xref: /llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp (revision 6ab26eab4f1e06f2da7b3183c55666ad57f8866e)
1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Transforms/Utils/SizeOpts.h"
29 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
30 
31 using namespace llvm;
32 using namespace PatternMatch;
33 
34 #define LV_NAME "loop-vectorize"
35 #define DEBUG_TYPE LV_NAME
36 
37 static cl::opt<bool>
38     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
39                        cl::desc("Enable if-conversion during vectorization."));
40 
41 static cl::opt<bool>
42 AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
43                        cl::desc("Enable recognition of non-constant strided "
44                                 "pointer induction variables."));
45 
46 namespace llvm {
47 cl::opt<bool>
48     HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
49                          cl::desc("Allow enabling loop hints to reorder "
50                                   "FP operations during vectorization."));
51 } // namespace llvm
52 
53 // TODO: Move size-based thresholds out of legality checking, make cost based
54 // decisions instead of hard thresholds.
55 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
56     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
57     cl::desc("The maximum number of SCEV checks allowed."));
58 
59 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
60     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
61     cl::desc("The maximum number of SCEV checks allowed with a "
62              "vectorize(enable) pragma"));
63 
64 static cl::opt<LoopVectorizeHints::ScalableForceKind>
65     ForceScalableVectorization(
66         "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
67         cl::Hidden,
68         cl::desc("Control whether the compiler can use scalable vectors to "
69                  "vectorize a loop"),
70         cl::values(
71             clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
72                        "Scalable vectorization is disabled."),
73             clEnumValN(
74                 LoopVectorizeHints::SK_PreferScalable, "preferred",
75                 "Scalable vectorization is available and favored when the "
76                 "cost is inconclusive."),
77             clEnumValN(
78                 LoopVectorizeHints::SK_PreferScalable, "on",
79                 "Scalable vectorization is available and favored when the "
80                 "cost is inconclusive.")));
81 
82 static cl::opt<bool> EnableHistogramVectorization(
83     "enable-histogram-loop-vectorization", cl::init(false), cl::Hidden,
84     cl::desc("Enables autovectorization of some loops containing histograms"));
85 
86 /// Maximum vectorization interleave count.
87 static const unsigned MaxInterleaveFactor = 16;
88 
89 namespace llvm {
90 
91 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
92   switch (Kind) {
93   case HK_WIDTH:
94     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
95   case HK_INTERLEAVE:
96     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
97   case HK_FORCE:
98     return (Val <= 1);
99   case HK_ISVECTORIZED:
100   case HK_PREDICATE:
101   case HK_SCALABLE:
102     return (Val == 0 || Val == 1);
103   }
104   return false;
105 }
106 
107 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
108                                        bool InterleaveOnlyWhenForced,
109                                        OptimizationRemarkEmitter &ORE,
110                                        const TargetTransformInfo *TTI)
111     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
112       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
113       Force("vectorize.enable", FK_Undefined, HK_FORCE),
114       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
115       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
116       Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
117       TheLoop(L), ORE(ORE) {
118   // Populate values with existing loop metadata.
119   getHintsFromMetadata();
120 
121   // force-vector-interleave overrides DisableInterleaving.
122   if (VectorizerParams::isInterleaveForced())
123     Interleave.Value = VectorizerParams::VectorizationInterleave;
124 
125   // If the metadata doesn't explicitly specify whether to enable scalable
126   // vectorization, then decide based on the following criteria (increasing
127   // level of priority):
128   //  - Target default
129   //  - Metadata width
130   //  - Force option (always overrides)
131   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
132     if (TTI)
133       Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
134                                                           : SK_FixedWidthOnly;
135 
136     if (Width.Value)
137       // If the width is set, but the metadata says nothing about the scalable
138       // property, then assume it concerns only a fixed-width UserVF.
139       // If width is not set, the flag takes precedence.
140       Scalable.Value = SK_FixedWidthOnly;
141   }
142 
143   // If the flag is set to force any use of scalable vectors, override the loop
144   // hints.
145   if (ForceScalableVectorization.getValue() !=
146       LoopVectorizeHints::SK_Unspecified)
147     Scalable.Value = ForceScalableVectorization.getValue();
148 
149   // Scalable vectorization is disabled if no preference is specified.
150   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
151     Scalable.Value = SK_FixedWidthOnly;
152 
153   if (IsVectorized.Value != 1)
154     // If the vectorization width and interleaving count are both 1 then
155     // consider the loop to have been already vectorized because there's
156     // nothing more that we can do.
157     IsVectorized.Value =
158         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
159   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
160              << "LV: Interleaving disabled by the pass manager\n");
161 }
162 
163 void LoopVectorizeHints::setAlreadyVectorized() {
164   LLVMContext &Context = TheLoop->getHeader()->getContext();
165 
166   MDNode *IsVectorizedMD = MDNode::get(
167       Context,
168       {MDString::get(Context, "llvm.loop.isvectorized"),
169        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
170   MDNode *LoopID = TheLoop->getLoopID();
171   MDNode *NewLoopID =
172       makePostTransformationMetadata(Context, LoopID,
173                                      {Twine(Prefix(), "vectorize.").str(),
174                                       Twine(Prefix(), "interleave.").str()},
175                                      {IsVectorizedMD});
176   TheLoop->setLoopID(NewLoopID);
177 
178   // Update internal cache.
179   IsVectorized.Value = 1;
180 }
181 
182 bool LoopVectorizeHints::allowVectorization(
183     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
184   if (getForce() == LoopVectorizeHints::FK_Disabled) {
185     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
186     emitRemarkWithHints();
187     return false;
188   }
189 
190   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
191     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
192     emitRemarkWithHints();
193     return false;
194   }
195 
196   if (getIsVectorized() == 1) {
197     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
198     // FIXME: Add interleave.disable metadata. This will allow
199     // vectorize.disable to be used without disabling the pass and errors
200     // to differentiate between disabled vectorization and a width of 1.
201     ORE.emit([&]() {
202       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
203                                         "AllDisabled", L->getStartLoc(),
204                                         L->getHeader())
205              << "loop not vectorized: vectorization and interleaving are "
206                 "explicitly disabled, or the loop has already been "
207                 "vectorized";
208     });
209     return false;
210   }
211 
212   return true;
213 }
214 
215 void LoopVectorizeHints::emitRemarkWithHints() const {
216   using namespace ore;
217 
218   ORE.emit([&]() {
219     if (Force.Value == LoopVectorizeHints::FK_Disabled)
220       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
221                                       TheLoop->getStartLoc(),
222                                       TheLoop->getHeader())
223              << "loop not vectorized: vectorization is explicitly disabled";
224 
225     OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(),
226                                TheLoop->getHeader());
227     R << "loop not vectorized";
228     if (Force.Value == LoopVectorizeHints::FK_Enabled) {
229       R << " (Force=" << NV("Force", true);
230       if (Width.Value != 0)
231         R << ", Vector Width=" << NV("VectorWidth", getWidth());
232       if (getInterleave() != 0)
233         R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
234       R << ")";
235     }
236     return R;
237   });
238 }
239 
240 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
241   if (getWidth() == ElementCount::getFixed(1))
242     return LV_NAME;
243   if (getForce() == LoopVectorizeHints::FK_Disabled)
244     return LV_NAME;
245   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
246     return LV_NAME;
247   return OptimizationRemarkAnalysis::AlwaysPrint;
248 }
249 
250 bool LoopVectorizeHints::allowReordering() const {
251   // Allow the vectorizer to change the order of operations if enabling
252   // loop hints are provided
253   ElementCount EC = getWidth();
254   return HintsAllowReordering &&
255          (getForce() == LoopVectorizeHints::FK_Enabled ||
256           EC.getKnownMinValue() > 1);
257 }
258 
259 void LoopVectorizeHints::getHintsFromMetadata() {
260   MDNode *LoopID = TheLoop->getLoopID();
261   if (!LoopID)
262     return;
263 
264   // First operand should refer to the loop id itself.
265   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
266   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
267 
268   for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
269     const MDString *S = nullptr;
270     SmallVector<Metadata *, 4> Args;
271 
272     // The expected hint is either a MDString or a MDNode with the first
273     // operand a MDString.
