1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Transforms/Utils/SizeOpts.h" 28 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define LV_NAME "loop-vectorize" 34 #define DEBUG_TYPE LV_NAME 35 36 static cl::opt<bool> 37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 38 cl::desc("Enable if-conversion during vectorization.")); 39 40 static cl::opt<bool> 41 AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden, 42 cl::desc("Enable recognition of non-constant strided " 43 "pointer induction variables.")); 44 45 namespace llvm { 46 cl::opt<bool> 47 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, 48 cl::desc("Allow enabling loop hints to reorder " 49 "FP operations during vectorization.")); 50 } // namespace llvm 51 52 // TODO: Move size-based thresholds out of legality checking, make cost based 53 // decisions instead of hard thresholds. 54 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 55 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 56 cl::desc("The maximum number of SCEV checks allowed.")); 57 58 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 59 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 60 cl::desc("The maximum number of SCEV checks allowed with a " 61 "vectorize(enable) pragma")); 62 63 static cl::opt<LoopVectorizeHints::ScalableForceKind> 64 ForceScalableVectorization( 65 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), 66 cl::Hidden, 67 cl::desc("Control whether the compiler can use scalable vectors to " 68 "vectorize a loop"), 69 cl::values( 70 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 71 "Scalable vectorization is disabled."), 72 clEnumValN( 73 LoopVectorizeHints::SK_PreferScalable, "preferred", 74 "Scalable vectorization is available and favored when the " 75 "cost is inconclusive."), 76 clEnumValN( 77 LoopVectorizeHints::SK_PreferScalable, "on", 78 "Scalable vectorization is available and favored when the " 79 "cost is inconclusive."))); 80 81 /// Maximum vectorization interleave count. 82 static const unsigned MaxInterleaveFactor = 16; 83 84 namespace llvm { 85 86 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 87 switch (Kind) { 88 case HK_WIDTH: 89 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 90 case HK_INTERLEAVE: 91 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 92 case HK_FORCE: 93 return (Val <= 1); 94 case HK_ISVECTORIZED: 95 case HK_PREDICATE: 96 case HK_SCALABLE: 97 return (Val == 0 || Val == 1); 98 } 99 return false; 100 } 101 102 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 103 bool InterleaveOnlyWhenForced, 104 OptimizationRemarkEmitter &ORE, 105 const TargetTransformInfo *TTI) 106 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 107 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 108 Force("vectorize.enable", FK_Undefined, HK_FORCE), 109 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 110 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 111 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 112 TheLoop(L), ORE(ORE) { 113 // Populate values with existing loop metadata. 114 getHintsFromMetadata(); 115 116 // force-vector-interleave overrides DisableInterleaving. 117 if (VectorizerParams::isInterleaveForced()) 118 Interleave.Value = VectorizerParams::VectorizationInterleave; 119 120 // If the metadata doesn't explicitly specify whether to enable scalable 121 // vectorization, then decide based on the following criteria (increasing 122 // level of priority): 123 // - Target default 124 // - Metadata width 125 // - Force option (always overrides) 126 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { 127 if (TTI) 128 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable 129 : SK_FixedWidthOnly; 130 131 if (Width.Value) 132 // If the width is set, but the metadata says nothing about the scalable 133 // property, then assume it concerns only a fixed-width UserVF. 134 // If width is not set, the flag takes precedence. 135 Scalable.Value = SK_FixedWidthOnly; 136 } 137 138 // If the flag is set to force any use of scalable vectors, override the loop 139 // hints. 140 if (ForceScalableVectorization.getValue() != 141 LoopVectorizeHints::SK_Unspecified) 142 Scalable.Value = ForceScalableVectorization.getValue(); 143 144 // Scalable vectorization is disabled if no preference is specified. 145 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 146 Scalable.Value = SK_FixedWidthOnly; 147 148 if (IsVectorized.Value != 1) 149 // If the vectorization width and interleaving count are both 1 then 150 // consider the loop to have been already vectorized because there's 151 // nothing more that we can do. 152 IsVectorized.Value = 153 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 154 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 155 << "LV: Interleaving disabled by the pass manager\n"); 156 } 157 158 void LoopVectorizeHints::setAlreadyVectorized() { 159 LLVMContext &Context = TheLoop->getHeader()->getContext(); 160 161 MDNode *IsVectorizedMD = MDNode::get( 162 Context, 163 {MDString::get(Context, "llvm.loop.isvectorized"), 164 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 165 MDNode *LoopID = TheLoop->getLoopID(); 166 MDNode *NewLoopID = 167 makePostTransformationMetadata(Context, LoopID, 168 {Twine(Prefix(), "vectorize.").str(), 169 Twine(Prefix(), "interleave.").str()}, 170 {IsVectorizedMD}); 171 TheLoop->setLoopID(NewLoopID); 172 173 // Update internal cache. 174 IsVectorized.Value = 1; 175 } 176 177 bool LoopVectorizeHints::allowVectorization( 178 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 179 if (getForce() == LoopVectorizeHints::FK_Disabled) { 180 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 181 emitRemarkWithHints(); 182 return false; 183 } 184 185 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 186 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 187 emitRemarkWithHints(); 188 return false; 189 } 190 191 if (getIsVectorized() == 1) { 192 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 193 // FIXME: Add interleave.disable metadata. This will allow 194 // vectorize.disable to be used without disabling the pass and errors 195 // to differentiate between disabled vectorization and a width of 1. 196 ORE.emit([&]() { 197 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 198 "AllDisabled", L->getStartLoc(), 199 L->getHeader()) 200 << "loop not vectorized: vectorization and interleaving are " 201 "explicitly disabled, or the loop has already been " 202 "vectorized"; 203 }); 204 return false; 205 } 206 207 return true; 208 } 209 210 void LoopVectorizeHints::emitRemarkWithHints() const { 211 using namespace ore; 212 213 ORE.emit([&]() { 214 if (Force.Value == LoopVectorizeHints::FK_Disabled) 215 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 216 TheLoop->getStartLoc(), 217 TheLoop->getHeader()) 218 << "loop not vectorized: vectorization is explicitly disabled"; 219 220 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(), 221 TheLoop->getHeader()); 222 R << "loop not vectorized"; 223 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 224 R << " (Force=" << NV("Force", true); 225 if (Width.Value != 0) 226 R << ", Vector Width=" << NV("VectorWidth", getWidth()); 227 if (getInterleave() != 0) 228 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 229 R << ")"; 230 } 231 return R; 232 }); 233 } 234 235 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 236 if (getWidth() == ElementCount::getFixed(1)) 237 return LV_NAME; 238 if (getForce() == LoopVectorizeHints::FK_Disabled) 239 return LV_NAME; 240 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 241 return LV_NAME; 242 return OptimizationRemarkAnalysis::AlwaysPrint; 243 } 244 245 bool LoopVectorizeHints::allowReordering() const { 246 // Allow the vectorizer to change the order of operations if enabling 247 // loop hints are provided 248 ElementCount EC = getWidth(); 249 return HintsAllowReordering && 250 (getForce() == LoopVectorizeHints::FK_Enabled || 251 EC.getKnownMinValue() > 1); 252 } 253 254 void LoopVectorizeHints::getHintsFromMetadata() { 255 MDNode *LoopID = TheLoop->getLoopID(); 256 if (!LoopID) 257 return; 258 259 // First operand should refer to the loop id itself. 