1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Transforms/Utils/SizeOpts.h" 29 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 30 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 #define LV_NAME "loop-vectorize" 35 #define DEBUG_TYPE LV_NAME 36 37 static cl::opt<bool> 38 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 39 cl::desc("Enable if-conversion during vectorization.")); 40 41 static cl::opt<bool> 42 AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden, 43 cl::desc("Enable recognition of non-constant strided " 44 "pointer induction variables.")); 45 46 namespace llvm { 47 cl::opt<bool> 48 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, 49 cl::desc("Allow enabling loop hints to reorder " 50 "FP operations during vectorization.")); 51 } // namespace llvm 52 53 // TODO: Move size-based thresholds out of legality checking, make cost based 54 // decisions instead of hard thresholds. 55 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 56 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 57 cl::desc("The maximum number of SCEV checks allowed.")); 58 59 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 60 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 61 cl::desc("The maximum number of SCEV checks allowed with a " 62 "vectorize(enable) pragma")); 63 64 static cl::opt<LoopVectorizeHints::ScalableForceKind> 65 ForceScalableVectorization( 66 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), 67 cl::Hidden, 68 cl::desc("Control whether the compiler can use scalable vectors to " 69 "vectorize a loop"), 70 cl::values( 71 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 72 "Scalable vectorization is disabled."), 73 clEnumValN( 74 LoopVectorizeHints::SK_PreferScalable, "preferred", 75 "Scalable vectorization is available and favored when the " 76 "cost is inconclusive."), 77 clEnumValN( 78 LoopVectorizeHints::SK_PreferScalable, "on", 79 "Scalable vectorization is available and favored when the " 80 "cost is inconclusive."))); 81 82 static cl::opt<bool> EnableHistogramVectorization( 83 "enable-histogram-loop-vectorization", cl::init(false), cl::Hidden, 84 cl::desc("Enables autovectorization of some loops containing histograms")); 85 86 /// Maximum vectorization interleave count. 87 static const unsigned MaxInterleaveFactor = 16; 88 89 namespace llvm { 90 91 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 92 switch (Kind) { 93 case HK_WIDTH: 94 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 95 case HK_INTERLEAVE: 96 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 97 case HK_FORCE: 98 return (Val <= 1); 99 case HK_ISVECTORIZED: 100 case HK_PREDICATE: 101 case HK_SCALABLE: 102 return (Val == 0 || Val == 1); 103 } 104 return false; 105 } 106 107 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 108 bool InterleaveOnlyWhenForced, 109 OptimizationRemarkEmitter &ORE, 110 const TargetTransformInfo *TTI) 111 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 112 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 113 Force("vectorize.enable", FK_Undefined, HK_FORCE), 114 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 115 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 116 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 117 TheLoop(L), ORE(ORE) { 118 // Populate values with existing loop metadata. 119 getHintsFromMetadata(); 120 121 // force-vector-interleave overrides DisableInterleaving. 122 if (VectorizerParams::isInterleaveForced()) 123 Interleave.Value = VectorizerParams::VectorizationInterleave; 124 125 // If the metadata doesn't explicitly specify whether to enable scalable 126 // vectorization, then decide based on the following criteria (increasing 127 // level of priority): 128 // - Target default 129 // - Metadata width 130 // - Force option (always overrides) 131 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { 132 if (TTI) 133 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable 134 : SK_FixedWidthOnly; 135 136 if (Width.Value) 137 // If the width is set, but the metadata says nothing about the scalable 138 // property, then assume it concerns only a fixed-width UserVF. 139 // If width is not set, the flag takes precedence. 140 Scalable.Value = SK_FixedWidthOnly; 141 } 142 143 // If the flag is set to force any use of scalable vectors, override the loop 144 // hints. 145 if (ForceScalableVectorization.getValue() != 146 LoopVectorizeHints::SK_Unspecified) 147 Scalable.Value = ForceScalableVectorization.getValue(); 148 149 // Scalable vectorization is disabled if no preference is specified. 