274     if (const MDNode *MD = dyn_cast<MDNode>(MDO)) {
275       if (!MD || MD->getNumOperands() == 0)
276         continue;
277       S = dyn_cast<MDString>(MD->getOperand(0));
278       for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx)
279         Args.push_back(MD->getOperand(Idx));
280     } else {
281       S = dyn_cast<MDString>(MDO);
282       assert(Args.size() == 0 && "too many arguments for MDString");
283     }
284 
285     if (!S)
286       continue;
287 
288     // Check if the hint starts with the loop metadata prefix.
289     StringRef Name = S->getString();
290     if (Args.size() == 1)
291       setHint(Name, Args[0]);
292   }
293 }
294 
295 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
296   if (!Name.starts_with(Prefix()))
297     return;
298   Name = Name.substr(Prefix().size(), StringRef::npos);
299 
300   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
301   if (!C)
302     return;
303   unsigned Val = C->getZExtValue();
304 
305   Hint *Hints[] = {&Width,        &Interleave, &Force,
306                    &IsVectorized, &Predicate,  &Scalable};
307   for (auto *H : Hints) {
308     if (Name == H->Name) {
309       if (H->validate(Val))
310         H->Value = Val;
311       else
312         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
313       break;
314     }
315   }
316 }
317 
318 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
319 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
320 // executing the inner loop will execute the same iterations). This check is
321 // very constrained for now but it will be relaxed in the future. \p Lp is
322 // considered uniform if it meets all the following conditions:
323 //   1) it has a canonical IV (starting from 0 and with stride 1),
324 //   2) its latch terminator is a conditional branch and,
325 //   3) its latch condition is a compare instruction whose operands are the
326 //      canonical IV and an OuterLp invariant.
327 // This check doesn't take into account the uniformity of other conditions not
328 // related to the loop latch because they don't affect the loop uniformity.
329 //
330 // NOTE: We decided to keep all these checks and its associated documentation
331 // together so that we can easily have a picture of the current supported loop
332 // nests. However, some of the current checks don't depend on \p OuterLp and
333 // would be redundantly executed for each \p Lp if we invoked this function for
334 // different candidate outer loops. This is not the case for now because we
335 // don't currently have the infrastructure to evaluate multiple candidate outer
336 // loops and \p OuterLp will be a fixed parameter while we only support explicit
337 // outer loop vectorization. It's also very likely that these checks go away
338 // before introducing the aforementioned infrastructure. However, if this is not
339 // the case, we should move the \p OuterLp independent checks to a separate
340 // function that is only executed once for each \p Lp.
341 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
342   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
343 
344   // If Lp is the outer loop, it's uniform by definition.
345   if (Lp == OuterLp)
346     return true;
347   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
348 
349   // 1.
350   PHINode *IV = Lp->getCanonicalInductionVariable();
351   if (!IV) {
352     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
353     return false;
354   }
355 
356   // 2.
357   BasicBlock *Latch = Lp->getLoopLatch();
358   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
359   if (!LatchBr || LatchBr->isUnconditional()) {
360     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
361     return false;
362   }
363 
364   // 3.
365   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
366   if (!LatchCmp) {
367     LLVM_DEBUG(
368         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
369     return false;
370   }
371 
372   Value *CondOp0 = LatchCmp->getOperand(0);
373   Value *CondOp1 = LatchCmp->getOperand(1);
374   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
375   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
376       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
377     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
378     return false;
379   }
380 
381   return true;
382 }
383 
384 // Return true if \p Lp and all its nested loops are uniform with regard to \p
385 // OuterLp.
386 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
387   if (!isUniformLoop(Lp, OuterLp))
388     return false;
389 
390   // Check if nested loops are uniform.
391   for (Loop *SubLp : *Lp)
392     if (!isUniformLoopNest(SubLp, OuterLp))
393       return false;
394 
395   return true;
396 }
397 
398 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
399   if (Ty->isPointerTy())
400     return DL.getIntPtrType(Ty);
401 
402   // It is possible that char's or short's overflow when we ask for the loop's
403   // trip count, work around this by changing the type size.
404   if (Ty->getScalarSizeInBits() < 32)
405     return Type::getInt32Ty(Ty->getContext());
406 
407   return Ty;
408 }
409 
410 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
411   Ty0 = convertPointerToIntegerType(DL, Ty0);
412   Ty1 = convertPointerToIntegerType(DL, Ty1);
413   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
414     return Ty0;
415   return Ty1;
416 }
417 
418 /// Check that the instruction has outside loop users and is not an
419 /// identified reduction variable.
420 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
421                                SmallPtrSetImpl<Value *> &AllowedExit) {
422   // Reductions, Inductions and non-header phis are allowed to have exit users. All
423   // other instructions must not have external users.
424   if (!AllowedExit.count(Inst))
425     // Check that all of the users of the loop are inside the BB.
426     for (User *U : Inst->users()) {
427       Instruction *UI = cast<Instruction>(U);
428       // This user may be a reduction exit value.
429       if (!TheLoop->contains(UI)) {
430         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
431         return true;
432       }
433     }
434   return false;
435 }
436 
437 /// Returns true if A and B have same pointer operands or same SCEVs addresses
438 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
439                                StoreInst *B) {
440   // Compare store
441   if (A == B)
442     return true;
443 
444   // Otherwise Compare pointers
445   Value *APtr = A->getPointerOperand();
446   Value *BPtr = B->getPointerOperand();
447   if (APtr == BPtr)
448     return true;
449 
450   // Otherwise compare address SCEVs
451   return SE->getSCEV(APtr) == SE->getSCEV(BPtr);
452 }
453 
454 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
455                                                 Value *Ptr) const {
456   // FIXME: Currently, the set of symbolic strides is sometimes queried before
457   // it's collected.  This happens from canVectorizeWithIfConvert, when the
458   // pointer is checked to reference consecutive elements suitable for a
459   // masked access.
460   const auto &Strides =
461     LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
462 
463   bool CanAddPredicate = !llvm::shouldOptimizeForSize(
464       TheLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
466                             CanAddPredicate, false).value_or(0);
467   if (Stride == 1 || Stride == -1)
468     return Stride;
469   return 0;
470 }
471 
472 bool LoopVectorizationLegality::isInvariant(Value *V) const {
473   return LAI->isInvariant(V);
474 }
475 
476 namespace {
477 /// A rewriter to build the SCEVs for each of the VF lanes in the expected
478 /// vectorized loop, which can then be compared to detect their uniformity. This
479 /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
480 /// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
481 /// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
482 /// uniformity.
483 class SCEVAddRecForUniformityRewriter
484     : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
485   /// Multiplier to be applied to the step of AddRecs in TheLoop.
486   unsigned StepMultiplier;
487 
488   /// Offset to be added to the AddRecs in TheLoop.
489   unsigned Offset;
490 
491   /// Loop for which to rewrite AddRecsFor.
492   Loop *TheLoop;
493 
494   /// Is any sub-expressions not analyzable w.r.t. uniformity?
495   bool CannotAnalyze = false;
496 
497   bool canAnalyze() const { return !CannotAnalyze; }
498 
499 public:
500   SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
501                                   unsigned Offset, Loop *TheLoop)
502       : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
503         TheLoop(TheLoop) {}
504 
505   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
506     assert(Expr->getLoop() == TheLoop &&
507            "addrec outside of TheLoop must be invariant and should have been "
508            "handled earlier");
509     // Build a new AddRec by multiplying the step by StepMultiplier and
510     // incrementing the start by Offset * step.
511     Type *Ty = Expr->getType();
512     const SCEV *Step = Expr->getStepRecurrence(SE);
513     if (!SE.isLoopInvariant(Step, TheLoop)) {
514       CannotAnalyze = true;
515       return Expr;
516     }
517     const SCEV *NewStep =
518         SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
519     const SCEV *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
520     const SCEV *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
521     return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
522   }
523 
524   const SCEV *visit(const SCEV *S) {
525     if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
526       return S;
527     return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S);
528   }
529 
530   const SCEV *visitUnknown(const SCEVUnknown *S) {
531     if (SE.isLoopInvariant(S, TheLoop))
532       return S;
533     // The value could vary across iterations.
534     CannotAnalyze = true;
535     return S;
536   }
537 
538   const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
539     // Could not analyze the expression.