260 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 261 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 262 263 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 264 const MDString *S = nullptr; 265 SmallVector<Metadata *, 4> Args; 266 267 // The expected hint is either a MDString or a MDNode with the first 268 // operand a MDString. 269 if (const MDNode *MD = dyn_cast<MDNode>(MDO)) { 270 if (!MD || MD->getNumOperands() == 0) 271 continue; 272 S = dyn_cast<MDString>(MD->getOperand(0)); 273 for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx) 274 Args.push_back(MD->getOperand(Idx)); 275 } else { 276 S = dyn_cast<MDString>(MDO); 277 assert(Args.size() == 0 && "too many arguments for MDString"); 278 } 279 280 if (!S) 281 continue; 282 283 // Check if the hint starts with the loop metadata prefix. 284 StringRef Name = S->getString(); 285 if (Args.size() == 1) 286 setHint(Name, Args[0]); 287 } 288 } 289 290 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 291 if (!Name.starts_with(Prefix())) 292 return; 293 Name = Name.substr(Prefix().size(), StringRef::npos); 294 295 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 296 if (!C) 297 return; 298 unsigned Val = C->getZExtValue(); 299 300 Hint *Hints[] = {&Width, &Interleave, &Force, 301 &IsVectorized, &Predicate, &Scalable}; 302 for (auto *H : Hints) { 303 if (Name == H->Name) { 304 if (H->validate(Val)) 305 H->Value = Val; 306 else 307 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 308 break; 309 } 310 } 311 } 312 313 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 314 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 315 // executing the inner loop will execute the same iterations). This check is 316 // very constrained for now but it will be relaxed in the future. \p Lp is 317 // considered uniform if it meets all the following conditions: 318 // 1) it has a canonical IV (starting from 0 and with stride 1), 319 // 2) its latch terminator is a conditional branch and, 320 // 3) its latch condition is a compare instruction whose operands are the 321 // canonical IV and an OuterLp invariant. 322 // This check doesn't take into account the uniformity of other conditions not 323 // related to the loop latch because they don't affect the loop uniformity. 324 // 325 // NOTE: We decided to keep all these checks and its associated documentation 326 // together so that we can easily have a picture of the current supported loop 327 // nests. However, some of the current checks don't depend on \p OuterLp and 328 // would be redundantly executed for each \p Lp if we invoked this function for 329 // different candidate outer loops. This is not the case for now because we 330 // don't currently have the infrastructure to evaluate multiple candidate outer 331 // loops and \p OuterLp will be a fixed parameter while we only support explicit 332 // outer loop vectorization. It's also very likely that these checks go away 333 // before introducing the aforementioned infrastructure. However, if this is not 334 // the case, we should move the \p OuterLp independent checks to a separate 335 // function that is only executed once for each \p Lp. 336 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 337 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 338 339 // If Lp is the outer loop, it's uniform by definition. 340 if (Lp == OuterLp) 341 return true; 342 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 343 344 // 1. 345 PHINode *IV = Lp->getCanonicalInductionVariable(); 346 if (!IV) { 347 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 348 return false; 349 } 350 351 // 2. 352 BasicBlock *Latch = Lp->getLoopLatch(); 353 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 354 if (!LatchBr || LatchBr->isUnconditional()) { 355 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 356 return false; 357 } 358 359 // 3. 360 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 361 if (!LatchCmp) { 362 LLVM_DEBUG( 363 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 364 return false; 365 } 366 367 Value *CondOp0 = LatchCmp->getOperand(0); 368 Value *CondOp1 = LatchCmp->getOperand(1); 369 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 370 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 371 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 372 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 373 return false; 374 } 375 376 return true; 377 } 378 379 // Return true if \p Lp and all its nested loops are uniform with regard to \p 380 // OuterLp. 381 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 382 if (!isUniformLoop(Lp, OuterLp)) 383 return false; 384 385 // Check if nested loops are uniform. 386 for (Loop *SubLp : *Lp) 387 if (!isUniformLoopNest(SubLp, OuterLp)) 388 return false; 389 390 return true; 391 } 392 393 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 394 if (Ty->isPointerTy()) 395 return DL.getIntPtrType(Ty); 396 397 // It is possible that char's or short's overflow when we ask for the loop's 398 // trip count, work around this by changing the type size. 399 if (Ty->getScalarSizeInBits() < 32) 400 return Type::getInt32Ty(Ty->getContext()); 401 402 return Ty; 403 } 404 405 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 406 Ty0 = convertPointerToIntegerType(DL, Ty0); 407 Ty1 = convertPointerToIntegerType(DL, Ty1); 408 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 409 return Ty0; 410 return Ty1; 411 } 412 413 /// Check that the instruction has outside loop users and is not an 414 /// identified reduction variable. 415 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 416 SmallPtrSetImpl<Value *> &AllowedExit) { 417 // Reductions, Inductions and non-header phis are allowed to have exit users. All 418 // other instructions must not have external users. 419 if (!AllowedExit.count(Inst)) 420 // Check that all of the users of the loop are inside the BB. 421 for (User *U : Inst->users()) { 422 Instruction *UI = cast<Instruction>(U); 423 // This user may be a reduction exit value. 