150 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 151 Scalable.Value = SK_FixedWidthOnly; 152 153 if (IsVectorized.Value != 1) 154 // If the vectorization width and interleaving count are both 1 then 155 // consider the loop to have been already vectorized because there's 156 // nothing more that we can do. 157 IsVectorized.Value = 158 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 159 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 160 << "LV: Interleaving disabled by the pass manager\n"); 161 } 162 163 void LoopVectorizeHints::setAlreadyVectorized() { 164 LLVMContext &Context = TheLoop->getHeader()->getContext(); 165 166 MDNode *IsVectorizedMD = MDNode::get( 167 Context, 168 {MDString::get(Context, "llvm.loop.isvectorized"), 169 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 170 MDNode *LoopID = TheLoop->getLoopID(); 171 MDNode *NewLoopID = 172 makePostTransformationMetadata(Context, LoopID, 173 {Twine(Prefix(), "vectorize.").str(), 174 Twine(Prefix(), "interleave.").str()}, 175 {IsVectorizedMD}); 176 TheLoop->setLoopID(NewLoopID); 177 178 // Update internal cache. 179 IsVectorized.Value = 1; 180 } 181 182 bool LoopVectorizeHints::allowVectorization( 183 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 184 if (getForce() == LoopVectorizeHints::FK_Disabled) { 185 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 186 emitRemarkWithHints(); 187 return false; 188 } 189 190 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 191 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 192 emitRemarkWithHints(); 193 return false; 194 } 195 196 if (getIsVectorized() == 1) { 197 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 198 // FIXME: Add interleave.disable metadata. This will allow 199 // vectorize.disable to be used without disabling the pass and errors 200 // to differentiate between disabled vectorization and a width of 1. 201 ORE.emit([&]() { 202 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 203 "AllDisabled", L->getStartLoc(), 204 L->getHeader()) 205 << "loop not vectorized: vectorization and interleaving are " 206 "explicitly disabled, or the loop has already been " 207 "vectorized"; 208 }); 209 return false; 210 } 211 212 return true; 213 } 214 215 void LoopVectorizeHints::emitRemarkWithHints() const { 216 using namespace ore; 217 218 ORE.emit([&]() { 219 if (Force.Value == LoopVectorizeHints::FK_Disabled) 220 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 221 TheLoop->getStartLoc(), 222 TheLoop->getHeader()) 223 << "loop not vectorized: vectorization is explicitly disabled"; 224 225 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(), 226 TheLoop->getHeader()); 227 R << "loop not vectorized"; 228 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 229 R << " (Force=" << NV("Force", true); 230 if (Width.Value != 0) 231 R << ", Vector Width=" << NV("VectorWidth", getWidth()); 232 if (getInterleave() != 0) 233 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 234 R << ")"; 235 } 236 return R; 237 }); 238 } 239 240 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 241 if (getWidth() == ElementCount::getFixed(1)) 242 return LV_NAME; 243 if (getForce() == LoopVectorizeHints::FK_Disabled) 244 return LV_NAME; 245 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 246 return LV_NAME; 247 return OptimizationRemarkAnalysis::AlwaysPrint; 248 } 249 250 bool LoopVectorizeHints::allowReordering() const { 251 // Allow the vectorizer to change the order of operations if enabling 252 // loop hints are provided 253 ElementCount EC = getWidth(); 254 return HintsAllowReordering && 255 (getForce() == LoopVectorizeHints::FK_Enabled || 256 EC.getKnownMinValue() > 1); 257 } 258 259 void LoopVectorizeHints::getHintsFromMetadata() { 260 MDNode *LoopID = TheLoop->getLoopID(); 261 if (!LoopID) 262 return; 263 264 // First operand should refer to the loop id itself. 265 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 266 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 267 268 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 269 const MDString *S = nullptr; 270 SmallVector<Metadata *, 4> Args; 271 272 // The expected hint is either a MDString or a MDNode with the first 273 // operand a MDString. 274 if (const MDNode *MD = dyn_cast<MDNode>(MDO)) { 275 if (!MD || MD->getNumOperands() == 0) 276 continue; 277 S = dyn_cast<MDString>(MD->getOperand(0)); 278 for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx) 279 Args.push_back(MD->getOperand(Idx)); 280 } else { 281 S = dyn_cast<MDString>(MDO); 282 assert(Args.size() == 0 && "too many arguments for MDString"); 283 } 284 285 if (!S) 286 continue; 287 288 // Check if the hint starts with the loop metadata prefix. 