540     CannotAnalyze = true;
541     return S;
542   }
543 
544   static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
545                              unsigned StepMultiplier, unsigned Offset,
546                              Loop *TheLoop) {
547     /// Bail out if the expression does not contain an UDiv expression.
548     /// Uniform values which are not loop invariant require operations to strip
549     /// out the lowest bits. For now just look for UDivs and use it to avoid
550     /// re-writing UDIV-free expressions for other lanes to limit compile time.
551     if (!SCEVExprContains(S,
552                           [](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
553       return SE.getCouldNotCompute();
554 
555     SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
556                                              TheLoop);
557     const SCEV *Result = Rewriter.visit(S);
558 
559     if (Rewriter.canAnalyze())
560       return Result;
561     return SE.getCouldNotCompute();
562   }
563 };
564 
565 } // namespace
566 
567 bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const {
568   if (isInvariant(V))
569     return true;
570   if (VF.isScalable())
571     return false;
572   if (VF.isScalar())
573     return true;
574 
575   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
576   // never considered uniform.
577   auto *SE = PSE.getSE();
578   if (!SE->isSCEVable(V->getType()))
579     return false;
580   const SCEV *S = SE->getSCEV(V);
581 
582   // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
583   // lane 0 matches the expressions for all other lanes.
584   unsigned FixedVF = VF.getKnownMinValue();
585   const SCEV *FirstLaneExpr =
586       SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
587   if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
588     return false;
589 
590   // Make sure the expressions for lanes FixedVF-1..1 match the expression for
591   // lane 0. We check lanes in reverse order for compile-time, as frequently
592   // checking the last lane is sufficient to rule out uniformity.
593   return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
594     const SCEV *IthLaneExpr =
595         SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
596     return FirstLaneExpr == IthLaneExpr;
597   });
598 }
599 
600 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I,
601                                                ElementCount VF) const {
602   Value *Ptr = getLoadStorePointerOperand(&I);
603   if (!Ptr)
604     return false;
605   // Note: There's nothing inherent which prevents predicated loads and
606   // stores from being uniform.  The current lowering simply doesn't handle
607   // it; in particular, the cost model distinguishes scatter/gather from
608   // scalar w/predication, and we currently rely on the scalar path.
609   return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
610 }
611 
612 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
613   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
614   // Store the result and return it at the end instead of exiting early, in case
615   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
616   bool Result = true;
617   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
618 
619   for (BasicBlock *BB : TheLoop->blocks()) {
620     // Check whether the BB terminator is a BranchInst. Any other terminator is
621     // not supported yet.
622     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
623     if (!Br) {
624       reportVectorizationFailure("Unsupported basic block terminator",
625           "loop control flow is not understood by vectorizer",
626           "CFGNotUnderstood", ORE, TheLoop);
627       if (DoExtraAnalysis)
628         Result = false;
629       else
630         return false;
631     }
632 
633     // Check whether the BranchInst is a supported one. Only unconditional
634     // branches, conditional branches with an outer loop invariant condition or
635     // backedges are supported.
636     // FIXME: We skip these checks when VPlan predication is enabled as we
637     // want to allow divergent branches. This whole check will be removed
638     // once VPlan predication is on by default.
639     if (Br && Br->isConditional() &&
640         !TheLoop->isLoopInvariant(Br->getCondition()) &&
641         !LI->isLoopHeader(Br->getSuccessor(0)) &&
642         !LI->isLoopHeader(Br->getSuccessor(1))) {
643       reportVectorizationFailure("Unsupported conditional branch",
644           "loop control flow is not understood by vectorizer",
645           "CFGNotUnderstood", ORE, TheLoop);
646       if (DoExtraAnalysis)
647         Result = false;
648       else
649         return false;
650     }
651   }
652 
653   // Check whether inner loops are uniform. At this point, we only support
654   // simple outer loops scenarios with uniform nested loops.
655   if (!isUniformLoopNest(TheLoop /*loop nest*/,
656                          TheLoop /*context outer loop*/)) {
657     reportVectorizationFailure("Outer loop contains divergent loops",
658         "loop control flow is not understood by vectorizer",
659         "CFGNotUnderstood", ORE, TheLoop);
660     if (DoExtraAnalysis)
661       Result = false;
662     else
663       return false;
664   }
665 
666   // Check whether we are able to set up outer loop induction.
667   if (!setupOuterLoopInductions()) {
668     reportVectorizationFailure("Unsupported outer loop Phi(s)",
669                                "Unsupported outer loop Phi(s)",
670                                "UnsupportedPhi", ORE, TheLoop);
671     if (DoExtraAnalysis)
672       Result = false;
673     else
674       return false;
675   }
676 
677   return Result;
678 }
679 
680 void LoopVectorizationLegality::addInductionPhi(
681     PHINode *Phi, const InductionDescriptor &ID,
682     SmallPtrSetImpl<Value *> &AllowedExit) {
683   Inductions[Phi] = ID;
684 
685   // In case this induction also comes with casts that we know we can ignore
686   // in the vectorized loop body, record them here. All casts could be recorded
687   // here for ignoring, but suffices to record only the first (as it is the
688   // only one that may bw used outside the cast sequence).
689   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
690   if (!Casts.empty())
691     InductionCastsToIgnore.insert(*Casts.begin());
692 
693   Type *PhiTy = Phi->getType();
694   const DataLayout &DL = Phi->getDataLayout();
695 
696   // Get the widest type.
697   if (!PhiTy->isFloatingPointTy()) {
698     if (!WidestIndTy)
699       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
700     else
701       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
702   }
703 
704   // Int inductions are special because we only allow one IV.
705   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
706       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
707       isa<Constant>(ID.getStartValue()) &&
708       cast<Constant>(ID.getStartValue())->isNullValue()) {
709 
710     // Use the phi node with the widest type as induction. Use the last
711     // one if there are multiple (no good reason for doing this other
712     // than it is expedient). We've checked that it begins at zero and
713     // steps by one, so this is a canonical induction variable.
714     if (!PrimaryInduction || PhiTy == WidestIndTy)
715       PrimaryInduction = Phi;
716   }
717 
718   // Both the PHI node itself, and the "post-increment" value feeding
719   // back into the PHI node may have external users.
720   // We can allow those uses, except if the SCEVs we have for them rely
721   // on predicates that only hold within the loop, since allowing the exit
722   // currently means re-using this SCEV outside the loop (see PR33706 for more
723   // details).
724   if (PSE.getPredicate().isAlwaysTrue()) {
725     AllowedExit.insert(Phi);
726     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
727   }
728 
729   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
730 }
731 
732 bool LoopVectorizationLegality::setupOuterLoopInductions() {
733   BasicBlock *Header = TheLoop->getHeader();
734 
735   // Returns true if a given Phi is a supported induction.
736   auto IsSupportedPhi = [&](PHINode &Phi) -> bool {
737     InductionDescriptor ID;
738     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
739         ID.getKind() == InductionDescriptor::IK_IntInduction) {
740       addInductionPhi(&Phi, ID, AllowedExit);
741       return true;
742     }
743     // Bail out for any Phi in the outer loop header that is not a supported
744     // induction.
745     LLVM_DEBUG(
746         dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n");
747     return false;
748   };
749 
750   return llvm::all_of(Header->phis(), IsSupportedPhi);
751 }
752 
753 /// Checks if a function is scalarizable according to the TLI, in
754 /// the sense that it should be vectorized and then expanded in
755 /// multiple scalar calls. This is represented in the
756 /// TLI via mappings that do not specify a vector name, as in the
757 /// following example:
758 ///
759 ///    const VecDesc VecIntrinsics[] = {
760 ///      {"llvm.phx.abs.i32", "", 4}
761 ///    };
762 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
763   const StringRef ScalarName = CI.getCalledFunction()->getName();
764   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
765   // Check that all known VFs are not associated to a vector
766   // function, i.e. the vector name is emty.
767   if (Scalarize) {
768     ElementCount WidestFixedVF, WidestScalableVF;
769     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
770     for (ElementCount VF = ElementCount::getFixed(2);
771          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
772       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
773     for (ElementCount VF = ElementCount::getScalable(1);
774          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
775       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
776     assert((WidestScalableVF.isZero() || !Scalarize) &&
777            "Caller may decide to scalarize a variant using a scalable VF");
778   }
779   return Scalarize;
780 }
781 
782 bool LoopVectorizationLegality::canVectorizeInstrs() {
783   BasicBlock *Header = TheLoop->getHeader();
784 
785   // For each block in the loop.
