 4396 InstructionCost VectorCost, 4397 InstructionCost ScalarCost) { 4398 // If the trip count is a known (possibly small) constant, the trip count 4399 // will be rounded up to an integer number of iterations under 4400 // FoldTailByMasking. The total cost in that case will be 4401 // VecCost*ceil(TripCount/VF). When not folding the tail, the total 4402 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be 4403 // some extra overheads, but for the purpose of comparing the costs of 4404 // different VFs we can use this to compare the total loop-body cost 4405 // expected after vectorization. 4406 if (CM.foldTailByMasking()) 4407 return VectorCost * divideCeil(MaxTripCount, VF); 4408 return VectorCost * (MaxTripCount / VF) + ScalarCost * (MaxTripCount % VF); 4409 }; 4410 4411 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost); 4412 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost); 4413 return CmpFn(RTCostA, RTCostB); 4414 } 4415 4416 bool LoopVectorizationPlanner::isMoreProfitable( 4417 const VectorizationFactor &A, const VectorizationFactor &B) const { 4418 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount(); 4419 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount); 4420 } 4421 4422 void LoopVectorizationPlanner::emitInvalidCostRemarks( 4423 OptimizationRemarkEmitter *ORE) { 4424 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>; 4425 SmallVector<RecipeVFPair> InvalidCosts; 4426 for (const auto &Plan : VPlans) { 4427 for (ElementCount VF : Plan->vectorFactors()) { 4428 VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(), 4429 CM); 4430 precomputeCosts(*Plan, VF, CostCtx); 4431 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry()); 4432 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 4433 for (auto &R : *VPBB) { 4434 if (!R.cost(VF, CostCtx).isValid()) 4435 InvalidCosts.emplace_back(&R, VF); 4436 } 4437 } 4438 } 4439 } 4440 if (InvalidCosts.empty()) 4441 return; 4442 4443 // Emit a report of VFs with invalid costs in the loop. 4444 4445 // Group the remarks per recipe, keeping the recipe order from InvalidCosts. 4446 DenseMap<VPRecipeBase *, unsigned> Numbering; 4447 unsigned I = 0; 4448 for (auto &Pair : InvalidCosts) 4449 if (!Numbering.count(Pair.first)) 4450 Numbering[Pair.first] = I++; 4451 4452 // Sort the list, first on recipe(number) then on VF. 4453 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) { 4454 if (Numbering[A.first] != Numbering[B.first]) 4455 return Numbering[A.first] < Numbering[B.first]; 4456 const auto &LHS = A.second; 4457 const auto &RHS = B.second; 4458 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 4459 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 4460 }); 4461 4462 // For a list of ordered recipe-VF pairs: 4463 // [(load, VF1), (load, VF2), (store, VF1)] 4464 // group the recipes together to emit separate remarks for: 4465 // load (VF1, VF2) 4466 // store (VF1) 4467 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts); 4468 auto Subset = ArrayRef<RecipeVFPair>(); 4469 do { 4470 if (Subset.empty()) 4471 Subset = Tail.take_front(1); 4472 4473 VPRecipeBase *R = Subset.front().first; 4474 4475 unsigned Opcode = 4476 TypeSwitch<const VPRecipeBase *, unsigned>(R) 4477 .Case<VPHeaderPHIRecipe>( 4478 [](const auto *R) { return Instruction::PHI; }) 4479 .Case<VPWidenSelectRecipe>( 4480 [](const auto *R) { return Instruction::Select; }) 4481 .Case<VPWidenStoreRecipe>( 4482 [](const auto *R) { return Instruction::Store; }) 4483 .Case<VPWidenLoadRecipe>( 4484 [](const auto *R) { return Instruction::Load; }) 4485 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>( 4486 [](const auto *R) { return Instruction::Call; }) 4487 .Case<VPInstruction, VPWidenRecipe, VPReplicateRecipe, 4488 VPWidenCastRecipe>( 4489 [](const auto *R) { return R->getOpcode(); }) 4490 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) { 4491 return R->getStoredValues().empty() ? Instruction::Load 4492 : Instruction::Store; 4493 }); 4494 4495 // If the next recipe is different, or if there are no other pairs, 4496 // emit a remark for the collated subset. e.g. 4497 // [(load, VF1), (load, VF2))] 4498 // to emit: 4499 // remark: invalid costs for 'load' at VF=(VF1, VF2) 4500 if (Subset == Tail || Tail[Subset.size()].first != R) { 4501 std::string OutString; 4502 raw_string_ostream OS(OutString); 4503 assert(!Subset.empty() && "Unexpected empty range"); 4504 OS << "Recipe with invalid costs prevented vectorization at VF=("; 4505 for (const auto &Pair : Subset) 4506 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second; 4507 OS << "):"; 4508 if (Opcode == Instruction::Call) { 4509 StringRef Name = ""; 4510 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) { 4511 Name = Int->getIntrinsicName(); 4512 } else { 4513 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R); 4514 Function *CalledFn = 4515 WidenCall ? WidenCall->getCalledScalarFunction() 4516 : cast<Function>(R->getOperand(R->getNumOperands() - 1) 4517 ->getLiveInIRValue()); 4518 Name = CalledFn->getName(); 4519 } 4520 OS << " call to " << Name; 4521 } else 4522 OS << " " << Instruction::getOpcodeName(Opcode); 4523 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr, 4524 R->getDebugLoc()); 4525 Tail = Tail.drop_front(Subset.size()); 4526 Subset = {}; 4527 } else 4528 // Grow the subset by one element 4529 Subset = Tail.take_front(Subset.size() + 1); 4530 } while (!Tail.empty()); 4531 } 4532 4533 /// Check if any recipe of \p Plan will generate a vector value, which will be 4534 /// assigned a vector register. 4535 static bool willGenerateVectors(VPlan &Plan, ElementCount VF, 4536 const TargetTransformInfo &TTI) { 4537 assert(VF.isVector() && "Checking a scalar VF?"); 4538 VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType()); 4539 DenseSet<VPRecipeBase *> EphemeralRecipes; 4540 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes); 4541 // Set of already visited types. 4542 DenseSet<Type *> Visited; 4543 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 4544 vp_depth_first_shallow(Plan.getVectorLoopRegion()->getEntry()))) { 4545 for (VPRecipeBase &R : *VPBB) { 4546 if (EphemeralRecipes.contains(&R)) 4547 continue; 4548 // Continue early if the recipe is considered to not produce a vector 4549 // result. Note that this includes VPInstruction where some opcodes may 4550 // produce a vector, to preserve existing behavior as VPInstructions model 4551 // aspects not directly mapped to existing IR instructions. 4552 switch (R.getVPDefID()) { 4553 case VPDef::VPDerivedIVSC: 4554 case VPDef::VPScalarIVStepsSC: 4555 case VPDef::VPScalarCastSC: 4556 case VPDef::VPReplicateSC: 4557 case VPDef::VPInstructionSC: 4558 case VPDef::VPCanonicalIVPHISC: 4559 case VPDef::VPVectorPointerSC: 4560 case VPDef::VPReverseVectorPointerSC: 4561 case VPDef::VPExpandSCEVSC: 4562 case VPDef::VPEVLBasedIVPHISC: 4563 case VPDef::VPPredInstPHISC: 4564 case VPDef::VPBranchOnMaskSC: 4565 continue; 4566 case VPDef::VPReductionSC: 4567 case VPDef::VPActiveLaneMaskPHISC: 4568 case VPDef::VPWidenCallSC: 4569 case VPDef::VPWidenCanonicalIVSC: 4570 case VPDef::VPWidenCastSC: 4571 case VPDef::VPWidenGEPSC: 4572 case VPDef::VPWidenIntrinsicSC: 4573 case VPDef::VPWidenSC: 4574 case VPDef::VPWidenSelectSC: 4575 case VPDef::VPBlendSC: 4576 case VPDef::VPFirstOrderRecurrencePHISC: 4577 case VPDef::VPWidenPHISC: 4578 case VPDef::VPWidenIntOrFpInductionSC: 4579 case VPDef::VPWidenPointerInductionSC: 4580 case VPDef::VPReductionPHISC: 4581 case VPDef::VPInterleaveSC: 4582 case VPDef::VPWidenLoadEVLSC: 4583 case VPDef::VPWidenLoadSC: 4584 case VPDef::VPWidenStoreEVLSC: 4585 case VPDef::VPWidenStoreSC: 4586 break; 4587 default: 4588 llvm_unreachable("unhandled recipe"); 4589 } 4590 4591 auto WillWiden = [&TTI, VF](Type *ScalarTy) { 4592 Type *VectorTy = toVectorTy(ScalarTy, VF); 4593 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy); 4594 if (!NumLegalParts) 4595 return false; 4596 if (VF.isScalable()) { 4597 // <vscale x 1 x iN> is assumed to be profitable over iN because 4598 // scalable registers are a distinct register class from scalar 4599 // ones. If we ever find a target which wants to lower scalable 4600 // vectors back to scalars, we'll need to update this code to 4601 // explicitly ask TTI about the register class uses for each part. 4602 return NumLegalParts <= VF.getKnownMinValue(); 4603 } 4604 // Two or more parts that share a register - are vectorized. 4605 return NumLegalParts < VF.getKnownMinValue(); 4606 }; 4607 4608 // If no def nor is a store, e.g., branches, continue - no value to check. 4609 if (R.getNumDefinedValues() == 0 && 4610 !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveRecipe>( 4611 &R)) 4612 continue; 4613 // For multi-def recipes, currently only interleaved loads, suffice to 4614 // check first def only. 4615 // For stores check their stored value; for interleaved stores suffice 4616 // the check first stored value only. In all cases this is the second 4617 // operand. 4618 VPValue *ToCheck = 4619 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1); 4620 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck); 4621 if (!Visited.insert({ScalarTy}).second) 4622 continue; 4623 if (WillWiden(ScalarTy)) 4624 return true; 4625 } 4626 } 4627 4628 return false; 4629 } 4630 4631 #ifndef NDEBUG 4632 VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() { 4633 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1)); 4634 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 4635 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 4636 assert(any_of(VPlans, 4637 [](std::unique_ptr<VPlan> &P) { 4638 return P->hasVF(ElementCount::getFixed(1)); 4639 }) && 4640 "Expected Scalar VF to be a candidate"); 4641 4642 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, 4643 ExpectedCost); 4644 VectorizationFactor ChosenFactor = ScalarCost; 4645 4646 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled; 4647 if (ForceVectorization && 4648 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) { 4649 // Ignore scalar width, because the user explicitly wants vectorization. 4650 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4651 // evaluation. 4652 ChosenFactor.Cost = InstructionCost::getMax(); 4653 } 4654 4655 for (auto &P : VPlans) { 4656 for (ElementCount VF : P->vectorFactors()) { 4657 // The cost for scalar VF=1 is already calculated, so ignore it. 4658 if (VF.isScalar()) 4659 continue; 4660 4661 InstructionCost C = CM.expectedCost(VF); 4662 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost); 4663 4664 unsigned Width = getEstimatedRuntimeVF(OrigLoop, TTI, Candidate.Width); 4665 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF 4666 << " costs: " << (Candidate.Cost / Width)); 4667 if (VF.isScalable()) 4668 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 4669 << getVScaleForTuning(OrigLoop, TTI).value_or(1) 4670 << ")"); 4671 LLVM_DEBUG(dbgs() << ".\n"); 4672 4673 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) { 4674 LLVM_DEBUG( 4675 dbgs() 4676 << "LV: Not considering vector loop of width " << VF 4677 << " because it will not generate any vector instructions.\n"); 4678 continue; 4679 } 4680 4681 if (isMoreProfitable(Candidate, ChosenFactor)) 4682 ChosenFactor = Candidate; 4683 } 4684 } 4685 4686 if (!EnableCondStoresVectorization && CM.hasPredStores()) { 4687 reportVectorizationFailure( 4688 "There are conditional stores.", 4689 "store that is conditionally executed prevents vectorization", 4690 "ConditionalStore", ORE, OrigLoop); 4691 ChosenFactor = ScalarCost; 4692 } 4693 4694 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 4695 !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs() 4696 << "LV: Vectorization seems to be not beneficial, " 4697 << "but was forced by a user.\n"); 4698 return ChosenFactor; 4699 } 4700 #endif 4701 4702 bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization( 4703 ElementCount VF) const { 4704 // Cross iteration phis such as reductions need special handling and are 4705 // currently unsupported. 4706 if (any_of(OrigLoop->getHeader()->phis(), 4707 [&](PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); })) 4708 return false; 4709 4710 // Phis with uses outside of the loop require special handling and are 4711 // currently unsupported. 4712 for (const auto &Entry : Legal->getInductionVars()) { 4713 // Look for uses of the value of the induction at the last iteration. 4714 Value *PostInc = 4715 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 4716 for (User *U : PostInc->users()) 4717 if (!OrigLoop->contains(cast<Instruction>(U))) 4718 return false; 4719 // Look for uses of penultimate value of the induction. 4720 for (User *U : Entry.first->users()) 4721 if (!OrigLoop->contains(cast<Instruction>(U))) 4722 return false; 4723 } 4724 4725 // Epilogue vectorization code has not been auditted to ensure it handles 4726 // non-latch exits properly. It may be fine, but it needs auditted and 4727 // tested. 4728 // TODO: Add support for loops with an early exit. 4729 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch()) 4730 return false; 4731 4732 return true; 4733 } 4734 4735 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 4736 const ElementCount VF, const unsigned IC) const { 4737 // FIXME: We need a much better cost-model to take different parameters such 4738 // as register pressure, code size increase and cost of extra branches into 4739 // account. For now we apply a very crude heuristic and only consider loops 4740 // with vectorization factors larger than a certain value. 4741 4742 // Allow the target to opt out entirely. 4743 if (!TTI.preferEpilogueVectorization()) 4744 return false; 4745 4746 // We also consider epilogue vectorization unprofitable for targets that don't 4747 // consider interleaving beneficial (eg. MVE). 4748 if (TTI.getMaxInterleaveFactor(VF) <= 1) 4749 return false; 4750 4751 // TODO: PR #108190 introduced a discrepancy between fixed-width and scalable 4752 // VFs when deciding profitability. 4753 // See related "TODO: extend to support scalable VFs." in 4754 // selectEpilogueVectorizationFactor. 4755 unsigned Multiplier = VF.isFixed() ? IC : 1; 4756 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0 4757 ? EpilogueVectorizationMinVF 4758 : TTI.getEpilogueVectorizationMinVF(); 4759 return getEstimatedRuntimeVF(TheLoop, TTI, VF * Multiplier) >= MinVFThreshold; 4760 } 4761 4762 VectorizationFactor LoopVectorizationPlanner::selectEpilogueVectorizationFactor( 4763 const ElementCount MainLoopVF, unsigned IC) { 4764 VectorizationFactor Result = VectorizationFactor::Disabled(); 4765 if (!EnableEpilogueVectorization) { 4766 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n"); 4767 return Result; 4768 } 4769 4770 if (!CM.isScalarEpilogueAllowed()) { 4771 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no " 4772 "epilogue is allowed.\n"); 4773 return Result; 4774 } 4775 4776 // Not really a cost consideration, but check for unsupported cases here to 4777 // simplify the logic. 4778 if (!isCandidateForEpilogueVectorization(MainLoopVF)) { 4779 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop " 4780 "is not a supported candidate.\n"); 4781 return Result; 4782 } 4783 4784 if (EpilogueVectorizationForceVF > 1) { 4785 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n"); 4786 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 4787 if (hasPlanWithVF(ForcedEC)) 4788 return {ForcedEC, 0, 0}; 4789 4790 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not " 4791 "viable.\n"); 4792 return Result; 4793 } 4794 4795 if (OrigLoop->getHeader()->getParent()->hasOptSize() || 4796 OrigLoop->getHeader()->getParent()->hasMinSize()) { 4797 LLVM_DEBUG( 4798 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n"); 4799 return Result; 4800 } 4801 4802 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) { 4803 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 4804 "this loop\n"); 4805 return Result; 4806 } 4807 4808 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 4809 // the main loop handles 8 lanes per iteration. We could still benefit from 4810 // vectorizing the epilogue loop with VF=4. 4811 ElementCount EstimatedRuntimeVF = 4812 ElementCount::getFixed(getEstimatedRuntimeVF(OrigLoop, TTI, MainLoopVF)); 4813 4814 ScalarEvolution &SE = *PSE.getSE(); 4815 Type *TCType = Legal->getWidestInductionType(); 4816 const SCEV *RemainingIterations = nullptr; 4817 unsigned MaxTripCount = 0; 4818 for (auto &NextVF : ProfitableVFs) { 4819 // Skip candidate VFs without a corresponding VPlan. 4820 if (!hasPlanWithVF(NextVF.Width)) 4821 continue; 4822 4823 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable 4824 // vectors) or > the VF of the main loop (fixed vectors). 4825 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 4826 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) || 4827 (NextVF.Width.isScalable() && 4828 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) || 4829 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() && 4830 ElementCount::isKnownGT(NextVF.Width, MainLoopVF))) 4831 continue; 4832 4833 // If NextVF is greater than the number of remaining iterations, the 4834 // epilogue loop would be dead. Skip such factors. 4835 if (!MainLoopVF.isScalable() && !NextVF.Width.isScalable()) { 4836 // TODO: extend to support scalable VFs. 4837 if (!RemainingIterations) { 4838 const SCEV *TC = vputils::getSCEVExprForVPValue( 4839 getPlanFor(NextVF.Width).getTripCount(), SE); 4840 assert(!isa<SCEVCouldNotCompute>(TC) && 4841 "Trip count SCEV must be computable"); 4842 RemainingIterations = SE.getURemExpr( 4843 TC, SE.getConstant(TCType, MainLoopVF.getKnownMinValue() * IC)); 4844 MaxTripCount = MainLoopVF.getKnownMinValue() * IC - 1; 4845 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations, 4846 SE.getConstant(TCType, MaxTripCount))) { 4847 MaxTripCount = 4848 SE.getUnsignedRangeMax(RemainingIterations).getZExtValue(); 4849 } 4850 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: " 4851 << MaxTripCount << "\n"); 4852 } 4853 if (SE.isKnownPredicate( 4854 CmpInst::ICMP_UGT, 4855 SE.getConstant(TCType, NextVF.Width.getKnownMinValue()), 4856 RemainingIterations)) 4857 continue; 4858 } 4859 4860 if (Result.Width.isScalar() || 4861 isMoreProfitable(NextVF, Result, MaxTripCount)) 4862 Result = NextVF; 4863 } 4864 4865 if (Result != VectorizationFactor::Disabled()) 4866 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 4867 << Result.Width << "\n"); 4868 return Result; 4869 } 4870 4871 std::pair<unsigned, unsigned> 4872 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4873 unsigned MinWidth = -1U; 4874 unsigned MaxWidth = 8; 4875 const DataLayout &DL = TheFunction->getDataLayout(); 4876 // For in-loop reductions, no element types are added to ElementTypesInLoop 4877 // if there are no loads/stores in the loop. In this case, check through the 4878 // reduction variables to determine the maximum width. 4879 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 4880 // Reset MaxWidth so that we can find the smallest type used by recurrences 4881 // in the loop. 4882 MaxWidth = -1U; 4883 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) { 4884 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 4885 // When finding the min width used by the recurrence we need to account 4886 // for casts on the input operands of the recurrence. 4887 MaxWidth = std::min<unsigned>( 4888 MaxWidth, std::min<unsigned>( 4889 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 4890 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 4891 } 4892 } else { 4893 for (Type *T : ElementTypesInLoop) { 4894 MinWidth = std::min<unsigned>( 4895 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue()); 4896 MaxWidth = std::max<unsigned>( 4897 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue()); 4898 } 4899 } 4900 return {MinWidth, MaxWidth}; 4901 } 4902 4903 void LoopVectorizationCostModel::collectElementTypesForWidening() { 4904 ElementTypesInLoop.clear(); 4905 // For each block. 4906 for (BasicBlock *BB : TheLoop->blocks()) { 4907 // For each instruction in the loop. 4908 for (Instruction &I : BB->instructionsWithoutDebug()) { 4909 Type *T = I.getType(); 4910 4911 // Skip ignored values. 4912 if (ValuesToIgnore.count(&I)) 4913 continue; 4914 4915 // Only examine Loads, Stores and PHINodes. 4916 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4917 continue; 4918 4919 // Examine PHI nodes that are reduction variables. Update the type to 4920 // account for the recurrence type. 4921 if (auto *PN = dyn_cast<PHINode>(&I)) { 4922 if (!Legal->isReductionVariable(PN)) 4923 continue; 4924 const RecurrenceDescriptor &RdxDesc = 4925 Legal->getReductionVars().find(PN)->second; 4926 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 4927 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 4928 RdxDesc.getRecurrenceType(), 4929 TargetTransformInfo::ReductionFlags())) 4930 continue; 4931 T = RdxDesc.getRecurrenceType(); 4932 } 4933 4934 // Examine the stored values. 4935 if (auto *ST = dyn_cast<StoreInst>(&I)) 4936 T = ST->getValueOperand()->getType(); 4937 4938 assert(T->isSized() && 4939 "Expected the load/store/recurrence type to be sized"); 4940 4941 ElementTypesInLoop.insert(T); 4942 } 4943 } 4944 } 4945 4946 unsigned 4947 LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 4948 InstructionCost LoopCost) { 4949 // -- The interleave heuristics -- 4950 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4951 // There are many micro-architectural considerations that we can't predict 4952 // at this level. For example, frontend pressure (on decode or fetch) due to 4953 // code size, or the number and capabilities of the execution ports. 4954 // 4955 // We use the following heuristics to select the interleave count: 4956 // 1. If the code has reductions, then we interleave to break the cross 4957 // iteration dependency. 4958 // 2. If the loop is really small, then we interleave to reduce the loop 4959 // overhead. 4960 // 3. We don't interleave if we think that we will spill registers to memory 4961 // due to the increased register pressure. 4962 4963 if (!isScalarEpilogueAllowed()) 4964 return 1; 4965 4966 // Do not interleave if EVL is preferred and no User IC is specified. 4967 if (foldTailWithEVL()) { 4968 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. " 4969 "Unroll factor forced to be 1.\n"); 4970 return 1; 4971 } 4972 4973 // We used the distance for the interleave count. 4974 if (!Legal->isSafeForAnyVectorWidth()) 4975 return 1; 4976 4977 // We don't attempt to perform interleaving for loops with uncountable early 4978 // exits because the VPInstruction::AnyOf code cannot currently handle 4979 // multiple parts. 4980 if (Legal->hasUncountableEarlyExit()) 4981 return 1; 4982 4983 auto BestKnownTC = getSmallBestKnownTC(PSE, TheLoop); 4984 const bool HasReductions = !Legal->getReductionVars().empty(); 4985 4986 // If we did not calculate the cost for VF (because the user selected the VF) 4987 // then we calculate the cost of VF here. 4988 if (LoopCost == 0) { 4989 LoopCost = expectedCost(VF); 4990 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost"); 4991 4992 // Loop body is free and there is no need for interleaving. 4993 if (LoopCost == 0) 4994 return 1; 4995 } 4996 4997 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4998 // We divide by these constants so assume that we have at least one 4999 // instruction that uses at least one register. 5000 for (auto &Pair : R.MaxLocalUsers) { 5001 Pair.second = std::max(Pair.second, 1U); 5002 } 5003 5004 // We calculate the interleave count using the following formula. 5005 // Subtract the number of loop invariants from the number of available 5006 // registers. These registers are used by all of the interleaved instances. 5007 // Next, divide the remaining registers by the number of registers that is 5008 // required by the loop, in order to estimate how many parallel instances 5009 // fit without causing spills. All of this is rounded down if necessary to be 5010 // a power of two. We want power of two interleave count to simplify any 5011 // addressing operations or alignment considerations. 5012 // We also want power of two interleave counts to ensure that the induction 5013 // variable of the vector loop wraps to zero, when tail is folded by masking; 5014 // this currently happens when OptForSize, in which case IC is set to 1 above. 5015 unsigned IC = UINT_MAX; 5016 5017 for (const auto &Pair : R.MaxLocalUsers) { 5018 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first); 5019 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5020 << " registers of " 5021 << TTI.getRegisterClassName(Pair.first) 5022 << " register class\n"); 5023 if (VF.isScalar()) { 5024 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5025 TargetNumRegisters = ForceTargetNumScalarRegs; 5026 } else { 5027 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5028 TargetNumRegisters = ForceTargetNumVectorRegs; 5029 } 5030 unsigned MaxLocalUsers = Pair.second; 5031 unsigned LoopInvariantRegs = 0; 5032 if (R.LoopInvariantRegs.find(Pair.first) != R.LoopInvariantRegs.end()) 5033 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first]; 5034 5035 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) / 5036 MaxLocalUsers); 5037 // Don't count the induction variable as interleaved. 5038 if (EnableIndVarRegisterHeur) { 5039 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5040 std::max(1U, (MaxLocalUsers - 1))); 5041 } 5042 5043 IC = std::min(IC, TmpIC); 5044 } 5045 5046 // Clamp the interleave ranges to reasonable counts. 5047 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5048 5049 // Check if the user has overridden the max. 5050 if (VF.isScalar()) { 5051 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5052 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5053 } else { 5054 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5055 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5056 } 5057 5058 unsigned EstimatedVF = getEstimatedRuntimeVF(TheLoop, TTI, VF); 5059 unsigned KnownTC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5060 if (KnownTC > 0) { 5061 // At least one iteration must be scalar when this constraint holds. So the 5062 // maximum available iterations for interleaving is one less. 5063 unsigned AvailableTC = 5064 requiresScalarEpilogue(VF.isVector()) ? KnownTC - 1 : KnownTC; 5065 5066 // If trip count is known we select between two prospective ICs, where 5067 // 1) the aggressive IC is capped by the trip count divided by VF 5068 // 2) the conservative IC is capped by the trip count divided by (VF * 2) 5069 // The final IC is selected in a way that the epilogue loop trip count is 5070 // minimized while maximizing the IC itself, so that we either run the 5071 // vector loop at least once if it generates a small epilogue loop, or else 5072 // we run the vector loop at least twice. 5073 5074 unsigned InterleaveCountUB = bit_floor( 5075 std::max(1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount))); 5076 unsigned InterleaveCountLB = bit_floor(std::max( 5077 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount))); 5078 MaxInterleaveCount = InterleaveCountLB; 5079 5080 if (InterleaveCountUB != InterleaveCountLB) { 5081 unsigned TailTripCountUB = 5082 (AvailableTC % (EstimatedVF * InterleaveCountUB)); 5083 unsigned TailTripCountLB = 5084 (AvailableTC % (EstimatedVF * InterleaveCountLB)); 5085 // If both produce same scalar tail, maximize the IC to do the same work 5086 // in fewer vector loop iterations 5087 if (TailTripCountUB == TailTripCountLB) 5088 MaxInterleaveCount = InterleaveCountUB; 5089 } 5090 } else if (BestKnownTC && *BestKnownTC > 0) { 5091 // At least one iteration must be scalar when this constraint holds. So the 5092 // maximum available iterations for interleaving is one less. 5093 unsigned AvailableTC = requiresScalarEpilogue(VF.isVector()) 5094 ? (*BestKnownTC) - 1 5095 : *BestKnownTC; 5096 5097 // If trip count is an estimated compile time constant, limit the 5098 // IC to be capped by the trip count divided by VF * 2, such that the vector 5099 // loop runs at least twice to make interleaving seem profitable when there 5100 // is an epilogue loop present. Since exact Trip count is not known we 5101 // choose to be conservative in our IC estimate. 5102 MaxInterleaveCount = bit_floor(std::max( 5103 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount))); 5104 } 5105 5106 assert(MaxInterleaveCount > 0 && 5107 "Maximum interleave count must be greater than 0"); 5108 5109 // Clamp the calculated IC to be between the 1 and the max interleave count 5110 // that the target and trip count allows. 5111 if (IC > MaxInterleaveCount) 5112 IC = MaxInterleaveCount; 5113 else 5114 // Make sure IC is greater than 0. 5115 IC = std::max(1u, IC); 5116 5117 assert(IC > 0 && "Interleave count must be greater than 0."); 5118 5119 // Interleave if we vectorized this loop and there is a reduction that could 5120 // benefit from interleaving. 5121 if (VF.isVector() && HasReductions) { 5122 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5123 return IC; 5124 } 5125 5126 // For any scalar loop that either requires runtime checks or predication we 5127 // are better off leaving this to the unroller. Note that if we've already 5128 // vectorized the loop we will have done the runtime check and so interleaving 5129 // won't require further checks. 5130 bool ScalarInterleavingRequiresPredication = 5131 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5132 return Legal->blockNeedsPredication(BB); 5133 })); 5134 bool ScalarInterleavingRequiresRuntimePointerCheck = 5135 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5136 5137 // We want to interleave small loops in order to reduce the loop overhead and 5138 // potentially expose ILP opportunities. 5139 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5140 << "LV: IC is " << IC << '\n' 5141 << "LV: VF is " << VF << '\n'); 5142 const bool AggressivelyInterleaveReductions = 5143 TTI.enableAggressiveInterleaving(HasReductions); 5144 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5145 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5146 // We assume that the cost overhead is 1 and we use the cost model 5147 // to estimate the cost of the loop and interleave until the cost of the 5148 // loop overhead is about 5% of the cost of the loop. 5149 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>( 5150 SmallLoopCost / *LoopCost.getValue())); 5151 5152 // Interleave until store/load ports (estimated by max interleave count) are 5153 // saturated. 5154 unsigned NumStores = Legal->getNumStores(); 5155 unsigned NumLoads = Legal->getNumLoads(); 5156 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5157 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5158 5159 // There is little point in interleaving for reductions containing selects 5160 // and compares when VF=1 since it may just create more overhead than it's 5161 // worth for loops with small trip counts. This is because we still have to 5162 // do the final reduction after the loop. 5163 bool HasSelectCmpReductions = 5164 HasReductions && 5165 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5166 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5167 RecurKind RK = RdxDesc.getRecurrenceKind(); 5168 return RecurrenceDescriptor::isAnyOfRecurrenceKind(RK) || 5169 RecurrenceDescriptor::isFindLastIVRecurrenceKind(RK); 5170 }); 5171 if (HasSelectCmpReductions) { 5172 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5173 return 1; 5174 } 5175 5176 // If we have a scalar reduction (vector reductions are already dealt with 5177 // by this point), we can increase the critical path length if the loop 5178 // we're interleaving is inside another loop. For tree-wise reductions 5179 // set the limit to 2, and for ordered reductions it's best to disable 5180 // interleaving entirely. 5181 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5182 bool HasOrderedReductions = 5183 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5184 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5185 return RdxDesc.isOrdered(); 5186 }); 5187 if (HasOrderedReductions) { 5188 LLVM_DEBUG( 5189 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5190 return 1; 5191 } 5192 5193 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5194 SmallIC = std::min(SmallIC, F); 5195 StoresIC = std::min(StoresIC, F); 5196 LoadsIC = std::min(LoadsIC, F); 5197 } 5198 5199 if (EnableLoadStoreRuntimeInterleave && 5200 std::max(StoresIC, LoadsIC) > SmallIC) { 5201 LLVM_DEBUG( 5202 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5203 return std::max(StoresIC, LoadsIC); 5204 } 5205 5206 // If there are scalar reductions and TTI has enabled aggressive 5207 // interleaving for reductions, we will interleave to expose ILP. 5208 if (VF.isScalar() && AggressivelyInterleaveReductions) { 5209 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5210 // Interleave no less than SmallIC but not as aggressive as the normal IC 5211 // to satisfy the rare situation when resources are too limited. 5212 return std::max(IC / 2, SmallIC); 5213 } 5214 5215 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5216 return SmallIC; 5217 } 5218 5219 // Interleave if this is a large loop (small loops are already dealt with by 5220 // this point) that could benefit from interleaving. 