424 if (!TheLoop->contains(UI)) { 425 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 426 return true; 427 } 428 } 429 return false; 430 } 431 432 /// Returns true if A and B have same pointer operands or same SCEVs addresses 433 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, 434 StoreInst *B) { 435 // Compare store 436 if (A == B) 437 return true; 438 439 // Otherwise Compare pointers 440 Value *APtr = A->getPointerOperand(); 441 Value *BPtr = B->getPointerOperand(); 442 if (APtr == BPtr) 443 return true; 444 445 // Otherwise compare address SCEVs 446 return SE->getSCEV(APtr) == SE->getSCEV(BPtr); 447 } 448 449 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, 450 Value *Ptr) const { 451 // FIXME: Currently, the set of symbolic strides is sometimes queried before 452 // it's collected. This happens from canVectorizeWithIfConvert, when the 453 // pointer is checked to reference consecutive elements suitable for a 454 // masked access. 455 const auto &Strides = 456 LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>(); 457 458 Function *F = TheLoop->getHeader()->getParent(); 459 bool OptForSize = F->hasOptSize() || 460 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 461 PGSOQueryType::IRPass); 462 bool CanAddPredicate = !OptForSize; 463 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, 464 CanAddPredicate, false).value_or(0); 465 if (Stride == 1 || Stride == -1) 466 return Stride; 467 return 0; 468 } 469 470 bool LoopVectorizationLegality::isInvariant(Value *V) const { 471 return LAI->isInvariant(V); 472 } 473 474 namespace { 475 /// A rewriter to build the SCEVs for each of the VF lanes in the expected 476 /// vectorized loop, which can then be compared to detect their uniformity. This 477 /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop) 478 /// with new AddRecs where the step is multiplied by StepMultiplier and Offset * 479 /// Step is added. Also checks if all sub-expressions are analyzable w.r.t. 480 /// uniformity. 481 class SCEVAddRecForUniformityRewriter 482 : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> { 483 /// Multiplier to be applied to the step of AddRecs in TheLoop. 484 unsigned StepMultiplier; 485 486 /// Offset to be added to the AddRecs in TheLoop. 487 unsigned Offset; 488 489 /// Loop for which to rewrite AddRecsFor. 490 Loop *TheLoop; 491 492 /// Is any sub-expressions not analyzable w.r.t. uniformity? 493 bool CannotAnalyze = false; 494 495 bool canAnalyze() const { return !CannotAnalyze; } 496 497 public: 498 SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier, 499 unsigned Offset, Loop *TheLoop) 500 : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset), 501 TheLoop(TheLoop) {} 502 503 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 504 assert(Expr->getLoop() == TheLoop && 505 "addrec outside of TheLoop must be invariant and should have been " 506 "handled earlier"); 507 // Build a new AddRec by multiplying the step by StepMultiplier and 508 // incrementing the start by Offset * step. 509 Type *Ty = Expr->getType(); 510 auto *Step = Expr->getStepRecurrence(SE); 511 if (!SE.isLoopInvariant(Step, TheLoop)) { 512 CannotAnalyze = true; 513 return Expr; 514 } 515 auto *NewStep = SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier)); 516 auto *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset)); 517 auto *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset); 518 return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap); 519 } 520 521 const SCEV *visit(const SCEV *S) { 522 if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop)) 523 return S; 524 return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S); 525 } 526 527 const SCEV *visitUnknown(const SCEVUnknown *S) { 528 if (SE.isLoopInvariant(S, TheLoop)) 529 return S; 530 // The value could vary across iterations. 531 CannotAnalyze = true; 532 return S; 533 } 534 535 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) { 536 // Could not analyze the expression. 537 CannotAnalyze = true; 538 return S; 539 } 540 541 static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE, 542 unsigned StepMultiplier, unsigned Offset, 543 Loop *TheLoop) { 544 /// Bail out if the expression does not contain an UDiv expression. 545 /// Uniform values which are not loop invariant require operations to strip 546 /// out the lowest bits. For now just look for UDivs and use it to avoid 547 /// re-writing UDIV-free expressions for other lanes to limit compile time. 548 if (!SCEVExprContains(S, 549 [](const SCEV *S) { return isa<SCEVUDivExpr>(S); })) 550 return SE.getCouldNotCompute(); 551 552 SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset, 553 TheLoop); 554 const SCEV *Result = Rewriter.visit(S); 555 556 if (Rewriter.canAnalyze()) 557 return Result; 558 return SE.getCouldNotCompute(); 559 } 560 }; 561 562 } // namespace 563 564 bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const { 565 if (isInvariant(V)) 566 return true; 567 if (VF.isScalable()) 568 return false; 569 if (VF.isScalar()) 570 return true; 571 572 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 573 // never considered uniform. 574 auto *SE = PSE.getSE(); 575 if (!SE->isSCEVable(V->getType())) 576 return false; 577 const SCEV *S = SE->getSCEV(V); 578 579 // Rewrite AddRecs in TheLoop to step by VF and check if the expression for 580 // lane 0 matches the expressions for all other lanes. 581 unsigned FixedVF = VF.getKnownMinValue(); 582 const SCEV *FirstLaneExpr = 583 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop); 584 if (isa<SCEVCouldNotCompute>(FirstLaneExpr)) 585 return false; 586 587 // Make sure the expressions for lanes FixedVF-1..1 match the expression for 588 // lane 0. We check lanes in reverse order for compile-time, as frequently 589 // checking the last lane is sufficient to rule out uniformity. 590 return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) { 591 const SCEV *IthLaneExpr = 592 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop); 593 return FirstLaneExpr == IthLaneExpr; 594 }); 595 } 596 597 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I, 598 ElementCount VF) const { 599 Value *Ptr = getLoadStorePointerOperand(&I); 600 if (!Ptr) 601 return false; 602 // Note: There's nothing inherent which prevents predicated loads and 603 // stores from being uniform. The current lowering simply doesn't handle 604 // it; in particular, the cost model distinguishes scatter/gather from 605 // scalar w/predication, and we currently rely on the scalar path. 606 return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent()); 607 } 608 609 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 610 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 611 // Store the result and return it at the end instead of exiting early, in case 612 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 613 bool Result = true; 614 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 615 616 for (BasicBlock *BB : TheLoop->blocks()) { 617 // Check whether the BB terminator is a BranchInst. Any other terminator is 618 // not supported yet. 619 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 620 if (!Br) { 621 reportVectorizationFailure("Unsupported basic block terminator", 622 "loop control flow is not understood by vectorizer", 623 "CFGNotUnderstood", ORE, TheLoop); 624 if (DoExtraAnalysis) 625 Result = false; 626 else 627 return false; 628 } 629 630 // Check whether the BranchInst is a supported one. Only unconditional 631 // branches, conditional branches with an outer loop invariant condition or 632 // backedges are supported. 