786   for (BasicBlock *BB : TheLoop->blocks()) {
787     // Scan the instructions in the block and look for hazards.
788     for (Instruction &I : *BB) {
789       if (auto *Phi = dyn_cast<PHINode>(&I)) {
790         Type *PhiTy = Phi->getType();
791         // Check that this PHI type is allowed.
792         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
793             !PhiTy->isPointerTy()) {
794           reportVectorizationFailure("Found a non-int non-pointer PHI",
795                                      "loop control flow is not understood by vectorizer",
796                                      "CFGNotUnderstood", ORE, TheLoop);
797           return false;
798         }
799 
800         // If this PHINode is not in the header block, then we know that we
801         // can convert it to select during if-conversion. No need to check if
802         // the PHIs in this block are induction or reduction variables.
803         if (BB != Header) {
804           // Non-header phi nodes that have outside uses can be vectorized. Add
805           // them to the list of allowed exits.
806           // Unsafe cyclic dependencies with header phis are identified during
807           // legalization for reduction, induction and fixed order
808           // recurrences.
809           AllowedExit.insert(&I);
810           continue;
811         }
812 
813         // We only allow if-converted PHIs with exactly two incoming values.
814         if (Phi->getNumIncomingValues() != 2) {
815           reportVectorizationFailure("Found an invalid PHI",
816               "loop control flow is not understood by vectorizer",
817               "CFGNotUnderstood", ORE, TheLoop, Phi);
818           return false;
819         }
820 
821         RecurrenceDescriptor RedDes;
822         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
823                                                  DT, PSE.getSE())) {
824           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
825           AllowedExit.insert(RedDes.getLoopExitInstr());
826           Reductions[Phi] = RedDes;
827           continue;
828         }
829 
830         // We prevent matching non-constant strided pointer IVS to preserve
831         // historical vectorizer behavior after a generalization of the
832         // IVDescriptor code.  The intent is to remove this check, but we
833         // have to fix issues around code quality for such loops first.
834         auto IsDisallowedStridedPointerInduction =
835             [](const InductionDescriptor &ID) {
836               if (AllowStridedPointerIVs)
837                 return false;
838               return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
839                      ID.getConstIntStepValue() == nullptr;
840             };
841 
842         // TODO: Instead of recording the AllowedExit, it would be good to
843         // record the complementary set: NotAllowedExit. These include (but may
844         // not be limited to):
845         // 1. Reduction phis as they represent the one-before-last value, which
846         // is not available when vectorized
847         // 2. Induction phis and increment when SCEV predicates cannot be used
848         // outside the loop - see addInductionPhi
849         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
850         // outside the loop - see call to hasOutsideLoopUser in the non-phi
851         // handling below
852         // 4. FixedOrderRecurrence phis that can possibly be handled by
853         // extraction.
854         // By recording these, we can then reason about ways to vectorize each
855         // of these NotAllowedExit.
856         InductionDescriptor ID;
857         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
858             !IsDisallowedStridedPointerInduction(ID)) {
859           addInductionPhi(Phi, ID, AllowedExit);
860           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
861           continue;
862         }
863 
864         if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
865           AllowedExit.insert(Phi);
866           FixedOrderRecurrences.insert(Phi);
867           continue;
868         }
869 
870         // As a last resort, coerce the PHI to a AddRec expression
871         // and re-try classifying it a an induction PHI.
872         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
873             !IsDisallowedStridedPointerInduction(ID)) {
874           addInductionPhi(Phi, ID, AllowedExit);
875           continue;
876         }
877 
878         reportVectorizationFailure("Found an unidentified PHI",
879             "value that could not be identified as "
880             "reduction is used outside the loop",
881             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
882         return false;
883       } // end of PHI handling
884 
885       // We handle calls that:
886       //   * Are debug info intrinsics.
887       //   * Have a mapping to an IR intrinsic.
888       //   * Have a vector version available.
889       auto *CI = dyn_cast<CallInst>(&I);
890 
891       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
892           !isa<DbgInfoIntrinsic>(CI) &&
893           !(CI->getCalledFunction() && TLI &&
894             (!VFDatabase::getMappings(*CI).empty() ||
895              isTLIScalarize(*TLI, *CI)))) {
896         // If the call is a recognized math libary call, it is likely that
897         // we can vectorize it given loosened floating-point constraints.
898         LibFunc Func;
899         bool IsMathLibCall =
900             TLI && CI->getCalledFunction() &&
901             CI->getType()->isFloatingPointTy() &&
902             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
903             TLI->hasOptimizedCodeGen(Func);
904 
905         if (IsMathLibCall) {
906           // TODO: Ideally, we should not use clang-specific language here,
907           // but it's hard to provide meaningful yet generic advice.
908           // Also, should this be guarded by allowExtraAnalysis() and/or be part
909           // of the returned info from isFunctionVectorizable()?
910           reportVectorizationFailure(
911               "Found a non-intrinsic callsite",
912               "library call cannot be vectorized. "
913               "Try compiling with -fno-math-errno, -ffast-math, "
914               "or similar flags",
915               "CantVectorizeLibcall", ORE, TheLoop, CI);
916         } else {
917           reportVectorizationFailure("Found a non-intrinsic callsite",
918                                      "call instruction cannot be vectorized",
919                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
920         }
921         return false;
922       }
923 
924       // Some intrinsics have scalar arguments and should be same in order for
925       // them to be vectorized (i.e. loop invariant).
926       if (CI) {
927         auto *SE = PSE.getSE();
928         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
929         for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx)
930           if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, Idx)) {
931             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)),
932                                      TheLoop)) {
933               reportVectorizationFailure("Found unvectorizable intrinsic",
934                   "intrinsic instruction cannot be vectorized",
935                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
936               return false;
937             }
938           }
939       }
940 
941       // If we found a vectorized variant of a function, note that so LV can
942       // make better decisions about maximum VF.
943       if (CI && !VFDatabase::getMappings(*CI).empty())
944         VecCallVariantsFound = true;
945 
946       // Check that the instruction return type is vectorizable.
947       // We can't vectorize casts from vector type to scalar type.
948       // Also, we can't vectorize extractelement instructions.
949       if ((!VectorType::isValidElementType(I.getType()) &&
950            !I.getType()->isVoidTy()) ||
951           (isa<CastInst>(I) &&
952            !VectorType::isValidElementType(I.getOperand(0)->getType())) ||
953           isa<ExtractElementInst>(I)) {
954         reportVectorizationFailure("Found unvectorizable type",
955             "instruction return type cannot be vectorized",
956             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
957         return false;
958       }
959 
960       // Check that the stored type is vectorizable.
961       if (auto *ST = dyn_cast<StoreInst>(&I)) {
962         Type *T = ST->getValueOperand()->getType();
963         if (!VectorType::isValidElementType(T)) {
964           reportVectorizationFailure("Store instruction cannot be vectorized",
965                                      "store instruction cannot be vectorized",
966                                      "CantVectorizeStore", ORE, TheLoop, ST);
967           return false;
968         }
969 
970         // For nontemporal stores, check that a nontemporal vector version is
971         // supported on the target.
972         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
973           // Arbitrarily try a vector of 2 elements.
974           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
975           assert(VecTy && "did not find vectorized version of stored type");
976           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
977             reportVectorizationFailure(
978                 "nontemporal store instruction cannot be vectorized",
979                 "nontemporal store instruction cannot be vectorized",
980                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
981             return false;
982           }
983         }
984 
985       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
986         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
987           // For nontemporal loads, check that a nontemporal vector version is
988           // supported on the target (arbitrarily try a vector of 2 elements).
989           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
990           assert(VecTy && "did not find vectorized version of load type");
991           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
992             reportVectorizationFailure(
993                 "nontemporal load instruction cannot be vectorized",
994                 "nontemporal load instruction cannot be vectorized",
995                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
996             return false;
997           }
998         }
999 
1000         // FP instructions can allow unsafe algebra, thus vectorizable by
1001         // non-IEEE-754 compliant SIMD units.