289 StringRef Name = S->getString(); 290 if (Args.size() == 1) 291 setHint(Name, Args[0]); 292 } 293 } 294 295 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 296 if (!Name.starts_with(Prefix())) 297 return; 298 Name = Name.substr(Prefix().size(), StringRef::npos); 299 300 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 301 if (!C) 302 return; 303 unsigned Val = C->getZExtValue(); 304 305 Hint *Hints[] = {&Width, &Interleave, &Force, 306 &IsVectorized, &Predicate, &Scalable}; 307 for (auto *H : Hints) { 308 if (Name == H->Name) { 309 if (H->validate(Val)) 310 H->Value = Val; 311 else 312 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 313 break; 314 } 315 } 316 } 317 318 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 319 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 320 // executing the inner loop will execute the same iterations). This check is 321 // very constrained for now but it will be relaxed in the future. \p Lp is 322 // considered uniform if it meets all the following conditions: 323 // 1) it has a canonical IV (starting from 0 and with stride 1), 324 // 2) its latch terminator is a conditional branch and, 325 // 3) its latch condition is a compare instruction whose operands are the 326 // canonical IV and an OuterLp invariant. 327 // This check doesn't take into account the uniformity of other conditions not 328 // related to the loop latch because they don't affect the loop uniformity. 329 // 330 // NOTE: We decided to keep all these checks and its associated documentation 331 // together so that we can easily have a picture of the current supported loop 332 // nests. However, some of the current checks don't depend on \p OuterLp and 333 // would be redundantly executed for each \p Lp if we invoked this function for 334 // different candidate outer loops. This is not the case for now because we 335 // don't currently have the infrastructure to evaluate multiple candidate outer 336 // loops and \p OuterLp will be a fixed parameter while we only support explicit 337 // outer loop vectorization. It's also very likely that these checks go away 338 // before introducing the aforementioned infrastructure. However, if this is not 339 // the case, we should move the \p OuterLp independent checks to a separate 340 // function that is only executed once for each \p Lp. 341 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 342 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 343 344 // If Lp is the outer loop, it's uniform by definition. 345 if (Lp == OuterLp) 346 return true; 347 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 348 349 // 1. 350 PHINode *IV = Lp->getCanonicalInductionVariable(); 351 if (!IV) { 352 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 353 return false; 354 } 355 356 // 2. 357 BasicBlock *Latch = Lp->getLoopLatch(); 358 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 359 if (!LatchBr || LatchBr->isUnconditional()) { 360 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 361 return false; 362 } 363 364 // 3. 365 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 366 if (!LatchCmp) { 367 LLVM_DEBUG( 368 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 369 return false; 370 } 371 372 Value *CondOp0 = LatchCmp->getOperand(0); 373 Value *CondOp1 = LatchCmp->getOperand(1); 374 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 375 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 376 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 377 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 378 return false; 379 } 380 381 return true; 382 } 383 384 // Return true if \p Lp and all its nested loops are uniform with regard to \p 385 // OuterLp. 386 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 387 if (!isUniformLoop(Lp, OuterLp)) 388 return false; 389 390 // Check if nested loops are uniform. 391 for (Loop *SubLp : *Lp) 392 if (!isUniformLoopNest(SubLp, OuterLp)) 393 return false; 394 395 return true; 396 } 397 398 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 399 if (Ty->isPointerTy()) 400 return DL.getIntPtrType(Ty); 401 402 // It is possible that char's or short's overflow when we ask for the loop's 403 // trip count, work around this by changing the type size. 404 if (Ty->getScalarSizeInBits() < 32) 405 return Type::getInt32Ty(Ty->getContext()); 406 407 return Ty; 408 } 409 410 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 411 Ty0 = convertPointerToIntegerType(DL, Ty0); 412 Ty1 = convertPointerToIntegerType(DL, Ty1); 413 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 414 return Ty0; 415 return Ty1; 416 } 417 418 /// Check that the instruction has outside loop users and is not an 419 /// identified reduction variable. 420 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 421 SmallPtrSetImpl<Value *> &AllowedExit) { 422 // Reductions, Inductions and non-header phis are allowed to have exit users. All 423 // other instructions must not have external users. 