5221 if (AggressivelyInterleaveReductions) { 5222 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5223 return IC; 5224 } 5225 5226 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5227 return 1; 5228 } 5229 5230 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5231 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5232 // This function calculates the register usage by measuring the highest number 5233 // of values that are alive at a single location. Obviously, this is a very 5234 // rough estimation. We scan the loop in a topological order in order and 5235 // assign a number to each instruction. We use RPO to ensure that defs are 5236 // met before their users. We assume that each instruction that has in-loop 5237 // users starts an interval. We record every time that an in-loop value is 5238 // used, so we have a list of the first and last occurrences of each 5239 // instruction. Next, we transpose this data structure into a multi map that 5240 // holds the list of intervals that *end* at a specific location. This multi 5241 // map allows us to perform a linear search. We scan the instructions linearly 5242 // and record each time that a new interval starts, by placing it in a set. 5243 // If we find this value in the multi-map then we remove it from the set. 5244 // The max register usage is the maximum size of the set. 5245 // We also search for instructions that are defined outside the loop, but are 5246 // used inside the loop. We need this number separately from the max-interval 5247 // usage number because when we unroll, loop-invariant values do not take 5248 // more register. 5249 LoopBlocksDFS DFS(TheLoop); 5250 DFS.perform(LI); 5251 5252 RegisterUsage RU; 5253 5254 // Each 'key' in the map opens a new interval. The values 5255 // of the map are the index of the 'last seen' usage of the 5256 // instruction that is the key. 5257 using IntervalMap = SmallDenseMap<Instruction *, unsigned, 16>; 5258 5259 // Maps instruction to its index. 5260 SmallVector<Instruction *, 64> IdxToInstr; 5261 // Marks the end of each interval. 5262 IntervalMap EndPoint; 5263 // Saves the list of instruction indices that are used in the loop. 5264 SmallPtrSet<Instruction *, 8> Ends; 5265 // Saves the list of values that are used in the loop but are defined outside 5266 // the loop (not including non-instruction values such as arguments and 5267 // constants). 5268 SmallSetVector<Instruction *, 8> LoopInvariants; 5269 5270 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5271 for (Instruction &I : BB->instructionsWithoutDebug()) { 5272 IdxToInstr.push_back(&I); 5273 5274 // Save the end location of each USE. 5275 for (Value *U : I.operands()) { 5276 auto *Instr = dyn_cast<Instruction>(U); 5277 5278 // Ignore non-instruction values such as arguments, constants, etc. 5279 // FIXME: Might need some motivation why these values are ignored. If 5280 // for example an argument is used inside the loop it will increase the 5281 // register pressure (so shouldn't we add it to LoopInvariants). 5282 if (!Instr) 5283 continue; 5284 5285 // If this instruction is outside the loop then record it and continue. 5286 if (!TheLoop->contains(Instr)) { 5287 LoopInvariants.insert(Instr); 5288 continue; 5289 } 5290 5291 // Overwrite previous end points. 5292 EndPoint[Instr] = IdxToInstr.size(); 5293 Ends.insert(Instr); 5294 } 5295 } 5296 } 5297 5298 // Saves the list of intervals that end with the index in 'key'. 5299 using InstrList = SmallVector<Instruction *, 2>; 5300 SmallDenseMap<unsigned, InstrList, 16> TransposeEnds; 5301 5302 // Transpose the EndPoints to a list of values that end at each index. 5303 for (auto &Interval : EndPoint) 5304 TransposeEnds[Interval.second].push_back(Interval.first); 5305 5306 SmallPtrSet<Instruction *, 8> OpenIntervals; 5307 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5308 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5309 5310 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5311 5312 const auto &TTICapture = TTI; 5313 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5314 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty) || 5315 (VF.isScalable() && 5316 !TTICapture.isElementTypeLegalForScalableVector(Ty))) 5317 return 0; 5318 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5319 }; 5320 5321 for (unsigned int Idx = 0, Sz = IdxToInstr.size(); Idx < Sz; ++Idx) { 5322 Instruction *I = IdxToInstr[Idx]; 5323 5324 // Remove all of the instructions that end at this location. 5325 InstrList &List = TransposeEnds[Idx]; 5326 for (Instruction *ToRemove : List) 5327 OpenIntervals.erase(ToRemove); 5328 5329 // Ignore instructions that are never used within the loop. 5330 if (!Ends.count(I)) 5331 continue; 5332 5333 // Skip ignored values. 5334 if (ValuesToIgnore.count(I)) 5335 continue; 5336 5337 collectInLoopReductions(); 5338 5339 // For each VF find the maximum usage of registers. 5340 for (unsigned J = 0, E = VFs.size(); J < E; ++J) { 5341 // Count the number of registers used, per register class, given all open 5342 // intervals. 5343 // Note that elements in this SmallMapVector will be default constructed 5344 // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if 5345 // there is no previous entry for ClassID. 5346 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5347 5348 if (VFs[J].isScalar()) { 5349 for (auto *Inst : OpenIntervals) { 5350 unsigned ClassID = 5351 TTI.getRegisterClassForType(false, Inst->getType()); 5352 // FIXME: The target might use more than one register for the type 5353 // even in the scalar case. 5354 RegUsage[ClassID] += 1; 5355 } 5356 } else { 5357 collectUniformsAndScalars(VFs[J]); 5358 for (auto *Inst : OpenIntervals) { 5359 // Skip ignored values for VF > 1. 5360 if (VecValuesToIgnore.count(Inst)) 5361 continue; 5362 if (isScalarAfterVectorization(Inst, VFs[J])) { 5363 unsigned ClassID = 5364 TTI.getRegisterClassForType(false, Inst->getType()); 5365 // FIXME: The target might use more than one register for the type 5366 // even in the scalar case. 5367 RegUsage[ClassID] += 1; 5368 } else { 5369 unsigned ClassID = 5370 TTI.getRegisterClassForType(true, Inst->getType()); 5371 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[J]); 5372 } 5373 } 5374 } 5375 5376 for (const auto &Pair : RegUsage) { 5377 auto &Entry = MaxUsages[J][Pair.first]; 5378 Entry = std::max(Entry, Pair.second); 5379 } 5380 } 5381 5382 LLVM_DEBUG(dbgs() << "LV(REG): At #" << Idx << " Interval # " 5383 << OpenIntervals.size() << '\n'); 5384 5385 // Add the current instruction to the list of open intervals. 5386 OpenIntervals.insert(I); 5387 } 5388 5389 for (unsigned Idx = 0, End = VFs.size(); Idx < End; ++Idx) { 5390 // Note that elements in this SmallMapVector will be default constructed 5391 // as 0. So we can use "Invariant[ClassID] += n" in the code below even if 5392 // there is no previous entry for ClassID. 5393 SmallMapVector<unsigned, unsigned, 4> Invariant; 5394 5395 for (auto *Inst : LoopInvariants) { 5396 // FIXME: The target might use more than one register for the type 5397 // even in the scalar case. 5398 bool IsScalar = all_of(Inst->users(), [&](User *U) { 5399 auto *I = cast<Instruction>(U); 5400 return TheLoop != LI->getLoopFor(I->getParent()) || 5401 isScalarAfterVectorization(I, VFs[Idx]); 5402 }); 5403 5404 ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[Idx]; 5405 unsigned ClassID = 5406 TTI.getRegisterClassForType(VF.isVector(), Inst->getType()); 5407 Invariant[ClassID] += GetRegUsage(Inst->getType(), VF); 5408 } 5409 5410 LLVM_DEBUG({ 5411 dbgs() << "LV(REG): VF = " << VFs[Idx] << '\n'; 5412 dbgs() << "LV(REG): Found max usage: " << MaxUsages[Idx].size() 5413 << " item\n"; 5414 for (const auto &pair : MaxUsages[Idx]) { 5415 dbgs() << "LV(REG): RegisterClass: " 5416 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5417 << " registers\n"; 5418 } 5419 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5420 << " item\n"; 5421 for (const auto &pair : Invariant) { 5422 dbgs() << "LV(REG): RegisterClass: " 5423 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5424 << " registers\n"; 5425 } 5426 }); 5427 5428 RU.LoopInvariantRegs = Invariant; 5429 RU.MaxLocalUsers = MaxUsages[Idx]; 5430 RUs[Idx] = RU; 5431 } 5432 5433 return RUs; 5434 } 5435 5436 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 5437 ElementCount VF) { 5438 // TODO: Cost model for emulated masked load/store is completely 5439 // broken. This hack guides the cost model to use an artificially 5440 // high enough value to practically disable vectorization with such 5441 // operations, except where previously deployed legality hack allowed 5442 // using very low cost values. This is to avoid regressions coming simply 5443 // from moving "masked load/store" check from legality to cost model. 5444 // Masked Load/Gather emulation was previously never allowed. 5445 // Limited number of Masked Store/Scatter emulation was allowed. 5446 assert((isPredicatedInst(I)) && 5447 "Expecting a scalar emulated instruction"); 5448 return isa<LoadInst>(I) || 5449 (isa<StoreInst>(I) && 5450 NumPredStores > NumberOfStoresToPredicate); 5451 } 5452 5453 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 5454 // If we aren't vectorizing the loop, or if we've already collected the 5455 // instructions to scalarize, there's nothing to do. Collection may already 5456 // have occurred if we have a user-selected VF and are now computing the 5457 // expected cost for interleaving. 5458 if (VF.isScalar() || VF.isZero() || InstsToScalarize.contains(VF)) 5459 return; 5460 5461 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5462 // not profitable to scalarize any instructions, the presence of VF in the 5463 // map will indicate that we've analyzed it already. 5464 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5465 5466 PredicatedBBsAfterVectorization[VF].clear(); 5467 5468 // Find all the instructions that are scalar with predication in the loop and 5469 // determine if it would be better to not if-convert the blocks they are in. 5470 // If so, we also record the instructions to scalarize. 5471 for (BasicBlock *BB : TheLoop->blocks()) { 5472 if (!blockNeedsPredicationForAnyReason(BB)) 5473 continue; 5474 for (Instruction &I : *BB) 5475 if (isScalarWithPredication(&I, VF)) { 5476 ScalarCostsTy ScalarCosts; 5477 // Do not apply discount logic for: 5478 // 1. Scalars after vectorization, as there will only be a single copy 5479 // of the instruction. 5480 // 2. Scalable VF, as that would lead to invalid scalarization costs. 5481 // 3. Emulated masked memrefs, if a hacked cost is needed. 5482 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() && 5483 !useEmulatedMaskMemRefHack(&I, VF) && 5484 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) { 5485 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5486 // Check if we decided to scalarize a call. If so, update the widening 5487 // decision of the call to CM_Scalarize with the computed scalar cost. 5488 for (const auto &[I, _] : ScalarCosts) { 5489 auto *CI = dyn_cast<CallInst>(I); 5490 if (!CI || !CallWideningDecisions.contains({CI, VF})) 5491 continue; 5492 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize; 5493 CallWideningDecisions[{CI, VF}].Cost = ScalarCosts[CI]; 5494 } 5495 } 5496 // Remember that BB will remain after vectorization. 5497 PredicatedBBsAfterVectorization[VF].insert(BB); 5498 for (auto *Pred : predecessors(BB)) { 5499 if (Pred->getSingleSuccessor() == BB) 5500 PredicatedBBsAfterVectorization[VF].insert(Pred); 5501 } 5502 } 5503 } 5504 } 5505 5506 InstructionCost LoopVectorizationCostModel::computePredInstDiscount( 5507 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 5508 assert(!isUniformAfterVectorization(PredInst, VF) && 5509 "Instruction marked uniform-after-vectorization will be predicated"); 5510 5511 // Initialize the discount to zero, meaning that the scalar version and the 5512 // vector version cost the same. 5513 InstructionCost Discount = 0; 5514 5515 // Holds instructions to analyze. The instructions we visit are mapped in 5516 // ScalarCosts. Those instructions are the ones that would be scalarized if 5517 // we find that the scalar version costs less. 5518 SmallVector<Instruction *, 8> Worklist; 5519 5520 // Returns true if the given instruction can be scalarized. 5521 auto CanBeScalarized = [&](Instruction *I) -> bool { 5522 // We only attempt to scalarize instructions forming a single-use chain 5523 // from the original predicated block that would otherwise be vectorized. 5524 // Although not strictly necessary, we give up on instructions we know will 5525 // already be scalar to avoid traversing chains that are unlikely to be 5526 // beneficial. 5527 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5528 isScalarAfterVectorization(I, VF)) 5529 return false; 5530 5531 // If the instruction is scalar with predication, it will be analyzed 5532 // separately. We ignore it within the context of PredInst. 5533 if (isScalarWithPredication(I, VF)) 5534 return false; 5535 5536 // If any of the instruction's operands are uniform after vectorization, 5537 // the instruction cannot be scalarized. This prevents, for example, a 5538 // masked load from being scalarized. 5539 // 5540 // We assume we will only emit a value for lane zero of an instruction 5541 // marked uniform after vectorization, rather than VF identical values. 5542 // Thus, if we scalarize an instruction that uses a uniform, we would 5543 // create uses of values corresponding to the lanes we aren't emitting code 5544 // for. This behavior can be changed by allowing getScalarValue to clone 5545 // the lane zero values for uniforms rather than asserting. 5546 for (Use &U : I->operands()) 5547 if (auto *J = dyn_cast<Instruction>(U.get())) 5548 if (isUniformAfterVectorization(J, VF)) 5549 return false; 5550 5551 // Otherwise, we can scalarize the instruction. 5552 return true; 5553 }; 5554 5555 // Compute the expected cost discount from scalarizing the entire expression 5556 // feeding the predicated instruction. We currently only consider expressions 5557 // that are single-use instruction chains. 5558 Worklist.push_back(PredInst); 5559 while (!Worklist.empty()) { 5560 Instruction *I = Worklist.pop_back_val(); 5561 5562 // If we've already analyzed the instruction, there's nothing to do. 5563 if (ScalarCosts.contains(I)) 5564 continue; 5565 5566 // Compute the cost of the vector instruction. Note that this cost already 5567 // includes the scalarization overhead of the predicated instruction. 5568 InstructionCost VectorCost = getInstructionCost(I, VF); 5569 5570 // Compute the cost of the scalarized instruction. This cost is the cost of 5571 // the instruction as if it wasn't if-converted and instead remained in the 5572 // predicated block. We will scale this cost by block probability after 5573 // computing the scalarization overhead. 5574 InstructionCost ScalarCost = 5575 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1)); 5576 5577 // Compute the scalarization overhead of needed insertelement instructions 5578 // and phi nodes. 5579 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5580 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 5581 ScalarCost += TTI.getScalarizationOverhead( 5582 cast<VectorType>(toVectorTy(I->getType(), VF)), 5583 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ true, 5584 /*Extract*/ false, CostKind); 5585 ScalarCost += 5586 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind); 5587 } 5588 5589 // Compute the scalarization overhead of needed extractelement 5590 // instructions. For each of the instruction's operands, if the operand can 5591 // be scalarized, add it to the worklist; otherwise, account for the 5592 // overhead. 5593 for (Use &U : I->operands()) 5594 if (auto *J = dyn_cast<Instruction>(U.get())) { 5595 assert(VectorType::isValidElementType(J->getType()) && 5596 "Instruction has non-scalar type"); 5597 if (CanBeScalarized(J)) 5598 Worklist.push_back(J); 5599 else if (needsExtract(J, VF)) { 5600 ScalarCost += TTI.getScalarizationOverhead( 5601 cast<VectorType>(toVectorTy(J->getType(), VF)), 5602 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false, 5603 /*Extract*/ true, CostKind); 5604 } 5605 } 5606 5607 // Scale the total scalar cost by block probability. 5608 ScalarCost /= getReciprocalPredBlockProb(); 5609 5610 // Compute the discount. A non-negative discount means the vector version 5611 // of the instruction costs more, and scalarizing would be beneficial. 5612 Discount += VectorCost - ScalarCost; 5613 ScalarCosts[I] = ScalarCost; 5614 } 5615 5616 return Discount; 5617 } 5618 5619 InstructionCost LoopVectorizationCostModel::expectedCost(ElementCount VF) { 5620 InstructionCost Cost; 5621 5622 // If the vector loop gets executed exactly once with the given VF, ignore the 5623 // costs of comparison and induction instructions, as they'll get simplified 5624 // away. 5625 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF; 5626 auto TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5627 if (VF.isFixed() && TC == VF.getFixedValue() && !foldTailByMasking()) 5628 addFullyUnrolledInstructionsToIgnore(TheLoop, Legal->getInductionVars(), 5629 ValuesToIgnoreForVF); 5630 5631 // For each block. 5632 for (BasicBlock *BB : TheLoop->blocks()) { 5633 InstructionCost BlockCost; 5634 5635 // For each instruction in the old loop. 5636 for (Instruction &I : BB->instructionsWithoutDebug()) { 5637 // Skip ignored values. 5638 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) || 5639 (VF.isVector() && VecValuesToIgnore.count(&I))) 5640 continue; 5641 5642 InstructionCost C = getInstructionCost(&I, VF); 5643 5644 // Check if we should override the cost. 5645 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0) 5646 C = InstructionCost(ForceTargetInstructionCost); 5647 5648 BlockCost += C; 5649 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " 5650 << VF << " For instruction: " << I << '\n'); 5651 } 5652 5653 // If we are vectorizing a predicated block, it will have been 5654 // if-converted. This means that the block's instructions (aside from 5655 // stores and instructions that may divide by zero) will now be 5656 // unconditionally executed. For the scalar case, we may not always execute 5657 // the predicated block, if it is an if-else block. Thus, scale the block's 5658 // cost by the probability of executing it. blockNeedsPredication from 5659 // Legal is used so as to not include all blocks in tail folded loops. 5660 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 5661 BlockCost /= getReciprocalPredBlockProb(); 5662 5663 Cost += BlockCost; 5664 } 5665 5666 return Cost; 5667 } 5668 5669 /// Gets Address Access SCEV after verifying that the access pattern 5670 /// is loop invariant except the induction variable dependence. 5671 /// 5672 /// This SCEV can be sent to the Target in order to estimate the address 5673 /// calculation cost. 5674 static const SCEV *getAddressAccessSCEV( 5675 Value *Ptr, 5676 LoopVectorizationLegality *Legal, 5677 PredicatedScalarEvolution &PSE, 5678 const Loop *TheLoop) { 5679 5680 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5681 if (!Gep) 5682 return nullptr; 5683 5684 // We are looking for a gep with all loop invariant indices except for one 5685 // which should be an induction variable. 5686 auto *SE = PSE.getSE(); 5687 unsigned NumOperands = Gep->getNumOperands(); 5688 for (unsigned Idx = 1; Idx < NumOperands; ++Idx) { 5689 Value *Opd = Gep->getOperand(Idx); 5690 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5691 !Legal->isInductionVariable(Opd)) 5692 return nullptr; 5693 } 5694 5695 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5696 return PSE.getSCEV(Ptr); 5697 } 5698 5699 InstructionCost 5700 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5701 ElementCount VF) { 5702 assert(VF.isVector() && 5703 "Scalarization cost of instruction implies vectorization."); 5704 if (VF.isScalable()) 5705 return InstructionCost::getInvalid(); 5706 5707 Type *ValTy = getLoadStoreType(I); 5708 auto *SE = PSE.getSE(); 5709 5710 unsigned AS = getLoadStoreAddressSpace(I); 5711 Value *Ptr = getLoadStorePointerOperand(I); 5712 Type *PtrTy = toVectorTy(Ptr->getType(), VF); 5713 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 5714 // that it is being called from this specific place. 5715 5716 // Figure out whether the access is strided and get the stride value 5717 // if it's known in compile time 5718 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5719 5720 // Get the cost of the scalar memory instruction and address computation. 5721 InstructionCost Cost = 5722 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5723 5724 // Don't pass *I here, since it is scalar but will actually be part of a 5725 // vectorized loop where the user of it is a vectorized instruction. 5726 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5727 const Align Alignment = getLoadStoreAlignment(I); 5728 Cost += VF.getKnownMinValue() * TTI.getMemoryOpCost(I->getOpcode(), 5729 ValTy->getScalarType(), 5730 Alignment, AS, CostKind); 5731 5732 // Get the overhead of the extractelement and insertelement instructions 5733 // we might create due to scalarization. 5734 Cost += getScalarizationOverhead(I, VF, CostKind); 5735 5736 // If we have a predicated load/store, it will need extra i1 extracts and 5737 // conditional branches, but may not be executed for each vector lane. Scale 5738 // the cost by the probability of executing the predicated block. 5739 if (isPredicatedInst(I)) { 5740 Cost /= getReciprocalPredBlockProb(); 5741 5742 // Add the cost of an i1 extract and a branch 5743 auto *VecI1Ty = 5744 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 5745 Cost += TTI.getScalarizationOverhead( 5746 VecI1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 5747 /*Insert=*/false, /*Extract=*/true, CostKind); 5748 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind); 5749 5750 if (useEmulatedMaskMemRefHack(I, VF)) 5751 // Artificially setting to a high enough value to practically disable 5752 // vectorization with such operations. 5753 Cost = 3000000; 5754 } 5755 5756 return Cost; 5757 } 5758 5759 InstructionCost 5760 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5761 ElementCount VF) { 5762 Type *ValTy = getLoadStoreType(I); 5763 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF)); 5764 Value *Ptr = getLoadStorePointerOperand(I); 5765 unsigned AS = getLoadStoreAddressSpace(I); 5766 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 5767 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5768 5769 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5770 "Stride should be 1 or -1 for consecutive memory access"); 5771 const Align Alignment = getLoadStoreAlignment(I); 5772 InstructionCost Cost = 0; 5773 if (Legal->isMaskRequired(I)) { 5774 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5775 CostKind); 5776 } else { 5777 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0)); 5778 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5779 CostKind, OpInfo, I); 5780 } 5781 5782 bool Reverse = ConsecutiveStride < 0; 5783 if (Reverse) 5784 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, {}, 5785 CostKind, 0); 5786 return Cost; 5787 } 5788 5789 InstructionCost 5790 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5791 ElementCount VF) { 5792 assert(Legal->isUniformMemOp(*I, VF)); 5793 5794 Type *ValTy = getLoadStoreType(I); 5795 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF)); 5796 const Align Alignment = getLoadStoreAlignment(I); 5797 unsigned AS = getLoadStoreAddressSpace(I); 5798 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5799 if (isa<LoadInst>(I)) { 5800 return TTI.getAddressComputationCost(ValTy) + 5801 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5802 CostKind) + 5803 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5804 } 5805 StoreInst *SI = cast<StoreInst>(I); 5806 5807 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand()); 5808 return TTI.getAddressComputationCost(ValTy) + 5809 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5810 CostKind) + 5811 (IsLoopInvariantStoreValue 5812 ? 0 5813 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5814 CostKind, VF.getKnownMinValue() - 1)); 5815 } 5816 5817 InstructionCost 5818 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5819 ElementCount VF) { 5820 Type *ValTy = getLoadStoreType(I); 5821 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF)); 5822 const Align Alignment = getLoadStoreAlignment(I); 5823 const Value *Ptr = getLoadStorePointerOperand(I); 5824 5825 return TTI.getAddressComputationCost(VectorTy) + 5826 TTI.getGatherScatterOpCost( 5827 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 5828 TargetTransformInfo::TCK_RecipThroughput, I); 5829 } 5830 5831 InstructionCost 5832 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5833 ElementCount VF) { 5834 const auto *Group = getInterleavedAccessGroup(I); 5835 assert(Group && "Fail to get an interleaved access group."); 5836 5837 Instruction *InsertPos = Group->getInsertPos(); 5838 Type *ValTy = getLoadStoreType(InsertPos); 5839 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF)); 5840 unsigned AS = getLoadStoreAddressSpace(InsertPos); 5841 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5842 5843 unsigned InterleaveFactor = Group->getFactor(); 5844 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5845 5846 // Holds the indices of existing members in the interleaved group. 5847 SmallVector<unsigned, 4> Indices; 5848 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 5849 if (Group->getMember(IF)) 5850 Indices.push_back(IF); 5851 5852 // Calculate the cost of the whole interleaved group. 5853 bool UseMaskForGaps = 5854 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 5855 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 5856 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 5857 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5858 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I), 5859 UseMaskForGaps); 5860 5861 if (Group->isReverse()) { 5862 // TODO: Add support for reversed masked interleaved access. 5863 assert(!Legal->isMaskRequired(I) && 5864 "Reverse masked interleaved access not supported."); 5865 Cost += Group->getNumMembers() * 5866 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, {}, 5867 CostKind, 0); 5868 } 5869 return Cost; 5870 } 5871 5872 std::optional<InstructionCost> 5873 LoopVectorizationCostModel::getReductionPatternCost( 5874 Instruction *I, ElementCount VF, Type *Ty, 5875 TTI::TargetCostKind CostKind) const { 5876 using namespace llvm::PatternMatch; 5877 // Early exit for no inloop reductions 5878 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 5879 return std::nullopt; 5880 auto *VectorTy = cast<VectorType>(Ty); 5881 5882 // We are looking for a pattern of, and finding the minimal acceptable cost: 5883 // reduce(mul(ext(A), ext(B))) or 5884 // reduce(mul(A, B)) or 5885 // reduce(ext(A)) or 5886 // reduce(A). 5887 // The basic idea is that we walk down the tree to do that, finding the root 5888 // reduction instruction in InLoopReductionImmediateChains. From there we find 5889 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 5890 // of the components. If the reduction cost is lower then we return it for the 5891 // reduction instruction and 0 for the other instructions in the pattern. If 5892 // it is not we return an invalid cost specifying the orignal cost method 5893 // should be used. 5894 Instruction *RetI = I; 5895 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 5896 if (!RetI->hasOneUser()) 5897 return std::nullopt; 5898 RetI = RetI->user_back(); 5899 } 5900 5901 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) && 5902 RetI->user_back()->getOpcode() == Instruction::Add) { 5903 RetI = RetI->user_back(); 5904 } 5905 5906 // Test if the found instruction is a reduction, and if not return an invalid 5907 // cost specifying the parent to use the original cost modelling. 5908 if (!InLoopReductionImmediateChains.count(RetI)) 5909 return std::nullopt; 5910 5911 // Find the reduction this chain is a part of and calculate the basic cost of 5912 // the reduction on its own. 5913 Instruction *LastChain = InLoopReductionImmediateChains.at(RetI); 5914 Instruction *ReductionPhi = LastChain; 5915 while (!isa<PHINode>(ReductionPhi)) 5916 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi); 5917 5918 const RecurrenceDescriptor &RdxDesc = 5919 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 5920 5921 InstructionCost BaseCost; 5922 RecurKind RK = RdxDesc.getRecurrenceKind(); 5923 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 5924 Intrinsic::ID MinMaxID = getMinMaxReductionIntrinsicOp(RK); 5925 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy, 5926 RdxDesc.getFastMathFlags(), CostKind); 5927 } else { 5928 BaseCost = TTI.getArithmeticReductionCost( 5929 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 5930 } 5931 5932 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 5933 // normal fmul instruction to the cost of the fadd reduction. 5934 if (RK == RecurKind::FMulAdd) 5935 BaseCost += 5936 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 5937 5938 // If we're using ordered reductions then we can just return the base cost 5939 // here, since getArithmeticReductionCost calculates the full ordered 5940 // reduction cost when FP reassociation is not allowed. 5941 if (useOrderedReductions(RdxDesc)) 5942 return BaseCost; 5943 5944 // Get the operand that was not the reduction chain and match it to one of the 5945 // patterns, returning the better cost if it is found. 5946 Instruction *RedOp = RetI->getOperand(1) == LastChain 5947 ? dyn_cast<Instruction>(RetI->getOperand(0)) 5948 : dyn_cast<Instruction>(RetI->getOperand(1)); 5949 5950 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 5951 5952 Instruction *Op0, *Op1; 5953 if (RedOp && RdxDesc.getOpcode() == Instruction::Add && 5954 match(RedOp, 5955 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 5956 match(Op0, m_ZExtOrSExt(m_Value())) && 5957 Op0->getOpcode() == Op1->getOpcode() && 5958 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 5959 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 5960 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 5961 5962 // Matched reduce.add(ext(mul(ext(A), ext(B))) 5963 // Note that the extend opcodes need to all match, or if A==B they will have 5964 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 5965 // which is equally fine. 5966 bool IsUnsigned = isa<ZExtInst>(Op0); 5967 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 5968 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 5969 5970 InstructionCost ExtCost = 5971 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 5972 TTI::CastContextHint::None, CostKind, Op0); 5973 InstructionCost MulCost = 5974 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 5975 InstructionCost Ext2Cost = 5976 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 5977 TTI::CastContextHint::None, CostKind, RedOp); 5978 5979 InstructionCost RedCost = TTI.getMulAccReductionCost( 5980 IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind); 5981 5982 if (RedCost.isValid() && 5983 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 5984 return I == RetI ? RedCost : 0; 5985 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 5986 !TheLoop->isLoopInvariant(RedOp)) { 5987 // Matched reduce(ext(A)) 5988 bool IsUnsigned = isa<ZExtInst>(RedOp); 5989 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 5990 InstructionCost RedCost = TTI.getExtendedReductionCost( 5991 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 5992 RdxDesc.getFastMathFlags(), CostKind); 5993 5994 InstructionCost ExtCost = 5995 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 5996 TTI::CastContextHint::None, CostKind, RedOp); 5997 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 5998 return I == RetI ? RedCost : 0; 5999 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add && 6000 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6001 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6002 Op0->getOpcode() == Op1->getOpcode() && 6003 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6004 bool IsUnsigned = isa<ZExtInst>(Op0); 6005 Type *Op0Ty = Op0->getOperand(0)->getType(); 6006 Type *Op1Ty = Op1->getOperand(0)->getType(); 6007 Type *LargestOpTy = 6008 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6009 : Op0Ty; 6010 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6011 6012 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of 6013 // different sizes. We take the largest type as the ext to reduce, and add 6014 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6015 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6016 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6017 TTI::CastContextHint::None, CostKind, Op0); 6018 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6019 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6020 TTI::CastContextHint::None, CostKind, Op1); 6021 InstructionCost MulCost = 6022 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6023 6024 InstructionCost RedCost = TTI.getMulAccReductionCost( 6025 IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind); 6026 InstructionCost ExtraExtCost = 0; 6027 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6028 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6029 ExtraExtCost = TTI.getCastInstrCost( 6030 ExtraExtOp->getOpcode(), ExtType, 6031 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6032 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6033 } 6034 6035 if (RedCost.isValid() && 6036 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6037 return I == RetI ? RedCost : 0; 6038 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6039 // Matched reduce.add(mul()) 6040 InstructionCost MulCost = 6041 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6042 6043 InstructionCost RedCost = TTI.getMulAccReductionCost( 6044 true, RdxDesc.getRecurrenceType(), VectorTy, CostKind); 6045 6046 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6047 return I == RetI ? RedCost : 0; 6048 } 6049 } 6050 6051 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt; 6052 } 6053 6054 InstructionCost 6055 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6056 ElementCount VF) { 6057 // Calculate scalar cost only. Vectorization cost should be ready at this 6058 // moment. 