1002         // This applies to floating-point math operations and calls, not memory
1003         // operations, shuffles, or casts, as they don't change precision or
1004         // semantics.
1005       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
1006                  !I.isFast()) {
1007         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1008         Hints->setPotentiallyUnsafe();
1009       }
1010 
1011       // Reduction instructions are allowed to have exit users.
1012       // All other instructions must not have external users.
1013       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
1014         // We can safely vectorize loops where instructions within the loop are
1015         // used outside the loop only if the SCEV predicates within the loop is
1016         // same as outside the loop. Allowing the exit means reusing the SCEV
1017         // outside the loop.
1018         if (PSE.getPredicate().isAlwaysTrue()) {
1019           AllowedExit.insert(&I);
1020           continue;
1021         }
1022         reportVectorizationFailure("Value cannot be used outside the loop",
1023                                    "value cannot be used outside the loop",
1024                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
1025         return false;
1026       }
1027     } // next instr.
1028   }
1029 
1030   if (!PrimaryInduction) {
1031     if (Inductions.empty()) {
1032       reportVectorizationFailure("Did not find one integer induction var",
1033           "loop induction variable could not be identified",
1034           "NoInductionVariable", ORE, TheLoop);
1035       return false;
1036     }
1037     if (!WidestIndTy) {
1038       reportVectorizationFailure("Did not find one integer induction var",
1039           "integer loop induction variable could not be identified",
1040           "NoIntegerInductionVariable", ORE, TheLoop);
1041       return false;
1042     }
1043     LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1044   }
1045 
1046   // Now we know the widest induction type, check if our found induction
1047   // is the same size. If it's not, unset it here and InnerLoopVectorizer
1048   // will create another.
1049   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
1050     PrimaryInduction = nullptr;
1051 
1052   return true;
1053 }
1054 
1055 /// Find histogram operations that match high-level code in loops:
1056 /// \code
1057 /// buckets[indices[i]]+=step;
1058 /// \endcode
1059 ///
1060 /// It matches a pattern starting from \p HSt, which Stores to the 'buckets'
1061 /// array the computed histogram. It uses a BinOp to sum all counts, storing
1062 /// them using a loop-variant index Load from the 'indices' input array.
1063 ///
1064 /// On successful matches it updates the STATISTIC 'HistogramsDetected',
1065 /// regardless of hardware support. When there is support, it additionally
1066 /// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers
1067 /// used to update histogram in \p HistogramPtrs.
1068 static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop,
1069                           const PredicatedScalarEvolution &PSE,
1070                           SmallVectorImpl<HistogramInfo> &Histograms) {
1071 
1072   // Store value must come from a Binary Operation.
1073   Instruction *HPtrInstr = nullptr;
1074   BinaryOperator *HBinOp = nullptr;
1075   if (!match(HSt, m_Store(m_BinOp(HBinOp), m_Instruction(HPtrInstr))))
1076     return false;
1077 
1078   // BinOp must be an Add or a Sub modifying the bucket value by a
1079   // loop invariant amount.
1080   // FIXME: We assume the loop invariant term is on the RHS.
1081   //        Fine for an immediate/constant, but maybe not a generic value?
1082   Value *HIncVal = nullptr;
1083   if (!match(HBinOp, m_Add(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))) &&
1084       !match(HBinOp, m_Sub(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))))
1085     return false;
1086 
1087   // Make sure the increment value is loop invariant.
1088   if (!TheLoop->isLoopInvariant(HIncVal))
1089     return false;
1090 
1091   // The address to store is calculated through a GEP Instruction.
1092   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(HPtrInstr);
1093   if (!GEP)
1094     return false;
1095 
1096   // Restrict address calculation to constant indices except for the last term.
1097   Value *HIdx = nullptr;
1098   for (Value *Index : GEP->indices()) {
1099     if (HIdx)
1100       return false;
1101     if (!isa<ConstantInt>(Index))
1102       HIdx = Index;
1103   }
1104 
1105   if (!HIdx)
1106     return false;
1107 
1108   // Check that the index is calculated by loading from another array. Ignore
1109   // any extensions.
1110   // FIXME: Support indices from other sources than a linear load from memory?
1111   //        We're currently trying to match an operation looping over an array
1112   //        of indices, but there could be additional levels of indirection
1113   //        in place, or possibly some additional calculation to form the index
1114   //        from the loaded data.
1115   Value *VPtrVal;
1116   if (!match(HIdx, m_ZExtOrSExtOrSelf(m_Load(m_Value(VPtrVal)))))
1117     return false;
1118 
1119   // Make sure the index address varies in this loop, not an outer loop.
1120   const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(VPtrVal));
1121   if (!AR || AR->getLoop() != TheLoop)
1122     return false;
1123 
1124   // Ensure we'll have the same mask by checking that all parts of the histogram
1125   // (gather load, update, scatter store) are in the same block.
1126   LoadInst *IndexedLoad = cast<LoadInst>(HBinOp->getOperand(0));
1127   BasicBlock *LdBB = IndexedLoad->getParent();
1128   if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent())
1129     return false;
1130 
1131   LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n");
1132 
1133   // Store the operations that make up the histogram.
1134   Histograms.emplace_back(IndexedLoad, HBinOp, HSt);
1135   return true;
1136 }
1137 
1138 bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() {
1139   // For now, we only support an IndirectUnsafe dependency that calculates
1140   // a histogram
1141   if (!EnableHistogramVectorization)
1142     return false;
1143 
1144   // Find a single IndirectUnsafe dependency.
1145   const MemoryDepChecker::Dependence *IUDep = nullptr;
1146   const MemoryDepChecker &DepChecker = LAI->getDepChecker();
1147   const auto *Deps = DepChecker.getDependences();
1148   // If there were too many dependences, LAA abandons recording them. We can't
1149   // proceed safely if we don't know what the dependences are.
1150   if (!Deps)
1151     return false;
1152 
1153   for (const MemoryDepChecker::Dependence &Dep : *Deps) {
1154     // Ignore dependencies that are either known to be safe or can be
1155     // checked at runtime.
1156     if (MemoryDepChecker::Dependence::isSafeForVectorization(Dep.Type) !=
1157         MemoryDepChecker::VectorizationSafetyStatus::Unsafe)
1158       continue;
1159 
1160     // We're only interested in IndirectUnsafe dependencies here, where the
1161     // address might come from a load from memory. We also only want to handle
1162     // one such dependency, at least for now.
1163     if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep)
1164       return false;
1165 
1166     IUDep = &Dep;
1167   }
1168   if (!IUDep)
1169     return false;
1170 
1171   // For now only normal loads and stores are supported.
1172   LoadInst *LI = dyn_cast<LoadInst>(IUDep->getSource(DepChecker));
1173   StoreInst *SI = dyn_cast<StoreInst>(IUDep->getDestination(DepChecker));
1174 
1175   if (!LI || !SI)
1176     return false;
1177 
1178   LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n");
1179   return findHistogram(LI, SI, TheLoop, LAI->getPSE(), Histograms);
1180 }
1181 
1182 bool LoopVectorizationLegality::canVectorizeMemory() {
1183   LAI = &LAIs.getInfo(*TheLoop);
1184   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
1185   if (LAR) {
1186     ORE->emit([&]() {
1187       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
1188                                         "loop not vectorized: ", *LAR);
1189     });
1190   }
1191 
1192   if (!LAI->canVectorizeMemory())
1193     return canVectorizeIndirectUnsafeDependences();
1194 
1195   if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) {
1196     reportVectorizationFailure("We don't allow storing to uniform addresses",
1197                                "write to a loop invariant address could not "
1198                                "be vectorized",
1199                                "CantVectorizeStoreToLoopInvariantAddress", ORE,
1200                                TheLoop);
1201     return false;
1202   }
1203 
1204   // We can vectorize stores to invariant address when final reduction value is
1205   // guaranteed to be stored at the end of the loop. Also, if decision to
1206   // vectorize loop is made, runtime checks are added so as to make sure that
1207   // invariant address won't alias with any other objects.
1208   if (!LAI->getStoresToInvariantAddresses().empty()) {
1209     // For each invariant address, check if last stored value is unconditional
1210     // and the address is not calculated inside the loop.