633 // FIXME: We skip these checks when VPlan predication is enabled as we 634 // want to allow divergent branches. This whole check will be removed 635 // once VPlan predication is on by default. 636 if (Br && Br->isConditional() && 637 !TheLoop->isLoopInvariant(Br->getCondition()) && 638 !LI->isLoopHeader(Br->getSuccessor(0)) && 639 !LI->isLoopHeader(Br->getSuccessor(1))) { 640 reportVectorizationFailure("Unsupported conditional branch", 641 "loop control flow is not understood by vectorizer", 642 "CFGNotUnderstood", ORE, TheLoop); 643 if (DoExtraAnalysis) 644 Result = false; 645 else 646 return false; 647 } 648 } 649 650 // Check whether inner loops are uniform. At this point, we only support 651 // simple outer loops scenarios with uniform nested loops. 652 if (!isUniformLoopNest(TheLoop /*loop nest*/, 653 TheLoop /*context outer loop*/)) { 654 reportVectorizationFailure("Outer loop contains divergent loops", 655 "loop control flow is not understood by vectorizer", 656 "CFGNotUnderstood", ORE, TheLoop); 657 if (DoExtraAnalysis) 658 Result = false; 659 else 660 return false; 661 } 662 663 // Check whether we are able to set up outer loop induction. 664 if (!setupOuterLoopInductions()) { 665 reportVectorizationFailure("Unsupported outer loop Phi(s)", 666 "Unsupported outer loop Phi(s)", 667 "UnsupportedPhi", ORE, TheLoop); 668 if (DoExtraAnalysis) 669 Result = false; 670 else 671 return false; 672 } 673 674 return Result; 675 } 676 677 void LoopVectorizationLegality::addInductionPhi( 678 PHINode *Phi, const InductionDescriptor &ID, 679 SmallPtrSetImpl<Value *> &AllowedExit) { 680 Inductions[Phi] = ID; 681 682 // In case this induction also comes with casts that we know we can ignore 683 // in the vectorized loop body, record them here. All casts could be recorded 684 // here for ignoring, but suffices to record only the first (as it is the 685 // only one that may bw used outside the cast sequence). 686 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 687 if (!Casts.empty()) 688 InductionCastsToIgnore.insert(*Casts.begin()); 689 690 Type *PhiTy = Phi->getType(); 691 const DataLayout &DL = Phi->getDataLayout(); 692 693 // Get the widest type. 694 if (!PhiTy->isFloatingPointTy()) { 695 if (!WidestIndTy) 696 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 697 else 698 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 699 } 700 701 // Int inductions are special because we only allow one IV. 702 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 703 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 704 isa<Constant>(ID.getStartValue()) && 705 cast<Constant>(ID.getStartValue())->isNullValue()) { 706 707 // Use the phi node with the widest type as induction. Use the last 708 // one if there are multiple (no good reason for doing this other 709 // than it is expedient). We've checked that it begins at zero and 710 // steps by one, so this is a canonical induction variable. 711 if (!PrimaryInduction || PhiTy == WidestIndTy) 712 PrimaryInduction = Phi; 713 } 714 715 // Both the PHI node itself, and the "post-increment" value feeding 716 // back into the PHI node may have external users. 717 // We can allow those uses, except if the SCEVs we have for them rely 718 // on predicates that only hold within the loop, since allowing the exit 719 // currently means re-using this SCEV outside the loop (see PR33706 for more 720 // details). 721 if (PSE.getPredicate().isAlwaysTrue()) { 722 AllowedExit.insert(Phi); 723 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 724 } 725 726 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 727 } 728 729 bool LoopVectorizationLegality::setupOuterLoopInductions() { 730 BasicBlock *Header = TheLoop->getHeader(); 731 732 // Returns true if a given Phi is a supported induction. 733 auto IsSupportedPhi = [&](PHINode &Phi) -> bool { 734 InductionDescriptor ID; 735 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 736 ID.getKind() == InductionDescriptor::IK_IntInduction) { 737 addInductionPhi(&Phi, ID, AllowedExit); 738 return true; 739 } 740 // Bail out for any Phi in the outer loop header that is not a supported 741 // induction. 742 LLVM_DEBUG( 743 dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n"); 744 return false; 745 }; 746 747 return llvm::all_of(Header->phis(), IsSupportedPhi); 748 } 749 750 /// Checks if a function is scalarizable according to the TLI, in 751 /// the sense that it should be vectorized and then expanded in 752 /// multiple scalar calls. This is represented in the 753 /// TLI via mappings that do not specify a vector name, as in the 754 /// following example: 755 /// 756 /// const VecDesc VecIntrinsics[] = { 757 /// {"llvm.phx.abs.i32", "", 4} 758 /// }; 759 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 760 const StringRef ScalarName = CI.getCalledFunction()->getName(); 761 bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 762 // Check that all known VFs are not associated to a vector 763 // function, i.e. the vector name is emty. 764 if (Scalarize) { 765 ElementCount WidestFixedVF, WidestScalableVF; 766 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 767 for (ElementCount VF = ElementCount::getFixed(2); 768 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 769 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 770 for (ElementCount VF = ElementCount::getScalable(1); 771 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 772 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 773 assert((WidestScalableVF.isZero() || !Scalarize) && 774 "Caller may decide to scalarize a variant using a scalable VF"); 775 } 776 return Scalarize; 777 } 778 779 bool LoopVectorizationLegality::canVectorizeInstrs() { 780 BasicBlock *Header = TheLoop->getHeader(); 781 782 // For each block in the loop. 783 for (BasicBlock *BB : TheLoop->blocks()) { 784 // Scan the instructions in the block and look for hazards. 785 for (Instruction &I : *BB) { 786 if (auto *Phi = dyn_cast<PHINode>(&I)) { 787 Type *PhiTy = Phi->getType(); 788 // Check that this PHI type is allowed. 789 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 790 !PhiTy->isPointerTy()) { 791 reportVectorizationFailure("Found a non-int non-pointer PHI", 792 "loop control flow is not understood by vectorizer", 793 "CFGNotUnderstood", ORE, TheLoop); 794 return false; 795 } 796 797 // If this PHINode is not in the header block, then we know that we 798 // can convert it to select during if-conversion. No need to check if 799 // the PHIs in this block are induction or reduction variables. 800 if (BB != Header) { 801 // Non-header phi nodes that have outside uses can be vectorized. Add 802 // them to the list of allowed exits. 803 // Unsafe cyclic dependencies with header phis are identified during 804 // legalization for reduction, induction and fixed order 805 // recurrences. 806 AllowedExit.insert(&I); 807 continue; 808 } 809 810 // We only allow if-converted PHIs with exactly two incoming values. 