6059 if (VF.isScalar()) { 6060 Type *ValTy = getLoadStoreType(I); 6061 const Align Alignment = getLoadStoreAlignment(I); 6062 unsigned AS = getLoadStoreAddressSpace(I); 6063 6064 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0)); 6065 return TTI.getAddressComputationCost(ValTy) + 6066 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6067 TTI::TCK_RecipThroughput, OpInfo, I); 6068 } 6069 return getWideningCost(I, VF); 6070 } 6071 6072 InstructionCost LoopVectorizationCostModel::getScalarizationOverhead( 6073 Instruction *I, ElementCount VF, TTI::TargetCostKind CostKind) const { 6074 6075 // There is no mechanism yet to create a scalable scalarization loop, 6076 // so this is currently Invalid. 6077 if (VF.isScalable()) 6078 return InstructionCost::getInvalid(); 6079 6080 if (VF.isScalar()) 6081 return 0; 6082 6083 InstructionCost Cost = 0; 6084 Type *RetTy = toVectorTy(I->getType(), VF); 6085 if (!RetTy->isVoidTy() && 6086 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6087 Cost += TTI.getScalarizationOverhead( 6088 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), 6089 /*Insert*/ true, 6090 /*Extract*/ false, CostKind); 6091 6092 // Some targets keep addresses scalar. 6093 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6094 return Cost; 6095 6096 // Some targets support efficient element stores. 6097 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6098 return Cost; 6099 6100 // Collect operands to consider. 6101 CallInst *CI = dyn_cast<CallInst>(I); 6102 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6103 6104 // Skip operands that do not require extraction/scalarization and do not incur 6105 // any overhead. 6106 SmallVector<Type *> Tys; 6107 for (auto *V : filterExtractingOperands(Ops, VF)) 6108 Tys.push_back(maybeVectorizeType(V->getType(), VF)); 6109 return Cost + TTI.getOperandsScalarizationOverhead( 6110 filterExtractingOperands(Ops, VF), Tys, CostKind); 6111 } 6112 6113 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6114 if (VF.isScalar()) 6115 return; 6116 NumPredStores = 0; 6117 for (BasicBlock *BB : TheLoop->blocks()) { 6118 // For each instruction in the old loop. 6119 for (Instruction &I : *BB) { 6120 Value *Ptr = getLoadStorePointerOperand(&I); 6121 if (!Ptr) 6122 continue; 6123 6124 // TODO: We should generate better code and update the cost model for 6125 // predicated uniform stores. Today they are treated as any other 6126 // predicated store (see added test cases in 6127 // invariant-store-vectorization.ll). 6128 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6129 NumPredStores++; 6130 6131 if (Legal->isUniformMemOp(I, VF)) { 6132 auto IsLegalToScalarize = [&]() { 6133 if (!VF.isScalable()) 6134 // Scalarization of fixed length vectors "just works". 6135 return true; 6136 6137 // We have dedicated lowering for unpredicated uniform loads and 6138 // stores. Note that even with tail folding we know that at least 6139 // one lane is active (i.e. generalized predication is not possible 6140 // here), and the logic below depends on this fact. 6141 if (!foldTailByMasking()) 6142 return true; 6143 6144 // For scalable vectors, a uniform memop load is always 6145 // uniform-by-parts and we know how to scalarize that. 6146 if (isa<LoadInst>(I)) 6147 return true; 6148 6149 // A uniform store isn't neccessarily uniform-by-part 6150 // and we can't assume scalarization. 6151 auto &SI = cast<StoreInst>(I); 6152 return TheLoop->isLoopInvariant(SI.getValueOperand()); 6153 }; 6154 6155 const InstructionCost GatherScatterCost = 6156 isLegalGatherOrScatter(&I, VF) ? 6157 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid(); 6158 6159 // Load: Scalar load + broadcast 6160 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6161 // FIXME: This cost is a significant under-estimate for tail folded 6162 // memory ops. 6163 const InstructionCost ScalarizationCost = 6164 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF) 6165 : InstructionCost::getInvalid(); 6166 6167 // Choose better solution for the current VF, Note that Invalid 6168 // costs compare as maximumal large. If both are invalid, we get 6169 // scalable invalid which signals a failure and a vectorization abort. 6170 if (GatherScatterCost < ScalarizationCost) 6171 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost); 6172 else 6173 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost); 6174 continue; 6175 } 6176 6177 // We assume that widening is the best solution when possible. 6178 if (memoryInstructionCanBeWidened(&I, VF)) { 6179 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6180 int ConsecutiveStride = Legal->isConsecutivePtr( 6181 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6182 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6183 "Expected consecutive stride."); 6184 InstWidening Decision = 6185 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6186 setWideningDecision(&I, VF, Decision, Cost); 6187 continue; 6188 } 6189 6190 // Choose between Interleaving, Gather/Scatter or Scalarization. 6191 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6192 unsigned NumAccesses = 1; 6193 if (isAccessInterleaved(&I)) { 6194 const auto *Group = getInterleavedAccessGroup(&I); 6195 assert(Group && "Fail to get an interleaved access group."); 6196 6197 // Make one decision for the whole group. 6198 if (getWideningDecision(&I, VF) != CM_Unknown) 6199 continue; 6200 6201 NumAccesses = Group->getNumMembers(); 6202 if (interleavedAccessCanBeWidened(&I, VF)) 6203 InterleaveCost = getInterleaveGroupCost(&I, VF); 6204 } 6205 6206 InstructionCost GatherScatterCost = 6207 isLegalGatherOrScatter(&I, VF) 6208 ? getGatherScatterCost(&I, VF) * NumAccesses 6209 : InstructionCost::getInvalid(); 6210 6211 InstructionCost ScalarizationCost = 6212 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6213 6214 // Choose better solution for the current VF, 6215 // write down this decision and use it during vectorization. 6216 InstructionCost Cost; 6217 InstWidening Decision; 6218 if (InterleaveCost <= GatherScatterCost && 6219 InterleaveCost < ScalarizationCost) { 6220 Decision = CM_Interleave; 6221 Cost = InterleaveCost; 6222 } else if (GatherScatterCost < ScalarizationCost) { 6223 Decision = CM_GatherScatter; 6224 Cost = GatherScatterCost; 6225 } else { 6226 Decision = CM_Scalarize; 6227 Cost = ScalarizationCost; 6228 } 6229 // If the instructions belongs to an interleave group, the whole group 6230 // receives the same decision. The whole group receives the cost, but 6231 // the cost will actually be assigned to one instruction. 6232 if (const auto *Group = getInterleavedAccessGroup(&I)) 6233 setWideningDecision(Group, VF, Decision, Cost); 6234 else 6235 setWideningDecision(&I, VF, Decision, Cost); 6236 } 6237 } 6238 6239 // Make sure that any load of address and any other address computation 6240 // remains scalar unless there is gather/scatter support. This avoids 6241 // inevitable extracts into address registers, and also has the benefit of 6242 // activating LSR more, since that pass can't optimize vectorized 6243 // addresses. 6244 if (TTI.prefersVectorizedAddressing()) 6245 return; 6246 6247 // Start with all scalar pointer uses. 6248 SmallPtrSet<Instruction *, 8> AddrDefs; 6249 for (BasicBlock *BB : TheLoop->blocks()) 6250 for (Instruction &I : *BB) { 6251 Instruction *PtrDef = 6252 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6253 if (PtrDef && TheLoop->contains(PtrDef) && 6254 getWideningDecision(&I, VF) != CM_GatherScatter) 6255 AddrDefs.insert(PtrDef); 6256 } 6257 6258 // Add all instructions used to generate the addresses. 6259 SmallVector<Instruction *, 4> Worklist; 6260 append_range(Worklist, AddrDefs); 6261 while (!Worklist.empty()) { 6262 Instruction *I = Worklist.pop_back_val(); 6263 for (auto &Op : I->operands()) 6264 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6265 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6266 AddrDefs.insert(InstOp).second) 6267 Worklist.push_back(InstOp); 6268 } 6269 6270 for (auto *I : AddrDefs) { 6271 if (isa<LoadInst>(I)) { 6272 // Setting the desired widening decision should ideally be handled in 6273 // by cost functions, but since this involves the task of finding out 6274 // if the loaded register is involved in an address computation, it is 6275 // instead changed here when we know this is the case. 6276 InstWidening Decision = getWideningDecision(I, VF); 6277 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6278 // Scalarize a widened load of address. 6279 setWideningDecision( 6280 I, VF, CM_Scalarize, 6281 (VF.getKnownMinValue() * 6282 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6283 else if (const auto *Group = getInterleavedAccessGroup(I)) { 6284 // Scalarize an interleave group of address loads. 6285 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6286 if (Instruction *Member = Group->getMember(I)) 6287 setWideningDecision( 6288 Member, VF, CM_Scalarize, 6289 (VF.getKnownMinValue() * 6290 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6291 } 6292 } 6293 } else 6294 // Make sure I gets scalarized and a cost estimate without 6295 // scalarization overhead. 6296 ForcedScalars[VF].insert(I); 6297 } 6298 } 6299 6300 void LoopVectorizationCostModel::setVectorizedCallDecision(ElementCount VF) { 6301 assert(!VF.isScalar() && 6302 "Trying to set a vectorization decision for a scalar VF"); 6303 6304 auto ForcedScalar = ForcedScalars.find(VF); 6305 for (BasicBlock *BB : TheLoop->blocks()) { 6306 // For each instruction in the old loop. 6307 for (Instruction &I : *BB) { 6308 CallInst *CI = dyn_cast<CallInst>(&I); 6309 6310 if (!CI) 6311 continue; 6312 6313 InstructionCost ScalarCost = InstructionCost::getInvalid(); 6314 InstructionCost VectorCost = InstructionCost::getInvalid(); 6315 InstructionCost IntrinsicCost = InstructionCost::getInvalid(); 6316 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6317 Function *ScalarFunc = CI->getCalledFunction(); 6318 Type *ScalarRetTy = CI->getType(); 6319 SmallVector<Type *, 4> Tys, ScalarTys; 6320 for (auto &ArgOp : CI->args()) 6321 ScalarTys.push_back(ArgOp->getType()); 6322 6323 // Estimate cost of scalarized vector call. The source operands are 6324 // assumed to be vectors, so we need to extract individual elements from 6325 // there, execute VF scalar calls, and then gather the result into the 6326 // vector return value. 6327 InstructionCost ScalarCallCost = 6328 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind); 6329 6330 // Compute costs of unpacking argument values for the scalar calls and 6331 // packing the return values to a vector. 6332 InstructionCost ScalarizationCost = 6333 getScalarizationOverhead(CI, VF, CostKind); 6334 6335 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 6336 // Honor ForcedScalars and UniformAfterVectorization decisions. 6337 // TODO: For calls, it might still be more profitable to widen. Use 6338 // VPlan-based cost model to compare different options. 6339 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() && 6340 ForcedScalar->second.contains(CI)) || 6341 isUniformAfterVectorization(CI, VF))) { 6342 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr, 6343 Intrinsic::not_intrinsic, std::nullopt, 6344 ScalarCost); 6345 continue; 6346 } 6347 6348 bool MaskRequired = Legal->isMaskRequired(CI); 6349 // Compute corresponding vector type for return value and arguments. 6350 Type *RetTy = toVectorTy(ScalarRetTy, VF); 6351 for (Type *ScalarTy : ScalarTys) 6352 Tys.push_back(toVectorTy(ScalarTy, VF)); 6353 6354 // An in-loop reduction using an fmuladd intrinsic is a special case; 6355 // we don't want the normal cost for that intrinsic. 6356 if (RecurrenceDescriptor::isFMulAddIntrinsic(CI)) 6357 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy, CostKind)) { 6358 setCallWideningDecision(CI, VF, CM_IntrinsicCall, nullptr, 6359 getVectorIntrinsicIDForCall(CI, TLI), 6360 std::nullopt, *RedCost); 6361 continue; 6362 } 6363 6364 // Find the cost of vectorizing the call, if we can find a suitable 6365 // vector variant of the function. 6366 bool UsesMask = false; 6367 VFInfo FuncInfo; 6368 Function *VecFunc = nullptr; 6369 // Search through any available variants for one we can use at this VF. 6370 for (VFInfo &Info : VFDatabase::getMappings(*CI)) { 6371 // Must match requested VF. 6372 if (Info.Shape.VF != VF) 6373 continue; 6374 6375 // Must take a mask argument if one is required 6376 if (MaskRequired && !Info.isMasked()) 6377 continue; 6378 6379 // Check that all parameter kinds are supported 6380 bool ParamsOk = true; 6381 for (VFParameter Param : Info.Shape.Parameters) { 6382 switch (Param.ParamKind) { 6383 case VFParamKind::Vector: 6384 break; 6385 case VFParamKind::OMP_Uniform: { 6386 Value *ScalarParam = CI->getArgOperand(Param.ParamPos); 6387 // Make sure the scalar parameter in the loop is invariant. 6388 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam), 6389 TheLoop)) 6390 ParamsOk = false; 6391 break; 6392 } 6393 case VFParamKind::OMP_Linear: { 6394 Value *ScalarParam = CI->getArgOperand(Param.ParamPos); 6395 // Find the stride for the scalar parameter in this loop and see if 6396 // it matches the stride for the variant. 6397 // TODO: do we need to figure out the cost of an extract to get the 6398 // first lane? Or do we hope that it will be folded away? 6399 ScalarEvolution *SE = PSE.getSE(); 6400 const auto *SAR = 6401 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(ScalarParam)); 6402 6403 if (!SAR || SAR->getLoop() != TheLoop) { 6404 ParamsOk = false; 6405 break; 6406 } 6407 6408 const SCEVConstant *Step = 6409 dyn_cast<SCEVConstant>(SAR->getStepRecurrence(*SE)); 6410 6411 if (!Step || 6412 Step->getAPInt().getSExtValue() != Param.LinearStepOrPos) 6413 ParamsOk = false; 6414 6415 break; 6416 } 6417 case VFParamKind::GlobalPredicate: 6418 UsesMask = true; 6419 break; 6420 default: 6421 ParamsOk = false; 6422 break; 6423 } 6424 } 6425 6426 if (!ParamsOk) 6427 continue; 6428 6429 // Found a suitable candidate, stop here. 6430 VecFunc = CI->getModule()->getFunction(Info.VectorName); 6431 FuncInfo = Info; 6432 break; 6433 } 6434 6435 // Add in the cost of synthesizing a mask if one wasn't required. 6436 InstructionCost MaskCost = 0; 6437 if (VecFunc && UsesMask && !MaskRequired) 6438 MaskCost = TTI.getShuffleCost( 6439 TargetTransformInfo::SK_Broadcast, 6440 VectorType::get(IntegerType::getInt1Ty( 6441 VecFunc->getFunctionType()->getContext()), 6442 VF)); 6443 6444 if (TLI && VecFunc && !CI->isNoBuiltin()) 6445 VectorCost = 6446 TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind) + MaskCost; 6447 6448 // Find the cost of an intrinsic; some targets may have instructions that 6449 // perform the operation without needing an actual call. 6450 Intrinsic::ID IID = getVectorIntrinsicIDForCall(CI, TLI); 6451 if (IID != Intrinsic::not_intrinsic) 6452 IntrinsicCost = getVectorIntrinsicCost(CI, VF); 6453 6454 InstructionCost Cost = ScalarCost; 6455 InstWidening Decision = CM_Scalarize; 6456 6457 if (VectorCost <= Cost) { 6458 Cost = VectorCost; 6459 Decision = CM_VectorCall; 6460 } 6461 6462 if (IntrinsicCost <= Cost) { 6463 Cost = IntrinsicCost; 6464 Decision = CM_IntrinsicCall; 6465 } 6466 6467 setCallWideningDecision(CI, VF, Decision, VecFunc, IID, 6468 FuncInfo.getParamIndexForOptionalMask(), Cost); 6469 } 6470 } 6471 } 6472 6473 bool LoopVectorizationCostModel::shouldConsiderInvariant(Value *Op) { 6474 if (!Legal->isInvariant(Op)) 6475 return false; 6476 // Consider Op invariant, if it or its operands aren't predicated 6477 // instruction in the loop. In that case, it is not trivially hoistable. 6478 auto *OpI = dyn_cast<Instruction>(Op); 6479 return !OpI || !TheLoop->contains(OpI) || 6480 (!isPredicatedInst(OpI) && 6481 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) && 6482 all_of(OpI->operands(), 6483 [this](Value *Op) { return shouldConsiderInvariant(Op); })); 6484 } 6485 6486 InstructionCost 6487 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6488 ElementCount VF) { 6489 // If we know that this instruction will remain uniform, check the cost of 6490 // the scalar version. 6491 if (isUniformAfterVectorization(I, VF)) 6492 VF = ElementCount::getFixed(1); 6493 6494 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6495 return InstsToScalarize[VF][I]; 6496 6497 // Forced scalars do not have any scalarization overhead. 6498 auto ForcedScalar = ForcedScalars.find(VF); 6499 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6500 auto InstSet = ForcedScalar->second; 6501 if (InstSet.count(I)) 6502 return getInstructionCost(I, ElementCount::getFixed(1)) * 6503 VF.getKnownMinValue(); 6504 } 6505 6506 Type *RetTy = I->getType(); 6507 if (canTruncateToMinimalBitwidth(I, VF)) 6508 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6509 auto *SE = PSE.getSE(); 6510 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6511 6512 auto HasSingleCopyAfterVectorization = [this](Instruction *I, 6513 ElementCount VF) -> bool { 6514 if (VF.isScalar()) 6515 return true; 6516 6517 auto Scalarized = InstsToScalarize.find(VF); 6518 assert(Scalarized != InstsToScalarize.end() && 6519 "VF not yet analyzed for scalarization profitability"); 6520 return !Scalarized->second.count(I) && 6521 llvm::all_of(I->users(), [&](User *U) { 6522 auto *UI = cast<Instruction>(U); 6523 return !Scalarized->second.count(UI); 6524 }); 6525 }; 6526 (void)HasSingleCopyAfterVectorization; 6527 6528 Type *VectorTy; 6529 if (isScalarAfterVectorization(I, VF)) { 6530 // With the exception of GEPs and PHIs, after scalarization there should 6531 // only be one copy of the instruction generated in the loop. This is 6532 // because the VF is either 1, or any instructions that need scalarizing 6533 // have already been dealt with by the time we get here. As a result, 6534 // it means we don't have to multiply the instruction cost by VF. 6535 assert(I->getOpcode() == Instruction::GetElementPtr || 6536 I->getOpcode() == Instruction::PHI || 6537 (I->getOpcode() == Instruction::BitCast && 6538 I->getType()->isPointerTy()) || 6539 HasSingleCopyAfterVectorization(I, VF)); 6540 VectorTy = RetTy; 6541 } else 6542 VectorTy = toVectorTy(RetTy, VF); 6543 6544 if (VF.isVector() && VectorTy->isVectorTy() && 6545 !TTI.getNumberOfParts(VectorTy)) 6546 return InstructionCost::getInvalid(); 6547 6548 // TODO: We need to estimate the cost of intrinsic calls. 6549 switch (I->getOpcode()) { 6550 case Instruction::GetElementPtr: 6551 // We mark this instruction as zero-cost because the cost of GEPs in 6552 // vectorized code depends on whether the corresponding memory instruction 6553 // is scalarized or not. Therefore, we handle GEPs with the memory 6554 // instruction cost. 6555 return 0; 6556 case Instruction::Br: { 6557 // In cases of scalarized and predicated instructions, there will be VF 6558 // predicated blocks in the vectorized loop. Each branch around these 6559 // blocks requires also an extract of its vector compare i1 element. 6560 // Note that the conditional branch from the loop latch will be replaced by 6561 // a single branch controlling the loop, so there is no extra overhead from 6562 // scalarization. 6563 bool ScalarPredicatedBB = false; 6564 BranchInst *BI = cast<BranchInst>(I); 6565 if (VF.isVector() && BI->isConditional() && 6566 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || 6567 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) && 6568 BI->getParent() != TheLoop->getLoopLatch()) 6569 ScalarPredicatedBB = true; 6570 6571 if (ScalarPredicatedBB) { 6572 // Not possible to scalarize scalable vector with predicated instructions. 6573 if (VF.isScalable()) 6574 return InstructionCost::getInvalid(); 6575 // Return cost for branches around scalarized and predicated blocks. 6576 auto *VecI1Ty = 6577 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6578 return ( 6579 TTI.getScalarizationOverhead( 6580 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()), 6581 /*Insert*/ false, /*Extract*/ true, CostKind) + 6582 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 6583 } 6584 6585 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6586 // The back-edge branch will remain, as will all scalar branches. 6587 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6588 6589 // This branch will be eliminated by if-conversion. 6590 return 0; 6591 // Note: We currently assume zero cost for an unconditional branch inside 6592 // a predicated block since it will become a fall-through, although we 6593 // may decide in the future to call TTI for all branches. 6594 } 6595 case Instruction::Switch: { 6596 if (VF.isScalar()) 6597 return TTI.getCFInstrCost(Instruction::Switch, CostKind); 6598 auto *Switch = cast<SwitchInst>(I); 6599 return Switch->getNumCases() * 6600 TTI.getCmpSelInstrCost( 6601 Instruction::ICmp, 6602 toVectorTy(Switch->getCondition()->getType(), VF), 6603 toVectorTy(Type::getInt1Ty(I->getContext()), VF), 6604 CmpInst::ICMP_EQ, CostKind); 6605 } 6606 case Instruction::PHI: { 6607 auto *Phi = cast<PHINode>(I); 6608 6609 // First-order recurrences are replaced by vector shuffles inside the loop. 6610 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) { 6611 // For <vscale x 1 x i64>, if vscale = 1 we are unable to extract the 6612 // penultimate value of the recurrence. 6613 // TODO: Consider vscale_range info. 6614 if (VF.isScalable() && VF.getKnownMinValue() == 1) 6615 return InstructionCost::getInvalid(); 6616 SmallVector<int> Mask(VF.getKnownMinValue()); 6617 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1); 6618 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice, 6619 cast<VectorType>(VectorTy), Mask, CostKind, 6620 VF.getKnownMinValue() - 1); 6621 } 6622 6623 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6624 // converted into select instructions. We require N - 1 selects per phi 6625 // node, where N is the number of incoming values. 6626 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) { 6627 Type *ResultTy = Phi->getType(); 6628 6629 // All instructions in an Any-of reduction chain are narrowed to bool. 6630 // Check if that is the case for this phi node. 6631 auto *HeaderUser = cast_if_present<PHINode>( 6632 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * { 6633 auto *Phi = dyn_cast<PHINode>(U); 6634 if (Phi && Phi->getParent() == TheLoop->getHeader()) 6635 return Phi; 6636 return nullptr; 6637 })); 6638 if (HeaderUser) { 6639 auto &ReductionVars = Legal->getReductionVars(); 6640 auto Iter = ReductionVars.find(HeaderUser); 6641 if (Iter != ReductionVars.end() && 6642 RecurrenceDescriptor::isAnyOfRecurrenceKind( 6643 Iter->second.getRecurrenceKind())) 6644 ResultTy = Type::getInt1Ty(Phi->getContext()); 6645 } 6646 return (Phi->getNumIncomingValues() - 1) * 6647 TTI.getCmpSelInstrCost( 6648 Instruction::Select, toVectorTy(ResultTy, VF), 6649 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6650 CmpInst::BAD_ICMP_PREDICATE, CostKind); 6651 } 6652 6653 // When tail folding with EVL, if the phi is part of an out of loop 6654 // reduction then it will be transformed into a wide vp_merge. 6655 if (VF.isVector() && foldTailWithEVL() && 6656 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) { 6657 IntrinsicCostAttributes ICA( 6658 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF), 6659 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)}); 6660 return TTI.getIntrinsicInstrCost(ICA, CostKind); 6661 } 6662 6663 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6664 } 6665 case Instruction::UDiv: 6666 case Instruction::SDiv: 6667 case Instruction::URem: 6668 case Instruction::SRem: 6669 if (VF.isVector() && isPredicatedInst(I)) { 6670 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF); 6671 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ? 6672 ScalarCost : SafeDivisorCost; 6673 } 6674 // We've proven all lanes safe to speculate, fall through. 6675 [[fallthrough]]; 6676 case Instruction::Add: 6677 case Instruction::Sub: { 6678 auto Info = Legal->getHistogramInfo(I); 6679 if (Info && VF.isVector()) { 6680 const HistogramInfo *HGram = Info.value(); 6681 // Assume that a non-constant update value (or a constant != 1) requires 6682 // a multiply, and add that into the cost. 6683 InstructionCost MulCost = TTI::TCC_Free; 6684 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1)); 6685 if (!RHS || RHS->getZExtValue() != 1) 6686 MulCost = TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6687 6688 // Find the cost of the histogram operation itself. 6689 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF); 6690 Type *ScalarTy = I->getType(); 6691 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF); 6692 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add, 6693 Type::getVoidTy(I->getContext()), 6694 {PtrTy, ScalarTy, MaskTy}); 6695 6696 // Add the costs together with the add/sub operation. 6697 return TTI.getIntrinsicInstrCost( 6698 ICA, TargetTransformInfo::TCK_RecipThroughput) + 6699 MulCost + TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy); 6700 } 6701 [[fallthrough]]; 6702 } 6703 case Instruction::FAdd: 6704 case Instruction::FSub: 6705 case Instruction::Mul: 6706 case Instruction::FMul: 6707 case Instruction::FDiv: 6708 case Instruction::FRem: 6709 case Instruction::Shl: 6710 case Instruction::LShr: 6711 case Instruction::AShr: 6712 case Instruction::And: 6713 case Instruction::Or: 6714 case Instruction::Xor: { 6715 // If we're speculating on the stride being 1, the multiplication may 6716 // fold away. We can generalize this for all operations using the notion 6717 // of neutral elements. (TODO) 6718 if (I->getOpcode() == Instruction::Mul && 6719 (PSE.getSCEV(I->getOperand(0))->isOne() || 6720 PSE.getSCEV(I->getOperand(1))->isOne())) 6721 return 0; 6722 6723 // Detect reduction patterns 6724 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 6725 return *RedCost; 6726 6727 // Certain instructions can be cheaper to vectorize if they have a constant 6728 // second vector operand. One example of this are shifts on x86. 6729 Value *Op2 = I->getOperand(1); 6730 if (!isa<Constant>(Op2) && PSE.getSE()->isSCEVable(Op2->getType()) && 6731 isa<SCEVConstant>(PSE.getSCEV(Op2))) { 6732 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue(); 6733 } 6734 auto Op2Info = TTI.getOperandInfo(Op2); 6735 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && 6736 shouldConsiderInvariant(Op2)) 6737 Op2Info.Kind = TargetTransformInfo::OK_UniformValue; 6738 6739 SmallVector<const Value *, 4> Operands(I->operand_values()); 6740 return TTI.getArithmeticInstrCost( 6741 I->getOpcode(), VectorTy, CostKind, 6742 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, 6743 Op2Info, Operands, I, TLI); 6744 } 6745 case Instruction::FNeg: { 6746 return TTI.getArithmeticInstrCost( 6747 I->getOpcode(), VectorTy, CostKind, 6748 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, 6749 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, 6750 I->getOperand(0), I); 6751 } 6752 case Instruction::Select: { 6753 SelectInst *SI = cast<SelectInst>(I); 6754 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6755 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6756 6757 const Value *Op0, *Op1; 6758 using namespace llvm::PatternMatch; 6759 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 6760 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 6761 // select x, y, false --> x & y 6762 // select x, true, y --> x | y 6763 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0); 6764 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1); 6765 assert(Op0->getType()->getScalarSizeInBits() == 1 && 6766 Op1->getType()->getScalarSizeInBits() == 1); 6767 6768 SmallVector<const Value *, 2> Operands{Op0, Op1}; 6769 return TTI.getArithmeticInstrCost( 6770 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 6771 CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, I); 6772 } 6773 6774 Type *CondTy = SI->getCondition()->getType(); 6775 if (!ScalarCond) 6776 CondTy = VectorType::get(CondTy, VF); 6777 6778 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 6779 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 6780 Pred = Cmp->getPredicate(); 6781 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 6782 CostKind, {TTI::OK_AnyValue, TTI::OP_None}, 6783 {TTI::OK_AnyValue, TTI::OP_None}, I); 6784 } 6785 case Instruction::ICmp: 6786 case Instruction::FCmp: { 6787 Type *ValTy = I->getOperand(0)->getType(); 6788 6789 if (canTruncateToMinimalBitwidth(I, VF)) { 6790 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6791 (void)Op0AsInstruction; 6792 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) || 6793 MinBWs[I] == MinBWs[Op0AsInstruction]) && 6794 "if both the operand and the compare are marked for " 6795 "truncation, they must have the same bitwidth"); 6796 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]); 6797 } 6798 6799 VectorTy = toVectorTy(ValTy, VF); 6800 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 6801 cast<CmpInst>(I)->getPredicate(), CostKind, 6802 {TTI::OK_AnyValue, TTI::OP_None}, 6803 {TTI::OK_AnyValue, TTI::OP_None}, I); 6804 } 6805 case Instruction::Store: 6806 case Instruction::Load: { 6807 ElementCount Width = VF; 6808 if (Width.isVector()) { 6809 InstWidening Decision = getWideningDecision(I, Width); 6810 assert(Decision != CM_Unknown && 6811 "CM decision should be taken at this point"); 6812 if (getWideningCost(I, VF) == InstructionCost::getInvalid()) 6813 return InstructionCost::getInvalid(); 6814 if (Decision == CM_Scalarize) 6815 Width = ElementCount::getFixed(1); 6816 } 6817 VectorTy = toVectorTy(getLoadStoreType(I), Width); 6818 return getMemoryInstructionCost(I, VF); 6819 } 6820 case Instruction::BitCast: 6821 if (I->getType()->isPointerTy()) 6822 return 0; 6823 [[fallthrough]]; 6824 case Instruction::ZExt: 6825 case Instruction::SExt: 6826 case Instruction::FPToUI: 6827 case Instruction::FPToSI: 6828 case Instruction::FPExt: 6829 case Instruction::PtrToInt: 6830 case Instruction::IntToPtr: 6831 case Instruction::SIToFP: 6832 case Instruction::UIToFP: 6833 case Instruction::Trunc: 6834 case Instruction::FPTrunc: { 6835 // Computes the CastContextHint from a Load/Store instruction. 6836 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 6837 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6838 "Expected a load or a store!"); 6839 6840 if (VF.isScalar() || !TheLoop->contains(I)) 6841 return TTI::CastContextHint::Normal; 6842 6843 switch (getWideningDecision(I, VF)) { 6844 case LoopVectorizationCostModel::CM_GatherScatter: 6845 return TTI::CastContextHint::GatherScatter; 6846 case LoopVectorizationCostModel::CM_Interleave: 6847 return TTI::CastContextHint::Interleave; 6848 case LoopVectorizationCostModel::CM_Scalarize: 6849 case LoopVectorizationCostModel::CM_Widen: 6850 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 6851 : TTI::CastContextHint::Normal; 6852 case LoopVectorizationCostModel::CM_Widen_Reverse: 6853 return TTI::CastContextHint::Reversed; 6854 case LoopVectorizationCostModel::CM_Unknown: 6855 llvm_unreachable("Instr did not go through cost modelling?"); 6856 case LoopVectorizationCostModel::CM_VectorCall: 6857 case LoopVectorizationCostModel::CM_IntrinsicCall: 6858 llvm_unreachable_internal("Instr has invalid widening decision"); 6859 } 6860 6861 llvm_unreachable("Unhandled case!"); 6862 }; 6863 6864 unsigned Opcode = I->getOpcode(); 6865 TTI::CastContextHint CCH = TTI::CastContextHint::None; 6866 // For Trunc, the context is the only user, which must be a StoreInst. 6867 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 6868 if (I->hasOneUse()) 6869 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 6870 CCH = ComputeCCH(Store); 6871 } 6872 // For Z/Sext, the context is the operand, which must be a LoadInst. 6873 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 6874 Opcode == Instruction::FPExt) { 6875 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 6876 CCH = ComputeCCH(Load); 6877 } 6878 6879 // We optimize the truncation of induction variables having constant 6880 // integer steps. The cost of these truncations is the same as the scalar 6881 // operation. 6882 if (isOptimizableIVTruncate(I, VF)) { 6883 auto *Trunc = cast<TruncInst>(I); 6884 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6885 Trunc->getSrcTy(), CCH, CostKind, Trunc); 6886 } 6887 6888 // Detect reduction patterns 6889 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 6890 return *RedCost; 6891 6892 Type *SrcScalarTy = I->getOperand(0)->getType(); 6893 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6894 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6895 SrcScalarTy = 6896 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]); 6897 Type *SrcVecTy = 6898 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6899 6900 if (canTruncateToMinimalBitwidth(I, VF)) { 6901 // If the result type is <= the source type, there will be no extend 6902 // after truncating the users to the minimal required bitwidth. 6903 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() && 6904 (I->getOpcode() == Instruction::ZExt || 6905 I->getOpcode() == Instruction::SExt)) 6906 return 0; 6907 } 6908 6909 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 6910 } 6911 case Instruction::Call: 6912 return getVectorCallCost(cast<CallInst>(I), VF); 6913 case Instruction::ExtractValue: 6914 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 6915 case Instruction::Alloca: 6916 // We cannot easily widen alloca to a scalable alloca, as 6917 // the result would need to be a vector of pointers. 6918 if (VF.isScalable()) 6919 return InstructionCost::getInvalid(); 6920 [[fallthrough]]; 6921 default: 6922 // This opcode is unknown. Assume that it is the same as 'mul'. 6923 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6924 } // end of switch. 6925 } 6926 6927 void LoopVectorizationCostModel::collectValuesToIgnore() { 6928 // Ignore ephemeral values. 