1211     for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1212       if (!isInvariantStoreOfReduction(SI))
1213         continue;
1214 
1215       if (blockNeedsPredication(SI->getParent())) {
1216         reportVectorizationFailure(
1217             "We don't allow storing to uniform addresses",
1218             "write of conditional recurring variant value to a loop "
1219             "invariant address could not be vectorized",
1220             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1221         return false;
1222       }
1223 
1224       // Invariant address should be defined outside of loop. LICM pass usually
1225       // makes sure it happens, but in rare cases it does not, we do not want
1226       // to overcomplicate vectorization to support this case.
1227       if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
1228         if (TheLoop->contains(Ptr)) {
1229           reportVectorizationFailure(
1230               "Invariant address is calculated inside the loop",
1231               "write to a loop invariant address could not "
1232               "be vectorized",
1233               "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1234           return false;
1235         }
1236       }
1237     }
1238 
1239     if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) {
1240       // For each invariant address, check its last stored value is the result
1241       // of one of our reductions.
1242       //
1243       // We do not check if dependence with loads exists because that is already
1244       // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress.
1245       ScalarEvolution *SE = PSE.getSE();
1246       SmallVector<StoreInst *, 4> UnhandledStores;
1247       for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1248         if (isInvariantStoreOfReduction(SI)) {
1249           // Earlier stores to this address are effectively deadcode.
1250           // With opaque pointers it is possible for one pointer to be used with
1251           // different sizes of stored values:
1252           //    store i32 0, ptr %x
1253           //    store i8 0, ptr %x
1254           // The latest store doesn't complitely overwrite the first one in the
1255           // example. That is why we have to make sure that types of stored
1256           // values are same.
1257           // TODO: Check that bitwidth of unhandled store is smaller then the
1258           // one that overwrites it and add a test.
1259           erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
1260             return storeToSameAddress(SE, SI, I) &&
1261                    I->getValueOperand()->getType() ==
1262                        SI->getValueOperand()->getType();
1263           });
1264           continue;
1265         }
1266         UnhandledStores.push_back(SI);
1267       }
1268 
1269       bool IsOK = UnhandledStores.empty();
1270       // TODO: we should also validate against InvariantMemSets.
1271       if (!IsOK) {
1272         reportVectorizationFailure(
1273             "We don't allow storing to uniform addresses",
1274             "write to a loop invariant address could not "
1275             "be vectorized",
1276             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1277         return false;
1278       }
1279     }
1280   }
1281 
1282   PSE.addPredicate(LAI->getPSE().getPredicate());
1283   return true;
1284 }
1285 
1286 bool LoopVectorizationLegality::canVectorizeFPMath(
1287     bool EnableStrictReductions) {
1288 
1289   // First check if there is any ExactFP math or if we allow reassociations
1290   if (!Requirements->getExactFPInst() || Hints->allowReordering())
1291     return true;
1292 
1293   // If the above is false, we have ExactFPMath & do not allow reordering.
1294   // If the EnableStrictReductions flag is set, first check if we have any
1295   // Exact FP induction vars, which we cannot vectorize.
1296   if (!EnableStrictReductions ||
1297       any_of(getInductionVars(), [&](auto &Induction) -> bool {
1298         InductionDescriptor IndDesc = Induction.second;
1299         return IndDesc.getExactFPMathInst();
1300       }))
1301     return false;
1302 
1303   // We can now only vectorize if all reductions with Exact FP math also
1304   // have the isOrdered flag set, which indicates that we can move the
1305   // reduction operations in-loop.
1306   return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1307     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1308     return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1309   }));
1310 }
1311 
1312 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1313   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1314     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1315     return RdxDesc.IntermediateStore == SI;
1316   });
1317 }
1318 
1319 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1320   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1321     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1322     if (!RdxDesc.IntermediateStore)
1323       return false;
1324 
1325     ScalarEvolution *SE = PSE.getSE();
1326     Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1327     return V == InvariantAddress ||
1328            SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1329   });
1330 }
1331 
1332 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1333   Value *In0 = const_cast<Value *>(V);
1334   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1335   if (!PN)
1336     return false;
1337 
1338   return Inductions.count(PN);
1339 }
1340 
1341 const InductionDescriptor *
1342 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1343   if (!isInductionPhi(Phi))
1344     return nullptr;
1345   auto &ID = getInductionVars().find(Phi)->second;
1346   if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1347       ID.getKind() == InductionDescriptor::IK_FpInduction)
1348     return &ID;
1349   return nullptr;
1350 }
1351 
1352 const InductionDescriptor *
1353 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
1354   if (!isInductionPhi(Phi))
1355     return nullptr;
1356   auto &ID = getInductionVars().find(Phi)->second;
1357   if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
1358     return &ID;
1359   return nullptr;
1360 }
1361 
1362 bool LoopVectorizationLegality::isCastedInductionVariable(
1363     const Value *V) const {
1364   auto *Inst = dyn_cast<Instruction>(V);
1365   return (Inst && InductionCastsToIgnore.count(Inst));
1366 }
1367 
1368 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1369   return isInductionPhi(V) || isCastedInductionVariable(V);
1370 }
1371 
1372 bool LoopVectorizationLegality::isFixedOrderRecurrence(
1373     const PHINode *Phi) const {
1374   return FixedOrderRecurrences.count(Phi);
1375 }
1376 
1377 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1378   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1379 }
1380 
1381 bool LoopVectorizationLegality::blockCanBePredicated(
1382     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1383     SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
1384   for (Instruction &I : *BB) {
1385     // We can predicate blocks with calls to assume, as long as we drop them in
1386     // case we flatten the CFG via predication.
1387     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1388       MaskedOp.insert(&I);
1389       continue;
1390     }
1391 
1392     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1393     // TODO: there might be cases that it should block the vectorization. Let's
1394     // ignore those for now.
1395     if (isa<NoAliasScopeDeclInst>(&I))
1396       continue;
1397 
1398     // We can allow masked calls if there's at least one vector variant, even
1399     // if we end up scalarizing due to the cost model calculations.
1400     // TODO: Allow other calls if they have appropriate attributes... readonly
1401     // and argmemonly?
1402     if (CallInst *CI = dyn_cast<CallInst>(&I))
1403       if (VFDatabase::hasMaskedVariant(*CI)) {
1404         MaskedOp.insert(CI);
1405         continue;
1406       }
1407 
1408     // Loads are handled via masking (or speculated if safe to do so.)
1409     if (auto *LI = dyn_cast<LoadInst>(&I)) {
1410       if (!SafePtrs.count(LI->getPointerOperand()))
1411         MaskedOp.insert(LI);
1412       continue;
1413     }
1414 
1415     // Predicated store requires some form of masking:
1416     // 1) masked store HW instruction,
1417     // 2) emulation via load-blend-store (only if safe and legal to do so,
1418     //    be aware on the race conditions), or
1419     // 3) element-by-element predicate check and scalar store.
1420     if (auto *SI = dyn_cast<StoreInst>(&I)) {
1421       MaskedOp.insert(SI);
1422       continue;
1423     }
1424 
1425     if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1426       return false;
1427   }
1428 
1429   return true;
1430 }
1431 
1432 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1433   if (!EnableIfConversion) {
1434     reportVectorizationFailure("If-conversion is disabled",
1435                                "if-conversion is disabled",
1436                                "IfConversionDisabled",
1437                                ORE, TheLoop);
1438     return false;
1439   }
1440 
1441   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1442 
1443   // A list of pointers which are known to be dereferenceable within scope of
1444   // the loop body for each iteration of the loop which executes.  That is,
1445   // the memory pointed to can be dereferenced (with the access size implied by
1446   // the value's type) unconditionally within the loop header without
1447   // introducing a new fault.
1448   SmallPtrSet<Value *, 8> SafePointers;
1449 
1450   // Collect safe addresses.
1451   for (BasicBlock *BB : TheLoop->blocks()) {
1452     if (!blockNeedsPredication(BB)) {
1453       for (Instruction &I : *BB)
1454         if (auto *Ptr = getLoadStorePointerOperand(&I))
1455           SafePointers.insert(Ptr);
1456       continue;
1457     }
1458 
1459     // For a block which requires predication, a address may be safe to access
1460     // in the loop w/o predication if we can prove dereferenceability facts
1461     // sufficient to ensure it'll never fault within the loop. For the moment,
1462     // we restrict this to loads; stores are more complicated due to
1463     // concurrency restrictions.