424 if (!AllowedExit.count(Inst)) 425 // Check that all of the users of the loop are inside the BB. 426 for (User *U : Inst->users()) { 427 Instruction *UI = cast<Instruction>(U); 428 // This user may be a reduction exit value. 429 if (!TheLoop->contains(UI)) { 430 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 431 return true; 432 } 433 } 434 return false; 435 } 436 437 /// Returns true if A and B have same pointer operands or same SCEVs addresses 438 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, 439 StoreInst *B) { 440 // Compare store 441 if (A == B) 442 return true; 443 444 // Otherwise Compare pointers 445 Value *APtr = A->getPointerOperand(); 446 Value *BPtr = B->getPointerOperand(); 447 if (APtr == BPtr) 448 return true; 449 450 // Otherwise compare address SCEVs 451 return SE->getSCEV(APtr) == SE->getSCEV(BPtr); 452 } 453 454 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, 455 Value *Ptr) const { 456 // FIXME: Currently, the set of symbolic strides is sometimes queried before 457 // it's collected. This happens from canVectorizeWithIfConvert, when the 458 // pointer is checked to reference consecutive elements suitable for a 459 // masked access. 460 const auto &Strides = 461 LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>(); 462 463 bool CanAddPredicate = !llvm::shouldOptimizeForSize( 464 TheLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, 466 CanAddPredicate, false).value_or(0); 467 if (Stride == 1 || Stride == -1) 468 return Stride; 469 return 0; 470 } 471 472 bool LoopVectorizationLegality::isInvariant(Value *V) const { 473 return LAI->isInvariant(V); 474 } 475 476 namespace { 477 /// A rewriter to build the SCEVs for each of the VF lanes in the expected 478 /// vectorized loop, which can then be compared to detect their uniformity. This 479 /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop) 480 /// with new AddRecs where the step is multiplied by StepMultiplier and Offset * 481 /// Step is added. Also checks if all sub-expressions are analyzable w.r.t. 482 /// uniformity. 483 class SCEVAddRecForUniformityRewriter 484 : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> { 485 /// Multiplier to be applied to the step of AddRecs in TheLoop. 486 unsigned StepMultiplier; 487 488 /// Offset to be added to the AddRecs in TheLoop. 489 unsigned Offset; 490 491 /// Loop for which to rewrite AddRecsFor. 492 Loop *TheLoop; 493 494 /// Is any sub-expressions not analyzable w.r.t. uniformity? 495 bool CannotAnalyze = false; 496 497 bool canAnalyze() const { return !CannotAnalyze; } 498 499 public: 500 SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier, 501 unsigned Offset, Loop *TheLoop) 502 : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset), 503 TheLoop(TheLoop) {} 504 505 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 506 assert(Expr->getLoop() == TheLoop && 507 "addrec outside of TheLoop must be invariant and should have been " 508 "handled earlier"); 509 // Build a new AddRec by multiplying the step by StepMultiplier and 510 // incrementing the start by Offset * step. 511 Type *Ty = Expr->getType(); 512 const SCEV *Step = Expr->getStepRecurrence(SE); 513 if (!SE.isLoopInvariant(Step, TheLoop)) { 514 CannotAnalyze = true; 515 return Expr; 516 } 517 const SCEV *NewStep = 518 SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier)); 519 const SCEV *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset)); 520 const SCEV *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset); 521 return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap); 522 } 523 524 const SCEV *visit(const SCEV *S) { 525 if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop)) 526 return S; 527 return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S); 528 } 529 530 const SCEV *visitUnknown(const SCEVUnknown *S) { 531 if (SE.isLoopInvariant(S, TheLoop)) 532 return S; 533 // The value could vary across iterations. 534 CannotAnalyze = true; 535 return S; 536 } 537 538 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) { 539 // Could not analyze the expression. 540 CannotAnalyze = true; 541 return S; 542 } 543 544 static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE, 545 unsigned StepMultiplier, unsigned Offset, 546 Loop *TheLoop) { 547 /// Bail out if the expression does not contain an UDiv expression. 