6929 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6930 6931 SmallVector<Value *, 4> DeadInterleavePointerOps; 6932 SmallVector<Value *, 4> DeadOps; 6933 6934 // If a scalar epilogue is required, users outside the loop won't use 6935 // live-outs from the vector loop but from the scalar epilogue. Ignore them if 6936 // that is the case. 6937 bool RequiresScalarEpilogue = requiresScalarEpilogue(true); 6938 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) { 6939 return RequiresScalarEpilogue && 6940 !TheLoop->contains(cast<Instruction>(U)->getParent()); 6941 }; 6942 6943 LoopBlocksDFS DFS(TheLoop); 6944 DFS.perform(LI); 6945 MapVector<Value *, SmallVector<Value *>> DeadInvariantStoreOps; 6946 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO()))) 6947 for (Instruction &I : reverse(*BB)) { 6948 // Find all stores to invariant variables. Since they are going to sink 6949 // outside the loop we do not need calculate cost for them. 6950 StoreInst *SI; 6951 if ((SI = dyn_cast<StoreInst>(&I)) && 6952 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) { 6953 ValuesToIgnore.insert(&I); 6954 DeadInvariantStoreOps[SI->getPointerOperand()].push_back( 6955 SI->getValueOperand()); 6956 } 6957 6958 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I)) 6959 continue; 6960 6961 // Add instructions that would be trivially dead and are only used by 6962 // values already ignored to DeadOps to seed worklist. 6963 if (wouldInstructionBeTriviallyDead(&I, TLI) && 6964 all_of(I.users(), [this, IsLiveOutDead](User *U) { 6965 return VecValuesToIgnore.contains(U) || 6966 ValuesToIgnore.contains(U) || IsLiveOutDead(U); 6967 })) 6968 DeadOps.push_back(&I); 6969 6970 // For interleave groups, we only create a pointer for the start of the 6971 // interleave group. Queue up addresses of group members except the insert 6972 // position for further processing. 6973 if (isAccessInterleaved(&I)) { 6974 auto *Group = getInterleavedAccessGroup(&I); 6975 if (Group->getInsertPos() == &I) 6976 continue; 6977 Value *PointerOp = getLoadStorePointerOperand(&I); 6978 DeadInterleavePointerOps.push_back(PointerOp); 6979 } 6980 6981 // Queue branches for analysis. They are dead, if their successors only 6982 // contain dead instructions. 6983 if (auto *Br = dyn_cast<BranchInst>(&I)) { 6984 if (Br->isConditional()) 6985 DeadOps.push_back(&I); 6986 } 6987 } 6988 6989 // Mark ops feeding interleave group members as free, if they are only used 6990 // by other dead computations. 6991 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) { 6992 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]); 6993 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) { 6994 Instruction *UI = cast<Instruction>(U); 6995 return !VecValuesToIgnore.contains(U) && 6996 (!isAccessInterleaved(UI) || 6997 getInterleavedAccessGroup(UI)->getInsertPos() == UI); 6998 })) 6999 continue; 7000 VecValuesToIgnore.insert(Op); 7001 DeadInterleavePointerOps.append(Op->op_begin(), Op->op_end()); 7002 } 7003 7004 for (const auto &[_, Ops] : DeadInvariantStoreOps) { 7005 for (Value *Op : ArrayRef(Ops).drop_back()) 7006 DeadOps.push_back(Op); 7007 } 7008 // Mark ops that would be trivially dead and are only used by ignored 7009 // instructions as free. 7010 BasicBlock *Header = TheLoop->getHeader(); 7011 7012 // Returns true if the block contains only dead instructions. Such blocks will 7013 // be removed by VPlan-to-VPlan transforms and won't be considered by the 7014 // VPlan-based cost model, so skip them in the legacy cost-model as well. 7015 auto IsEmptyBlock = [this](BasicBlock *BB) { 7016 return all_of(*BB, [this](Instruction &I) { 7017 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) || 7018 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional()); 7019 }); 7020 }; 7021 for (unsigned I = 0; I != DeadOps.size(); ++I) { 7022 auto *Op = dyn_cast<Instruction>(DeadOps[I]); 7023 7024 // Check if the branch should be considered dead. 7025 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) { 7026 BasicBlock *ThenBB = Br->getSuccessor(0); 7027 BasicBlock *ElseBB = Br->getSuccessor(1); 7028 // Don't considers branches leaving the loop for simplification. 7029 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB)) 7030 continue; 7031 bool ThenEmpty = IsEmptyBlock(ThenBB); 7032 bool ElseEmpty = IsEmptyBlock(ElseBB); 7033 if ((ThenEmpty && ElseEmpty) || 7034 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB && 7035 ElseBB->phis().empty()) || 7036 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB && 7037 ThenBB->phis().empty())) { 7038 VecValuesToIgnore.insert(Br); 7039 DeadOps.push_back(Br->getCondition()); 7040 } 7041 continue; 7042 } 7043 7044 // Skip any op that shouldn't be considered dead. 7045 if (!Op || !TheLoop->contains(Op) || 7046 (isa<PHINode>(Op) && Op->getParent() == Header) || 7047 !wouldInstructionBeTriviallyDead(Op, TLI) || 7048 any_of(Op->users(), [this, IsLiveOutDead](User *U) { 7049 return !VecValuesToIgnore.contains(U) && 7050 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U); 7051 })) 7052 continue; 7053 7054 if (!TheLoop->contains(Op->getParent())) 7055 continue; 7056 7057 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore 7058 // which applies for both scalar and vector versions. Otherwise it is only 7059 // dead in vector versions, so only add it to VecValuesToIgnore. 7060 if (all_of(Op->users(), 7061 [this](User *U) { return ValuesToIgnore.contains(U); })) 7062 ValuesToIgnore.insert(Op); 7063 7064 VecValuesToIgnore.insert(Op); 7065 DeadOps.append(Op->op_begin(), Op->op_end()); 7066 } 7067 7068 // Ignore type-promoting instructions we identified during reduction 7069 // detection. 7070 for (const auto &Reduction : Legal->getReductionVars()) { 7071 const RecurrenceDescriptor &RedDes = Reduction.second; 7072 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7073 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7074 } 7075 // Ignore type-casting instructions we identified during induction 7076 // detection. 7077 for (const auto &Induction : Legal->getInductionVars()) { 7078 const InductionDescriptor &IndDes = Induction.second; 7079 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7080 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7081 } 7082 } 7083 7084 void LoopVectorizationCostModel::collectInLoopReductions() { 7085 for (const auto &Reduction : Legal->getReductionVars()) { 7086 PHINode *Phi = Reduction.first; 7087 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7088 7089 // We don't collect reductions that are type promoted (yet). 7090 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7091 continue; 7092 7093 // If the target would prefer this reduction to happen "in-loop", then we 7094 // want to record it as such. 7095 unsigned Opcode = RdxDesc.getOpcode(); 7096 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7097 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7098 TargetTransformInfo::ReductionFlags())) 7099 continue; 7100 7101 // Check that we can correctly put the reductions into the loop, by 7102 // finding the chain of operations that leads from the phi to the loop 7103 // exit value. 7104 SmallVector<Instruction *, 4> ReductionOperations = 7105 RdxDesc.getReductionOpChain(Phi, TheLoop); 7106 bool InLoop = !ReductionOperations.empty(); 7107 7108 if (InLoop) { 7109 InLoopReductions.insert(Phi); 7110 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7111 Instruction *LastChain = Phi; 7112 for (auto *I : ReductionOperations) { 7113 InLoopReductionImmediateChains[I] = LastChain; 7114 LastChain = I; 7115 } 7116 } 7117 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7118 << " reduction for phi: " << *Phi << "\n"); 7119 } 7120 } 7121 7122 // This function will select a scalable VF if the target supports scalable 7123 // vectors and a fixed one otherwise. 7124 // TODO: we could return a pair of values that specify the max VF and 7125 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7126 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7127 // doesn't have a cost model that can choose which plan to execute if 7128 // more than one is generated. 7129 static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, 7130 LoopVectorizationCostModel &CM) { 7131 unsigned WidestType; 7132 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7133 7134 TargetTransformInfo::RegisterKind RegKind = 7135 TTI.enableScalableVectorization() 7136 ? TargetTransformInfo::RGK_ScalableVector 7137 : TargetTransformInfo::RGK_FixedWidthVector; 7138 7139 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind); 7140 unsigned N = RegSize.getKnownMinValue() / WidestType; 7141 return ElementCount::get(N, RegSize.isScalable()); 7142 } 7143 7144 VectorizationFactor 7145 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7146 ElementCount VF = UserVF; 7147 // Outer loop handling: They may require CFG and instruction level 7148 // transformations before even evaluating whether vectorization is profitable. 7149 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7150 // the vectorization pipeline. 7151 if (!OrigLoop->isInnermost()) { 7152 // If the user doesn't provide a vectorization factor, determine a 7153 // reasonable one. 7154 if (UserVF.isZero()) { 7155 VF = determineVPlanVF(TTI, CM); 7156 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7157 7158 // Make sure we have a VF > 1 for stress testing. 7159 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7160 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7161 << "overriding computed VF.\n"); 7162 VF = ElementCount::getFixed(4); 7163 } 7164 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() && 7165 !ForceTargetSupportsScalableVectors) { 7166 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but " 7167 << "not supported by the target.\n"); 7168 reportVectorizationFailure( 7169 "Scalable vectorization requested but not supported by the target", 7170 "the scalable user-specified vectorization width for outer-loop " 7171 "vectorization cannot be used because the target does not support " 7172 "scalable vectors.", 7173 "ScalableVFUnfeasible", ORE, OrigLoop); 7174 return VectorizationFactor::Disabled(); 7175 } 7176 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7177 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7178 "VF needs to be a power of two"); 7179 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7180 << "VF " << VF << " to build VPlans.\n"); 7181 buildVPlans(VF, VF); 7182 7183 // For VPlan build stress testing, we bail out after VPlan construction. 7184 if (VPlanBuildStressTest) 7185 return VectorizationFactor::Disabled(); 7186 7187 return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; 7188 } 7189 7190 LLVM_DEBUG( 7191 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7192 "VPlan-native path.\n"); 7193 return VectorizationFactor::Disabled(); 7194 } 7195 7196 void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7197 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7198 CM.collectValuesToIgnore(); 7199 CM.collectElementTypesForWidening(); 7200 7201 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7202 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7203 return; 7204 7205 // Invalidate interleave groups if all blocks of loop will be predicated. 7206 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7207 !useMaskedInterleavedAccesses(TTI)) { 7208 LLVM_DEBUG( 7209 dbgs() 7210 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7211 "which requires masked-interleaved support.\n"); 7212 if (CM.InterleaveInfo.invalidateGroups()) 7213 // Invalidating interleave groups also requires invalidating all decisions 7214 // based on them, which includes widening decisions and uniform and scalar 7215 // values. 7216 CM.invalidateCostModelingDecisions(); 7217 } 7218 7219 if (CM.foldTailByMasking()) 7220 Legal->prepareToFoldTailByMasking(); 7221 7222 ElementCount MaxUserVF = 7223 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7224 if (UserVF) { 7225 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) { 7226 reportVectorizationInfo( 7227 "UserVF ignored because it may be larger than the maximal safe VF", 7228 "InvalidUserVF", ORE, OrigLoop); 7229 } else { 7230 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7231 "VF needs to be a power of two"); 7232 // Collect the instructions (and their associated costs) that will be more 7233 // profitable to scalarize. 7234 CM.collectInLoopReductions(); 7235 if (CM.selectUserVectorizationFactor(UserVF)) { 7236 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7237 buildVPlansWithVPRecipes(UserVF, UserVF); 7238 LLVM_DEBUG(printPlans(dbgs())); 7239 return; 7240 } 7241 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7242 "InvalidCost", ORE, OrigLoop); 7243 } 7244 } 7245 7246 // Collect the Vectorization Factor Candidates. 7247 SmallVector<ElementCount> VFCandidates; 7248 for (auto VF = ElementCount::getFixed(1); 7249 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7250 VFCandidates.push_back(VF); 7251 for (auto VF = ElementCount::getScalable(1); 7252 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7253 VFCandidates.push_back(VF); 7254 7255 CM.collectInLoopReductions(); 7256 for (const auto &VF : VFCandidates) { 7257 // Collect Uniform and Scalar instructions after vectorization with VF. 7258 CM.collectUniformsAndScalars(VF); 7259 7260 // Collect the instructions (and their associated costs) that will be more 7261 // profitable to scalarize. 7262 if (VF.isVector()) 7263 CM.collectInstsToScalarize(VF); 7264 } 7265 7266 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7267 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7268 7269 LLVM_DEBUG(printPlans(dbgs())); 7270 } 7271 7272 InstructionCost VPCostContext::getLegacyCost(Instruction *UI, 7273 ElementCount VF) const { 7274 if (ForceTargetInstructionCost.getNumOccurrences()) 7275 return InstructionCost(ForceTargetInstructionCost.getNumOccurrences()); 7276 return CM.getInstructionCost(UI, VF); 7277 } 7278 7279 bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const { 7280 return CM.ValuesToIgnore.contains(UI) || 7281 (IsVector && CM.VecValuesToIgnore.contains(UI)) || 7282 SkipCostComputation.contains(UI); 7283 } 7284 7285 InstructionCost 7286 LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF, 7287 VPCostContext &CostCtx) const { 7288 InstructionCost Cost; 7289 // Cost modeling for inductions is inaccurate in the legacy cost model 7290 // compared to the recipes that are generated. To match here initially during 7291 // VPlan cost model bring up directly use the induction costs from the legacy 7292 // cost model. Note that we do this as pre-processing; the VPlan may not have 7293 // any recipes associated with the original induction increment instruction 7294 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute 7295 // the cost of induction phis and increments (both that are represented by 7296 // recipes and those that are not), to avoid distinguishing between them here, 7297 // and skip all recipes that represent induction phis and increments (the 7298 // former case) later on, if they exist, to avoid counting them twice. 7299 // Similarly we pre-compute the cost of any optimized truncates. 7300 // TODO: Switch to more accurate costing based on VPlan. 7301 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) { 7302 Instruction *IVInc = cast<Instruction>( 7303 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch())); 7304 SmallVector<Instruction *> IVInsts = {IVInc}; 7305 for (unsigned I = 0; I != IVInsts.size(); I++) { 7306 for (Value *Op : IVInsts[I]->operands()) { 7307 auto *OpI = dyn_cast<Instruction>(Op); 7308 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse()) 7309 continue; 7310 IVInsts.push_back(OpI); 7311 } 7312 } 7313 IVInsts.push_back(IV); 7314 for (User *U : IV->users()) { 7315 auto *CI = cast<Instruction>(U); 7316 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF)) 7317 continue; 7318 IVInsts.push_back(CI); 7319 } 7320 7321 // If the vector loop gets executed exactly once with the given VF, ignore 7322 // the costs of comparison and induction instructions, as they'll get 7323 // simplified away. 7324 // TODO: Remove this code after stepping away from the legacy cost model and 7325 // adding code to simplify VPlans before calculating their costs. 7326 auto TC = PSE.getSE()->getSmallConstantTripCount(OrigLoop); 7327 if (VF.isFixed() && TC == VF.getFixedValue() && !CM.foldTailByMasking()) 7328 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(), 7329 CostCtx.SkipCostComputation); 7330 7331 for (Instruction *IVInst : IVInsts) { 7332 if (CostCtx.skipCostComputation(IVInst, VF.isVector())) 7333 continue; 7334 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF); 7335 LLVM_DEBUG({ 7336 dbgs() << "Cost of " << InductionCost << " for VF " << VF 7337 << ": induction instruction " << *IVInst << "\n"; 7338 }); 7339 Cost += InductionCost; 7340 CostCtx.SkipCostComputation.insert(IVInst); 7341 } 7342 } 7343 7344 /// Compute the cost of all exiting conditions of the loop using the legacy 7345 /// cost model. This is to match the legacy behavior, which adds the cost of 7346 /// all exit conditions. Note that this over-estimates the cost, as there will 7347 /// be a single condition to control the vector loop. 7348 SmallVector<BasicBlock *> Exiting; 7349 CM.TheLoop->getExitingBlocks(Exiting); 7350 SetVector<Instruction *> ExitInstrs; 7351 // Collect all exit conditions. 7352 for (BasicBlock *EB : Exiting) { 7353 auto *Term = dyn_cast<BranchInst>(EB->getTerminator()); 7354 if (!Term) 7355 continue; 7356 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) { 7357 ExitInstrs.insert(CondI); 7358 } 7359 } 7360 // Compute the cost of all instructions only feeding the exit conditions. 7361 for (unsigned I = 0; I != ExitInstrs.size(); ++I) { 7362 Instruction *CondI = ExitInstrs[I]; 7363 if (!OrigLoop->contains(CondI) || 7364 !CostCtx.SkipCostComputation.insert(CondI).second) 7365 continue; 7366 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF); 7367 LLVM_DEBUG({ 7368 dbgs() << "Cost of " << CondICost << " for VF " << VF 7369 << ": exit condition instruction " << *CondI << "\n"; 7370 }); 7371 Cost += CondICost; 7372 for (Value *Op : CondI->operands()) { 7373 auto *OpI = dyn_cast<Instruction>(Op); 7374 if (!OpI || any_of(OpI->users(), [&ExitInstrs, this](User *U) { 7375 return OrigLoop->contains(cast<Instruction>(U)->getParent()) && 7376 !ExitInstrs.contains(cast<Instruction>(U)); 7377 })) 7378 continue; 7379 ExitInstrs.insert(OpI); 7380 } 7381 } 7382 7383 // The legacy cost model has special logic to compute the cost of in-loop 7384 // reductions, which may be smaller than the sum of all instructions involved 7385 // in the reduction. 7386 // TODO: Switch to costing based on VPlan once the logic has been ported. 7387 for (const auto &[RedPhi, RdxDesc] : Legal->getReductionVars()) { 7388 if (ForceTargetInstructionCost.getNumOccurrences()) 7389 continue; 7390 7391 if (!CM.isInLoopReduction(RedPhi)) 7392 continue; 7393 7394 const auto &ChainOps = RdxDesc.getReductionOpChain(RedPhi, OrigLoop); 7395 SetVector<Instruction *> ChainOpsAndOperands(ChainOps.begin(), 7396 ChainOps.end()); 7397 auto IsZExtOrSExt = [](const unsigned Opcode) -> bool { 7398 return Opcode == Instruction::ZExt || Opcode == Instruction::SExt; 7399 }; 7400 // Also include the operands of instructions in the chain, as the cost-model 7401 // may mark extends as free. 7402 // 7403 // For ARM, some of the instruction can folded into the reducion 7404 // instruction. So we need to mark all folded instructions free. 7405 // For example: We can fold reduce(mul(ext(A), ext(B))) into one 7406 // instruction. 7407 for (auto *ChainOp : ChainOps) { 7408 for (Value *Op : ChainOp->operands()) { 7409 if (auto *I = dyn_cast<Instruction>(Op)) { 7410 ChainOpsAndOperands.insert(I); 7411 if (I->getOpcode() == Instruction::Mul) { 7412 auto *Ext0 = dyn_cast<Instruction>(I->getOperand(0)); 7413 auto *Ext1 = dyn_cast<Instruction>(I->getOperand(1)); 7414 if (Ext0 && IsZExtOrSExt(Ext0->getOpcode()) && Ext1 && 7415 Ext0->getOpcode() == Ext1->getOpcode()) { 7416 ChainOpsAndOperands.insert(Ext0); 7417 ChainOpsAndOperands.insert(Ext1); 7418 } 7419 } 7420 } 7421 } 7422 } 7423 7424 // Pre-compute the cost for I, if it has a reduction pattern cost. 7425 for (Instruction *I : ChainOpsAndOperands) { 7426 auto ReductionCost = CM.getReductionPatternCost( 7427 I, VF, toVectorTy(I->getType(), VF), TTI::TCK_RecipThroughput); 7428 if (!ReductionCost) 7429 continue; 7430 7431 assert(!CostCtx.SkipCostComputation.contains(I) && 7432 "reduction op visited multiple times"); 7433 CostCtx.SkipCostComputation.insert(I); 7434 LLVM_DEBUG(dbgs() << "Cost of " << ReductionCost << " for VF " << VF 7435 << ":\n in-loop reduction " << *I << "\n"); 7436 Cost += *ReductionCost; 7437 } 7438 } 7439 7440 // Pre-compute the costs for branches except for the backedge, as the number 7441 // of replicate regions in a VPlan may not directly match the number of 7442 // branches, which would lead to different decisions. 7443 // TODO: Compute cost of branches for each replicate region in the VPlan, 7444 // which is more accurate than the legacy cost model. 7445 for (BasicBlock *BB : OrigLoop->blocks()) { 7446 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector())) 7447 continue; 7448 CostCtx.SkipCostComputation.insert(BB->getTerminator()); 7449 if (BB == OrigLoop->getLoopLatch()) 7450 continue; 7451 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF); 7452 Cost += BranchCost; 7453 } 7454 7455 // Pre-compute costs for instructions that are forced-scalar or profitable to 7456 // scalarize. Their costs will be computed separately in the legacy cost 7457 // model. 7458 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) { 7459 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector())) 7460 continue; 7461 CostCtx.SkipCostComputation.insert(ForcedScalar); 7462 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF); 7463 LLVM_DEBUG({ 7464 dbgs() << "Cost of " << ForcedCost << " for VF " << VF 7465 << ": forced scalar " << *ForcedScalar << "\n"; 7466 }); 7467 Cost += ForcedCost; 7468 } 7469 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) { 7470 if (CostCtx.skipCostComputation(Scalarized, VF.isVector())) 7471 continue; 7472 CostCtx.SkipCostComputation.insert(Scalarized); 7473 LLVM_DEBUG({ 7474 dbgs() << "Cost of " << ScalarCost << " for VF " << VF 7475 << ": profitable to scalarize " << *Scalarized << "\n"; 7476 }); 7477 Cost += ScalarCost; 7478 } 7479 7480 return Cost; 7481 } 7482 7483 InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan, 7484 ElementCount VF) const { 7485 VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(), CM); 7486 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx); 7487 7488 // Now compute and add the VPlan-based cost. 7489 Cost += Plan.cost(VF, CostCtx); 7490 #ifndef NDEBUG 7491 unsigned EstimatedWidth = getEstimatedRuntimeVF(OrigLoop, CM.TTI, VF); 7492 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost 7493 << " (Estimated cost per lane: "); 7494 if (Cost.isValid()) { 7495 double CostPerLane = double(*Cost.getValue()) / EstimatedWidth; 7496 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane)); 7497 } else /* No point dividing an invalid cost - it will still be invalid */ 7498 LLVM_DEBUG(dbgs() << "Invalid"); 7499 LLVM_DEBUG(dbgs() << ")\n"); 7500 #endif 7501 return Cost; 7502 } 7503 7504 #ifndef NDEBUG 7505 /// Return true if the original loop \ TheLoop contains any instructions that do 7506 /// not have corresponding recipes in \p Plan and are not marked to be ignored 7507 /// in \p CostCtx. This means the VPlan contains simplification that the legacy 7508 /// cost-model did not account for. 7509 static bool planContainsAdditionalSimplifications(VPlan &Plan, 7510 VPCostContext &CostCtx, 7511 Loop *TheLoop) { 7512 // First collect all instructions for the recipes in Plan. 7513 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * { 7514 if (auto *S = dyn_cast<VPSingleDefRecipe>(R)) 7515 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue()); 7516 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R)) 7517 return &WidenMem->getIngredient(); 7518 return nullptr; 7519 }; 7520 7521 DenseSet<Instruction *> SeenInstrs; 7522 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry()); 7523 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 7524 for (VPRecipeBase &R : *VPBB) { 7525 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) { 7526 auto *IG = IR->getInterleaveGroup(); 7527 unsigned NumMembers = IG->getNumMembers(); 7528 for (unsigned I = 0; I != NumMembers; ++I) { 7529 if (Instruction *M = IG->getMember(I)) 7530 SeenInstrs.insert(M); 7531 } 7532 continue; 7533 } 7534 // The VPlan-based cost model is more accurate for partial reduction and 7535 // comparing against the legacy cost isn't desirable. 7536 if (isa<VPPartialReductionRecipe>(&R)) 7537 return true; 7538 if (Instruction *UI = GetInstructionForCost(&R)) 7539 SeenInstrs.insert(UI); 7540 } 7541 } 7542 7543 // Return true if the loop contains any instructions that are not also part of 7544 // the VPlan or are skipped for VPlan-based cost computations. This indicates 7545 // that the VPlan contains extra simplifications. 7546 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx, 7547 TheLoop](BasicBlock *BB) { 7548 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) { 7549 if (isa<PHINode>(&I) && BB == TheLoop->getHeader()) 7550 return false; 7551 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true); 7552 }); 7553 }); 7554 } 7555 #endif 7556 7557 VectorizationFactor LoopVectorizationPlanner::computeBestVF() { 7558 if (VPlans.empty()) 7559 return VectorizationFactor::Disabled(); 7560 // If there is a single VPlan with a single VF, return it directly. 7561 VPlan &FirstPlan = *VPlans[0]; 7562 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1) 7563 return {*FirstPlan.vectorFactors().begin(), 0, 0}; 7564 7565 ElementCount ScalarVF = ElementCount::getFixed(1); 7566 assert(hasPlanWithVF(ScalarVF) && 7567 "More than a single plan/VF w/o any plan having scalar VF"); 7568 7569 // TODO: Compute scalar cost using VPlan-based cost model. 7570 InstructionCost ScalarCost = CM.expectedCost(ScalarVF); 7571 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n"); 7572 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost); 7573 VectorizationFactor BestFactor = ScalarFactor; 7574 7575 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled; 7576 if (ForceVectorization) { 7577 // Ignore scalar width, because the user explicitly wants vectorization. 7578 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 7579 // evaluation. 7580 BestFactor.Cost = InstructionCost::getMax(); 7581 } 7582 7583 for (auto &P : VPlans) { 7584 for (ElementCount VF : P->vectorFactors()) { 7585 if (VF.isScalar()) 7586 continue; 7587 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) { 7588 LLVM_DEBUG( 7589 dbgs() 7590 << "LV: Not considering vector loop of width " << VF 7591 << " because it will not generate any vector instructions.\n"); 7592 continue; 7593 } 7594 7595 InstructionCost Cost = cost(*P, VF); 7596 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost); 7597 if (isMoreProfitable(CurrentFactor, BestFactor)) 7598 BestFactor = CurrentFactor; 7599 7600 // If profitable add it to ProfitableVF list. 7601 if (isMoreProfitable(CurrentFactor, ScalarFactor)) 7602 ProfitableVFs.push_back(CurrentFactor); 7603 } 7604 } 7605 7606 #ifndef NDEBUG 7607 // Select the optimal vectorization factor according to the legacy cost-model. 7608 // This is now only used to verify the decisions by the new VPlan-based 7609 // cost-model and will be retired once the VPlan-based cost-model is 7610 // stabilized. 7611 VectorizationFactor LegacyVF = selectVectorizationFactor(); 7612 VPlan &BestPlan = getPlanFor(BestFactor.Width); 7613 7614 // Pre-compute the cost and use it to check if BestPlan contains any 7615 // simplifications not accounted for in the legacy cost model. If that's the 7616 // case, don't trigger the assertion, as the extra simplifications may cause a 7617 // different VF to be picked by the VPlan-based cost model. 7618 VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(), CM); 7619 precomputeCosts(BestPlan, BestFactor.Width, CostCtx); 7620 assert((BestFactor.Width == LegacyVF.Width || 7621 planContainsAdditionalSimplifications(getPlanFor(BestFactor.Width), 7622 CostCtx, OrigLoop) || 7623 planContainsAdditionalSimplifications(getPlanFor(LegacyVF.Width), 7624 CostCtx, OrigLoop)) && 7625 " VPlan cost model and legacy cost model disagreed"); 7626 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) && 7627 "when vectorizing, the scalar cost must be computed."); 7628 #endif 7629 7630 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n"); 7631 return BestFactor; 7632 } 7633 7634 static void addRuntimeUnrollDisableMetaData(Loop *L) { 7635 SmallVector<Metadata *, 4> MDs; 7636 // Reserve first location for self reference to the LoopID metadata node. 7637 MDs.push_back(nullptr); 7638 bool IsUnrollMetadata = false; 7639 MDNode *LoopID = L->getLoopID(); 7640 if (LoopID) { 7641 // First find existing loop unrolling disable metadata. 7642 for (unsigned I = 1, IE = LoopID->getNumOperands(); I < IE; ++I) { 7643 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(I)); 7644 if (MD) { 7645 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7646 IsUnrollMetadata = 7647 S && S->getString().starts_with("llvm.loop.unroll.disable"); 7648 } 7649 MDs.push_back(LoopID->getOperand(I)); 7650 } 7651 } 7652 7653 if (!IsUnrollMetadata) { 7654 // Add runtime unroll disable metadata. 7655 LLVMContext &Context = L->getHeader()->getContext(); 7656 SmallVector<Metadata *, 1> DisableOperands; 7657 DisableOperands.push_back( 7658 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7659 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7660 MDs.push_back(DisableNode); 7661 MDNode *NewLoopID = MDNode::get(Context, MDs); 7662 // Set operand 0 to refer to the loop id itself. 7663 NewLoopID->replaceOperandWith(0, NewLoopID); 7664 L->setLoopID(NewLoopID); 7665 } 7666 } 7667 7668 // If \p R is a ComputeReductionResult when vectorizing the epilog loop, 7669 // fix the reduction's scalar PHI node by adding the incoming value from the 7670 // main vector loop. 7671 static void fixReductionScalarResumeWhenVectorizingEpilog( 7672 VPRecipeBase *R, VPTransformState &State, BasicBlock *LoopMiddleBlock, 7673 BasicBlock *BypassBlock) { 7674 auto *EpiRedResult = dyn_cast<VPInstruction>(R); 7675 if (!EpiRedResult || 7676 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult) 7677 return; 7678 7679 auto *EpiRedHeaderPhi = 7680 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0)); 7681 const RecurrenceDescriptor &RdxDesc = 7682 EpiRedHeaderPhi->getRecurrenceDescriptor(); 7683 Value *MainResumeValue = 7684 EpiRedHeaderPhi->getStartValue()->getUnderlyingValue(); 7685 if (RecurrenceDescriptor::isAnyOfRecurrenceKind( 7686 RdxDesc.getRecurrenceKind())) { 7687 auto *Cmp = cast<ICmpInst>(MainResumeValue); 7688 assert(Cmp->getPredicate() == CmpInst::ICMP_NE && 7689 "AnyOf expected to start with ICMP_NE"); 7690 assert(Cmp->getOperand(1) == RdxDesc.getRecurrenceStartValue() && 7691 "AnyOf expected to start by comparing main resume value to original " 7692 "start value"); 7693 MainResumeValue = Cmp->getOperand(0); 7694 } else if (RecurrenceDescriptor::isFindLastIVRecurrenceKind( 7695 RdxDesc.getRecurrenceKind())) { 7696 using namespace llvm::PatternMatch; 7697 Value *Cmp, *OrigResumeV; 7698 bool IsExpectedPattern = 7699 match(MainResumeValue, m_Select(m_OneUse(m_Value(Cmp)), 7700 m_Specific(RdxDesc.getSentinelValue()), 7701 m_Value(OrigResumeV))) && 7702 match(Cmp, 7703 m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(OrigResumeV), 7704 m_Specific(RdxDesc.getRecurrenceStartValue()))); 7705 assert(IsExpectedPattern && "Unexpected reduction resume pattern"); 7706 (void)IsExpectedPattern; 7707 MainResumeValue = OrigResumeV; 7708 } 7709 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue); 7710 7711 // When fixing reductions in the epilogue loop we should already have 7712 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry 7713 // over the incoming values correctly. 7714 using namespace VPlanPatternMatch; 7715 auto IsResumePhi = [](VPUser *U) { 7716 return match( 7717 U, m_VPInstruction<VPInstruction::ResumePhi>(m_VPValue(), m_VPValue())); 7718 }; 7719 assert(count_if(EpiRedResult->users(), IsResumePhi) == 1 && 7720 "ResumePhi must have a single user"); 7721 auto *EpiResumePhiVPI = 7722 cast<VPInstruction>(*find_if(EpiRedResult->users(), IsResumePhi)); 7723 auto *EpiResumePhi = cast<PHINode>(State.get(EpiResumePhiVPI, true)); 7724 EpiResumePhi->setIncomingValueForBlock( 7725 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock)); 7726 } 7727 7728 DenseMap<const SCEV *, Value *> LoopVectorizationPlanner::executePlan( 7729 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan, 7730 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue, 7731 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs) { 7732 assert(BestVPlan.hasVF(BestVF) && 7733 "Trying to execute plan with unsupported VF"); 7734 assert(BestVPlan.hasUF(BestUF) && 7735 "Trying to execute plan with unsupported UF"); 7736 assert( 7737 ((VectorizingEpilogue && ExpandedSCEVs) || 7738 (!VectorizingEpilogue && !ExpandedSCEVs)) && 7739 "expanded SCEVs to reuse can only be used during epilogue vectorization"); 7740 7741 // TODO: Move to VPlan transform stage once the transition to the VPlan-based 7742 // cost model is complete for better cost estimates. 7743 VPlanTransforms::unrollByUF(BestVPlan, BestUF, 7744 OrigLoop->getHeader()->getContext()); 7745 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE); 7746 VPlanTransforms::convertToConcreteRecipes(BestVPlan); 7747 7748 // Perform the actual loop transformation. 