1464     ScalarEvolution &SE = *PSE.getSE();
1465     SmallVector<const SCEVPredicate *, 4> Predicates;
1466     for (Instruction &I : *BB) {
1467       LoadInst *LI = dyn_cast<LoadInst>(&I);
1468       // Pass the Predicates pointer to isDereferenceableAndAlignedInLoop so
1469       // that it will consider loops that need guarding by SCEV checks. The
1470       // vectoriser will generate these checks if we decide to vectorise.
1471       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1472           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC,
1473                                             &Predicates))
1474         SafePointers.insert(LI->getPointerOperand());
1475       Predicates.clear();
1476     }
1477   }
1478 
1479   // Collect the blocks that need predication.
1480   for (BasicBlock *BB : TheLoop->blocks()) {
1481     // We support only branches and switch statements as terminators inside the
1482     // loop.
1483     if (isa<SwitchInst>(BB->getTerminator())) {
1484       if (TheLoop->isLoopExiting(BB)) {
1485         reportVectorizationFailure("Loop contains an unsupported switch",
1486                                    "loop contains an unsupported switch",
1487                                    "LoopContainsUnsupportedSwitch", ORE,
1488                                    TheLoop, BB->getTerminator());
1489         return false;
1490       }
1491     } else if (!isa<BranchInst>(BB->getTerminator())) {
1492       reportVectorizationFailure("Loop contains an unsupported terminator",
1493                                  "loop contains an unsupported terminator",
1494                                  "LoopContainsUnsupportedTerminator", ORE,
1495                                  TheLoop, BB->getTerminator());
1496       return false;
1497     }
1498 
1499     // We must be able to predicate all blocks that need to be predicated.
1500     if (blockNeedsPredication(BB) &&
1501         !blockCanBePredicated(BB, SafePointers, MaskedOp)) {
1502       reportVectorizationFailure(
1503           "Control flow cannot be substituted for a select",
1504           "control flow cannot be substituted for a select", "NoCFGForSelect",
1505           ORE, TheLoop, BB->getTerminator());
1506       return false;
1507     }
1508   }
1509 
1510   // We can if-convert this loop.
1511   return true;
1512 }
1513 
1514 // Helper function to canVectorizeLoopNestCFG.
1515 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1516                                                     bool UseVPlanNativePath) {
1517   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1518          "VPlan-native path is not enabled.");
1519 
1520   // TODO: ORE should be improved to show more accurate information when an
1521   // outer loop can't be vectorized because a nested loop is not understood or
1522   // legal. Something like: "outer_loop_location: loop not vectorized:
1523   // (inner_loop_location) loop control flow is not understood by vectorizer".
1524 
1525   // Store the result and return it at the end instead of exiting early, in case
1526   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1527   bool Result = true;
1528   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1529 
1530   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1531   // be canonicalized.
1532   if (!Lp->getLoopPreheader()) {
1533     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1534         "loop control flow is not understood by vectorizer",
1535         "CFGNotUnderstood", ORE, TheLoop);
1536     if (DoExtraAnalysis)
1537       Result = false;
1538     else
1539       return false;
1540   }
1541 
1542   // We must have a single backedge.
1543   if (Lp->getNumBackEdges() != 1) {
1544     reportVectorizationFailure("The loop must have a single backedge",
1545         "loop control flow is not understood by vectorizer",
1546         "CFGNotUnderstood", ORE, TheLoop);
1547     if (DoExtraAnalysis)
1548       Result = false;
1549     else
1550       return false;
1551   }
1552 
1553   return Result;
1554 }
1555 
1556 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1557     Loop *Lp, bool UseVPlanNativePath) {
1558   // Store the result and return it at the end instead of exiting early, in case
1559   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1560   bool Result = true;
1561   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1562   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1563     if (DoExtraAnalysis)
1564       Result = false;
1565     else
1566       return false;
1567   }
1568 
1569   // Recursively check whether the loop control flow of nested loops is
1570   // understood.
1571   for (Loop *SubLp : *Lp)
1572     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1573       if (DoExtraAnalysis)
1574         Result = false;
1575       else
1576         return false;
1577     }
1578 
1579   return Result;
1580 }
1581 
1582 bool LoopVectorizationLegality::isVectorizableEarlyExitLoop() {
1583   BasicBlock *LatchBB = TheLoop->getLoopLatch();
1584   if (!LatchBB) {
1585     reportVectorizationFailure("Loop does not have a latch",
1586                                "Cannot vectorize early exit loop",
1587                                "NoLatchEarlyExit", ORE, TheLoop);
1588     return false;
1589   }
1590 
1591   if (Reductions.size() || FixedOrderRecurrences.size()) {
1592     reportVectorizationFailure(
1593         "Found reductions or recurrences in early-exit loop",
1594         "Cannot vectorize early exit loop with reductions or recurrences",
1595         "RecurrencesInEarlyExitLoop", ORE, TheLoop);
1596     return false;
1597   }
1598 
1599   SmallVector<BasicBlock *, 8> ExitingBlocks;
1600   TheLoop->getExitingBlocks(ExitingBlocks);
1601 
1602   // Keep a record of all the exiting blocks.
1603   SmallVector<const SCEVPredicate *, 4> Predicates;
1604   for (BasicBlock *BB : ExitingBlocks) {
1605     const SCEV *EC =
1606         PSE.getSE()->getPredicatedExitCount(TheLoop, BB, &Predicates);
1607     if (isa<SCEVCouldNotCompute>(EC)) {
1608       UncountableExitingBlocks.push_back(BB);
1609 
1610       SmallVector<BasicBlock *, 2> Succs(successors(BB));
1611       if (Succs.size() != 2) {
1612         reportVectorizationFailure(
1613             "Early exiting block does not have exactly two successors",
1614             "Incorrect number of successors from early exiting block",
1615             "EarlyExitTooManySuccessors", ORE, TheLoop);
1616         return false;
1617       }
1618 
1619       BasicBlock *ExitBlock;
1620       if (!TheLoop->contains(Succs[0]))
1621         ExitBlock = Succs[0];
1622       else {
1623         assert(!TheLoop->contains(Succs[1]));
1624         ExitBlock = Succs[1];
1625       }
1626       UncountableExitBlocks.push_back(ExitBlock);
1627     } else
1628       CountableExitingBlocks.push_back(BB);
1629   }
1630   // We can safely ignore the predicates here because when vectorizing the loop
1631   // the PredicatatedScalarEvolution class will keep track of all predicates
1632   // for each exiting block anyway. This happens when calling
1633   // PSE.getSymbolicMaxBackedgeTakenCount() below.
1634   Predicates.clear();
1635 
1636   // We only support one uncountable early exit.
1637   if (getUncountableExitingBlocks().size() != 1) {
1638     reportVectorizationFailure(
1639         "Loop has too many uncountable exits",
1640         "Cannot vectorize early exit loop with more than one early exit",
1641         "TooManyUncountableEarlyExits", ORE, TheLoop);
1642     return false;
1643   }
1644 
1645   // The only supported early exit loops so far are ones where the early
1646   // exiting block is a unique predecessor of the latch block.
1647   BasicBlock *LatchPredBB = LatchBB->getUniquePredecessor();
1648   if (LatchPredBB != getUncountableEarlyExitingBlock()) {
1649     reportVectorizationFailure("Early exit is not the latch predecessor",
1650                                "Cannot vectorize early exit loop",
1651                                "EarlyExitNotLatchPredecessor", ORE, TheLoop);
1652     return false;
1653   }
1654 
1655   // The latch block must have a countable exit.
1656   if (isa<SCEVCouldNotCompute>(
1657           PSE.getSE()->getPredicatedExitCount(TheLoop, LatchBB, &Predicates))) {
1658     reportVectorizationFailure(
1659         "Cannot determine exact exit count for latch block",
1660         "Cannot vectorize early exit loop",
1661         "UnknownLatchExitCountEarlyExitLoop", ORE, TheLoop);
1662     return false;
1663   }
1664   assert(llvm::is_contained(CountableExitingBlocks, LatchBB) &&
1665          "Latch block not found in list of countable exits!");
1666 
1667   // Check to see if there are instructions that could potentially generate
1668   // exceptions or have side-effects.