548 /// Uniform values which are not loop invariant require operations to strip 549 /// out the lowest bits. For now just look for UDivs and use it to avoid 550 /// re-writing UDIV-free expressions for other lanes to limit compile time. 551 if (!SCEVExprContains(S, 552 [](const SCEV *S) { return isa<SCEVUDivExpr>(S); })) 553 return SE.getCouldNotCompute(); 554 555 SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset, 556 TheLoop); 557 const SCEV *Result = Rewriter.visit(S); 558 559 if (Rewriter.canAnalyze()) 560 return Result; 561 return SE.getCouldNotCompute(); 562 } 563 }; 564 565 } // namespace 566 567 bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const { 568 if (isInvariant(V)) 569 return true; 570 if (VF.isScalable()) 571 return false; 572 if (VF.isScalar()) 573 return true; 574 575 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 576 // never considered uniform. 577 auto *SE = PSE.getSE(); 578 if (!SE->isSCEVable(V->getType())) 579 return false; 580 const SCEV *S = SE->getSCEV(V); 581 582 // Rewrite AddRecs in TheLoop to step by VF and check if the expression for 583 // lane 0 matches the expressions for all other lanes. 584 unsigned FixedVF = VF.getKnownMinValue(); 585 const SCEV *FirstLaneExpr = 586 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop); 587 if (isa<SCEVCouldNotCompute>(FirstLaneExpr)) 588 return false; 589 590 // Make sure the expressions for lanes FixedVF-1..1 match the expression for 591 // lane 0. We check lanes in reverse order for compile-time, as frequently 592 // checking the last lane is sufficient to rule out uniformity. 593 return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) { 594 const SCEV *IthLaneExpr = 595 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop); 596 return FirstLaneExpr == IthLaneExpr; 597 }); 598 } 599 600 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I, 601 ElementCount VF) const { 602 Value *Ptr = getLoadStorePointerOperand(&I); 603 if (!Ptr) 604 return false; 605 // Note: There's nothing inherent which prevents predicated loads and 606 // stores from being uniform. The current lowering simply doesn't handle 607 // it; in particular, the cost model distinguishes scatter/gather from 608 // scalar w/predication, and we currently rely on the scalar path. 609 return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent()); 610 } 611 612 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 613 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 614 // Store the result and return it at the end instead of exiting early, in case 615 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 616 bool Result = true; 617 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 618 619 for (BasicBlock *BB : TheLoop->blocks()) { 620 // Check whether the BB terminator is a BranchInst. Any other terminator is 621 // not supported yet. 622 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 623 if (!Br) { 624 reportVectorizationFailure("Unsupported basic block terminator", 625 "loop control flow is not understood by vectorizer", 626 "CFGNotUnderstood", ORE, TheLoop); 627 if (DoExtraAnalysis) 628 Result = false; 629 else 630 return false; 631 } 632 633 // Check whether the BranchInst is a supported one. Only unconditional 634 // branches, conditional branches with an outer loop invariant condition or 635 // backedges are supported. 636 // FIXME: We skip these checks when VPlan predication is enabled as we 637 // want to allow divergent branches. This whole check will be removed 638 // once VPlan predication is on by default. 639 if (Br && Br->isConditional() && 640 !TheLoop->isLoopInvariant(Br->getCondition()) && 641 !LI->isLoopHeader(Br->getSuccessor(0)) && 642 !LI->isLoopHeader(Br->getSuccessor(1))) { 643 reportVectorizationFailure("Unsupported conditional branch", 644 "loop control flow is not understood by vectorizer", 645 "CFGNotUnderstood", ORE, TheLoop); 646 if (DoExtraAnalysis) 647 Result = false; 648 else 649 return false; 650 } 651 } 652 653 // Check whether inner loops are uniform. At this point, we only support 654 // simple outer loops scenarios with uniform nested loops. 655 if (!isUniformLoopNest(TheLoop /*loop nest*/, 656 TheLoop /*context outer loop*/)) { 657 reportVectorizationFailure("Outer loop contains divergent loops", 658 "loop control flow is not understood by vectorizer", 659 "CFGNotUnderstood", ORE, TheLoop); 660 if (DoExtraAnalysis) 661 Result = false; 662 else 663 return false; 664 } 665 666 // Check whether we are able to set up outer loop induction. 667 if (!setupOuterLoopInductions()) { 668 reportVectorizationFailure("Unsupported outer loop Phi(s)", 669 "Unsupported outer loop Phi(s)", 670 "UnsupportedPhi", ORE, TheLoop); 671 if (DoExtraAnalysis) 672 Result = false; 673 else 674 return false; 675 } 676 677 return Result; 678 } 679 680 void LoopVectorizationLegality::addInductionPhi( 681 PHINode *Phi, const InductionDescriptor &ID, 682 SmallPtrSetImpl<Value *> &AllowedExit) { 683 Inductions[Phi] = ID; 684 685 // In case this induction also comes with casts that we know we can ignore 686 // in the vectorized loop body, record them here. All casts could be recorded 687 // here for ignoring, but suffices to record only the first (as it is the 688 // only one that may bw used outside the cast sequence). 