7749 VPTransformState State(&TTI, BestVF, BestUF, LI, DT, ILV.Builder, &ILV, 7750 &BestVPlan, OrigLoop->getParentLoop(), 7751 Legal->getWidestInductionType()); 7752 7753 #ifdef EXPENSIVE_CHECKS 7754 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 7755 #endif 7756 7757 // 0. Generate SCEV-dependent code in the entry, including TripCount, before 7758 // making any changes to the CFG. 7759 if (!BestVPlan.getEntry()->empty()) 7760 BestVPlan.getEntry()->execute(&State); 7761 7762 if (!ILV.getTripCount()) 7763 ILV.setTripCount(State.get(BestVPlan.getTripCount(), VPLane(0))); 7764 else 7765 assert(VectorizingEpilogue && "should only re-use the existing trip " 7766 "count during epilogue vectorization"); 7767 7768 // 1. Set up the skeleton for vectorization, including vector pre-header and 7769 // middle block. The vector loop is created during VPlan execution. 7770 VPBasicBlock *VectorPH = 7771 cast<VPBasicBlock>(BestVPlan.getEntry()->getSingleSuccessor()); 7772 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton( 7773 ExpandedSCEVs ? *ExpandedSCEVs : State.ExpandedSCEVs); 7774 if (VectorizingEpilogue) 7775 VPlanTransforms::removeDeadRecipes(BestVPlan); 7776 7777 // Only use noalias metadata when using memory checks guaranteeing no overlap 7778 // across all iterations. 7779 const LoopAccessInfo *LAI = ILV.Legal->getLAI(); 7780 std::unique_ptr<LoopVersioning> LVer = nullptr; 7781 if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && 7782 !LAI->getRuntimePointerChecking()->getDiffChecks()) { 7783 7784 // We currently don't use LoopVersioning for the actual loop cloning but we 7785 // still use it to add the noalias metadata. 7786 // TODO: Find a better way to re-use LoopVersioning functionality to add 7787 // metadata. 7788 LVer = std::make_unique<LoopVersioning>( 7789 *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, 7790 PSE.getSE()); 7791 State.LVer = &*LVer; 7792 State.LVer->prepareNoAliasMetadata(); 7793 } 7794 7795 ILV.printDebugTracesAtStart(); 7796 7797 //===------------------------------------------------===// 7798 // 7799 // Notice: any optimization or new instruction that go 7800 // into the code below should also be implemented in 7801 // the cost-model. 7802 // 7803 //===------------------------------------------------===// 7804 7805 // 2. Copy and widen instructions from the old loop into the new loop. 7806 BestVPlan.prepareToExecute( 7807 ILV.getTripCount(), 7808 ILV.getOrCreateVectorTripCount(ILV.LoopVectorPreHeader), State); 7809 replaceVPBBWithIRVPBB(VectorPH, State.CFG.PrevBB); 7810 7811 BestVPlan.execute(&State); 7812 7813 auto *MiddleVPBB = BestVPlan.getMiddleBlock(); 7814 // 2.5 When vectorizing the epilogue, fix reduction and induction resume 7815 // values from the additional bypass block. 7816 if (VectorizingEpilogue) { 7817 assert(!ILV.Legal->hasUncountableEarlyExit() && 7818 "Epilogue vectorisation not yet supported with early exits"); 7819 BasicBlock *BypassBlock = ILV.getAdditionalBypassBlock(); 7820 for (VPRecipeBase &R : *MiddleVPBB) { 7821 fixReductionScalarResumeWhenVectorizingEpilog( 7822 &R, State, State.CFG.VPBB2IRBB[MiddleVPBB], BypassBlock); 7823 } 7824 BasicBlock *PH = OrigLoop->getLoopPreheader(); 7825 for (const auto &[IVPhi, _] : Legal->getInductionVars()) { 7826 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH)); 7827 Value *V = ILV.getInductionAdditionalBypassValue(IVPhi); 7828 Inc->setIncomingValueForBlock(BypassBlock, V); 7829 } 7830 } 7831 7832 // 2.6. Maintain Loop Hints 7833 // Keep all loop hints from the original loop on the vector loop (we'll 7834 // replace the vectorizer-specific hints below). 7835 if (auto *LoopRegion = BestVPlan.getVectorLoopRegion()) { 7836 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7837 7838 std::optional<MDNode *> VectorizedLoopID = 7839 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7840 LLVMLoopVectorizeFollowupVectorized}); 7841 7842 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock(); 7843 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7844 if (VectorizedLoopID) { 7845 L->setLoopID(*VectorizedLoopID); 7846 } else { 7847 // Keep all loop hints from the original loop on the vector loop (we'll 7848 // replace the vectorizer-specific hints below). 7849 if (MDNode *LID = OrigLoop->getLoopID()) 7850 L->setLoopID(LID); 7851 7852 LoopVectorizeHints Hints(L, true, *ORE); 7853 Hints.setAlreadyVectorized(); 7854 } 7855 TargetTransformInfo::UnrollingPreferences UP; 7856 TTI.getUnrollingPreferences(L, *PSE.getSE(), UP, ORE); 7857 if (!UP.UnrollVectorizedLoop || VectorizingEpilogue) 7858 addRuntimeUnrollDisableMetaData(L); 7859 } 7860 7861 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7862 // predication, updating analyses. 7863 ILV.fixVectorizedLoop(State); 7864 7865 ILV.printDebugTracesAtEnd(); 7866 7867 // 4. Adjust branch weight of the branch in the middle block. 7868 if (BestVPlan.getVectorLoopRegion()) { 7869 auto *MiddleVPBB = BestVPlan.getMiddleBlock(); 7870 auto *MiddleTerm = 7871 cast<BranchInst>(State.CFG.VPBB2IRBB[MiddleVPBB]->getTerminator()); 7872 if (MiddleTerm->isConditional() && 7873 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) { 7874 // Assume that `Count % VectorTripCount` is equally distributed. 7875 unsigned TripCount = BestVPlan.getUF() * State.VF.getKnownMinValue(); 7876 assert(TripCount > 0 && "trip count should not be zero"); 7877 const uint32_t Weights[] = {1, TripCount - 1}; 7878 setBranchWeights(*MiddleTerm, Weights, /*IsExpected=*/false); 7879 } 7880 } 7881 7882 return State.ExpandedSCEVs; 7883 } 7884 7885 //===--------------------------------------------------------------------===// 7886 // EpilogueVectorizerMainLoop 7887 //===--------------------------------------------------------------------===// 7888 7889 /// This function is partially responsible for generating the control flow 7890 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7891 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton( 7892 const SCEV2ValueTy &ExpandedSCEVs) { 7893 createVectorLoopSkeleton(""); 7894 7895 // Generate the code to check the minimum iteration count of the vector 7896 // epilogue (see below). 7897 EPI.EpilogueIterationCountCheck = 7898 emitIterationCountCheck(LoopScalarPreHeader, true); 7899 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7900 7901 // Generate the code to check any assumptions that we've made for SCEV 7902 // expressions. 7903 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7904 7905 // Generate the code that checks at runtime if arrays overlap. We put the 7906 // checks into a separate block to make the more common case of few elements 7907 // faster. 7908 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7909 7910 // Generate the iteration count check for the main loop, *after* the check 7911 // for the epilogue loop, so that the path-length is shorter for the case 7912 // that goes directly through the vector epilogue. The longer-path length for 7913 // the main loop is compensated for, by the gain from vectorizing the larger 7914 // trip count. Note: the branch will get updated later on when we vectorize 7915 // the epilogue. 7916 EPI.MainLoopIterationCountCheck = 7917 emitIterationCountCheck(LoopScalarPreHeader, false); 7918 7919 // Generate the induction variable. 7920 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7921 7922 return LoopVectorPreHeader; 7923 } 7924 7925 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7926 LLVM_DEBUG({ 7927 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7928 << "Main Loop VF:" << EPI.MainLoopVF 7929 << ", Main Loop UF:" << EPI.MainLoopUF 7930 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7931 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7932 }); 7933 } 7934 7935 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7936 DEBUG_WITH_TYPE(VerboseDebug, { 7937 dbgs() << "intermediate fn:\n" 7938 << *OrigLoop->getHeader()->getParent() << "\n"; 7939 }); 7940 } 7941 7942 BasicBlock * 7943 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7944 bool ForEpilogue) { 7945 assert(Bypass && "Expected valid bypass basic block."); 7946 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7947 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7948 Value *Count = getTripCount(); 7949 // Reuse existing vector loop preheader for TC checks. 7950 // Note that new preheader block is generated for vector loop. 7951 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7952 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7953 7954 // Generate code to check if the loop's trip count is less than VF * UF of the 7955 // main vector loop. 7956 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF.isVector() 7957 : VF.isVector()) 7958 ? ICmpInst::ICMP_ULE 7959 : ICmpInst::ICMP_ULT; 7960 7961 Value *CheckMinIters = Builder.CreateICmp( 7962 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7963 "min.iters.check"); 7964 7965 if (!ForEpilogue) 7966 TCCheckBlock->setName("vector.main.loop.iter.check"); 7967 7968 // Create new preheader for vector loop. 7969 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7970 DT, LI, nullptr, "vector.ph"); 7971 7972 if (ForEpilogue) { 7973 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7974 DT->getNode(Bypass)->getIDom()) && 7975 "TC check is expected to dominate Bypass"); 7976 7977 LoopBypassBlocks.push_back(TCCheckBlock); 7978 7979 // Save the trip count so we don't have to regenerate it in the 7980 // vec.epilog.iter.check. This is safe to do because the trip count 7981 // generated here dominates the vector epilog iter check. 7982 EPI.TripCount = Count; 7983 } 7984 7985 BranchInst &BI = 7986 *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters); 7987 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) 7988 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false); 7989 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI); 7990 7991 introduceCheckBlockInVPlan(TCCheckBlock); 7992 return TCCheckBlock; 7993 } 7994 7995 //===--------------------------------------------------------------------===// 7996 // EpilogueVectorizerEpilogueLoop 7997 //===--------------------------------------------------------------------===// 7998 7999 /// This function is partially responsible for generating the control flow 8000 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8001 BasicBlock * 8002 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton( 8003 const SCEV2ValueTy &ExpandedSCEVs) { 8004 createVectorLoopSkeleton("vec.epilog."); 8005 8006 // Now, compare the remaining count and if there aren't enough iterations to 8007 // execute the vectorized epilogue skip to the scalar part. 8008 LoopVectorPreHeader->setName("vec.epilog.ph"); 8009 BasicBlock *VecEpilogueIterationCountCheck = 8010 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->begin(), DT, LI, 8011 nullptr, "vec.epilog.iter.check", true); 8012 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 8013 VecEpilogueIterationCountCheck); 8014 AdditionalBypassBlock = VecEpilogueIterationCountCheck; 8015 8016 // Adjust the control flow taking the state info from the main loop 8017 // vectorization into account. 8018 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8019 "expected this to be saved from the previous pass."); 8020 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8021 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8022 8023 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8024 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8025 8026 if (EPI.SCEVSafetyCheck) 8027 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8028 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8029 if (EPI.MemSafetyCheck) 8030 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8031 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8032 8033 DT->changeImmediateDominator(LoopScalarPreHeader, 8034 EPI.EpilogueIterationCountCheck); 8035 // Keep track of bypass blocks, as they feed start values to the induction and 8036 // reduction phis in the scalar loop preheader. 8037 if (EPI.SCEVSafetyCheck) 8038 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8039 if (EPI.MemSafetyCheck) 8040 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8041 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8042 8043 // The vec.epilog.iter.check block may contain Phi nodes from inductions or 8044 // reductions which merge control-flow from the latch block and the middle 8045 // block. Update the incoming values here and move the Phi into the preheader. 8046 SmallVector<PHINode *, 4> PhisInBlock; 8047 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8048 PhisInBlock.push_back(&Phi); 8049 8050 for (PHINode *Phi : PhisInBlock) { 8051 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8052 Phi->replaceIncomingBlockWith( 8053 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8054 VecEpilogueIterationCountCheck); 8055 8056 // If the phi doesn't have an incoming value from the 8057 // EpilogueIterationCountCheck, we are done. Otherwise remove the incoming 8058 // value and also those from other check blocks. This is needed for 8059 // reduction phis only. 8060 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) { 8061 return EPI.EpilogueIterationCountCheck == IncB; 8062 })) 8063 continue; 8064 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8065 if (EPI.SCEVSafetyCheck) 8066 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8067 if (EPI.MemSafetyCheck) 8068 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8069 } 8070 8071 // Generate bypass values from the additional bypass block. Note that when the 8072 // vectorized epilogue is skipped due to iteration count check, then the 8073 // resume value for the induction variable comes from the trip count of the 8074 // main vector loop, passed as the second argument. 8075 createInductionAdditionalBypassValues(ExpandedSCEVs, EPI.VectorTripCount); 8076 return LoopVectorPreHeader; 8077 } 8078 8079 BasicBlock * 8080 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8081 BasicBlock *Bypass, BasicBlock *Insert) { 8082 8083 assert(EPI.TripCount && 8084 "Expected trip count to have been saved in the first pass."); 8085 assert( 8086 (!isa<Instruction>(EPI.TripCount) || 8087 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8088 "saved trip count does not dominate insertion point."); 8089 Value *TC = EPI.TripCount; 8090 IRBuilder<> Builder(Insert->getTerminator()); 8091 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8092 8093 // Generate code to check if the loop's trip count is less than VF * UF of the 8094 // vector epilogue loop. 8095 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector()) 8096 ? ICmpInst::ICMP_ULE 8097 : ICmpInst::ICMP_ULT; 8098 8099 Value *CheckMinIters = 8100 Builder.CreateICmp(P, Count, 8101 createStepForVF(Builder, Count->getType(), 8102 EPI.EpilogueVF, EPI.EpilogueUF), 8103 "min.epilog.iters.check"); 8104 8105 BranchInst &BI = 8106 *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters); 8107 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) { 8108 unsigned MainLoopStep = UF * VF.getKnownMinValue(); 8109 unsigned EpilogueLoopStep = 8110 EPI.EpilogueUF * EPI.EpilogueVF.getKnownMinValue(); 8111 // We assume the remaining `Count` is equally distributed in 8112 // [0, MainLoopStep) 8113 // So the probability for `Count < EpilogueLoopStep` should be 8114 // min(MainLoopStep, EpilogueLoopStep) / MainLoopStep 8115 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep); 8116 const uint32_t Weights[] = {EstimatedSkipCount, 8117 MainLoopStep - EstimatedSkipCount}; 8118 setBranchWeights(BI, Weights, /*IsExpected=*/false); 8119 } 8120 ReplaceInstWithInst(Insert->getTerminator(), &BI); 8121 LoopBypassBlocks.push_back(Insert); 8122 8123 // A new entry block has been created for the epilogue VPlan. Hook it in, as 8124 // otherwise we would try to modify the entry to the main vector loop. 8125 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(Insert); 8126 VPBasicBlock *OldEntry = Plan.getEntry(); 8127 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry); 8128 Plan.setEntry(NewEntry); 8129 // OldEntry is now dead and will be cleaned up when the plan gets destroyed. 8130 8131 introduceCheckBlockInVPlan(Insert); 8132 return Insert; 8133 } 8134 8135 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8136 LLVM_DEBUG({ 8137 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8138 << "Epilogue Loop VF:" << EPI.EpilogueVF 8139 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8140 }); 8141 } 8142 8143 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8144 DEBUG_WITH_TYPE(VerboseDebug, { 8145 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8146 }); 8147 } 8148 8149 iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> 8150 VPRecipeBuilder::mapToVPValues(User::op_range Operands) { 8151 std::function<VPValue *(Value *)> Fn = [this](Value *Op) { 8152 return getVPValueOrAddLiveIn(Op); 8153 }; 8154 return map_range(Operands, Fn); 8155 } 8156 8157 void VPRecipeBuilder::createSwitchEdgeMasks(SwitchInst *SI) { 8158 BasicBlock *Src = SI->getParent(); 8159 assert(!OrigLoop->isLoopExiting(Src) && 8160 all_of(successors(Src), 8161 [this](BasicBlock *Succ) { 8162 return OrigLoop->getHeader() != Succ; 8163 }) && 8164 "unsupported switch either exiting loop or continuing to header"); 8165 // Create masks where the terminator in Src is a switch. We create mask for 8166 // all edges at the same time. This is more efficient, as we can create and 8167 // collect compares for all cases once. 8168 VPValue *Cond = getVPValueOrAddLiveIn(SI->getCondition()); 8169 BasicBlock *DefaultDst = SI->getDefaultDest(); 8170 MapVector<BasicBlock *, SmallVector<VPValue *>> Dst2Compares; 8171 for (auto &C : SI->cases()) { 8172 BasicBlock *Dst = C.getCaseSuccessor(); 8173 assert(!EdgeMaskCache.contains({Src, Dst}) && "Edge masks already created"); 8174 // Cases whose destination is the same as default are redundant and can be 8175 // ignored - they will get there anyhow. 8176 if (Dst == DefaultDst) 8177 continue; 8178 auto &Compares = Dst2Compares[Dst]; 8179 VPValue *V = getVPValueOrAddLiveIn(C.getCaseValue()); 8180 Compares.push_back(Builder.createICmp(CmpInst::ICMP_EQ, Cond, V)); 8181 } 8182 8183 // We need to handle 2 separate cases below for all entries in Dst2Compares, 8184 // which excludes destinations matching the default destination. 8185 VPValue *SrcMask = getBlockInMask(Src); 8186 VPValue *DefaultMask = nullptr; 8187 for (const auto &[Dst, Conds] : Dst2Compares) { 8188 // 1. Dst is not the default destination. Dst is reached if any of the cases 8189 // with destination == Dst are taken. Join the conditions for each case 8190 // whose destination == Dst using an OR. 8191 VPValue *Mask = Conds[0]; 8192 for (VPValue *V : ArrayRef<VPValue *>(Conds).drop_front()) 8193 Mask = Builder.createOr(Mask, V); 8194 if (SrcMask) 8195 Mask = Builder.createLogicalAnd(SrcMask, Mask); 8196 EdgeMaskCache[{Src, Dst}] = Mask; 8197 8198 // 2. Create the mask for the default destination, which is reached if none 8199 // of the cases with destination != default destination are taken. Join the 8200 // conditions for each case where the destination is != Dst using an OR and 8201 // negate it. 8202 DefaultMask = DefaultMask ? Builder.createOr(DefaultMask, Mask) : Mask; 8203 } 8204 8205 if (DefaultMask) { 8206 DefaultMask = Builder.createNot(DefaultMask); 8207 if (SrcMask) 8208 DefaultMask = Builder.createLogicalAnd(SrcMask, DefaultMask); 8209 } 8210 EdgeMaskCache[{Src, DefaultDst}] = DefaultMask; 8211 } 8212 8213 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 8214 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8215 8216 // Look for cached value. 8217 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8218 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8219 if (ECEntryIt != EdgeMaskCache.end()) 8220 return ECEntryIt->second; 8221 8222 if (auto *SI = dyn_cast<SwitchInst>(Src->getTerminator())) { 8223 createSwitchEdgeMasks(SI); 8224 assert(EdgeMaskCache.contains(Edge) && "Mask for Edge not created?"); 8225 return EdgeMaskCache[Edge]; 8226 } 8227 8228 VPValue *SrcMask = getBlockInMask(Src); 8229 8230 // The terminator has to be a branch inst! 8231 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8232 assert(BI && "Unexpected terminator found"); 8233 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8234 return EdgeMaskCache[Edge] = SrcMask; 8235 8236 // If source is an exiting block, we know the exit edge is dynamically dead 8237 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8238 // adding uses of an otherwise potentially dead instruction unless we are 8239 // vectorizing a loop with uncountable exits. In that case, we always 8240 // materialize the mask. 8241 if (OrigLoop->isLoopExiting(Src) && 8242 Src != Legal->getUncountableEarlyExitingBlock()) 8243 return EdgeMaskCache[Edge] = SrcMask; 8244 8245 VPValue *EdgeMask = getVPValueOrAddLiveIn(BI->getCondition()); 8246 assert(EdgeMask && "No Edge Mask found for condition"); 8247 8248 if (BI->getSuccessor(0) != Dst) 8249 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8250 8251 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8252 // The bitwise 'And' of SrcMask and EdgeMask introduces new UB if SrcMask 8253 // is false and EdgeMask is poison. Avoid that by using 'LogicalAnd' 8254 // instead which generates 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8255 EdgeMask = Builder.createLogicalAnd(SrcMask, EdgeMask, BI->getDebugLoc()); 8256 } 8257 8258 return EdgeMaskCache[Edge] = EdgeMask; 8259 } 8260 8261 VPValue *VPRecipeBuilder::getEdgeMask(BasicBlock *Src, BasicBlock *Dst) const { 8262 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8263 8264 // Look for cached value. 8265 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8266 EdgeMaskCacheTy::const_iterator ECEntryIt = EdgeMaskCache.find(Edge); 8267 assert(ECEntryIt != EdgeMaskCache.end() && 8268 "looking up mask for edge which has not been created"); 8269 return ECEntryIt->second; 8270 } 8271 8272 void VPRecipeBuilder::createHeaderMask() { 8273 BasicBlock *Header = OrigLoop->getHeader(); 8274 8275 // When not folding the tail, use nullptr to model all-true mask. 8276 if (!CM.foldTailByMasking()) { 8277 BlockMaskCache[Header] = nullptr; 8278 return; 8279 } 8280 8281 // Introduce the early-exit compare IV <= BTC to form header block mask. 8282 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8283 // constructing the desired canonical IV in the header block as its first 8284 // non-phi instructions. 8285 8286 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 8287 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8288 auto *IV = new VPWidenCanonicalIVRecipe(Plan.getCanonicalIV()); 8289 HeaderVPBB->insert(IV, NewInsertionPoint); 8290 8291 VPBuilder::InsertPointGuard Guard(Builder); 8292 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8293 VPValue *BlockMask = nullptr; 8294 VPValue *BTC = Plan.getOrCreateBackedgeTakenCount(); 8295 BlockMask = Builder.createICmp(CmpInst::ICMP_ULE, IV, BTC); 8296 BlockMaskCache[Header] = BlockMask; 8297 } 8298 8299 VPValue *VPRecipeBuilder::getBlockInMask(BasicBlock *BB) const { 8300 // Return the cached value. 8301 BlockMaskCacheTy::const_iterator BCEntryIt = BlockMaskCache.find(BB); 8302 assert(BCEntryIt != BlockMaskCache.end() && 8303 "Trying to access mask for block without one."); 8304 return BCEntryIt->second; 8305 } 8306 8307 void VPRecipeBuilder::createBlockInMask(BasicBlock *BB) { 8308 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8309 assert(BlockMaskCache.count(BB) == 0 && "Mask for block already computed"); 8310 assert(OrigLoop->getHeader() != BB && 8311 "Loop header must have cached block mask"); 8312 8313 // All-one mask is modelled as no-mask following the convention for masked 8314 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8315 VPValue *BlockMask = nullptr; 8316 // This is the block mask. We OR all unique incoming edges. 8317 for (auto *Predecessor : 8318 SetVector<BasicBlock *>(pred_begin(BB), pred_end(BB))) { 8319 VPValue *EdgeMask = createEdgeMask(Predecessor, BB); 8320 if (!EdgeMask) { // Mask of predecessor is all-one so mask of block is too. 8321 BlockMaskCache[BB] = EdgeMask; 8322 return; 8323 } 8324 8325 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8326 BlockMask = EdgeMask; 8327 continue; 8328 } 8329 8330 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8331 } 8332 8333 BlockMaskCache[BB] = BlockMask; 8334 } 8335 8336 VPWidenMemoryRecipe * 8337 VPRecipeBuilder::tryToWidenMemory(Instruction *I, ArrayRef<VPValue *> Operands, 8338 VFRange &Range) { 8339 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8340 "Must be called with either a load or store"); 8341 8342 auto WillWiden = [&](ElementCount VF) -> bool { 8343 LoopVectorizationCostModel::InstWidening Decision = 8344 CM.getWideningDecision(I, VF); 8345 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8346 "CM decision should be taken at this point."); 8347 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8348 return true; 8349 if (CM.isScalarAfterVectorization(I, VF) || 8350 CM.isProfitableToScalarize(I, VF)) 8351 return false; 8352 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8353 }; 8354 8355 if (!LoopVectorizationPlanner::getDecisionAndClampRange(WillWiden, Range)) 8356 return nullptr; 8357 8358 VPValue *Mask = nullptr; 8359 if (Legal->isMaskRequired(I)) 8360 Mask = getBlockInMask(I->getParent()); 8361 8362 // Determine if the pointer operand of the access is either consecutive or 8363 // reverse consecutive. 8364 LoopVectorizationCostModel::InstWidening Decision = 8365 CM.getWideningDecision(I, Range.Start); 8366 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8367 bool Consecutive = 8368 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8369 8370 VPValue *Ptr = isa<LoadInst>(I) ? Operands[0] : Operands[1]; 8371 if (Consecutive) { 8372 auto *GEP = dyn_cast<GetElementPtrInst>( 8373 Ptr->getUnderlyingValue()->stripPointerCasts()); 8374 VPSingleDefRecipe *VectorPtr; 8375 if (Reverse) { 8376 // When folding the tail, we may compute an address that we don't in the 8377 // original scalar loop and it may not be inbounds. Drop Inbounds in that 8378 // case. 8379 GEPNoWrapFlags Flags = 8380 (CM.foldTailByMasking() || !GEP || !GEP->isInBounds()) 8381 ? GEPNoWrapFlags::none() 8382 : GEPNoWrapFlags::inBounds(); 8383 VectorPtr = new VPReverseVectorPointerRecipe( 8384 Ptr, &Plan.getVF(), getLoadStoreType(I), Flags, I->getDebugLoc()); 8385 } else { 8386 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I), 8387 GEP ? GEP->getNoWrapFlags() 8388 : GEPNoWrapFlags::none(), 8389 I->getDebugLoc()); 8390 } 8391 Builder.getInsertBlock()->appendRecipe(VectorPtr); 8392 Ptr = VectorPtr; 8393 } 8394 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8395 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse, 8396 I->getDebugLoc()); 8397 8398 StoreInst *Store = cast<StoreInst>(I); 8399 return new VPWidenStoreRecipe(*Store, Ptr, Operands[0], Mask, Consecutive, 8400 Reverse, I->getDebugLoc()); 8401 } 8402 8403 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8404 /// insert a recipe to expand the step for the induction recipe. 8405 static VPWidenIntOrFpInductionRecipe * 8406 createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, 8407 VPValue *Start, const InductionDescriptor &IndDesc, 8408 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop) { 8409 assert(IndDesc.getStartValue() == 8410 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8411 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8412 "step must be loop invariant"); 8413 8414 VPValue *Step = 8415 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8416 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8417 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(), 8418 IndDesc, TruncI, 8419 TruncI->getDebugLoc()); 8420 } 8421 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8422 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(), 8423 IndDesc, Phi->getDebugLoc()); 8424 } 8425 8426 VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8427 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) { 8428 8429 // Check if this is an integer or fp induction. If so, build the recipe that 8430 // produces its scalar and vector values. 8431 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8432 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, Plan, 8433 *PSE.getSE(), *OrigLoop); 8434 8435 // Check if this is pointer induction. If so, build the recipe for it. 8436 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) { 8437 VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep(), 8438 *PSE.getSE()); 8439 return new VPWidenPointerInductionRecipe( 8440 Phi, Operands[0], Step, *II, 8441 LoopVectorizationPlanner::getDecisionAndClampRange( 8442 [&](ElementCount VF) { 8443 return CM.isScalarAfterVectorization(Phi, VF); 8444 }, 8445 Range), 8446 Phi->getDebugLoc()); 8447 } 8448 return nullptr; 8449 } 8450 8451 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8452 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range) { 8453 // Optimize the special case where the source is a constant integer 8454 // induction variable. Notice that we can only optimize the 'trunc' case 8455 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8456 // (c) other casts depend on pointer size. 8457 8458 // Determine whether \p K is a truncation based on an induction variable that 8459 // can be optimized. 8460 auto IsOptimizableIVTruncate = 8461 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8462 return [=](ElementCount VF) -> bool { 8463 return CM.isOptimizableIVTruncate(K, VF); 8464 }; 8465 }; 8466 8467 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8468 IsOptimizableIVTruncate(I), Range)) { 8469 8470 auto *Phi = cast<PHINode>(I->getOperand(0)); 8471 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8472 VPValue *Start = Plan.getOrAddLiveIn(II.getStartValue()); 8473 return createWidenInductionRecipes(Phi, I, Start, II, Plan, *PSE.getSE(), 8474 *OrigLoop); 8475 } 8476 return nullptr; 8477 } 8478 8479 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, 8480 ArrayRef<VPValue *> Operands) { 8481 unsigned NumIncoming = Phi->getNumIncomingValues(); 8482 8483 // We know that all PHIs in non-header blocks are converted into selects, so 8484 // we don't have to worry about the insertion order and we can just use the 8485 // builder. At this point we generate the predication tree. There may be 8486 // duplications since this is a simple recursive scan, but future 8487 // optimizations will clean it up. 8488 SmallVector<VPValue *, 2> OperandsWithMask; 8489 8490 for (unsigned In = 0; In < NumIncoming; In++) { 8491 OperandsWithMask.push_back(Operands[In]); 8492 VPValue *EdgeMask = 8493 getEdgeMask(Phi->getIncomingBlock(In), Phi->getParent()); 8494 if (!EdgeMask) { 8495 assert(In == 0 && "Both null and non-null edge masks found"); 8496 assert(all_equal(Operands) && 8497 "Distinct incoming values with one having a full mask"); 8498 break; 8499 } 8500 OperandsWithMask.push_back(EdgeMask); 8501 } 8502 return new VPBlendRecipe(Phi, OperandsWithMask); 8503 } 8504 8505 VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8506 ArrayRef<VPValue *> Operands, 8507 VFRange &Range) { 8508 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8509 [this, CI](ElementCount VF) { 8510 return CM.isScalarWithPredication(CI, VF); 8511 }, 8512 Range); 8513 8514 if (IsPredicated) 8515 return nullptr; 8516 8517 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8518 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8519 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8520 ID == Intrinsic::pseudoprobe || 8521 ID == Intrinsic::experimental_noalias_scope_decl)) 8522 return nullptr; 8523 8524 SmallVector<VPValue *, 4> Ops(Operands.take_front(CI->arg_size())); 8525 8526 // Is it beneficial to perform intrinsic call compared to lib call? 8527 bool ShouldUseVectorIntrinsic = 8528 ID && LoopVectorizationPlanner::getDecisionAndClampRange( 8529 [&](ElementCount VF) -> bool { 8530 return CM.getCallWideningDecision(CI, VF).Kind == 8531 LoopVectorizationCostModel::CM_IntrinsicCall; 8532 }, 8533 Range); 8534 if (ShouldUseVectorIntrinsic) 8535 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(), 8536 CI->getDebugLoc()); 8537 8538 Function *Variant = nullptr; 8539 std::optional<unsigned> MaskPos; 8540 // Is better to call a vectorized version of the function than to to scalarize 8541 // the call? 8542 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange( 8543 [&](ElementCount VF) -> bool { 8544 // The following case may be scalarized depending on the VF. 8545 // The flag shows whether we can use a usual Call for vectorized 8546 // version of the instruction. 8547 8548 // If we've found a variant at a previous VF, then stop looking. A 8549 // vectorized variant of a function expects input in a certain shape 8550 // -- basically the number of input registers, the number of lanes 8551 // per register, and whether there's a mask required. 8552 // We store a pointer to the variant in the VPWidenCallRecipe, so 8553 // once we have an appropriate variant it's only valid for that VF. 8554 // This will force a different vplan to be generated for each VF that 8555 // finds a valid variant. 8556 if (Variant) 8557 return false; 8558 LoopVectorizationCostModel::CallWideningDecision Decision = 8559 CM.getCallWideningDecision(CI, VF); 8560 if (Decision.Kind == LoopVectorizationCostModel::CM_VectorCall) { 8561 Variant = Decision.Variant; 8562 MaskPos = Decision.MaskPos; 8563 return true; 8564 } 8565 8566 return false; 8567 }, 8568 Range); 8569 if (ShouldUseVectorCall) { 8570 if (MaskPos.has_value()) { 8571 // We have 2 cases that would require a mask: 8572 // 1) The block needs to be predicated, either due to a conditional 8573 // in the scalar loop or use of an active lane mask with 8574 // tail-folding, and we use the appropriate mask for the block. 