1669   auto IsSafeOperation = [](Instruction *I) -> bool {
1670     switch (I->getOpcode()) {
1671     case Instruction::Load:
1672     case Instruction::Store:
1673     case Instruction::PHI:
1674     case Instruction::Br:
1675       // These are checked separately.
1676       return true;
1677     default:
1678       return isSafeToSpeculativelyExecute(I);
1679     }
1680   };
1681 
1682   for (auto *BB : TheLoop->blocks())
1683     for (auto &I : *BB) {
1684       if (I.mayWriteToMemory()) {
1685         // We don't support writes to memory.
1686         reportVectorizationFailure(
1687             "Writes to memory unsupported in early exit loops",
1688             "Cannot vectorize early exit loop with writes to memory",
1689             "WritesInEarlyExitLoop", ORE, TheLoop);
1690         return false;
1691       } else if (!IsSafeOperation(&I)) {
1692         reportVectorizationFailure("Early exit loop contains operations that "
1693                                    "cannot be speculatively executed",
1694                                    "Early exit loop contains operations that "
1695                                    "cannot be speculatively executed",
1696                                    "UnsafeOperationsEarlyExitLoop", ORE,
1697                                    TheLoop);
1698         return false;
1699       }
1700     }
1701 
1702   // The vectoriser cannot handle loads that occur after the early exit block.
1703   assert(LatchBB->getUniquePredecessor() == getUncountableEarlyExitingBlock() &&
1704          "Expected latch predecessor to be the early exiting block");
1705 
1706   // TODO: Handle loops that may fault.
1707   Predicates.clear();
1708   if (!isDereferenceableReadOnlyLoop(TheLoop, PSE.getSE(), DT, AC,
1709                                      &Predicates)) {
1710     reportVectorizationFailure(
1711         "Loop may fault",
1712         "Cannot vectorize potentially faulting early exit loop",
1713         "PotentiallyFaultingEarlyExitLoop", ORE, TheLoop);
1714     return false;
1715   }
1716 
1717   [[maybe_unused]] const SCEV *SymbolicMaxBTC =
1718       PSE.getSymbolicMaxBackedgeTakenCount();
1719   // Since we have an exact exit count for the latch and the early exit
1720   // dominates the latch, then this should guarantee a computed SCEV value.
1721   assert(!isa<SCEVCouldNotCompute>(SymbolicMaxBTC) &&
1722          "Failed to get symbolic expression for backedge taken count");
1723   LLVM_DEBUG(dbgs() << "LV: Found an early exit loop with symbolic max "
1724                        "backedge taken count: "
1725                     << *SymbolicMaxBTC << '\n');
1726   return true;
1727 }
1728 
1729 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1730   // Store the result and return it at the end instead of exiting early, in case
1731   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1732   bool Result = true;
1733 
1734   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1735   // Check whether the loop-related control flow in the loop nest is expected by
1736   // vectorizer.
1737   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1738     if (DoExtraAnalysis) {
1739       LLVM_DEBUG(dbgs() << "LV: legality check failed: loop nest");
1740       Result = false;
1741     } else {
1742       return false;
1743     }
1744   }
1745 
1746   // We need to have a loop header.
1747   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1748                     << '\n');
1749 
1750   // Specific checks for outer loops. We skip the remaining legal checks at this
1751   // point because they don't support outer loops.
1752   if (!TheLoop->isInnermost()) {
1753     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1754 
1755     if (!canVectorizeOuterLoop()) {
1756       reportVectorizationFailure("Unsupported outer loop",
1757                                  "unsupported outer loop",
1758                                  "UnsupportedOuterLoop",
1759                                  ORE, TheLoop);
1760       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1761       // outer loops.
1762       return false;
1763     }
1764 
1765     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1766     return Result;
1767   }
1768 
1769   assert(TheLoop->isInnermost() && "Inner loop expected.");
1770   // Check if we can if-convert non-single-bb loops.
1771   unsigned NumBlocks = TheLoop->getNumBlocks();
1772   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1773     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1774     if (DoExtraAnalysis)
1775       Result = false;
1776     else
1777       return false;
1778   }
1779 
1780   // Check if we can vectorize the instructions and CFG in this loop.
1781   if (!canVectorizeInstrs()) {
1782     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1783     if (DoExtraAnalysis)
1784       Result = false;
1785     else
1786       return false;
1787   }
1788 
1789   HasUncountableEarlyExit = false;
1790   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
1791     if (!isVectorizableEarlyExitLoop()) {
1792       if (DoExtraAnalysis)
1793         Result = false;
1794       else
1795         return false;
1796     } else
1797       HasUncountableEarlyExit = true;
1798   }
1799 
1800   // Go over each instruction and look at memory deps.
1801   if (!canVectorizeMemory()) {
1802     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1803     if (DoExtraAnalysis)
1804       Result = false;
1805     else
1806       return false;
1807   }
1808 
1809   if (Result) {
1810     LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1811                       << (LAI->getRuntimePointerChecking()->Need
1812                               ? " (with a runtime bound check)"
1813                               : "")
1814                       << "!\n");
1815   }
1816 
1817   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1818   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1819     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1820 
1821   if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1822     LLVM_DEBUG(dbgs() << "LV: Vectorization not profitable "
1823                          "due to SCEVThreshold");
1824     reportVectorizationFailure("Too many SCEV checks needed",
1825         "Too many SCEV assumptions need to be made and checked at runtime",
1826         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1827     if (DoExtraAnalysis)
1828       Result = false;
1829     else
1830       return false;
1831   }
1832 
1833   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1834   // we can vectorize, and at this point we don't have any other mem analysis
1835   // which may limit our maximum vectorization factor, so just return true with
1836   // no restrictions.
1837   return Result;
1838 }
1839 
1840 bool LoopVectorizationLegality::canFoldTailByMasking() const {
1841 
1842   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1843 
1844   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1845 
1846   for (const auto &Reduction : getReductionVars())
1847     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1848 
1849   // TODO: handle non-reduction outside users when tail is folded by masking.
1850   for (auto *AE : AllowedExit) {
1851     // Check that all users of allowed exit values are inside the loop or
1852     // are the live-out of a reduction.
1853     if (ReductionLiveOuts.count(AE))
1854       continue;
1855     for (User *U : AE->users()) {
1856       Instruction *UI = cast<Instruction>(U);
1857       if (TheLoop->contains(UI))
1858         continue;
1859       LLVM_DEBUG(
1860           dbgs()
1861           << "LV: Cannot fold tail by masking, loop has an outside user for "
1862           << *UI << "\n");
1863       return false;
1864     }
1865   }
1866 
1867   for (const auto &Entry : getInductionVars()) {
1868     PHINode *OrigPhi = Entry.first;
1869     for (User *U : OrigPhi->users()) {
1870       auto *UI = cast<Instruction>(U);
1871       if (!TheLoop->contains(UI)) {
1872         LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an "
1873                              "outside user for "
1874                           << *UI << "\n");
1875         return false;
1876       }
1877     }
1878   }
1879 
1880   // The list of pointers that we can safely read and write to remains empty.
1881   SmallPtrSet<Value *, 8> SafePointers;
1882 
1883   // Check all blocks for predication, including those that ordinarily do not
1884   // need predication such as the header block.
1885   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1886   for (BasicBlock *BB : TheLoop->blocks()) {
1887     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) {
1888       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n");
1889       return false;
1890     }
1891   }
1892 
1893   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1894 
1895   return true;
1896 }
1897 
1898 void LoopVectorizationLegality::prepareToFoldTailByMasking() {
1899   // The list of pointers that we can safely read and write to remains empty.
1900   SmallPtrSet<Value *, 8> SafePointers;
1901 
1902   // Mark all blocks for predication, including those that ordinarily do not
1903   // need predication such as the header block.
1904   for (BasicBlock *BB : TheLoop->blocks()) {
1905     [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp);
1906     assert(R && "Must be able to predicate block when tail-folding.");
1907   }
1908 }
1909 
1910 } // namespace llvm
1911