689 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 690 if (!Casts.empty()) 691 InductionCastsToIgnore.insert(*Casts.begin()); 692 693 Type *PhiTy = Phi->getType(); 694 const DataLayout &DL = Phi->getDataLayout(); 695 696 // Get the widest type. 697 if (!PhiTy->isFloatingPointTy()) { 698 if (!WidestIndTy) 699 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 700 else 701 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 702 } 703 704 // Int inductions are special because we only allow one IV. 705 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 706 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 707 isa<Constant>(ID.getStartValue()) && 708 cast<Constant>(ID.getStartValue())->isNullValue()) { 709 710 // Use the phi node with the widest type as induction. Use the last 711 // one if there are multiple (no good reason for doing this other 712 // than it is expedient). We've checked that it begins at zero and 713 // steps by one, so this is a canonical induction variable. 714 if (!PrimaryInduction || PhiTy == WidestIndTy) 715 PrimaryInduction = Phi; 716 } 717 718 // Both the PHI node itself, and the "post-increment" value feeding 719 // back into the PHI node may have external users. 720 // We can allow those uses, except if the SCEVs we have for them rely 721 // on predicates that only hold within the loop, since allowing the exit 722 // currently means re-using this SCEV outside the loop (see PR33706 for more 723 // details). 724 if (PSE.getPredicate().isAlwaysTrue()) { 725 AllowedExit.insert(Phi); 726 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 727 } 728 729 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 730 } 731 732 bool LoopVectorizationLegality::setupOuterLoopInductions() { 733 BasicBlock *Header = TheLoop->getHeader(); 734 735 // Returns true if a given Phi is a supported induction. 736 auto IsSupportedPhi = [&](PHINode &Phi) -> bool { 737 InductionDescriptor ID; 738 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 739 ID.getKind() == InductionDescriptor::IK_IntInduction) { 740 addInductionPhi(&Phi, ID, AllowedExit); 741 return true; 742 } 743 // Bail out for any Phi in the outer loop header that is not a supported 744 // induction. 745 LLVM_DEBUG( 746 dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n"); 747 return false; 748 }; 749 750 return llvm::all_of(Header->phis(), IsSupportedPhi); 751 } 752 753 /// Checks if a function is scalarizable according to the TLI, in 754 /// the sense that it should be vectorized and then expanded in 755 /// multiple scalar calls. This is represented in the 756 /// TLI via mappings that do not specify a vector name, as in the 757 /// following example: 758 /// 759 /// const VecDesc VecIntrinsics[] = { 760 /// {"llvm.phx.abs.i32", "", 4} 761 /// }; 762 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 763 const StringRef ScalarName = CI.getCalledFunction()->getName(); 764 bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 765 // Check that all known VFs are not associated to a vector 766 // function, i.e. the vector name is emty. 767 if (Scalarize) { 768 ElementCount WidestFixedVF, WidestScalableVF; 769 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 770 for (ElementCount VF = ElementCount::getFixed(2); 771 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 772 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 773 for (ElementCount VF = ElementCount::getScalable(1); 774 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 775 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 776 assert((WidestScalableVF.isZero() || !Scalarize) && 777 "Caller may decide to scalarize a variant using a scalable VF"); 778 } 779 return Scalarize; 780 } 781 782 bool LoopVectorizationLegality::canVectorizeInstrs() { 783 BasicBlock *Header = TheLoop->getHeader(); 784 785 // For each block in the loop. 786 for (BasicBlock *BB : TheLoop->blocks()) { 787 // Scan the instructions in the block and look for hazards. 788 for (Instruction &I : *BB) { 789 if (auto *Phi = dyn_cast<PHINode>(&I)) { 790 Type *PhiTy = Phi->getType(); 791 // Check that this PHI type is allowed. 792 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 793 !PhiTy->isPointerTy()) { 794 reportVectorizationFailure("Found a non-int non-pointer PHI", 795 "loop control flow is not understood by vectorizer", 796 "CFGNotUnderstood", ORE, TheLoop); 797 return false; 798 } 799 800 // If this PHINode is not in the header block, then we know that we 801 // can convert it to select during if-conversion. No need to check if 802 // the PHIs in this block are induction or reduction variables. 