8575 // 2) No mask is required for the block, but the only available 8576 // vector variant at this VF requires a mask, so we synthesize an 8577 // all-true mask. 8578 VPValue *Mask = nullptr; 8579 if (Legal->isMaskRequired(CI)) 8580 Mask = getBlockInMask(CI->getParent()); 8581 else 8582 Mask = Plan.getOrAddLiveIn( 8583 ConstantInt::getTrue(IntegerType::getInt1Ty(CI->getContext()))); 8584 8585 Ops.insert(Ops.begin() + *MaskPos, Mask); 8586 } 8587 8588 Ops.push_back(Operands.back()); 8589 return new VPWidenCallRecipe(CI, Variant, Ops, CI->getDebugLoc()); 8590 } 8591 8592 return nullptr; 8593 } 8594 8595 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8596 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8597 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8598 // Instruction should be widened, unless it is scalar after vectorization, 8599 // scalarization is profitable or it is predicated. 8600 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8601 return CM.isScalarAfterVectorization(I, VF) || 8602 CM.isProfitableToScalarize(I, VF) || 8603 CM.isScalarWithPredication(I, VF); 8604 }; 8605 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8606 Range); 8607 } 8608 8609 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8610 ArrayRef<VPValue *> Operands, 8611 VPBasicBlock *VPBB) { 8612 switch (I->getOpcode()) { 8613 default: 8614 return nullptr; 8615 case Instruction::SDiv: 8616 case Instruction::UDiv: 8617 case Instruction::SRem: 8618 case Instruction::URem: { 8619 // If not provably safe, use a select to form a safe divisor before widening the 8620 // div/rem operation itself. Otherwise fall through to general handling below. 8621 if (CM.isPredicatedInst(I)) { 8622 SmallVector<VPValue *> Ops(Operands); 8623 VPValue *Mask = getBlockInMask(I->getParent()); 8624 VPValue *One = 8625 Plan.getOrAddLiveIn(ConstantInt::get(I->getType(), 1u, false)); 8626 auto *SafeRHS = Builder.createSelect(Mask, Ops[1], One, I->getDebugLoc()); 8627 Ops[1] = SafeRHS; 8628 return new VPWidenRecipe(*I, make_range(Ops.begin(), Ops.end())); 8629 } 8630 [[fallthrough]]; 8631 } 8632 case Instruction::Add: 8633 case Instruction::And: 8634 case Instruction::AShr: 8635 case Instruction::FAdd: 8636 case Instruction::FCmp: 8637 case Instruction::FDiv: 8638 case Instruction::FMul: 8639 case Instruction::FNeg: 8640 case Instruction::FRem: 8641 case Instruction::FSub: 8642 case Instruction::ICmp: 8643 case Instruction::LShr: 8644 case Instruction::Mul: 8645 case Instruction::Or: 8646 case Instruction::Select: 8647 case Instruction::Shl: 8648 case Instruction::Sub: 8649 case Instruction::Xor: 8650 case Instruction::Freeze: 8651 SmallVector<VPValue *> NewOps(Operands); 8652 if (Instruction::isBinaryOp(I->getOpcode())) { 8653 // The legacy cost model uses SCEV to check if some of the operands are 8654 // constants. To match the legacy cost model's behavior, use SCEV to try 8655 // to replace operands with constants. 8656 ScalarEvolution &SE = *PSE.getSE(); 8657 auto GetConstantViaSCEV = [this, &SE](VPValue *Op) { 8658 Value *V = Op->getUnderlyingValue(); 8659 if (isa<Constant>(V) || !SE.isSCEVable(V->getType())) 8660 return Op; 8661 auto *C = dyn_cast<SCEVConstant>(SE.getSCEV(V)); 8662 if (!C) 8663 return Op; 8664 return Plan.getOrAddLiveIn(C->getValue()); 8665 }; 8666 // For Mul, the legacy cost model checks both operands. 8667 if (I->getOpcode() == Instruction::Mul) 8668 NewOps[0] = GetConstantViaSCEV(NewOps[0]); 8669 // For other binops, the legacy cost model only checks the second operand. 8670 NewOps[1] = GetConstantViaSCEV(NewOps[1]); 8671 } 8672 return new VPWidenRecipe(*I, make_range(NewOps.begin(), NewOps.end())); 8673 }; 8674 } 8675 8676 VPHistogramRecipe * 8677 VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI, 8678 ArrayRef<VPValue *> Operands) { 8679 // FIXME: Support other operations. 8680 unsigned Opcode = HI->Update->getOpcode(); 8681 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) && 8682 "Histogram update operation must be an Add or Sub"); 8683 8684 SmallVector<VPValue *, 3> HGramOps; 8685 // Bucket address. 8686 HGramOps.push_back(Operands[1]); 8687 // Increment value. 8688 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1))); 8689 8690 // In case of predicated execution (due to tail-folding, or conditional 8691 // execution, or both), pass the relevant mask. 8692 if (Legal->isMaskRequired(HI->Store)) 8693 HGramOps.push_back(getBlockInMask(HI->Store->getParent())); 8694 8695 return new VPHistogramRecipe(Opcode, 8696 make_range(HGramOps.begin(), HGramOps.end()), 8697 HI->Store->getDebugLoc()); 8698 } 8699 8700 void VPRecipeBuilder::fixHeaderPhis() { 8701 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8702 for (VPHeaderPHIRecipe *R : PhisToFix) { 8703 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8704 VPRecipeBase *IncR = 8705 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8706 R->addOperand(IncR->getVPSingleValue()); 8707 } 8708 } 8709 8710 VPReplicateRecipe *VPRecipeBuilder::handleReplication(Instruction *I, 8711 VFRange &Range) { 8712 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8713 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8714 Range); 8715 8716 bool IsPredicated = CM.isPredicatedInst(I); 8717 8718 // Even if the instruction is not marked as uniform, there are certain 8719 // intrinsic calls that can be effectively treated as such, so we check for 8720 // them here. Conservatively, we only do this for scalable vectors, since 8721 // for fixed-width VFs we can always fall back on full scalarization. 8722 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8723 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8724 case Intrinsic::assume: 8725 case Intrinsic::lifetime_start: 8726 case Intrinsic::lifetime_end: 8727 // For scalable vectors if one of the operands is variant then we still 8728 // want to mark as uniform, which will generate one instruction for just 8729 // the first lane of the vector. We can't scalarize the call in the same 8730 // way as for fixed-width vectors because we don't know how many lanes 8731 // there are. 8732 // 8733 // The reasons for doing it this way for scalable vectors are: 8734 // 1. For the assume intrinsic generating the instruction for the first 8735 // lane is still be better than not generating any at all. For 8736 // example, the input may be a splat across all lanes. 8737 // 2. For the lifetime start/end intrinsics the pointer operand only 8738 // does anything useful when the input comes from a stack object, 8739 // which suggests it should always be uniform. For non-stack objects 8740 // the effect is to poison the object, which still allows us to 8741 // remove the call. 8742 IsUniform = true; 8743 break; 8744 default: 8745 break; 8746 } 8747 } 8748 VPValue *BlockInMask = nullptr; 8749 if (!IsPredicated) { 8750 // Finalize the recipe for Instr, first if it is not predicated. 8751 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8752 } else { 8753 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8754 // Instructions marked for predication are replicated and a mask operand is 8755 // added initially. Masked replicate recipes will later be placed under an 8756 // if-then construct to prevent side-effects. Generate recipes to compute 8757 // the block mask for this region. 8758 BlockInMask = getBlockInMask(I->getParent()); 8759 } 8760 8761 // Note that there is some custom logic to mark some intrinsics as uniform 8762 // manually above for scalable vectors, which this assert needs to account for 8763 // as well. 8764 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated || 8765 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) && 8766 "Should not predicate a uniform recipe"); 8767 auto *Recipe = new VPReplicateRecipe(I, mapToVPValues(I->operands()), 8768 IsUniform, BlockInMask); 8769 return Recipe; 8770 } 8771 8772 /// Find all possible partial reductions in the loop and track all of those that 8773 /// are valid so recipes can be formed later. 8774 void VPRecipeBuilder::collectScaledReductions(VFRange &Range) { 8775 // Find all possible partial reductions. 8776 SmallVector<std::pair<PartialReductionChain, unsigned>, 1> 8777 PartialReductionChains; 8778 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) 8779 if (std::optional<std::pair<PartialReductionChain, unsigned>> Pair = 8780 getScaledReduction(Phi, RdxDesc, Range)) 8781 PartialReductionChains.push_back(*Pair); 8782 8783 // A partial reduction is invalid if any of its extends are used by 8784 // something that isn't another partial reduction. This is because the 8785 // extends are intended to be lowered along with the reduction itself. 8786 8787 // Build up a set of partial reduction bin ops for efficient use checking. 8788 SmallSet<User *, 4> PartialReductionBinOps; 8789 for (const auto &[PartialRdx, _] : PartialReductionChains) 8790 PartialReductionBinOps.insert(PartialRdx.BinOp); 8791 8792 auto ExtendIsOnlyUsedByPartialReductions = 8793 [&PartialReductionBinOps](Instruction *Extend) { 8794 return all_of(Extend->users(), [&](const User *U) { 8795 return PartialReductionBinOps.contains(U); 8796 }); 8797 }; 8798 8799 // Check if each use of a chain's two extends is a partial reduction 8800 // and only add those that don't have non-partial reduction users. 8801 for (auto Pair : PartialReductionChains) { 8802 PartialReductionChain Chain = Pair.first; 8803 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) && 8804 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)) 8805 ScaledReductionExitInstrs.insert(std::make_pair(Chain.Reduction, Pair)); 8806 } 8807 } 8808 8809 std::optional<std::pair<PartialReductionChain, unsigned>> 8810 VPRecipeBuilder::getScaledReduction(PHINode *PHI, 8811 const RecurrenceDescriptor &Rdx, 8812 VFRange &Range) { 8813 // TODO: Allow scaling reductions when predicating. The select at 8814 // the end of the loop chooses between the phi value and most recent 8815 // reduction result, both of which have different VFs to the active lane 8816 // mask when scaling. 8817 if (CM.blockNeedsPredicationForAnyReason(Rdx.getLoopExitInstr()->getParent())) 8818 return std::nullopt; 8819 8820 auto *Update = dyn_cast<BinaryOperator>(Rdx.getLoopExitInstr()); 8821 if (!Update) 8822 return std::nullopt; 8823 8824 Value *Op = Update->getOperand(0); 8825 Value *PhiOp = Update->getOperand(1); 8826 if (Op == PHI) { 8827 Op = Update->getOperand(1); 8828 PhiOp = Update->getOperand(0); 8829 } 8830 if (PhiOp != PHI) 8831 return std::nullopt; 8832 8833 auto *BinOp = dyn_cast<BinaryOperator>(Op); 8834 if (!BinOp || !BinOp->hasOneUse()) 8835 return std::nullopt; 8836 8837 using namespace llvm::PatternMatch; 8838 Value *A, *B; 8839 if (!match(BinOp->getOperand(0), m_ZExtOrSExt(m_Value(A))) || 8840 !match(BinOp->getOperand(1), m_ZExtOrSExt(m_Value(B)))) 8841 return std::nullopt; 8842 8843 Instruction *ExtA = cast<Instruction>(BinOp->getOperand(0)); 8844 Instruction *ExtB = cast<Instruction>(BinOp->getOperand(1)); 8845 8846 TTI::PartialReductionExtendKind OpAExtend = 8847 TargetTransformInfo::getPartialReductionExtendKind(ExtA); 8848 TTI::PartialReductionExtendKind OpBExtend = 8849 TargetTransformInfo::getPartialReductionExtendKind(ExtB); 8850 8851 PartialReductionChain Chain(Rdx.getLoopExitInstr(), ExtA, ExtB, BinOp); 8852 8853 unsigned TargetScaleFactor = 8854 PHI->getType()->getPrimitiveSizeInBits().getKnownScalarFactor( 8855 A->getType()->getPrimitiveSizeInBits()); 8856 8857 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8858 [&](ElementCount VF) { 8859 InstructionCost Cost = TTI->getPartialReductionCost( 8860 Update->getOpcode(), A->getType(), B->getType(), PHI->getType(), 8861 VF, OpAExtend, OpBExtend, 8862 std::make_optional(BinOp->getOpcode())); 8863 return Cost.isValid(); 8864 }, 8865 Range)) 8866 return std::make_pair(Chain, TargetScaleFactor); 8867 8868 return std::nullopt; 8869 } 8870 8871 VPRecipeBase * 8872 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8873 ArrayRef<VPValue *> Operands, 8874 VFRange &Range, VPBasicBlock *VPBB) { 8875 // First, check for specific widening recipes that deal with inductions, Phi 8876 // nodes, calls and memory operations. 8877 VPRecipeBase *Recipe; 8878 if (auto *Phi = dyn_cast<PHINode>(Instr)) { 8879 if (Phi->getParent() != OrigLoop->getHeader()) 8880 return tryToBlend(Phi, Operands); 8881 8882 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8883 return Recipe; 8884 8885 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8886 assert((Legal->isReductionVariable(Phi) || 8887 Legal->isFixedOrderRecurrence(Phi)) && 8888 "can only widen reductions and fixed-order recurrences here"); 8889 VPValue *StartV = Operands[0]; 8890 if (Legal->isReductionVariable(Phi)) { 8891 const RecurrenceDescriptor &RdxDesc = 8892 Legal->getReductionVars().find(Phi)->second; 8893 assert(RdxDesc.getRecurrenceStartValue() == 8894 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8895 8896 // If the PHI is used by a partial reduction, set the scale factor. 8897 std::optional<std::pair<PartialReductionChain, unsigned>> Pair = 8898 getScaledReductionForInstr(RdxDesc.getLoopExitInstr()); 8899 unsigned ScaleFactor = Pair ? Pair->second : 1; 8900 PhiRecipe = new VPReductionPHIRecipe( 8901 Phi, RdxDesc, *StartV, CM.isInLoopReduction(Phi), 8902 CM.useOrderedReductions(RdxDesc), ScaleFactor); 8903 } else { 8904 // TODO: Currently fixed-order recurrences are modeled as chains of 8905 // first-order recurrences. If there are no users of the intermediate 8906 // recurrences in the chain, the fixed order recurrence should be modeled 8907 // directly, enabling more efficient codegen. 8908 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8909 } 8910 8911 PhisToFix.push_back(PhiRecipe); 8912 return PhiRecipe; 8913 } 8914 8915 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate( 8916 cast<TruncInst>(Instr), Operands, Range))) 8917 return Recipe; 8918 8919 // All widen recipes below deal only with VF > 1. 8920 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8921 [&](ElementCount VF) { return VF.isScalar(); }, Range)) 8922 return nullptr; 8923 8924 if (auto *CI = dyn_cast<CallInst>(Instr)) 8925 return tryToWidenCall(CI, Operands, Range); 8926 8927 if (StoreInst *SI = dyn_cast<StoreInst>(Instr)) 8928 if (auto HistInfo = Legal->getHistogramInfo(SI)) 8929 return tryToWidenHistogram(*HistInfo, Operands); 8930 8931 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8932 return tryToWidenMemory(Instr, Operands, Range); 8933 8934 if (getScaledReductionForInstr(Instr)) 8935 return tryToCreatePartialReduction(Instr, Operands); 8936 8937 if (!shouldWiden(Instr, Range)) 8938 return nullptr; 8939 8940 if (auto *GEP = dyn_cast<GetElementPtrInst>(Instr)) 8941 return new VPWidenGEPRecipe(GEP, 8942 make_range(Operands.begin(), Operands.end())); 8943 8944 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8945 return new VPWidenSelectRecipe( 8946 *SI, make_range(Operands.begin(), Operands.end())); 8947 } 8948 8949 if (auto *CI = dyn_cast<CastInst>(Instr)) { 8950 return new VPWidenCastRecipe(CI->getOpcode(), Operands[0], CI->getType(), 8951 *CI); 8952 } 8953 8954 return tryToWiden(Instr, Operands, VPBB); 8955 } 8956 8957 VPRecipeBase * 8958 VPRecipeBuilder::tryToCreatePartialReduction(Instruction *Reduction, 8959 ArrayRef<VPValue *> Operands) { 8960 assert(Operands.size() == 2 && 8961 "Unexpected number of operands for partial reduction"); 8962 8963 VPValue *BinOp = Operands[0]; 8964 VPValue *Phi = Operands[1]; 8965 if (isa<VPReductionPHIRecipe>(BinOp->getDefiningRecipe())) 8966 std::swap(BinOp, Phi); 8967 8968 return new VPPartialReductionRecipe(Reduction->getOpcode(), BinOp, Phi, 8969 Reduction); 8970 } 8971 8972 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8973 ElementCount MaxVF) { 8974 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8975 8976 auto MaxVFTimes2 = MaxVF * 2; 8977 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 8978 VFRange SubRange = {VF, MaxVFTimes2}; 8979 if (auto Plan = tryToBuildVPlanWithVPRecipes(SubRange)) { 8980 // Now optimize the initial VPlan. 8981 if (!Plan->hasVF(ElementCount::getFixed(1))) 8982 VPlanTransforms::truncateToMinimalBitwidths(*Plan, 8983 CM.getMinimalBitwidths()); 8984 VPlanTransforms::optimize(*Plan); 8985 // TODO: try to put it close to addActiveLaneMask(). 8986 // Discard the plan if it is not EVL-compatible 8987 if (CM.foldTailWithEVL() && !VPlanTransforms::tryAddExplicitVectorLength( 8988 *Plan, CM.getMaxSafeElements())) 8989 break; 8990 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid"); 8991 VPlans.push_back(std::move(Plan)); 8992 } 8993 VF = SubRange.End; 8994 } 8995 } 8996 8997 // Add the necessary canonical IV and branch recipes required to control the 8998 // loop. 8999 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, bool HasNUW, 9000 DebugLoc DL) { 9001 Value *StartIdx = ConstantInt::get(IdxTy, 0); 9002 auto *StartV = Plan.getOrAddLiveIn(StartIdx); 9003 9004 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. 9005 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 9006 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 9007 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 9008 Header->insert(CanonicalIVPHI, Header->begin()); 9009 9010 VPBuilder Builder(TopRegion->getExitingBasicBlock()); 9011 // Add a VPInstruction to increment the scalar canonical IV by VF * UF. 9012 auto *CanonicalIVIncrement = Builder.createOverflowingOp( 9013 Instruction::Add, {CanonicalIVPHI, &Plan.getVFxUF()}, {HasNUW, false}, DL, 9014 "index.next"); 9015 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 9016 9017 // Add the BranchOnCount VPInstruction to the latch. 9018 Builder.createNaryOp(VPInstruction::BranchOnCount, 9019 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 9020 } 9021 9022 /// Create and return a ResumePhi for \p WideIV, unless it is truncated. If the 9023 /// induction recipe is not canonical, creates a VPDerivedIVRecipe to compute 9024 /// the end value of the induction. 9025 static VPValue *addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, 9026 VPBuilder &VectorPHBuilder, 9027 VPBuilder &ScalarPHBuilder, 9028 VPTypeAnalysis &TypeInfo, 9029 VPValue *VectorTC) { 9030 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV); 9031 // Truncated wide inductions resume from the last lane of their vector value 9032 // in the last vector iteration which is handled elsewhere. 9033 if (WideIntOrFp && WideIntOrFp->getTruncInst()) 9034 return nullptr; 9035 9036 VPValue *Start = WideIV->getStartValue(); 9037 VPValue *Step = WideIV->getStepValue(); 9038 const InductionDescriptor &ID = WideIV->getInductionDescriptor(); 9039 VPValue *EndValue = VectorTC; 9040 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) { 9041 EndValue = VectorPHBuilder.createDerivedIV( 9042 ID.getKind(), dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), 9043 Start, VectorTC, Step); 9044 } 9045 9046 // EndValue is derived from the vector trip count (which has the same type as 9047 // the widest induction) and thus may be wider than the induction here. 9048 Type *ScalarTypeOfWideIV = TypeInfo.inferScalarType(WideIV); 9049 if (ScalarTypeOfWideIV != TypeInfo.inferScalarType(EndValue)) { 9050 EndValue = VectorPHBuilder.createScalarCast(Instruction::Trunc, EndValue, 9051 ScalarTypeOfWideIV, 9052 WideIV->getDebugLoc()); 9053 } 9054 9055 auto *ResumePhiRecipe = 9056 ScalarPHBuilder.createNaryOp(VPInstruction::ResumePhi, {EndValue, Start}, 9057 WideIV->getDebugLoc(), "bc.resume.val"); 9058 return ResumePhiRecipe; 9059 } 9060 9061 /// Create resume phis in the scalar preheader for first-order recurrences, 9062 /// reductions and inductions, and update the VPIRInstructions wrapping the 9063 /// original phis in the scalar header. 9064 static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan) { 9065 VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType()); 9066 auto *ScalarPH = Plan.getScalarPreheader(); 9067 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getSinglePredecessor()); 9068 VPBuilder VectorPHBuilder( 9069 cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSinglePredecessor())); 9070 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi()); 9071 VPBuilder ScalarPHBuilder(ScalarPH); 9072 VPValue *OneVPV = Plan.getOrAddLiveIn( 9073 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 1)); 9074 for (VPRecipeBase &ScalarPhiR : *Plan.getScalarHeader()) { 9075 auto *ScalarPhiIRI = cast<VPIRInstruction>(&ScalarPhiR); 9076 auto *ScalarPhiI = dyn_cast<PHINode>(&ScalarPhiIRI->getInstruction()); 9077 if (!ScalarPhiI) 9078 break; 9079 9080 auto *VectorPhiR = cast<VPHeaderPHIRecipe>(Builder.getRecipe(ScalarPhiI)); 9081 if (auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) { 9082 if (VPValue *ResumePhi = addResumePhiRecipeForInduction( 9083 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo, 9084 &Plan.getVectorTripCount())) { 9085 ScalarPhiIRI->addOperand(ResumePhi); 9086 continue; 9087 } 9088 // TODO: Also handle truncated inductions here. Computing end-values 9089 // separately should be done as VPlan-to-VPlan optimization, after 9090 // legalizing all resume values to use the last lane from the loop. 9091 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() && 9092 "should only skip truncated wide inductions"); 9093 continue; 9094 } 9095 9096 // The backedge value provides the value to resume coming out of a loop, 9097 // which for FORs is a vector whose last element needs to be extracted. The 9098 // start value provides the value if the loop is bypassed. 9099 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR); 9100 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue(); 9101 if (IsFOR) 9102 ResumeFromVectorLoop = MiddleBuilder.createNaryOp( 9103 VPInstruction::ExtractFromEnd, {ResumeFromVectorLoop, OneVPV}, {}, 9104 "vector.recur.extract"); 9105 StringRef Name = IsFOR ? "scalar.recur.init" : "bc.merge.rdx"; 9106 auto *ResumePhiR = ScalarPHBuilder.createNaryOp( 9107 VPInstruction::ResumePhi, 9108 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name); 9109 ScalarPhiIRI->addOperand(ResumePhiR); 9110 } 9111 } 9112 9113 /// Return true if \p VPV is an optimizable IV or IV use. That is, if \p VPV is 9114 /// either an untruncated wide induction, or if it increments a wide induction 9115 /// by its step. 9116 static bool isOptimizableIVOrUse(VPValue *VPV) { 9117 VPRecipeBase *Def = VPV->getDefiningRecipe(); 9118 if (!Def) 9119 return false; 9120 auto *WideIV = dyn_cast<VPWidenInductionRecipe>(Def); 9121 if (WideIV) { 9122 // VPV itself is a wide induction, separately compute the end value for exit 9123 // users if it is not a truncated IV. 9124 return isa<VPWidenPointerInductionRecipe>(WideIV) || 9125 !cast<VPWidenIntOrFpInductionRecipe>(WideIV)->getTruncInst(); 9126 } 9127 9128 // Check if VPV is an optimizable induction increment. 9129 if (Def->getNumOperands() != 2) 9130 return false; 9131 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(0)); 9132 if (!WideIV) 9133 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(1)); 9134 if (!WideIV) 9135 return false; 9136 9137 using namespace VPlanPatternMatch; 9138 auto &ID = WideIV->getInductionDescriptor(); 9139 9140 // Check if VPV increments the induction by the induction step. 9141 VPValue *IVStep = WideIV->getStepValue(); 9142 switch (ID.getInductionOpcode()) { 9143 case Instruction::Add: 9144 return match(VPV, m_c_Binary<Instruction::Add>(m_Specific(WideIV), 9145 m_Specific(IVStep))); 9146 case Instruction::FAdd: 9147 return match(VPV, m_c_Binary<Instruction::FAdd>(m_Specific(WideIV), 9148 m_Specific(IVStep))); 9149 case Instruction::FSub: 9150 return match(VPV, m_Binary<Instruction::FSub>(m_Specific(WideIV), 9151 m_Specific(IVStep))); 9152 case Instruction::Sub: { 9153 // IVStep will be the negated step of the subtraction. Check if Step == -1 * 9154 // IVStep. 9155 VPValue *Step; 9156 if (!match(VPV, m_Binary<Instruction::Sub>(m_VPValue(), m_VPValue(Step))) || 9157 !Step->isLiveIn() || !IVStep->isLiveIn()) 9158 return false; 9159 auto *StepCI = dyn_cast<ConstantInt>(Step->getLiveInIRValue()); 9160 auto *IVStepCI = dyn_cast<ConstantInt>(IVStep->getLiveInIRValue()); 9161 return StepCI && IVStepCI && 9162 StepCI->getValue() == (-1 * IVStepCI->getValue()); 9163 } 9164 default: 9165 return ID.getKind() == InductionDescriptor::IK_PtrInduction && 9166 match(VPV, m_GetElementPtr(m_Specific(WideIV), 9167 m_Specific(WideIV->getStepValue()))); 9168 } 9169 llvm_unreachable("should have been covered by switch above"); 9170 } 9171 9172 // Collect VPIRInstructions for phis in the exit blocks that are modeled 9173 // in VPlan and add the exiting VPValue as operand. Some exiting values are not 9174 // modeled explicitly yet and won't be included. Those are un-truncated 9175 // VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe and induction 9176 // increments. 9177 static SetVector<VPIRInstruction *> 9178 collectUsersInExitBlocks(Loop *OrigLoop, VPRecipeBuilder &Builder, 9179 VPlan &Plan) { 9180 auto *MiddleVPBB = Plan.getMiddleBlock(); 9181 SetVector<VPIRInstruction *> ExitUsersToFix; 9182 for (VPIRBasicBlock *ExitVPBB : Plan.getExitBlocks()) { 9183 for (VPRecipeBase &R : *ExitVPBB) { 9184 auto *ExitIRI = dyn_cast<VPIRInstruction>(&R); 9185 if (!ExitIRI) 9186 continue; 9187 auto *ExitPhi = dyn_cast<PHINode>(&ExitIRI->getInstruction()); 9188 if (!ExitPhi) 9189 break; 9190 for (VPBlockBase *PredVPBB : ExitVPBB->getPredecessors()) { 9191 BasicBlock *ExitingBB = OrigLoop->getLoopLatch(); 9192 if (PredVPBB != MiddleVPBB) { 9193 SmallVector<BasicBlock *> ExitingBlocks; 9194 OrigLoop->getExitingBlocks(ExitingBlocks); 9195 assert(ExitingBlocks.size() == 2 && "only support 2 exiting blocks"); 9196 ExitingBB = ExitingBB == ExitingBlocks[0] ? ExitingBlocks[1] 9197 : ExitingBlocks[0]; 9198 } 9199 Value *IncomingValue = ExitPhi->getIncomingValueForBlock(ExitingBB); 9200 VPValue *V = Builder.getVPValueOrAddLiveIn(IncomingValue); 9201 // Exit values for inductions are computed and updated outside of VPlan 9202 // and independent of induction recipes. 9203 // TODO: Compute induction exit values in VPlan. 9204 if (isOptimizableIVOrUse(V) && 9205 ExitVPBB->getSinglePredecessor() == MiddleVPBB) 9206 continue; 9207 ExitUsersToFix.insert(ExitIRI); 9208 ExitIRI->addOperand(V); 9209 } 9210 } 9211 } 9212 return ExitUsersToFix; 9213 } 9214 9215 // Add exit values to \p Plan. Extracts are added for each entry in \p 9216 // ExitUsersToFix if needed and their operands are updated. Returns true if all 9217 // exit users can be handled, otherwise return false. 9218 static bool 9219 addUsersInExitBlocks(VPlan &Plan, 9220 const SetVector<VPIRInstruction *> &ExitUsersToFix) { 9221 if (ExitUsersToFix.empty()) 9222 return true; 9223 9224 auto *MiddleVPBB = Plan.getMiddleBlock(); 9225 VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi()); 9226 9227 // Introduce extract for exiting values and update the VPIRInstructions 9228 // modeling the corresponding LCSSA phis. 9229 for (VPIRInstruction *ExitIRI : ExitUsersToFix) { 9230 for (const auto &[Idx, Op] : enumerate(ExitIRI->operands())) { 9231 // Pass live-in values used by exit phis directly through to their users 9232 // in the exit block. 9233 if (Op->isLiveIn()) 9234 continue; 9235 9236 // Currently only live-ins can be used by exit values from blocks not 9237 // exiting via the vector latch through to the middle block. 9238 if (ExitIRI->getParent()->getSinglePredecessor() != MiddleVPBB) 9239 return false; 9240 9241 LLVMContext &Ctx = ExitIRI->getInstruction().getContext(); 9242 VPValue *Ext = B.createNaryOp(VPInstruction::ExtractFromEnd, 9243 {Op, Plan.getOrAddLiveIn(ConstantInt::get( 9244 IntegerType::get(Ctx, 32), 1))}); 9245 ExitIRI->setOperand(Idx, Ext); 9246 } 9247 } 9248 return true; 9249 } 9250 9251 /// Handle users in the exit block for first order reductions in the original 9252 /// exit block. The penultimate value of recurrences is fed to their LCSSA phi 9253 /// users in the original exit block using the VPIRInstruction wrapping to the 9254 /// LCSSA phi. 9255 static void addExitUsersForFirstOrderRecurrences( 9256 VPlan &Plan, SetVector<VPIRInstruction *> &ExitUsersToFix) { 9257 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); 9258 auto *ScalarPHVPBB = Plan.getScalarPreheader(); 9259 auto *MiddleVPBB = Plan.getMiddleBlock(); 9260 VPBuilder ScalarPHBuilder(ScalarPHVPBB); 9261 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi()); 9262 VPValue *TwoVPV = Plan.getOrAddLiveIn( 9263 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 2)); 9264 9265 for (auto &HeaderPhi : VectorRegion->getEntryBasicBlock()->phis()) { 9266 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi); 9267 if (!FOR) 9268 continue; 9269 9270 // This is the second phase of vectorizing first-order recurrences, creating 9271 // extract for users outside the loop. An overview of the transformation is 9272 // described below. Suppose we have the following loop with some use after 9273 // the loop of the last a[i-1], 9274 // 9275 // for (int i = 0; i < n; ++i) { 9276 // t = a[i - 1]; 9277 // b[i] = a[i] - t; 9278 // } 9279 // use t; 9280 // 9281 // There is a first-order recurrence on "a". For this loop, the shorthand 9282 // scalar IR looks like: 9283 // 9284 // scalar.ph: 9285 // s.init = a[-1] 9286 // br scalar.body 9287 // 9288 // scalar.body: 9289 // i = phi [0, scalar.ph], [i+1, scalar.body] 9290 // s1 = phi [s.init, scalar.ph], [s2, scalar.body] 9291 // s2 = a[i] 9292 // b[i] = s2 - s1 9293 // br cond, scalar.body, exit.block 9294 // 9295 // exit.block: 9296 // use = lcssa.phi [s1, scalar.body] 9297 // 9298 // In this example, s1 is a recurrence because it's value depends on the 9299 // previous iteration. In the first phase of vectorization, we created a 9300 // VPFirstOrderRecurrencePHIRecipe v1 for s1. Now we create the extracts 9301 // for users in the scalar preheader and exit block. 9302 // 9303 // vector.ph: 9304 // v_init = vector(..., ..., ..., a[-1]) 9305 // br vector.body 9306 // 9307 // vector.body 9308 // i = phi [0, vector.ph], [i+4, vector.body] 9309 // v1 = phi [v_init, vector.ph], [v2, vector.body] 9310 // v2 = a[i, i+1, i+2, i+3] 9311 // b[i] = v2 - v1 9312 // // Next, third phase will introduce v1' = splice(v1(3), v2(0, 1, 2)) 9313 // b[i, i+1, i+2, i+3] = v2 - v1 9314 // br cond, vector.body, middle.block 9315 // 9316 // middle.block: 9317 // vector.recur.extract.for.phi = v2(2) 9318 // vector.recur.extract = v2(3) 9319 // br cond, scalar.ph, exit.block 9320 // 9321 // scalar.ph: 9322 // scalar.recur.init = phi [vector.recur.extract, middle.block], 9323 // [s.init, otherwise] 9324 // br scalar.body 9325 // 9326 // scalar.body: 9327 // i = phi [0, scalar.ph], [i+1, scalar.body] 9328 // s1 = phi [scalar.recur.init, scalar.ph], [s2, scalar.body] 9329 // s2 = a[i] 9330 // b[i] = s2 - s1 9331 // br cond, scalar.body, exit.block 9332 // 9333 // exit.block: 9334 // lo = lcssa.phi [s1, scalar.body], 9335 // [vector.recur.extract.for.phi, middle.block] 9336 // 9337 // Now update VPIRInstructions modeling LCSSA phis in the exit block. 9338 // Extract the penultimate value of the recurrence and use it as operand for 9339 // the VPIRInstruction modeling the phi. 9340 for (VPIRInstruction *ExitIRI : ExitUsersToFix) { 9341 if (ExitIRI->getOperand(0) != FOR) 9342 continue; 9343 VPValue *PenultimateElement = MiddleBuilder.createNaryOp( 9344 VPInstruction::ExtractFromEnd, {FOR->getBackedgeValue(), TwoVPV}, {}, 9345 "vector.recur.extract.for.phi"); 9346 ExitIRI->setOperand(0, PenultimateElement); 9347 ExitUsersToFix.remove(ExitIRI); 9348 } 9349 } 9350 } 9351 9352 VPlanPtr 9353 LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(VFRange &Range) { 9354 9355 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9356 9357 // --------------------------------------------------------------------------- 9358 // Build initial VPlan: Scan the body of the loop in a topological order to 9359 // visit each basic block after having visited its predecessor basic blocks. 9360 // --------------------------------------------------------------------------- 9361 9362 // Create initial VPlan skeleton, having a basic block for the pre-header 9363 // which contains SCEV expansions that need to happen before the CFG is 9364 // modified; a basic block for the vector pre-header, followed by a region for 9365 // the vector loop, followed by the middle basic block. The skeleton vector 9366 // loop region contains a header and latch basic blocks. 9367 9368 bool RequiresScalarEpilogueCheck = 9369 LoopVectorizationPlanner::getDecisionAndClampRange( 9370 [this](ElementCount VF) { 9371 return !CM.requiresScalarEpilogue(VF.isVector()); 9372 }, 9373 Range); 9374 VPlanPtr Plan = VPlan::createInitialVPlan(Legal->getWidestInductionType(), 9375 PSE, RequiresScalarEpilogueCheck, 9376 CM.foldTailByMasking(), OrigLoop); 9377 9378 // Don't use getDecisionAndClampRange here, because we don't know the UF 9379 // so this function is better to be conservative, rather than to split 9380 // it up into different VPlans. 9381 // TODO: Consider using getDecisionAndClampRange here to split up VPlans. 9382 bool IVUpdateMayOverflow = false; 9383 for (ElementCount VF : Range) 9384 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF); 9385 9386 DebugLoc DL = getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9387 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow); 9388 // Use NUW for the induction increment if we proved that it won't overflow in 9389 // the vector loop or when not folding the tail. In the later case, we know 9390 // that the canonical induction increment will not overflow as the vector trip 9391 // count is >= increment and a multiple of the increment. 9392 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None; 9393 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), HasNUW, DL); 9394 9395 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE, 9396 Builder); 9397 9398 // --------------------------------------------------------------------------- 9399 // Pre-construction: record ingredients whose recipes we'll need to further 9400 // process after constructing the initial VPlan. 