811 if (Phi->getNumIncomingValues() != 2) { 812 reportVectorizationFailure("Found an invalid PHI", 813 "loop control flow is not understood by vectorizer", 814 "CFGNotUnderstood", ORE, TheLoop, Phi); 815 return false; 816 } 817 818 RecurrenceDescriptor RedDes; 819 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 820 DT, PSE.getSE())) { 821 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 822 AllowedExit.insert(RedDes.getLoopExitInstr()); 823 Reductions[Phi] = RedDes; 824 continue; 825 } 826 827 // We prevent matching non-constant strided pointer IVS to preserve 828 // historical vectorizer behavior after a generalization of the 829 // IVDescriptor code. The intent is to remove this check, but we 830 // have to fix issues around code quality for such loops first. 831 auto IsDisallowedStridedPointerInduction = 832 [](const InductionDescriptor &ID) { 833 if (AllowStridedPointerIVs) 834 return false; 835 return ID.getKind() == InductionDescriptor::IK_PtrInduction && 836 ID.getConstIntStepValue() == nullptr; 837 }; 838 839 // TODO: Instead of recording the AllowedExit, it would be good to 840 // record the complementary set: NotAllowedExit. These include (but may 841 // not be limited to): 842 // 1. Reduction phis as they represent the one-before-last value, which 843 // is not available when vectorized 844 // 2. Induction phis and increment when SCEV predicates cannot be used 845 // outside the loop - see addInductionPhi 846 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 847 // outside the loop - see call to hasOutsideLoopUser in the non-phi 848 // handling below 849 // 4. FixedOrderRecurrence phis that can possibly be handled by 850 // extraction. 851 // By recording these, we can then reason about ways to vectorize each 852 // of these NotAllowedExit. 853 InductionDescriptor ID; 854 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) && 855 !IsDisallowedStridedPointerInduction(ID)) { 856 addInductionPhi(Phi, ID, AllowedExit); 857 Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 858 continue; 859 } 860 861 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) { 862 AllowedExit.insert(Phi); 863 FixedOrderRecurrences.insert(Phi); 864 continue; 865 } 866 867 // As a last resort, coerce the PHI to a AddRec expression 868 // and re-try classifying it a an induction PHI. 869 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) && 870 !IsDisallowedStridedPointerInduction(ID)) { 871 addInductionPhi(Phi, ID, AllowedExit); 872 continue; 873 } 874 875 reportVectorizationFailure("Found an unidentified PHI", 876 "value that could not be identified as " 877 "reduction is used outside the loop", 878 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 879 return false; 880 } // end of PHI handling 881 882 // We handle calls that: 883 // * Are debug info intrinsics. 884 // * Have a mapping to an IR intrinsic. 885 // * Have a vector version available. 886 auto *CI = dyn_cast<CallInst>(&I); 887 888 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 889 !isa<DbgInfoIntrinsic>(CI) && 890 !(CI->getCalledFunction() && TLI && 891 (!VFDatabase::getMappings(*CI).empty() || 892 isTLIScalarize(*TLI, *CI)))) { 893 // If the call is a recognized math libary call, it is likely that 894 // we can vectorize it given loosened floating-point constraints. 895 LibFunc Func; 896 bool IsMathLibCall = 897 TLI && CI->getCalledFunction() && 898 CI->getType()->isFloatingPointTy() && 899 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 900 TLI->hasOptimizedCodeGen(Func); 901 902 if (IsMathLibCall) { 903 // TODO: Ideally, we should not use clang-specific language here, 904 // but it's hard to provide meaningful yet generic advice. 905 // Also, should this be guarded by allowExtraAnalysis() and/or be part 906 // of the returned info from isFunctionVectorizable()? 907 reportVectorizationFailure( 908 "Found a non-intrinsic callsite", 909 "library call cannot be vectorized. " 910 "Try compiling with -fno-math-errno, -ffast-math, " 911 "or similar flags", 912 "CantVectorizeLibcall", ORE, TheLoop, CI); 913 } else { 914 reportVectorizationFailure("Found a non-intrinsic callsite", 915 "call instruction cannot be vectorized", 916 "CantVectorizeLibcall", ORE, TheLoop, CI); 917 } 918 return false; 919 } 920 921 // Some intrinsics have scalar arguments and should be same in order for 922 // them to be vectorized (i.e. loop invariant). 923 if (CI) { 924 auto *SE = PSE.getSE(); 925 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 926 for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx) 927 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, Idx)) { 928 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)), 929 TheLoop)) { 930 reportVectorizationFailure("Found unvectorizable intrinsic", 931 "intrinsic instruction cannot be vectorized", 932 "CantVectorizeIntrinsic", ORE, TheLoop, CI); 933 return false; 934 } 935 } 936 } 937 938 // If we found a vectorized variant of a function, note that so LV can 939 // make better decisions about maximum VF. 940 if (CI && !VFDatabase::getMappings(*CI).empty()) 941 VecCallVariantsFound = true; 942 943 // Check that the instruction return type is vectorizable. 944 // Also, we can't vectorize extractelement instructions. 945 if ((!VectorType::isValidElementType(I.getType()) && 946 !I.getType()->isVoidTy()) || 947 isa<ExtractElementInst>(I)) { 948 reportVectorizationFailure("Found unvectorizable type", 949 "instruction return type cannot be vectorized", 950 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 951 return false; 952 } 953 954 // Check that the stored type is vectorizable. 955 if (auto *ST = dyn_cast<StoreInst>(&I)) { 956 Type *T = ST->getValueOperand()->getType(); 957 if (!VectorType::isValidElementType(T)) { 958 reportVectorizationFailure("Store instruction cannot be vectorized", 959 "store instruction cannot be vectorized", 960 "CantVectorizeStore", ORE, TheLoop, ST); 961 return false; 962 } 963 964 // For nontemporal stores, check that a nontemporal vector version is 965 // supported on the target. 966 if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 967 // Arbitrarily try a vector of 2 elements. 968 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 969 assert(VecTy && "did not find vectorized version of stored type"); 970 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 971 reportVectorizationFailure( 972 "nontemporal store instruction cannot be vectorized", 973 "nontemporal store instruction cannot be vectorized", 974 "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 975 return false; 976 } 977 } 978 979 } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 980 if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 981 // For nontemporal loads, check that a nontemporal vector version is 982 // supported on the target (arbitrarily try a vector of 2 elements). 983 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 984 assert(VecTy && "did not find vectorized version of load type"); 985 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 986 reportVectorizationFailure( 987 "nontemporal load instruction cannot be vectorized", 988 "nontemporal load instruction cannot be vectorized", 989 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 990 return false; 991 } 992 } 993 994 // FP instructions can allow unsafe algebra, thus vectorizable by 995 // non-IEEE-754 compliant SIMD units. 996 // This applies to floating-point math operations and calls, not memory 997 // operations, shuffles, or casts, as they don't change precision or 998 // semantics. 