803 if (BB != Header) { 804 // Non-header phi nodes that have outside uses can be vectorized. Add 805 // them to the list of allowed exits. 806 // Unsafe cyclic dependencies with header phis are identified during 807 // legalization for reduction, induction and fixed order 808 // recurrences. 809 AllowedExit.insert(&I); 810 continue; 811 } 812 813 // We only allow if-converted PHIs with exactly two incoming values. 814 if (Phi->getNumIncomingValues() != 2) { 815 reportVectorizationFailure("Found an invalid PHI", 816 "loop control flow is not understood by vectorizer", 817 "CFGNotUnderstood", ORE, TheLoop, Phi); 818 return false; 819 } 820 821 RecurrenceDescriptor RedDes; 822 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 823 DT, PSE.getSE())) { 824 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 825 AllowedExit.insert(RedDes.getLoopExitInstr()); 826 Reductions[Phi] = RedDes; 827 continue; 828 } 829 830 // We prevent matching non-constant strided pointer IVS to preserve 831 // historical vectorizer behavior after a generalization of the 832 // IVDescriptor code. The intent is to remove this check, but we 833 // have to fix issues around code quality for such loops first. 834 auto IsDisallowedStridedPointerInduction = 835 [](const InductionDescriptor &ID) { 836 if (AllowStridedPointerIVs) 837 return false; 838 return ID.getKind() == InductionDescriptor::IK_PtrInduction && 839 ID.getConstIntStepValue() == nullptr; 840 }; 841 842 // TODO: Instead of recording the AllowedExit, it would be good to 843 // record the complementary set: NotAllowedExit. These include (but may 844 // not be limited to): 845 // 1. Reduction phis as they represent the one-before-last value, which 846 // is not available when vectorized 847 // 2. Induction phis and increment when SCEV predicates cannot be used 848 // outside the loop - see addInductionPhi 849 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 850 // outside the loop - see call to hasOutsideLoopUser in the non-phi 851 // handling below 852 // 4. FixedOrderRecurrence phis that can possibly be handled by 853 // extraction. 854 // By recording these, we can then reason about ways to vectorize each 855 // of these NotAllowedExit. 856 InductionDescriptor ID; 857 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) && 858 !IsDisallowedStridedPointerInduction(ID)) { 859 addInductionPhi(Phi, ID, AllowedExit); 860 Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 861 continue; 862 } 863 864 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) { 865 AllowedExit.insert(Phi); 866 FixedOrderRecurrences.insert(Phi); 867 continue; 868 } 869 870 // As a last resort, coerce the PHI to a AddRec expression 871 // and re-try classifying it a an induction PHI. 872 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) && 873 !IsDisallowedStridedPointerInduction(ID)) { 874 addInductionPhi(Phi, ID, AllowedExit); 875 continue; 876 } 877 878 reportVectorizationFailure("Found an unidentified PHI", 879 "value that could not be identified as " 880 "reduction is used outside the loop", 881 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 882 return false; 883 } // end of PHI handling 884 885 // We handle calls that: 886 // * Are debug info intrinsics. 887 // * Have a mapping to an IR intrinsic. 888 // * Have a vector version available. 889 auto *CI = dyn_cast<CallInst>(&I); 890 891 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 892 !isa<DbgInfoIntrinsic>(CI) && 893 !(CI->getCalledFunction() && TLI && 894 (!VFDatabase::getMappings(*CI).empty() || 895 isTLIScalarize(*TLI, *CI)))) { 896 // If the call is a recognized math libary call, it is likely that 897 // we can vectorize it given loosened floating-point constraints. 898 LibFunc Func; 899 bool IsMathLibCall = 900 TLI && CI->getCalledFunction() && 901 CI->getType()->isFloatingPointTy() && 902 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 903 TLI->hasOptimizedCodeGen(Func); 904 905 if (IsMathLibCall) { 906 // TODO: Ideally, we should not use clang-specific language here, 907 // but it's hard to provide meaningful yet generic advice. 908 // Also, should this be guarded by allowExtraAnalysis() and/or be part 909 // of the returned info from isFunctionVectorizable()? 910 reportVectorizationFailure( 911 "Found a non-intrinsic callsite", 912 "library call cannot be vectorized. " 913 "Try compiling with -fno-math-errno, -ffast-math, " 914 "or similar flags", 915 "CantVectorizeLibcall", ORE, TheLoop, CI); 916 } else { 917 reportVectorizationFailure("Found a non-intrinsic callsite", 918 "call instruction cannot be vectorized", 919 "CantVectorizeLibcall", ORE, TheLoop, CI); 920 } 921 return false; 922 } 923 924 // Some intrinsics have scalar arguments and should be same in order for 925 // them to be vectorized (i.e. loop invariant). 