9401 // --------------------------------------------------------------------------- 9402 9403 // For each interleave group which is relevant for this (possibly trimmed) 9404 // Range, add it to the set of groups to be later applied to the VPlan and add 9405 // placeholders for its members' Recipes which we'll be replacing with a 9406 // single VPInterleaveRecipe. 9407 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9408 auto ApplyIG = [IG, this](ElementCount VF) -> bool { 9409 bool Result = (VF.isVector() && // Query is illegal for VF == 1 9410 CM.getWideningDecision(IG->getInsertPos(), VF) == 9411 LoopVectorizationCostModel::CM_Interleave); 9412 // For scalable vectors, the only interleave factor currently supported 9413 // is 2 since we require the (de)interleave2 intrinsics instead of 9414 // shufflevectors. 9415 assert((!Result || !VF.isScalable() || IG->getFactor() == 2) && 9416 "Unsupported interleave factor for scalable vectors"); 9417 return Result; 9418 }; 9419 if (!getDecisionAndClampRange(ApplyIG, Range)) 9420 continue; 9421 InterleaveGroups.insert(IG); 9422 } 9423 9424 // --------------------------------------------------------------------------- 9425 // Construct recipes for the instructions in the loop 9426 // --------------------------------------------------------------------------- 9427 9428 // Scan the body of the loop in a topological order to visit each basic block 9429 // after having visited its predecessor basic blocks. 9430 LoopBlocksDFS DFS(OrigLoop); 9431 DFS.perform(LI); 9432 9433 VPBasicBlock *HeaderVPBB = Plan->getVectorLoopRegion()->getEntryBasicBlock(); 9434 VPBasicBlock *VPBB = HeaderVPBB; 9435 BasicBlock *HeaderBB = OrigLoop->getHeader(); 9436 bool NeedsMasks = 9437 CM.foldTailByMasking() || 9438 any_of(OrigLoop->blocks(), [this, HeaderBB](BasicBlock *BB) { 9439 bool NeedsBlends = BB != HeaderBB && !BB->phis().empty(); 9440 return Legal->blockNeedsPredication(BB) || NeedsBlends; 9441 }); 9442 9443 RecipeBuilder.collectScaledReductions(Range); 9444 9445 auto *MiddleVPBB = Plan->getMiddleBlock(); 9446 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi(); 9447 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9448 // Relevant instructions from basic block BB will be grouped into VPRecipe 9449 // ingredients and fill a new VPBasicBlock. 9450 if (VPBB != HeaderVPBB) 9451 VPBB->setName(BB->getName()); 9452 Builder.setInsertPoint(VPBB); 9453 9454 if (VPBB == HeaderVPBB) 9455 RecipeBuilder.createHeaderMask(); 9456 else if (NeedsMasks) 9457 RecipeBuilder.createBlockInMask(BB); 9458 9459 // Introduce each ingredient into VPlan. 9460 // TODO: Model and preserve debug intrinsics in VPlan. 9461 for (Instruction &I : drop_end(BB->instructionsWithoutDebug(false))) { 9462 Instruction *Instr = &I; 9463 SmallVector<VPValue *, 4> Operands; 9464 auto *Phi = dyn_cast<PHINode>(Instr); 9465 if (Phi && Phi->getParent() == HeaderBB) { 9466 Operands.push_back(Plan->getOrAddLiveIn( 9467 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9468 } else { 9469 auto OpRange = RecipeBuilder.mapToVPValues(Instr->operands()); 9470 Operands = {OpRange.begin(), OpRange.end()}; 9471 } 9472 9473 // The stores with invariant address inside the loop will be deleted, and 9474 // in the exit block, a uniform store recipe will be created for the final 9475 // invariant store of the reduction. 9476 StoreInst *SI; 9477 if ((SI = dyn_cast<StoreInst>(&I)) && 9478 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) { 9479 // Only create recipe for the final invariant store of the reduction. 9480 if (!Legal->isInvariantStoreOfReduction(SI)) 9481 continue; 9482 auto *Recipe = new VPReplicateRecipe( 9483 SI, RecipeBuilder.mapToVPValues(Instr->operands()), 9484 true /* IsUniform */); 9485 Recipe->insertBefore(*MiddleVPBB, MBIP); 9486 continue; 9487 } 9488 9489 VPRecipeBase *Recipe = 9490 RecipeBuilder.tryToCreateWidenRecipe(Instr, Operands, Range, VPBB); 9491 if (!Recipe) 9492 Recipe = RecipeBuilder.handleReplication(Instr, Range); 9493 9494 RecipeBuilder.setRecipe(Instr, Recipe); 9495 if (isa<VPHeaderPHIRecipe>(Recipe)) { 9496 // VPHeaderPHIRecipes must be kept in the phi section of HeaderVPBB. In 9497 // the following cases, VPHeaderPHIRecipes may be created after non-phi 9498 // recipes and need to be moved to the phi section of HeaderVPBB: 9499 // * tail-folding (non-phi recipes computing the header mask are 9500 // introduced earlier than regular header phi recipes, and should appear 9501 // after them) 9502 // * Optimizing truncates to VPWidenIntOrFpInductionRecipe. 9503 9504 assert((HeaderVPBB->getFirstNonPhi() == VPBB->end() || 9505 CM.foldTailByMasking() || isa<TruncInst>(Instr)) && 9506 "unexpected recipe needs moving"); 9507 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9508 } else 9509 VPBB->appendRecipe(Recipe); 9510 } 9511 9512 VPBlockUtils::insertBlockAfter(Plan->createVPBasicBlock(""), VPBB); 9513 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9514 } 9515 9516 // After here, VPBB should not be used. 9517 VPBB = nullptr; 9518 9519 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 9520 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 9521 "entry block must be set to a VPRegionBlock having a non-empty entry " 9522 "VPBasicBlock"); 9523 RecipeBuilder.fixHeaderPhis(); 9524 9525 // Update wide induction increments to use the same step as the corresponding 9526 // wide induction. This enables detecting induction increments directly in 9527 // VPlan and removes redundant splats. 9528 for (const auto &[Phi, ID] : Legal->getInductionVars()) { 9529 auto *IVInc = cast<Instruction>( 9530 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())); 9531 if (IVInc->getOperand(0) != Phi || IVInc->getOpcode() != Instruction::Add) 9532 continue; 9533 VPWidenInductionRecipe *WideIV = 9534 cast<VPWidenInductionRecipe>(RecipeBuilder.getRecipe(Phi)); 9535 VPRecipeBase *R = RecipeBuilder.getRecipe(IVInc); 9536 R->setOperand(1, WideIV->getStepValue()); 9537 } 9538 9539 if (auto *UncountableExitingBlock = 9540 Legal->getUncountableEarlyExitingBlock()) { 9541 VPlanTransforms::handleUncountableEarlyExit( 9542 *Plan, *PSE.getSE(), OrigLoop, UncountableExitingBlock, RecipeBuilder); 9543 } 9544 addScalarResumePhis(RecipeBuilder, *Plan); 9545 SetVector<VPIRInstruction *> ExitUsersToFix = 9546 collectUsersInExitBlocks(OrigLoop, RecipeBuilder, *Plan); 9547 addExitUsersForFirstOrderRecurrences(*Plan, ExitUsersToFix); 9548 if (!addUsersInExitBlocks(*Plan, ExitUsersToFix)) { 9549 reportVectorizationFailure( 9550 "Some exit values in loop with uncountable exit not supported yet", 9551 "UncountableEarlyExitLoopsUnsupportedExitValue", ORE, OrigLoop); 9552 return nullptr; 9553 } 9554 9555 // --------------------------------------------------------------------------- 9556 // Transform initial VPlan: Apply previously taken decisions, in order, to 9557 // bring the VPlan to its final state. 9558 // --------------------------------------------------------------------------- 9559 9560 // Adjust the recipes for any inloop reductions. 9561 adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start); 9562 9563 // Interleave memory: for each Interleave Group we marked earlier as relevant 9564 // for this VPlan, replace the Recipes widening its memory instructions with a 9565 // single VPInterleaveRecipe at its insertion point. 9566 VPlanTransforms::createInterleaveGroups( 9567 *Plan, InterleaveGroups, RecipeBuilder, CM.isScalarEpilogueAllowed()); 9568 9569 for (ElementCount VF : Range) 9570 Plan->addVF(VF); 9571 Plan->setName("Initial VPlan"); 9572 9573 // Replace VPValues for known constant strides guaranteed by predicate scalar 9574 // evolution. 9575 auto CanUseVersionedStride = [&Plan](VPUser &U, unsigned) { 9576 auto *R = cast<VPRecipeBase>(&U); 9577 return R->getParent()->getParent() || 9578 R->getParent() == 9579 Plan->getVectorLoopRegion()->getSinglePredecessor(); 9580 }; 9581 for (auto [_, Stride] : Legal->getLAI()->getSymbolicStrides()) { 9582 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue(); 9583 auto *ScevStride = dyn_cast<SCEVConstant>(PSE.getSCEV(StrideV)); 9584 // Only handle constant strides for now. 9585 if (!ScevStride) 9586 continue; 9587 9588 auto *CI = Plan->getOrAddLiveIn( 9589 ConstantInt::get(Stride->getType(), ScevStride->getAPInt())); 9590 if (VPValue *StrideVPV = Plan->getLiveIn(StrideV)) 9591 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride); 9592 9593 // The versioned value may not be used in the loop directly but through a 9594 // sext/zext. Add new live-ins in those cases. 9595 for (Value *U : StrideV->users()) { 9596 if (!isa<SExtInst, ZExtInst>(U)) 9597 continue; 9598 VPValue *StrideVPV = Plan->getLiveIn(U); 9599 if (!StrideVPV) 9600 continue; 9601 unsigned BW = U->getType()->getScalarSizeInBits(); 9602 APInt C = isa<SExtInst>(U) ? ScevStride->getAPInt().sext(BW) 9603 : ScevStride->getAPInt().zext(BW); 9604 VPValue *CI = Plan->getOrAddLiveIn(ConstantInt::get(U->getType(), C)); 9605 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride); 9606 } 9607 } 9608 9609 VPlanTransforms::dropPoisonGeneratingRecipes(*Plan, [this](BasicBlock *BB) { 9610 return Legal->blockNeedsPredication(BB); 9611 }); 9612 9613 // Sink users of fixed-order recurrence past the recipe defining the previous 9614 // value and introduce FirstOrderRecurrenceSplice VPInstructions. 9615 if (!VPlanTransforms::adjustFixedOrderRecurrences(*Plan, Builder)) 9616 return nullptr; 9617 9618 if (useActiveLaneMask(Style)) { 9619 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once 9620 // TailFoldingStyle is visible there. 9621 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style); 9622 bool WithoutRuntimeCheck = 9623 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck; 9624 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow, 9625 WithoutRuntimeCheck); 9626 } 9627 return Plan; 9628 } 9629 9630 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9631 // Outer loop handling: They may require CFG and instruction level 9632 // transformations before even evaluating whether vectorization is profitable. 9633 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9634 // the vectorization pipeline. 9635 assert(!OrigLoop->isInnermost()); 9636 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9637 9638 // Create new empty VPlan 9639 auto Plan = VPlan::createInitialVPlan(Legal->getWidestInductionType(), PSE, 9640 true, false, OrigLoop); 9641 9642 // Build hierarchical CFG 9643 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9644 HCFGBuilder.buildHierarchicalCFG(); 9645 9646 for (ElementCount VF : Range) 9647 Plan->addVF(VF); 9648 9649 VPlanTransforms::VPInstructionsToVPRecipes( 9650 Plan, 9651 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9652 *PSE.getSE(), *TLI); 9653 9654 // Remove the existing terminator of the exiting block of the top-most region. 9655 // A BranchOnCount will be added instead when adding the canonical IV recipes. 9656 auto *Term = 9657 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); 9658 Term->eraseFromParent(); 9659 9660 // Tail folding is not supported for outer loops, so the induction increment 9661 // is guaranteed to not wrap. 9662 bool HasNUW = true; 9663 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), HasNUW, 9664 DebugLoc()); 9665 9666 // Collect mapping of IR header phis to header phi recipes, to be used in 9667 // addScalarResumePhis. 9668 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE, 9669 Builder); 9670 for (auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9671 if (isa<VPCanonicalIVPHIRecipe>(&R)) 9672 continue; 9673 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R); 9674 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR); 9675 } 9676 addScalarResumePhis(RecipeBuilder, *Plan); 9677 9678 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid"); 9679 return Plan; 9680 } 9681 9682 // Adjust the recipes for reductions. For in-loop reductions the chain of 9683 // instructions leading from the loop exit instr to the phi need to be converted 9684 // to reductions, with one operand being vector and the other being the scalar 9685 // reduction chain. For other reductions, a select is introduced between the phi 9686 // and users outside the vector region when folding the tail. 9687 // 9688 // A ComputeReductionResult recipe is added to the middle block, also for 9689 // in-loop reductions which compute their result in-loop, because generating 9690 // the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes. 9691 // 9692 // Adjust AnyOf reductions; replace the reduction phi for the selected value 9693 // with a boolean reduction phi node to check if the condition is true in any 9694 // iteration. The final value is selected by the final ComputeReductionResult. 9695 void LoopVectorizationPlanner::adjustRecipesForReductions( 9696 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) { 9697 using namespace VPlanPatternMatch; 9698 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion(); 9699 VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock(); 9700 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock(); 9701 for (VPRecipeBase &R : Header->phis()) { 9702 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9703 if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered())) 9704 continue; 9705 9706 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 9707 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9708 assert( 9709 !RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind) && 9710 !RecurrenceDescriptor::isFindLastIVRecurrenceKind(Kind) && 9711 "AnyOf and FindLast reductions are not allowed for in-loop reductions"); 9712 9713 // Collect the chain of "link" recipes for the reduction starting at PhiR. 9714 SetVector<VPSingleDefRecipe *> Worklist; 9715 Worklist.insert(PhiR); 9716 for (unsigned I = 0; I != Worklist.size(); ++I) { 9717 VPSingleDefRecipe *Cur = Worklist[I]; 9718 for (VPUser *U : Cur->users()) { 9719 auto *UserRecipe = cast<VPSingleDefRecipe>(U); 9720 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) { 9721 assert((UserRecipe->getParent() == MiddleVPBB || 9722 UserRecipe->getParent() == Plan->getScalarPreheader()) && 9723 "U must be either in the loop region, the middle block or the " 9724 "scalar preheader."); 9725 continue; 9726 } 9727 Worklist.insert(UserRecipe); 9728 } 9729 } 9730 9731 // Visit operation "Links" along the reduction chain top-down starting from 9732 // the phi until LoopExitValue. We keep track of the previous item 9733 // (PreviousLink) to tell which of the two operands of a Link will remain 9734 // scalar and which will be reduced. For minmax by select(cmp), Link will be 9735 // the select instructions. Blend recipes of in-loop reduction phi's will 9736 // get folded to their non-phi operand, as the reduction recipe handles the 9737 // condition directly. 9738 VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0]. 9739 for (VPSingleDefRecipe *CurrentLink : Worklist.getArrayRef().drop_front()) { 9740 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr(); 9741 9742 // Index of the first operand which holds a non-mask vector operand. 9743 unsigned IndexOfFirstOperand; 9744 // Recognize a call to the llvm.fmuladd intrinsic. 9745 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9746 VPValue *VecOp; 9747 VPBasicBlock *LinkVPBB = CurrentLink->getParent(); 9748 if (IsFMulAdd) { 9749 assert( 9750 RecurrenceDescriptor::isFMulAddIntrinsic(CurrentLinkI) && 9751 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9752 assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) || 9753 isa<VPWidenIntrinsicRecipe>(CurrentLink)) && 9754 CurrentLink->getOperand(2) == PreviousLink && 9755 "expected a call where the previous link is the added operand"); 9756 9757 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9758 // need to create an fmul recipe (multiplying the first two operands of 9759 // the fmuladd together) to use as the vector operand for the fadd 9760 // reduction. 9761 VPInstruction *FMulRecipe = new VPInstruction( 9762 Instruction::FMul, 9763 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)}, 9764 CurrentLinkI->getFastMathFlags()); 9765 LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator()); 9766 VecOp = FMulRecipe; 9767 } else { 9768 auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink); 9769 if (PhiR->isInLoop() && Blend) { 9770 assert(Blend->getNumIncomingValues() == 2 && 9771 "Blend must have 2 incoming values"); 9772 if (Blend->getIncomingValue(0) == PhiR) 9773 Blend->replaceAllUsesWith(Blend->getIncomingValue(1)); 9774 else { 9775 assert(Blend->getIncomingValue(1) == PhiR && 9776 "PhiR must be an operand of the blend"); 9777 Blend->replaceAllUsesWith(Blend->getIncomingValue(0)); 9778 } 9779 continue; 9780 } 9781 9782 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9783 if (isa<VPWidenRecipe>(CurrentLink)) { 9784 assert(isa<CmpInst>(CurrentLinkI) && 9785 "need to have the compare of the select"); 9786 continue; 9787 } 9788 assert(isa<VPWidenSelectRecipe>(CurrentLink) && 9789 "must be a select recipe"); 9790 IndexOfFirstOperand = 1; 9791 } else { 9792 assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) && 9793 "Expected to replace a VPWidenSC"); 9794 IndexOfFirstOperand = 0; 9795 } 9796 // Note that for non-commutable operands (cmp-selects), the semantics of 9797 // the cmp-select are captured in the recurrence kind. 9798 unsigned VecOpId = 9799 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink 9800 ? IndexOfFirstOperand + 1 9801 : IndexOfFirstOperand; 9802 VecOp = CurrentLink->getOperand(VecOpId); 9803 assert(VecOp != PreviousLink && 9804 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 - 9805 (VecOpId - IndexOfFirstOperand)) == 9806 PreviousLink && 9807 "PreviousLink must be the operand other than VecOp"); 9808 } 9809 9810 BasicBlock *BB = CurrentLinkI->getParent(); 9811 VPValue *CondOp = nullptr; 9812 if (CM.blockNeedsPredicationForAnyReason(BB)) 9813 CondOp = RecipeBuilder.getBlockInMask(BB); 9814 9815 auto *RedRecipe = new VPReductionRecipe( 9816 RdxDesc, CurrentLinkI, PreviousLink, VecOp, CondOp, 9817 CM.useOrderedReductions(RdxDesc), CurrentLinkI->getDebugLoc()); 9818 // Append the recipe to the end of the VPBasicBlock because we need to 9819 // ensure that it comes after all of it's inputs, including CondOp. 9820 // Note that this transformation may leave over dead recipes (including 9821 // CurrentLink), which will be cleaned by a later VPlan transform. 9822 LinkVPBB->appendRecipe(RedRecipe); 9823 CurrentLink->replaceAllUsesWith(RedRecipe); 9824 PreviousLink = RedRecipe; 9825 } 9826 } 9827 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock(); 9828 Builder.setInsertPoint(&*LatchVPBB->begin()); 9829 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi(); 9830 for (VPRecipeBase &R : 9831 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9832 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9833 if (!PhiR) 9834 continue; 9835 9836 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 9837 // If tail is folded by masking, introduce selects between the phi 9838 // and the users outside the vector region of each reduction, at the 9839 // beginning of the dedicated latch block. 9840 auto *OrigExitingVPV = PhiR->getBackedgeValue(); 9841 auto *NewExitingVPV = PhiR->getBackedgeValue(); 9842 if (!PhiR->isInLoop() && CM.foldTailByMasking()) { 9843 VPValue *Cond = RecipeBuilder.getBlockInMask(OrigLoop->getHeader()); 9844 assert(OrigExitingVPV->getDefiningRecipe()->getParent() != LatchVPBB && 9845 "reduction recipe must be defined before latch"); 9846 Type *PhiTy = PhiR->getOperand(0)->getLiveInIRValue()->getType(); 9847 std::optional<FastMathFlags> FMFs = 9848 PhiTy->isFloatingPointTy() 9849 ? std::make_optional(RdxDesc.getFastMathFlags()) 9850 : std::nullopt; 9851 NewExitingVPV = 9852 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs); 9853 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) { 9854 return isa<VPInstruction>(&U) && 9855 cast<VPInstruction>(&U)->getOpcode() == 9856 VPInstruction::ComputeReductionResult; 9857 }); 9858 if (CM.usePredicatedReductionSelect( 9859 PhiR->getRecurrenceDescriptor().getOpcode(), PhiTy)) 9860 PhiR->setOperand(1, NewExitingVPV); 9861 } 9862 9863 // If the vector reduction can be performed in a smaller type, we truncate 9864 // then extend the loop exit value to enable InstCombine to evaluate the 9865 // entire expression in the smaller type. 9866 Type *PhiTy = PhiR->getStartValue()->getLiveInIRValue()->getType(); 9867 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() && 9868 !RecurrenceDescriptor::isAnyOfRecurrenceKind( 9869 RdxDesc.getRecurrenceKind())) { 9870 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 9871 Type *RdxTy = RdxDesc.getRecurrenceType(); 9872 auto *Trunc = 9873 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy); 9874 auto *Extnd = 9875 RdxDesc.isSigned() 9876 ? new VPWidenCastRecipe(Instruction::SExt, Trunc, PhiTy) 9877 : new VPWidenCastRecipe(Instruction::ZExt, Trunc, PhiTy); 9878 9879 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe()); 9880 Extnd->insertAfter(Trunc); 9881 if (PhiR->getOperand(1) == NewExitingVPV) 9882 PhiR->setOperand(1, Extnd->getVPSingleValue()); 9883 NewExitingVPV = Extnd; 9884 } 9885 9886 // We want code in the middle block to appear to execute on the location of 9887 // the scalar loop's latch terminator because: (a) it is all compiler 9888 // generated, (b) these instructions are always executed after evaluating 9889 // the latch conditional branch, and (c) other passes may add new 9890 // predecessors which terminate on this line. This is the easiest way to 9891 // ensure we don't accidentally cause an extra step back into the loop while 9892 // debugging. 9893 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc(); 9894 9895 // TODO: At the moment ComputeReductionResult also drives creation of the 9896 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here 9897 // even for in-loop reductions, until the reduction resume value handling is 9898 // also modeled in VPlan. 9899 auto *FinalReductionResult = new VPInstruction( 9900 VPInstruction::ComputeReductionResult, {PhiR, NewExitingVPV}, ExitDL); 9901 // Update all users outside the vector region. 9902 OrigExitingVPV->replaceUsesWithIf( 9903 FinalReductionResult, [](VPUser &User, unsigned) { 9904 auto *Parent = cast<VPRecipeBase>(&User)->getParent(); 9905 return Parent && !Parent->getParent(); 9906 }); 9907 FinalReductionResult->insertBefore(*MiddleVPBB, IP); 9908 9909 // Adjust AnyOf reductions; replace the reduction phi for the selected value 9910 // with a boolean reduction phi node to check if the condition is true in 9911 // any iteration. The final value is selected by the final 9912 // ComputeReductionResult. 9913 if (RecurrenceDescriptor::isAnyOfRecurrenceKind( 9914 RdxDesc.getRecurrenceKind())) { 9915 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) { 9916 return isa<VPWidenSelectRecipe>(U) || 9917 (isa<VPReplicateRecipe>(U) && 9918 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() == 9919 Instruction::Select); 9920 })); 9921 VPValue *Cmp = Select->getOperand(0); 9922 // If the compare is checking the reduction PHI node, adjust it to check 9923 // the start value. 9924 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe()) { 9925 for (unsigned I = 0; I != CmpR->getNumOperands(); ++I) 9926 if (CmpR->getOperand(I) == PhiR) 9927 CmpR->setOperand(I, PhiR->getStartValue()); 9928 } 9929 VPBuilder::InsertPointGuard Guard(Builder); 9930 Builder.setInsertPoint(Select); 9931 9932 // If the true value of the select is the reduction phi, the new value is 9933 // selected if the negated condition is true in any iteration. 9934 if (Select->getOperand(1) == PhiR) 9935 Cmp = Builder.createNot(Cmp); 9936 VPValue *Or = Builder.createOr(PhiR, Cmp); 9937 Select->getVPSingleValue()->replaceAllUsesWith(Or); 9938 9939 // Convert the reduction phi to operate on bools. 9940 PhiR->setOperand(0, Plan->getOrAddLiveIn(ConstantInt::getFalse( 9941 OrigLoop->getHeader()->getContext()))); 9942 continue; 9943 } 9944 9945 if (RecurrenceDescriptor::isFindLastIVRecurrenceKind( 9946 RdxDesc.getRecurrenceKind())) { 9947 // Adjust the start value for FindLastIV recurrences to use the sentinel 9948 // value after generating the ResumePhi recipe, which uses the original 9949 // start value. 9950 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue())); 9951 } 9952 } 9953 9954 VPlanTransforms::clearReductionWrapFlags(*Plan); 9955 } 9956 9957 void VPDerivedIVRecipe::execute(VPTransformState &State) { 9958 assert(!State.Lane && "VPDerivedIVRecipe being replicated."); 9959 9960 // Fast-math-flags propagate from the original induction instruction. 9961 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9962 if (FPBinOp) 9963 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags()); 9964 9965 Value *Step = State.get(getStepValue(), VPLane(0)); 9966 Value *Index = State.get(getOperand(1), VPLane(0)); 9967 Value *DerivedIV = emitTransformedIndex( 9968 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind, 9969 cast_if_present<BinaryOperator>(FPBinOp)); 9970 DerivedIV->setName(Name); 9971 // If index is the vector trip count, the concrete value will only be set in 9972 // prepareToExecute, leading to missed simplifications, e.g. if it is 0. 9973 // TODO: Remove the special case for the vector trip count once it is computed 9974 // in VPlan and can be used during VPlan simplification. 9975 assert((DerivedIV != Index || 9976 getOperand(1) == &getParent()->getPlan()->getVectorTripCount()) && 9977 "IV didn't need transforming?"); 9978 State.set(this, DerivedIV, VPLane(0)); 9979 } 9980 9981 void VPReplicateRecipe::execute(VPTransformState &State) { 9982 Instruction *UI = getUnderlyingInstr(); 9983 if (State.Lane) { // Generate a single instance. 9984 assert((State.VF.isScalar() || !isUniform()) && 9985 "uniform recipe shouldn't be predicated"); 9986 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9987 State.ILV->scalarizeInstruction(UI, this, *State.Lane, State); 9988 // Insert scalar instance packing it into a vector. 9989 if (State.VF.isVector() && shouldPack()) { 9990 // If we're constructing lane 0, initialize to start from poison. 9991 if (State.Lane->isFirstLane()) { 9992 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9993 Value *Poison = PoisonValue::get( 9994 VectorType::get(UI->getType(), State.VF)); 9995 State.set(this, Poison); 9996 } 9997 State.packScalarIntoVectorValue(this, *State.Lane); 9998 } 9999 return; 10000 } 10001 10002 if (IsUniform) { 10003 // Uniform within VL means we need to generate lane 0. 10004 State.ILV->scalarizeInstruction(UI, this, VPLane(0), State); 10005 return; 10006 } 10007 10008 // A store of a loop varying value to a uniform address only needs the last 10009 // copy of the store. 10010 if (isa<StoreInst>(UI) && 10011 vputils::isUniformAfterVectorization(getOperand(1))) { 10012 auto Lane = VPLane::getLastLaneForVF(State.VF); 10013 State.ILV->scalarizeInstruction(UI, this, VPLane(Lane), State); 10014 return; 10015 } 10016 10017 // Generate scalar instances for all VF lanes. 10018 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 10019 const unsigned EndLane = State.VF.getKnownMinValue(); 10020 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 10021 State.ILV->scalarizeInstruction(UI, this, VPLane(Lane), State); 10022 } 10023 10024 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10025 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10026 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10027 // for predication. 10028 static ScalarEpilogueLowering getScalarEpilogueLowering( 10029 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10030 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10031 LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI) { 10032 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10033 // don't look at hints or options, and don't request a scalar epilogue. 10034 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10035 // LoopAccessInfo (due to code dependency and not being able to reliably get 10036 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10037 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10038 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10039 // back to the old way and vectorize with versioning when forced. See D81345.) 10040 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10041 PGSOQueryType::IRPass) && 10042 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10043 return CM_ScalarEpilogueNotAllowedOptSize; 10044 10045 // 2) If set, obey the directives 10046 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10047 switch (PreferPredicateOverEpilogue) { 10048 case PreferPredicateTy::ScalarEpilogue: 10049 return CM_ScalarEpilogueAllowed; 10050 case PreferPredicateTy::PredicateElseScalarEpilogue: 10051 return CM_ScalarEpilogueNotNeededUsePredicate; 10052 case PreferPredicateTy::PredicateOrDontVectorize: 10053 return CM_ScalarEpilogueNotAllowedUsePredicate; 10054 }; 10055 } 10056 10057 // 3) If set, obey the hints 10058 switch (Hints.getPredicate()) { 10059 case LoopVectorizeHints::FK_Enabled: 10060 return CM_ScalarEpilogueNotNeededUsePredicate; 10061 case LoopVectorizeHints::FK_Disabled: 10062 return CM_ScalarEpilogueAllowed; 10063 }; 10064 10065 // 4) if the TTI hook indicates this is profitable, request predication. 10066 TailFoldingInfo TFI(TLI, &LVL, IAI); 10067 if (TTI->preferPredicateOverEpilogue(&TFI)) 10068 return CM_ScalarEpilogueNotNeededUsePredicate; 10069 10070 return CM_ScalarEpilogueAllowed; 10071 } 10072 10073 // Process the loop in the VPlan-native vectorization path. This path builds 10074 // VPlan upfront in the vectorization pipeline, which allows to apply 10075 // VPlan-to-VPlan transformations from the very beginning without modifying the 10076 // input LLVM IR. 10077 static bool processLoopInVPlanNativePath( 10078 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10079 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10080 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10081 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10082 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10083 LoopVectorizationRequirements &Requirements) { 10084 10085 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10086 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10087 return false; 10088 } 10089 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10090 Function *F = L->getHeader()->getParent(); 10091 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10092 10093 ScalarEpilogueLowering SEL = 10094 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, *LVL, &IAI); 10095 10096 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10097 &Hints, IAI); 10098 // Use the planner for outer loop vectorization. 10099 // TODO: CM is not used at this point inside the planner. Turn CM into an 10100 // optional argument if we don't need it in the future. 10101 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints, 10102 ORE); 10103 10104 // Get user vectorization factor. 10105 ElementCount UserVF = Hints.getWidth(); 10106 10107 CM.collectElementTypesForWidening(); 10108 10109 // Plan how to best vectorize, return the best VF and its cost. 10110 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10111 10112 // If we are stress testing VPlan builds, do not attempt to generate vector 10113 // code. Masked vector code generation support will follow soon. 10114 // Also, do not attempt to vectorize if no vector code will be produced. 10115 if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) 10116 return false; 10117 10118 VPlan &BestPlan = LVP.getPlanFor(VF.Width); 10119 10120 { 10121 bool AddBranchWeights = 10122 hasBranchWeightMD(*L->getLoopLatch()->getTerminator()); 10123 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), 10124 AddBranchWeights); 10125 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 10126 VF.Width, 1, LVL, &CM, BFI, PSI, Checks, BestPlan); 10127 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10128 << L->getHeader()->getParent()->getName() << "\"\n"); 10129 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); 10130 } 10131 10132 reportVectorization(ORE, L, VF, 1); 10133 10134 // Mark the loop as already vectorized to avoid vectorizing again. 10135 Hints.setAlreadyVectorized(); 10136 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10137 return true; 10138 } 10139 10140 // Emit a remark if there are stores to floats that required a floating point 10141 // extension. If the vectorized loop was generated with floating point there 10142 // will be a performance penalty from the conversion overhead and the change in 10143 // the vector width. 10144 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10145 SmallVector<Instruction *, 4> Worklist; 10146 for (BasicBlock *BB : L->getBlocks()) { 10147 for (Instruction &Inst : *BB) { 10148 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10149 if (S->getValueOperand()->getType()->isFloatTy()) 10150 Worklist.push_back(S); 10151 } 10152 } 10153 } 10154 10155 // Traverse the floating point stores upwards searching, for floating point 10156 // conversions. 10157 SmallPtrSet<const Instruction *, 4> Visited; 10158 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10159 while (!Worklist.empty()) { 10160 auto *I = Worklist.pop_back_val(); 10161 if (!L->contains(I)) 10162 continue; 10163 if (!Visited.insert(I).second) 10164 continue; 10165 10166 // Emit a remark if the floating point store required a floating 10167 // point conversion. 