999 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 1000 !I.isFast()) { 1001 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 1002 Hints->setPotentiallyUnsafe(); 1003 } 1004 1005 // Reduction instructions are allowed to have exit users. 1006 // All other instructions must not have external users. 1007 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 1008 // We can safely vectorize loops where instructions within the loop are 1009 // used outside the loop only if the SCEV predicates within the loop is 1010 // same as outside the loop. Allowing the exit means reusing the SCEV 1011 // outside the loop. 1012 if (PSE.getPredicate().isAlwaysTrue()) { 1013 AllowedExit.insert(&I); 1014 continue; 1015 } 1016 reportVectorizationFailure("Value cannot be used outside the loop", 1017 "value cannot be used outside the loop", 1018 "ValueUsedOutsideLoop", ORE, TheLoop, &I); 1019 return false; 1020 } 1021 } // next instr. 1022 } 1023 1024 if (!PrimaryInduction) { 1025 if (Inductions.empty()) { 1026 reportVectorizationFailure("Did not find one integer induction var", 1027 "loop induction variable could not be identified", 1028 "NoInductionVariable", ORE, TheLoop); 1029 return false; 1030 } 1031 if (!WidestIndTy) { 1032 reportVectorizationFailure("Did not find one integer induction var", 1033 "integer loop induction variable could not be identified", 1034 "NoIntegerInductionVariable", ORE, TheLoop); 1035 return false; 1036 } 1037 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 1038 } 1039 1040 // Now we know the widest induction type, check if our found induction 1041 // is the same size. If it's not, unset it here and InnerLoopVectorizer 1042 // will create another. 1043 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 1044 PrimaryInduction = nullptr; 1045 1046 return true; 1047 } 1048 1049 bool LoopVectorizationLegality::canVectorizeMemory() { 1050 LAI = &LAIs.getInfo(*TheLoop); 1051 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 1052 if (LAR) { 1053 ORE->emit([&]() { 1054 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 1055 "loop not vectorized: ", *LAR); 1056 }); 1057 } 1058 1059 if (!LAI->canVectorizeMemory()) 1060 return false; 1061 1062 if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) { 1063 reportVectorizationFailure("We don't allow storing to uniform addresses", 1064 "write to a loop invariant address could not " 1065 "be vectorized", 1066 "CantVectorizeStoreToLoopInvariantAddress", ORE, 1067 TheLoop); 1068 return false; 1069 } 1070 1071 // We can vectorize stores to invariant address when final reduction value is 1072 // guaranteed to be stored at the end of the loop. Also, if decision to 1073 // vectorize loop is made, runtime checks are added so as to make sure that 1074 // invariant address won't alias with any other objects. 1075 if (!LAI->getStoresToInvariantAddresses().empty()) { 1076 // For each invariant address, check if last stored value is unconditional 1077 // and the address is not calculated inside the loop. 1078 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 1079 if (!isInvariantStoreOfReduction(SI)) 1080 continue; 1081 1082 if (blockNeedsPredication(SI->getParent())) { 1083 reportVectorizationFailure( 1084 "We don't allow storing to uniform addresses", 1085 "write of conditional recurring variant value to a loop " 1086 "invariant address could not be vectorized", 1087 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 1088 return false; 1089 } 1090 1091 // Invariant address should be defined outside of loop. LICM pass usually 1092 // makes sure it happens, but in rare cases it does not, we do not want 1093 // to overcomplicate vectorization to support this case. 1094 if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) { 1095 if (TheLoop->contains(Ptr)) { 1096 reportVectorizationFailure( 1097 "Invariant address is calculated inside the loop", 1098 "write to a loop invariant address could not " 1099 "be vectorized", 1100 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 1101 return false; 1102 } 1103 } 1104 } 1105 1106 if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) { 1107 // For each invariant address, check its last stored value is the result 1108 // of one of our reductions. 1109 // 1110 // We do not check if dependence with loads exists because that is already 1111 // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress. 1112 ScalarEvolution *SE = PSE.getSE(); 1113 SmallVector<StoreInst *, 4> UnhandledStores; 1114 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 1115 if (isInvariantStoreOfReduction(SI)) { 1116 // Earlier stores to this address are effectively deadcode. 1117 // With opaque pointers it is possible for one pointer to be used with 1118 // different sizes of stored values: 1119 // store i32 0, ptr %x 1120 // store i8 0, ptr %x 1121 // The latest store doesn't complitely overwrite the first one in the 1122 // example. That is why we have to make sure that types of stored 1123 // values are same. 1124 // TODO: Check that bitwidth of unhandled store is smaller then the 1125 // one that overwrites it and add a test. 1126 erase_if(UnhandledStores, [SE, SI](StoreInst *I) { 1127 return storeToSameAddress(SE, SI, I) && 1128 I->getValueOperand()->getType() == 1129 SI->getValueOperand()->getType(); 1130 }); 1131 continue; 1132 } 1133 UnhandledStores.push_back(SI); 1134 } 1135 1136 bool IsOK = UnhandledStores.empty(); 1137 // TODO: we should also validate against InvariantMemSets. 1138 if (!IsOK) { 1139 reportVectorizationFailure( 1140 "We don't allow storing to uniform addresses", 1141 "write to a loop invariant address could not " 1142 "be vectorized", 1143 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 1144 return false; 1145 } 1146 } 1147 } 1148 1149 PSE.addPredicate(LAI->getPSE().getPredicate()); 1150 return true; 1151 } 1152 1153 bool LoopVectorizationLegality::canVectorizeFPMath( 1154 bool EnableStrictReductions) { 1155 1156 // First check if there is any ExactFP math or if we allow reassociations 1157 if (!Requirements->getExactFPInst() || Hints->allowReordering()) 1158 return true; 1159 1160 // If the above is false, we have ExactFPMath & do not allow reordering. 1161 // If the EnableStrictReductions flag is set, first check if we have any 1162 // Exact FP induction vars, which we cannot vectorize. 1163 if (!EnableStrictReductions || 1164 any_of(getInductionVars(), [&](auto &Induction) -> bool { 1165 InductionDescriptor IndDesc = Induction.second; 1166 return IndDesc.getExactFPMathInst(); 1167 })) 1168 return false; 1169 1170 // We can now only vectorize if all reductions with Exact FP math also 1171 // have the isOrdered flag set, which indicates that we can move the 1172 // reduction operations in-loop. 1173 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { 1174 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1175 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered(); 1176 })); 1177 } 1178 1179 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) { 1180 return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1181 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1182 return RdxDesc.IntermediateStore == SI; 1183 }); 1184 } 1185 1186 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) { 1187 return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1188 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1189 if (!RdxDesc.IntermediateStore) 1190 return false; 1191 1192 ScalarEvolution *SE = PSE.getSE(); 1193 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand(); 1194 return V == InvariantAddress || 1195 SE->getSCEV(V) == SE->getSCEV(InvariantAddress); 1196 }); 1197 } 1198 1199 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { 1200 Value *In0 = const_cast<Value *>(V); 1201 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 1202 if (!PN) 1203 return false; 1204 1205 return Inductions.count(PN); 1206 } 1207 1208 const InductionDescriptor * 1209 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { 1210 if (!isInductionPhi(Phi)) 1211 return nullptr; 1212 auto &ID = getInductionVars().find(Phi)->second; 1213 if (ID.getKind() == InductionDescriptor::IK_IntInduction || 1214 ID.getKind() == InductionDescriptor::IK_FpInduction) 1215 return &ID; 1216 return nullptr; 1217 } 1218 1219 const InductionDescriptor * 1220 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const { 1221 if (!isInductionPhi(Phi)) 1222 return nullptr; 1223 auto &ID = getInductionVars().find(Phi)->second; 1224 if (ID.getKind() == InductionDescriptor::IK_PtrInduction) 1225 return &ID; 1226 return nullptr; 1227 } 1228 1229 bool LoopVectorizationLegality::isCastedInductionVariable( 1230 const Value *V) const { 1231 auto *Inst = dyn_cast<Instruction>(V); 1232 return (Inst && InductionCastsToIgnore.count(Inst)); 1233 } 1234 1235 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { 1236 return isInductionPhi(V) || isCastedInductionVariable(V); 1237 } 1238 1239 bool LoopVectorizationLegality::isFixedOrderRecurrence( 1240 const PHINode *Phi) const { 1241 return FixedOrderRecurrences.count(Phi); 1242 } 1243 1244 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 1245 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1246 } 1247 1248 bool LoopVectorizationLegality::blockCanBePredicated( 1249 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 1250 SmallPtrSetImpl<const Instruction *> &MaskedOp) const { 1251 for (Instruction &I : *BB) { 1252 // We can predicate blocks with calls to assume, as long as we drop them in 1253 // case we flatten the CFG via predication. 1254 if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 1255 MaskedOp.insert(&I); 1256 continue; 1257 } 1258 1259 // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 1260 // TODO: there might be cases that it should block the vectorization. Let's 1261 // ignore those for now. 1262 if (isa<NoAliasScopeDeclInst>(&I)) 1263 continue; 1264 1265 // We can allow masked calls if there's at least one vector variant, even 1266 // if we end up scalarizing due to the cost model calculations. 1267 // TODO: Allow other calls if they have appropriate attributes... readonly 1268 // and argmemonly? 1269 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1270 if (VFDatabase::hasMaskedVariant(*CI)) { 1271 MaskedOp.insert(CI); 1272 continue; 1273 } 1274 1275 // Loads are handled via masking (or speculated if safe to do so.) 1276 if (auto *LI = dyn_cast<LoadInst>(&I)) { 1277 if (!SafePtrs.count(LI->getPointerOperand())) 1278 MaskedOp.insert(LI); 1279 continue; 1280 } 1281 1282 // Predicated store requires some form of masking: 1283 // 1) masked store HW instruction, 1284 // 2) emulation via load-blend-store (only if safe and legal to do so, 1285 // be aware on the race conditions), or 1286 // 3) element-by-element predicate check and scalar store. 1287 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1288 MaskedOp.insert(SI); 1289 continue; 1290 } 1291 1292 if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow()) 1293 return false; 1294 } 1295 1296 return true; 1297 } 1298 1299 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 1300 if (!EnableIfConversion) { 1301 reportVectorizationFailure("If-conversion is disabled", 1302 "if-conversion is disabled", 1303 "IfConversionDisabled", 1304 ORE, TheLoop); 1305 return false; 1306 } 1307 1308 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 1309 1310 // A list of pointers which are known to be dereferenceable within scope of 1311 // the loop body for each iteration of the loop which executes. That is, 1312 // the memory pointed to can be dereferenced (with the access size implied by 1313 // the value's type) unconditionally within the loop header without 1314 // introducing a new fault. 1315 SmallPtrSet<Value *, 8> SafePointers; 1316 1317 // Collect safe addresses. 1318 for (BasicBlock *BB : TheLoop->blocks()) { 1319 if (!blockNeedsPredication(BB)) { 1320 for (Instruction &I : *BB) 1321 if (auto *Ptr = getLoadStorePointerOperand(&I)) 1322 SafePointers.insert(Ptr); 1323 continue; 1324 } 1325 1326 // For a block which requires predication, a address may be safe to access 1327 // in the loop w/o predication if we can prove dereferenceability facts 1328 // sufficient to ensure it'll never fault within the loop. For the moment, 1329 // we restrict this to loads; stores are more complicated due to 1330 // concurrency restrictions. 1331 ScalarEvolution &SE = *PSE.getSE(); 1332 for (Instruction &I : *BB) { 1333 LoadInst *LI = dyn_cast<LoadInst>(&I); 1334 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 1335 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC)) 1336 SafePointers.insert(LI->getPointerOperand()); 1337 } 1338 } 1339 1340 // Collect the blocks that need predication. 1341 for (BasicBlock *BB : TheLoop->blocks()) { 1342 // We don't support switch statements inside loops. 1343 if (!isa<BranchInst>(BB->getTerminator())) { 1344 reportVectorizationFailure("Loop contains a switch statement", 1345 "loop contains a switch statement", 1346 "LoopContainsSwitch", ORE, TheLoop, 1347 BB->getTerminator()); 1348 return false; 1349 } 1350 1351 // We must be able to predicate all blocks that need to be predicated. 1352 if (blockNeedsPredication(BB) && 1353 !blockCanBePredicated(BB, SafePointers, MaskedOp)) { 1354 reportVectorizationFailure( 1355 "Control flow cannot be substituted for a select", 1356 "control flow cannot be substituted for a select", "NoCFGForSelect", 1357 ORE, TheLoop, BB->getTerminator()); 1358 return false; 1359 } 1360 } 1361 1362 // We can if-convert this loop. 1363 return true; 1364 } 1365 1366 // Helper function to canVectorizeLoopNestCFG. 1367 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1368 bool UseVPlanNativePath) { 1369 assert((UseVPlanNativePath || Lp->isInnermost()) && 1370 "VPlan-native path is not enabled."); 1371 1372 // TODO: ORE should be improved to show more accurate information when an 1373 // outer loop can't be vectorized because a nested loop is not understood or 1374 // legal. Something like: "outer_loop_location: loop not vectorized: 1375 // (inner_loop_location) loop control flow is not understood by vectorizer". 1376 1377 // Store the result and return it at the end instead of exiting early, in case 1378 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1379 bool Result = true; 1380 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1381 1382 // We must have a loop in canonical form. Loops with indirectbr in them cannot 1383 // be canonicalized. 