10168 // TODO: More work could be done to identify the root cause such as a 10169 // constant or a function return type and point the user to it. 10170 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10171 ORE->emit([&]() { 10172 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10173 I->getDebugLoc(), L->getHeader()) 10174 << "floating point conversion changes vector width. " 10175 << "Mixed floating point precision requires an up/down " 10176 << "cast that will negatively impact performance."; 10177 }); 10178 10179 for (Use &Op : I->operands()) 10180 if (auto *OpI = dyn_cast<Instruction>(Op)) 10181 Worklist.push_back(OpI); 10182 } 10183 } 10184 10185 static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, 10186 VectorizationFactor &VF, Loop *L, 10187 const TargetTransformInfo &TTI, 10188 PredicatedScalarEvolution &PSE, 10189 ScalarEpilogueLowering SEL) { 10190 InstructionCost CheckCost = Checks.getCost(); 10191 if (!CheckCost.isValid()) 10192 return false; 10193 10194 // When interleaving only scalar and vector cost will be equal, which in turn 10195 // would lead to a divide by 0. Fall back to hard threshold. 10196 if (VF.Width.isScalar()) { 10197 if (CheckCost > VectorizeMemoryCheckThreshold) { 10198 LLVM_DEBUG( 10199 dbgs() 10200 << "LV: Interleaving only is not profitable due to runtime checks\n"); 10201 return false; 10202 } 10203 return true; 10204 } 10205 10206 // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. 10207 uint64_t ScalarC = *VF.ScalarCost.getValue(); 10208 if (ScalarC == 0) 10209 return true; 10210 10211 // First, compute the minimum iteration count required so that the vector 10212 // loop outperforms the scalar loop. 10213 // The total cost of the scalar loop is 10214 // ScalarC * TC 10215 // where 10216 // * TC is the actual trip count of the loop. 10217 // * ScalarC is the cost of a single scalar iteration. 10218 // 10219 // The total cost of the vector loop is 10220 // RtC + VecC * (TC / VF) + EpiC 10221 // where 10222 // * RtC is the cost of the generated runtime checks 10223 // * VecC is the cost of a single vector iteration. 10224 // * TC is the actual trip count of the loop 10225 // * VF is the vectorization factor 10226 // * EpiCost is the cost of the generated epilogue, including the cost 10227 // of the remaining scalar operations. 10228 // 10229 // Vectorization is profitable once the total vector cost is less than the 10230 // total scalar cost: 10231 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC 10232 // 10233 // Now we can compute the minimum required trip count TC as 10234 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC 10235 // 10236 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that 10237 // the computations are performed on doubles, not integers and the result 10238 // is rounded up, hence we get an upper estimate of the TC. 10239 unsigned IntVF = getEstimatedRuntimeVF(L, TTI, VF.Width); 10240 uint64_t RtC = *CheckCost.getValue(); 10241 uint64_t Div = ScalarC * IntVF - *VF.Cost.getValue(); 10242 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div); 10243 10244 // Second, compute a minimum iteration count so that the cost of the 10245 // runtime checks is only a fraction of the total scalar loop cost. This 10246 // adds a loop-dependent bound on the overhead incurred if the runtime 10247 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC 10248 // * TC. To bound the runtime check to be a fraction 1/X of the scalar 10249 // cost, compute 10250 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC 10251 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC); 10252 10253 // Now pick the larger minimum. If it is not a multiple of VF and a scalar 10254 // epilogue is allowed, choose the next closest multiple of VF. This should 10255 // partly compensate for ignoring the epilogue cost. 10256 uint64_t MinTC = std::max(MinTC1, MinTC2); 10257 if (SEL == CM_ScalarEpilogueAllowed) 10258 MinTC = alignTo(MinTC, IntVF); 10259 VF.MinProfitableTripCount = ElementCount::getFixed(MinTC); 10260 10261 LLVM_DEBUG( 10262 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" 10263 << VF.MinProfitableTripCount << "\n"); 10264 10265 // Skip vectorization if the expected trip count is less than the minimum 10266 // required trip count. 10267 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) { 10268 if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), 10269 VF.MinProfitableTripCount)) { 10270 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected " 10271 "trip count < minimum profitable VF (" 10272 << *ExpectedTC << " < " << VF.MinProfitableTripCount 10273 << ")\n"); 10274 10275 return false; 10276 } 10277 } 10278 return true; 10279 } 10280 10281 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10282 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10283 !EnableLoopInterleaving), 10284 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10285 !EnableLoopVectorization) {} 10286 10287 /// Prepare \p MainPlan for vectorizing the main vector loop during epilogue 10288 /// vectorization. Remove ResumePhis from \p MainPlan for inductions that 10289 /// don't have a corresponding wide induction in \p EpiPlan. 10290 static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) { 10291 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those 10292 // will need their resume-values computed in the main vector loop. Others 10293 // can be removed from the main VPlan. 10294 SmallPtrSet<PHINode *, 2> EpiWidenedPhis; 10295 for (VPRecipeBase &R : 10296 EpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 10297 if (isa<VPCanonicalIVPHIRecipe>(&R)) 10298 continue; 10299 EpiWidenedPhis.insert( 10300 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue())); 10301 } 10302 for (VPRecipeBase &R : make_early_inc_range( 10303 *cast<VPIRBasicBlock>(MainPlan.getScalarHeader()))) { 10304 auto *VPIRInst = cast<VPIRInstruction>(&R); 10305 auto *IRI = dyn_cast<PHINode>(&VPIRInst->getInstruction()); 10306 if (!IRI) 10307 break; 10308 if (EpiWidenedPhis.contains(IRI)) 10309 continue; 10310 // There is no corresponding wide induction in the epilogue plan that would 10311 // need a resume value. Remove the VPIRInst wrapping the scalar header phi 10312 // together with the corresponding ResumePhi. The resume values for the 10313 // scalar loop will be created during execution of EpiPlan. 10314 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe(); 10315 VPIRInst->eraseFromParent(); 10316 ResumePhi->eraseFromParent(); 10317 } 10318 VPlanTransforms::removeDeadRecipes(MainPlan); 10319 10320 using namespace VPlanPatternMatch; 10321 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader(); 10322 VPValue *VectorTC = &MainPlan.getVectorTripCount(); 10323 // If there is a suitable resume value for the canonical induction in the 10324 // scalar (which will become vector) epilogue loop we are done. Otherwise 10325 // create it below. 10326 if (any_of(*MainScalarPH, [VectorTC](VPRecipeBase &R) { 10327 return match(&R, m_VPInstruction<VPInstruction::ResumePhi>( 10328 m_Specific(VectorTC), m_SpecificInt(0))); 10329 })) 10330 return; 10331 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin()); 10332 ScalarPHBuilder.createNaryOp( 10333 VPInstruction::ResumePhi, 10334 {VectorTC, MainPlan.getCanonicalIV()->getStartValue()}, {}, 10335 "vec.epilog.resume.val"); 10336 } 10337 10338 /// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded 10339 /// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. 10340 static void 10341 preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, 10342 const SCEV2ValueTy &ExpandedSCEVs, 10343 const EpilogueLoopVectorizationInfo &EPI) { 10344 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion(); 10345 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10346 Header->setName("vec.epilog.vector.body"); 10347 10348 // Re-use the trip count and steps expanded for the main loop, as 10349 // skeleton creation needs it as a value that dominates both the scalar 10350 // and vector epilogue loops 10351 // TODO: This is a workaround needed for epilogue vectorization and it 10352 // should be removed once induction resume value creation is done 10353 // directly in VPlan. 10354 for (auto &R : make_early_inc_range(*Plan.getEntry())) { 10355 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R); 10356 if (!ExpandR) 10357 continue; 10358 auto *ExpandedVal = 10359 Plan.getOrAddLiveIn(ExpandedSCEVs.find(ExpandR->getSCEV())->second); 10360 ExpandR->replaceAllUsesWith(ExpandedVal); 10361 if (Plan.getTripCount() == ExpandR) 10362 Plan.resetTripCount(ExpandedVal); 10363 ExpandR->eraseFromParent(); 10364 } 10365 10366 // Ensure that the start values for all header phi recipes are updated before 10367 // vectorizing the epilogue loop. 10368 for (VPRecipeBase &R : Header->phis()) { 10369 if (auto *IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) { 10370 // When vectorizing the epilogue loop, the canonical induction start 10371 // value needs to be changed from zero to the value after the main 10372 // vector loop. Find the resume value created during execution of the main 10373 // VPlan. 10374 // FIXME: Improve modeling for canonical IV start values in the epilogue 10375 // loop. 10376 BasicBlock *MainMiddle = find_singleton<BasicBlock>( 10377 predecessors(L->getLoopPreheader()), 10378 [&EPI](BasicBlock *BB, bool) -> BasicBlock * { 10379 if (BB != EPI.MainLoopIterationCountCheck && 10380 BB != EPI.EpilogueIterationCountCheck && 10381 BB != EPI.SCEVSafetyCheck && BB != EPI.MemSafetyCheck) 10382 return BB; 10383 return nullptr; 10384 }); 10385 using namespace llvm::PatternMatch; 10386 Type *IdxTy = IV->getScalarType(); 10387 PHINode *EPResumeVal = find_singleton<PHINode>( 10388 L->getLoopPreheader()->phis(), 10389 [&EPI, IdxTy, MainMiddle](PHINode &P, bool) -> PHINode * { 10390 if (P.getType() == IdxTy && 10391 P.getIncomingValueForBlock(MainMiddle) == EPI.VectorTripCount && 10392 match( 10393 P.getIncomingValueForBlock(EPI.MainLoopIterationCountCheck), 10394 m_SpecificInt(0))) 10395 return &P; 10396 return nullptr; 10397 }); 10398 assert(EPResumeVal && "must have a resume value for the canonical IV"); 10399 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal); 10400 assert(all_of(IV->users(), 10401 [](const VPUser *U) { 10402 return isa<VPScalarIVStepsRecipe>(U) || 10403 isa<VPScalarCastRecipe>(U) || 10404 isa<VPDerivedIVRecipe>(U) || 10405 cast<VPInstruction>(U)->getOpcode() == 10406 Instruction::Add; 10407 }) && 10408 "the canonical IV should only be used by its increment or " 10409 "ScalarIVSteps when resetting the start value"); 10410 IV->setOperand(0, VPV); 10411 continue; 10412 } 10413 10414 Value *ResumeV = nullptr; 10415 // TODO: Move setting of resume values to prepareToExecute. 10416 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10417 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr()) 10418 ->getIncomingValueForBlock(L->getLoopPreheader()); 10419 const RecurrenceDescriptor &RdxDesc = 10420 ReductionPhi->getRecurrenceDescriptor(); 10421 RecurKind RK = RdxDesc.getRecurrenceKind(); 10422 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) { 10423 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as 10424 // start value; compare the final value from the main vector loop 10425 // to the start value. 10426 IRBuilder<> Builder( 10427 cast<Instruction>(ResumeV)->getParent()->getFirstNonPHI()); 10428 ResumeV = 10429 Builder.CreateICmpNE(ResumeV, RdxDesc.getRecurrenceStartValue()); 10430 } else if (RecurrenceDescriptor::isFindLastIVRecurrenceKind(RK)) { 10431 // VPReductionPHIRecipe for FindLastIV reductions requires an adjustment 10432 // to the resume value. The resume value is adjusted to the sentinel 10433 // value when the final value from the main vector loop equals the start 10434 // value. This ensures correctness when the start value might not be 10435 // less than the minimum value of a monotonically increasing induction 10436 // variable. 10437 IRBuilder<> Builder( 10438 cast<Instruction>(ResumeV)->getParent()->getFirstNonPHI()); 10439 Value *Cmp = 10440 Builder.CreateICmpEQ(ResumeV, RdxDesc.getRecurrenceStartValue()); 10441 ResumeV = 10442 Builder.CreateSelect(Cmp, RdxDesc.getSentinelValue(), ResumeV); 10443 } 10444 } else { 10445 // Retrieve the induction resume values for wide inductions from 10446 // their original phi nodes in the scalar loop. 10447 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode(); 10448 // Hook up to the PHINode generated by a ResumePhi recipe of main 10449 // loop VPlan, which feeds the scalar loop. 10450 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader()); 10451 } 10452 assert(ResumeV && "Must have a resume value"); 10453 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV); 10454 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal); 10455 } 10456 } 10457 10458 bool LoopVectorizePass::processLoop(Loop *L) { 10459 assert((EnableVPlanNativePath || L->isInnermost()) && 10460 "VPlan-native path is not enabled. Only process inner loops."); 10461 10462 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10463 << L->getHeader()->getParent()->getName() << "' from " 10464 << L->getLocStr() << "\n"); 10465 10466 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10467 10468 LLVM_DEBUG( 10469 dbgs() << "LV: Loop hints:" 10470 << " force=" 10471 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10472 ? "disabled" 10473 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10474 ? "enabled" 10475 : "?")) 10476 << " width=" << Hints.getWidth() 10477 << " interleave=" << Hints.getInterleave() << "\n"); 10478 10479 // Function containing loop 10480 Function *F = L->getHeader()->getParent(); 10481 10482 // Looking at the diagnostic output is the only way to determine if a loop 10483 // was vectorized (other than looking at the IR or machine code), so it 10484 // is important to generate an optimization remark for each loop. Most of 10485 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10486 // generated as OptimizationRemark and OptimizationRemarkMissed are 10487 // less verbose reporting vectorized loops and unvectorized loops that may 10488 // benefit from vectorization, respectively. 10489 10490 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10491 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10492 return false; 10493 } 10494 10495 PredicatedScalarEvolution PSE(*SE, *L); 10496 10497 // Check if it is legal to vectorize the loop. 10498 LoopVectorizationRequirements Requirements; 10499 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE, 10500 &Requirements, &Hints, DB, AC, BFI, PSI); 10501 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10502 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10503 Hints.emitRemarkWithHints(); 10504 return false; 10505 } 10506 10507 if (LVL.hasUncountableEarlyExit() && !EnableEarlyExitVectorization) { 10508 reportVectorizationFailure("Auto-vectorization of loops with uncountable " 10509 "early exit is not enabled", 10510 "UncountableEarlyExitLoopsDisabled", ORE, L); 10511 return false; 10512 } 10513 10514 if (LVL.hasStructVectorCall()) { 10515 reportVectorizationFailure("Auto-vectorization of calls that return struct " 10516 "types is not yet supported", 10517 "StructCallVectorizationUnsupported", ORE, L); 10518 return false; 10519 } 10520 10521 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10522 // here. They may require CFG and instruction level transformations before 10523 // even evaluating whether vectorization is profitable. Since we cannot modify 10524 // the incoming IR, we need to build VPlan upfront in the vectorization 10525 // pipeline. 10526 if (!L->isInnermost()) 10527 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10528 ORE, BFI, PSI, Hints, Requirements); 10529 10530 assert(L->isInnermost() && "Inner loop expected."); 10531 10532 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10533 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10534 10535 // If an override option has been passed in for interleaved accesses, use it. 10536 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10537 UseInterleaved = EnableInterleavedMemAccesses; 10538 10539 // Analyze interleaved memory accesses. 10540 if (UseInterleaved) 10541 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10542 10543 if (LVL.hasUncountableEarlyExit()) { 10544 BasicBlock *LoopLatch = L->getLoopLatch(); 10545 if (IAI.requiresScalarEpilogue() || 10546 any_of(LVL.getCountableExitingBlocks(), 10547 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) { 10548 reportVectorizationFailure("Auto-vectorization of early exit loops " 10549 "requiring a scalar epilogue is unsupported", 10550 "UncountableEarlyExitUnsupported", ORE, L); 10551 return false; 10552 } 10553 } 10554 10555 // Check the function attributes and profiles to find out if this function 10556 // should be optimized for size. 10557 ScalarEpilogueLowering SEL = 10558 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, LVL, &IAI); 10559 10560 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10561 // count by optimizing for size, to minimize overheads. 10562 auto ExpectedTC = getSmallBestKnownTC(PSE, L); 10563 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10564 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10565 << "This loop is worth vectorizing only if no scalar " 10566 << "iteration overheads are incurred."); 10567 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10568 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10569 else { 10570 if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) { 10571 LLVM_DEBUG(dbgs() << "\n"); 10572 // Predicate tail-folded loops are efficient even when the loop 10573 // iteration count is low. However, setting the epilogue policy to 10574 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops 10575 // with runtime checks. It's more effective to let 10576 // `areRuntimeChecksProfitable` determine if vectorization is beneficial 10577 // for the loop. 10578 if (SEL != CM_ScalarEpilogueNotNeededUsePredicate) 10579 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10580 } else { 10581 LLVM_DEBUG(dbgs() << " But the target considers the trip count too " 10582 "small to consider vectorizing.\n"); 10583 reportVectorizationFailure( 10584 "The trip count is below the minial threshold value.", 10585 "loop trip count is too low, avoiding vectorization", 10586 "LowTripCount", ORE, L); 10587 Hints.emitRemarkWithHints(); 10588 return false; 10589 } 10590 } 10591 } 10592 10593 // Check the function attributes to see if implicit floats or vectors are 10594 // allowed. 10595 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10596 reportVectorizationFailure( 10597 "Can't vectorize when the NoImplicitFloat attribute is used", 10598 "loop not vectorized due to NoImplicitFloat attribute", 10599 "NoImplicitFloat", ORE, L); 10600 Hints.emitRemarkWithHints(); 10601 return false; 10602 } 10603 10604 // Check if the target supports potentially unsafe FP vectorization. 10605 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10606 // for the target we're vectorizing for, to make sure none of the 10607 // additional fp-math flags can help. 10608 if (Hints.isPotentiallyUnsafe() && 10609 TTI->isFPVectorizationPotentiallyUnsafe()) { 10610 reportVectorizationFailure( 10611 "Potentially unsafe FP op prevents vectorization", 10612 "loop not vectorized due to unsafe FP support.", 10613 "UnsafeFP", ORE, L); 10614 Hints.emitRemarkWithHints(); 10615 return false; 10616 } 10617 10618 bool AllowOrderedReductions; 10619 // If the flag is set, use that instead and override the TTI behaviour. 10620 if (ForceOrderedReductions.getNumOccurrences() > 0) 10621 AllowOrderedReductions = ForceOrderedReductions; 10622 else 10623 AllowOrderedReductions = TTI->enableOrderedReductions(); 10624 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10625 ORE->emit([&]() { 10626 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10627 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10628 ExactFPMathInst->getDebugLoc(), 10629 ExactFPMathInst->getParent()) 10630 << "loop not vectorized: cannot prove it is safe to reorder " 10631 "floating-point operations"; 10632 }); 10633 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10634 "reorder floating-point operations\n"); 10635 Hints.emitRemarkWithHints(); 10636 return false; 10637 } 10638 10639 // Use the cost model. 10640 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10641 F, &Hints, IAI); 10642 // Use the planner for vectorization. 10643 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints, 10644 ORE); 10645 10646 // Get user vectorization factor and interleave count. 10647 ElementCount UserVF = Hints.getWidth(); 10648 unsigned UserIC = Hints.getInterleave(); 10649 10650 // Plan how to best vectorize. 10651 LVP.plan(UserVF, UserIC); 10652 VectorizationFactor VF = LVP.computeBestVF(); 10653 unsigned IC = 1; 10654 10655 if (ORE->allowExtraAnalysis(LV_NAME)) 10656 LVP.emitInvalidCostRemarks(ORE); 10657 10658 bool AddBranchWeights = 10659 hasBranchWeightMD(*L->getLoopLatch()->getTerminator()); 10660 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), 10661 AddBranchWeights); 10662 if (LVP.hasPlanWithVF(VF.Width)) { 10663 // Select the interleave count. 10664 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 10665 10666 unsigned SelectedIC = std::max(IC, UserIC); 10667 // Optimistically generate runtime checks if they are needed. Drop them if 10668 // they turn out to not be profitable. 10669 if (VF.Width.isVector() || SelectedIC > 1) 10670 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); 10671 10672 // Check if it is profitable to vectorize with runtime checks. 10673 bool ForceVectorization = 10674 Hints.getForce() == LoopVectorizeHints::FK_Enabled; 10675 if (!ForceVectorization && 10676 !areRuntimeChecksProfitable(Checks, VF, L, *TTI, PSE, SEL)) { 10677 ORE->emit([&]() { 10678 return OptimizationRemarkAnalysisAliasing( 10679 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10680 L->getHeader()) 10681 << "loop not vectorized: cannot prove it is safe to reorder " 10682 "memory operations"; 10683 }); 10684 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10685 Hints.emitRemarkWithHints(); 10686 return false; 10687 } 10688 } 10689 10690 // Identify the diagnostic messages that should be produced. 10691 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10692 bool VectorizeLoop = true, InterleaveLoop = true; 10693 if (VF.Width.isScalar()) { 10694 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10695 VecDiagMsg = std::make_pair( 10696 "VectorizationNotBeneficial", 10697 "the cost-model indicates that vectorization is not beneficial"); 10698 VectorizeLoop = false; 10699 } 10700 10701 if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) { 10702 // Tell the user interleaving was avoided up-front, despite being explicitly 10703 // requested. 10704 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10705 "interleaving should be avoided up front\n"); 10706 IntDiagMsg = std::make_pair( 10707 "InterleavingAvoided", 10708 "Ignoring UserIC, because interleaving was avoided up front"); 10709 InterleaveLoop = false; 10710 } else if (IC == 1 && UserIC <= 1) { 10711 // Tell the user interleaving is not beneficial. 10712 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10713 IntDiagMsg = std::make_pair( 10714 "InterleavingNotBeneficial", 10715 "the cost-model indicates that interleaving is not beneficial"); 10716 InterleaveLoop = false; 10717 if (UserIC == 1) { 10718 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10719 IntDiagMsg.second += 10720 " and is explicitly disabled or interleave count is set to 1"; 10721 } 10722 } else if (IC > 1 && UserIC == 1) { 10723 // Tell the user interleaving is beneficial, but it explicitly disabled. 10724 LLVM_DEBUG( 10725 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10726 IntDiagMsg = std::make_pair( 10727 "InterleavingBeneficialButDisabled", 10728 "the cost-model indicates that interleaving is beneficial " 10729 "but is explicitly disabled or interleave count is set to 1"); 10730 InterleaveLoop = false; 10731 } 10732 10733 // If there is a histogram in the loop, do not just interleave without 10734 // vectorizing. The order of operations will be incorrect without the 10735 // histogram intrinsics, which are only used for recipes with VF > 1. 10736 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) { 10737 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due " 10738 << "to histogram operations.\n"); 10739 IntDiagMsg = std::make_pair( 10740 "HistogramPreventsScalarInterleaving", 10741 "Unable to interleave without vectorization due to constraints on " 10742 "the order of histogram operations"); 10743 InterleaveLoop = false; 10744 } 10745 10746 // Override IC if user provided an interleave count. 10747 IC = UserIC > 0 ? UserIC : IC; 10748 10749 // Emit diagnostic messages, if any. 10750 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10751 if (!VectorizeLoop && !InterleaveLoop) { 10752 // Do not vectorize or interleaving the loop. 10753 ORE->emit([&]() { 10754 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10755 L->getStartLoc(), L->getHeader()) 10756 << VecDiagMsg.second; 10757 }); 10758 ORE->emit([&]() { 10759 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10760 L->getStartLoc(), L->getHeader()) 10761 << IntDiagMsg.second; 10762 }); 10763 return false; 10764 } 10765 10766 if (!VectorizeLoop && InterleaveLoop) { 10767 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10768 ORE->emit([&]() { 10769 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10770 L->getStartLoc(), L->getHeader()) 10771 << VecDiagMsg.second; 10772 }); 10773 } else if (VectorizeLoop && !InterleaveLoop) { 10774 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10775 << ") in " << L->getLocStr() << '\n'); 10776 ORE->emit([&]() { 10777 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10778 L->getStartLoc(), L->getHeader()) 10779 << IntDiagMsg.second; 10780 }); 10781 } else if (VectorizeLoop && InterleaveLoop) { 10782 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10783 << ") in " << L->getLocStr() << '\n'); 10784 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10785 } 10786 10787 bool DisableRuntimeUnroll = false; 10788 MDNode *OrigLoopID = L->getLoopID(); 10789 { 10790 using namespace ore; 10791 if (!VectorizeLoop) { 10792 assert(IC > 1 && "interleave count should not be 1 or 0"); 10793 // If we decided that it is not legal to vectorize the loop, then 10794 // interleave it. 10795 VPlan &BestPlan = LVP.getPlanFor(VF.Width); 10796 InnerLoopVectorizer Unroller( 10797 L, PSE, LI, DT, TLI, TTI, AC, ORE, ElementCount::getFixed(1), 10798 ElementCount::getFixed(1), IC, &LVL, &CM, BFI, PSI, Checks, BestPlan); 10799 10800 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); 10801 10802 ORE->emit([&]() { 10803 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10804 L->getHeader()) 10805 << "interleaved loop (interleaved count: " 10806 << NV("InterleaveCount", IC) << ")"; 10807 }); 10808 } else { 10809 // If we decided that it is *legal* to vectorize the loop, then do it. 10810 10811 VPlan &BestPlan = LVP.getPlanFor(VF.Width); 10812 // Consider vectorizing the epilogue too if it's profitable. 10813 VectorizationFactor EpilogueVF = 10814 LVP.selectEpilogueVectorizationFactor(VF.Width, IC); 10815 if (EpilogueVF.Width.isVector()) { 10816 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate()); 10817 10818 // The first pass vectorizes the main loop and creates a scalar epilogue 10819 // to be vectorized by executing the plan (potentially with a different 10820 // factor) again shortly afterwards. 10821 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width); 10822 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan); 10823 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1, 10824 BestEpiPlan); 10825 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10826 EPI, &LVL, &CM, BFI, PSI, Checks, 10827 *BestMainPlan); 10828 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, 10829 *BestMainPlan, MainILV, DT, false); 10830 ++LoopsVectorized; 10831 10832 // Second pass vectorizes the epilogue and adjusts the control flow 10833 // edges from the first pass. 10834 EPI.MainLoopVF = EPI.EpilogueVF; 10835 EPI.MainLoopUF = EPI.EpilogueUF; 10836 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10837 ORE, EPI, &LVL, &CM, BFI, PSI, 10838 Checks, BestEpiPlan); 10839 EpilogILV.setTripCount(MainILV.getTripCount()); 10840 preparePlanForEpilogueVectorLoop(BestEpiPlan, L, ExpandedSCEVs, EPI); 10841 10842 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10843 DT, true, &ExpandedSCEVs); 10844 ++LoopsEpilogueVectorized; 10845 10846 if (!MainILV.areSafetyChecksAdded()) 10847 DisableRuntimeUnroll = true; 10848 } else { 10849 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 10850 VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, 10851 PSI, Checks, BestPlan); 10852 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); 10853 ++LoopsVectorized; 10854 10855 // Add metadata to disable runtime unrolling a scalar loop when there 10856 // are no runtime checks about strides and memory. A scalar loop that is 10857 // rarely used is not worth unrolling. 10858 if (!LB.areSafetyChecksAdded()) 10859 DisableRuntimeUnroll = true; 10860 } 10861 // Report the vectorization decision. 10862 reportVectorization(ORE, L, VF, IC); 10863 } 10864 10865 if (ORE->allowExtraAnalysis(LV_NAME)) 10866 checkMixedPrecision(L, ORE); 10867 } 10868 10869 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 10870 "DT not preserved correctly"); 10871 10872 std::optional<MDNode *> RemainderLoopID = 10873 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10874 LLVMLoopVectorizeFollowupEpilogue}); 10875 if (RemainderLoopID) { 10876 L->setLoopID(*RemainderLoopID); 10877 } else { 10878 if (DisableRuntimeUnroll) 10879 addRuntimeUnrollDisableMetaData(L); 10880 10881 // Mark the loop as already vectorized to avoid vectorizing again. 10882 Hints.setAlreadyVectorized(); 10883 } 10884 10885 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10886 return true; 10887 } 10888 10889 LoopVectorizeResult LoopVectorizePass::runImpl(Function &F) { 10890 10891 // Don't attempt if 10892 // 1. the target claims to have no vector registers, and 10893 // 2. interleaving won't help ILP. 10894 // 10895 // The second condition is necessary because, even if the target has no 10896 // vector registers, loop vectorization may still enable scalar 10897 // interleaving. 10898 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10899 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2) 10900 return LoopVectorizeResult(false, false); 10901 10902 bool Changed = false, CFGChanged = false; 10903 10904 // The vectorizer requires loops to be in simplified form. 10905 // Since simplification may add new inner loops, it has to run before the 10906 // legality and profitability checks. This means running the loop vectorizer 10907 // will simplify all loops, regardless of whether anything end up being 10908 // vectorized. 10909 for (const auto &L : *LI) 10910 Changed |= CFGChanged |= 10911 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10912 10913 // Build up a worklist of inner-loops to vectorize. This is necessary as 10914 // the act of vectorizing or partially unrolling a loop creates new loops 10915 // and can invalidate iterators across the loops. 10916 SmallVector<Loop *, 8> Worklist; 10917 10918 for (Loop *L : *LI) 10919 collectSupportedLoops(*L, LI, ORE, Worklist); 10920 10921 LoopsAnalyzed += Worklist.size(); 10922 10923 // Now walk the identified inner loops. 10924 while (!Worklist.empty()) { 10925 Loop *L = Worklist.pop_back_val(); 10926 10927 // For the inner loops we actually process, form LCSSA to simplify the 10928 // transform. 10929 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10930 10931 Changed |= CFGChanged |= processLoop(L); 10932 10933 if (Changed) { 10934 LAIs->clear(); 10935 10936 #ifndef NDEBUG 10937 if (VerifySCEV) 10938 SE->verify(); 10939 #endif 10940 } 10941 } 10942 10943 // Process each loop nest in the function. 10944 return LoopVectorizeResult(Changed, CFGChanged); 10945 } 10946 10947 PreservedAnalyses LoopVectorizePass::run(Function &F, 10948 FunctionAnalysisManager &AM) { 10949 LI = &AM.getResult<LoopAnalysis>(F); 10950 // There are no loops in the function. Return before computing other 10951 // expensive analyses. 10952 if (LI->empty()) 10953 return PreservedAnalyses::all(); 10954 SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 10955 TTI = &AM.getResult<TargetIRAnalysis>(F); 10956 DT = &AM.getResult<DominatorTreeAnalysis>(F); 10957 TLI = &AM.getResult<TargetLibraryAnalysis>(F); 10958 AC = &AM.getResult<AssumptionAnalysis>(F); 10959 DB = &AM.getResult<DemandedBitsAnalysis>(F); 10960 ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10961 LAIs = &AM.getResult<LoopAccessAnalysis>(F); 10962 10963 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10964 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10965 BFI = nullptr; 10966 if (PSI && PSI->hasProfileSummary()) 10967 BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 10968 LoopVectorizeResult Result = runImpl(F); 10969 if (!Result.MadeAnyChange) 10970 return PreservedAnalyses::all(); 10971 PreservedAnalyses PA; 10972 10973 if (isAssignmentTrackingEnabled(*F.getParent())) { 10974 for (auto &BB : F) 10975 RemoveRedundantDbgInstrs(&BB); 10976 } 10977 10978 PA.preserve<LoopAnalysis>(); 10979 PA.preserve<DominatorTreeAnalysis>(); 10980 PA.preserve<ScalarEvolutionAnalysis>(); 10981 PA.preserve<LoopAccessAnalysis>(); 10982 10983 if (Result.MadeCFGChange) { 10984 // Making CFG changes likely means a loop got vectorized. Indicate that 10985 // extra simplification passes should be run. 10986 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10987 // be run if runtime checks have been added. 10988 AM.getResult<ShouldRunExtraVectorPasses>(F); 10989 PA.preserve<ShouldRunExtraVectorPasses>(); 10990 } else { 10991 PA.preserveSet<CFGAnalyses>(); 10992 } 10993 return PA; 10994 } 10995 10996 void LoopVectorizePass::printPipeline( 10997 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10998 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10999 OS, MapClassName2PassName); 11000 11001 OS << '<'; 11002 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 11003 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 11004 OS << '>'; 11005 } 11006