1384 if (!Lp->getLoopPreheader()) { 1385 reportVectorizationFailure("Loop doesn't have a legal pre-header", 1386 "loop control flow is not understood by vectorizer", 1387 "CFGNotUnderstood", ORE, TheLoop); 1388 if (DoExtraAnalysis) 1389 Result = false; 1390 else 1391 return false; 1392 } 1393 1394 // We must have a single backedge. 1395 if (Lp->getNumBackEdges() != 1) { 1396 reportVectorizationFailure("The loop must have a single backedge", 1397 "loop control flow is not understood by vectorizer", 1398 "CFGNotUnderstood", ORE, TheLoop); 1399 if (DoExtraAnalysis) 1400 Result = false; 1401 else 1402 return false; 1403 } 1404 1405 return Result; 1406 } 1407 1408 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1409 Loop *Lp, bool UseVPlanNativePath) { 1410 // Store the result and return it at the end instead of exiting early, in case 1411 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1412 bool Result = true; 1413 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1414 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1415 if (DoExtraAnalysis) 1416 Result = false; 1417 else 1418 return false; 1419 } 1420 1421 // Recursively check whether the loop control flow of nested loops is 1422 // understood. 1423 for (Loop *SubLp : *Lp) 1424 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1425 if (DoExtraAnalysis) 1426 Result = false; 1427 else 1428 return false; 1429 } 1430 1431 return Result; 1432 } 1433 1434 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1435 // Store the result and return it at the end instead of exiting early, in case 1436 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1437 bool Result = true; 1438 1439 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1440 // Check whether the loop-related control flow in the loop nest is expected by 1441 // vectorizer. 1442 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1443 if (DoExtraAnalysis) 1444 Result = false; 1445 else 1446 return false; 1447 } 1448 1449 // We need to have a loop header. 1450 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1451 << '\n'); 1452 1453 // Specific checks for outer loops. We skip the remaining legal checks at this 1454 // point because they don't support outer loops. 1455 if (!TheLoop->isInnermost()) { 1456 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1457 1458 if (!canVectorizeOuterLoop()) { 1459 reportVectorizationFailure("Unsupported outer loop", 1460 "unsupported outer loop", 1461 "UnsupportedOuterLoop", 1462 ORE, TheLoop); 1463 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1464 // outer loops. 1465 return false; 1466 } 1467 1468 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1469 return Result; 1470 } 1471 1472 assert(TheLoop->isInnermost() && "Inner loop expected."); 1473 // Check if we can if-convert non-single-bb loops. 1474 unsigned NumBlocks = TheLoop->getNumBlocks(); 1475 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1476 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1477 if (DoExtraAnalysis) 1478 Result = false; 1479 else 1480 return false; 1481 } 1482 1483 // Check if we can vectorize the instructions and CFG in this loop. 1484 if (!canVectorizeInstrs()) { 1485 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1486 if (DoExtraAnalysis) 1487 Result = false; 1488 else 1489 return false; 1490 } 1491 1492 // Go over each instruction and look at memory deps. 1493 if (!canVectorizeMemory()) { 1494 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1495 if (DoExtraAnalysis) 1496 Result = false; 1497 else 1498 return false; 1499 } 1500 1501 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 1502 reportVectorizationFailure("could not determine number of loop iterations", 1503 "could not determine number of loop iterations", 1504 "CantComputeNumberOfIterations", ORE, TheLoop); 1505 if (DoExtraAnalysis) 1506 Result = false; 1507 else 1508 return false; 1509 } 1510 1511 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1512 << (LAI->getRuntimePointerChecking()->Need 1513 ? " (with a runtime bound check)" 1514 : "") 1515 << "!\n"); 1516 1517 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1518 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1519 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1520 1521 if (PSE.getPredicate().getComplexity() > SCEVThreshold) { 1522 reportVectorizationFailure("Too many SCEV checks needed", 1523 "Too many SCEV assumptions need to be made and checked at runtime", 1524 "TooManySCEVRunTimeChecks", ORE, TheLoop); 1525 if (DoExtraAnalysis) 1526 Result = false; 1527 else 1528 return false; 1529 } 1530 1531 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1532 // we can vectorize, and at this point we don't have any other mem analysis 1533 // which may limit our maximum vectorization factor, so just return true with 1534 // no restrictions. 1535 return Result; 1536 } 1537 1538 bool LoopVectorizationLegality::canFoldTailByMasking() const { 1539 1540 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1541 1542 SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1543 1544 for (const auto &Reduction : getReductionVars()) 1545 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1546 1547 // TODO: handle non-reduction outside users when tail is folded by masking. 1548 for (auto *AE : AllowedExit) { 1549 // Check that all users of allowed exit values are inside the loop or 1550 // are the live-out of a reduction. 1551 if (ReductionLiveOuts.count(AE)) 1552 continue; 1553 for (User *U : AE->users()) { 1554 Instruction *UI = cast<Instruction>(U); 1555 if (TheLoop->contains(UI)) 1556 continue; 1557 LLVM_DEBUG( 1558 dbgs() 1559 << "LV: Cannot fold tail by masking, loop has an outside user for " 1560 << *UI << "\n"); 1561 return false; 1562 } 1563 } 1564 1565 for (const auto &Entry : getInductionVars()) { 1566 PHINode *OrigPhi = Entry.first; 1567 for (User *U : OrigPhi->users()) { 1568 auto *UI = cast<Instruction>(U); 1569 if (!TheLoop->contains(UI)) { 1570 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an " 1571 "outside user for " 1572 << *UI << "\n"); 1573 return false; 1574 } 1575 } 1576 } 1577 1578 // The list of pointers that we can safely read and write to remains empty. 1579 SmallPtrSet<Value *, 8> SafePointers; 1580 1581 // Check all blocks for predication, including those that ordinarily do not 1582 // need predication such as the header block. 1583 SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1584 for (BasicBlock *BB : TheLoop->blocks()) { 1585 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) { 1586 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n"); 1587 return false; 1588 } 1589 } 1590 1591 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1592 1593 return true; 1594 } 1595 1596 void LoopVectorizationLegality::prepareToFoldTailByMasking() { 1597 // The list of pointers that we can safely read and write to remains empty. 1598 SmallPtrSet<Value *, 8> SafePointers; 1599 1600 // Mark all blocks for predication, including those that ordinarily do not 1601 // need predication such as the header block. 1602 for (BasicBlock *BB : TheLoop->blocks()) { 1603 [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp); 1604 assert(R && "Must be able to predicate block when tail-folding."); 1605 } 1606 } 1607 1608 } // namespace llvm 1609