926 if (CI) { 927 auto *SE = PSE.getSE(); 928 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 929 for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx) 930 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, Idx)) { 931 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)), 932 TheLoop)) { 933 reportVectorizationFailure("Found unvectorizable intrinsic", 934 "intrinsic instruction cannot be vectorized", 935 "CantVectorizeIntrinsic", ORE, TheLoop, CI); 936 return false; 937 } 938 } 939 } 940 941 // If we found a vectorized variant of a function, note that so LV can 942 // make better decisions about maximum VF. 943 if (CI && !VFDatabase::getMappings(*CI).empty()) 944 VecCallVariantsFound = true; 945 946 // Check that the instruction return type is vectorizable. 947 // We can't vectorize casts from vector type to scalar type. 948 // Also, we can't vectorize extractelement instructions. 949 if ((!VectorType::isValidElementType(I.getType()) && 950 !I.getType()->isVoidTy()) || 951 (isa<CastInst>(I) && 952 !VectorType::isValidElementType(I.getOperand(0)->getType())) || 953 isa<ExtractElementInst>(I)) { 954 reportVectorizationFailure("Found unvectorizable type", 955 "instruction return type cannot be vectorized", 956 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 957 return false; 958 } 959 960 // Check that the stored type is vectorizable. 961 if (auto *ST = dyn_cast<StoreInst>(&I)) { 962 Type *T = ST->getValueOperand()->getType(); 963 if (!VectorType::isValidElementType(T)) { 964 reportVectorizationFailure("Store instruction cannot be vectorized", 965 "store instruction cannot be vectorized", 966 "CantVectorizeStore", ORE, TheLoop, ST); 967 return false; 968 } 969 970 // For nontemporal stores, check that a nontemporal vector version is 971 // supported on the target. 972 if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 973 // Arbitrarily try a vector of 2 elements. 974 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 975 assert(VecTy && "did not find vectorized version of stored type"); 976 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 977 reportVectorizationFailure( 978 "nontemporal store instruction cannot be vectorized", 979 "nontemporal store instruction cannot be vectorized", 980 "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 981 return false; 982 } 983 } 984 985 } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 986 if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 987 // For nontemporal loads, check that a nontemporal vector version is 988 // supported on the target (arbitrarily try a vector of 2 elements). 989 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 990 assert(VecTy && "did not find vectorized version of load type"); 991 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 992 reportVectorizationFailure( 993 "nontemporal load instruction cannot be vectorized", 994 "nontemporal load instruction cannot be vectorized", 995 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 996 return false; 997 } 998 } 999 1000 // FP instructions can allow unsafe algebra, thus vectorizable by 1001 // non-IEEE-754 compliant SIMD units. 1002 // This applies to floating-point math operations and calls, not memory 1003 // operations, shuffles, or casts, as they don't change precision or 1004 // semantics. 1005 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 1006 !I.isFast()) { 1007 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 1008 Hints->setPotentiallyUnsafe(); 1009 } 1010 1011 // Reduction instructions are allowed to have exit users. 1012 // All other instructions must not have external users. 1013 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 1014 // We can safely vectorize loops where instructions within the loop are 1015 // used outside the loop only if the SCEV predicates within the loop is 1016 // same as outside the loop. Allowing the exit means reusing the SCEV 1017 // outside the loop. 1018 if (PSE.getPredicate().isAlwaysTrue()) { 1019 AllowedExit.insert(&I); 1020 continue; 1021 } 1022 reportVectorizationFailure("Value cannot be used outside the loop", 1023 "value cannot be used outside the loop", 1024 "ValueUsedOutsideLoop", ORE, TheLoop, &I); 1025 return false; 1026 } 1027 } // next instr. 1028 } 1029 1030 if (!PrimaryInduction) { 1031 if (Inductions.empty()) { 1032 reportVectorizationFailure("Did not find one integer induction var", 1033 "loop induction variable could not be identified", 1034 "NoInductionVariable", ORE, TheLoop); 1035 return false; 1036 } 1037 if (!WidestIndTy) { 1038 reportVectorizationFailure("Did not find one integer induction var", 1039 "integer loop induction variable could not be identified", 1040 "NoIntegerInductionVariable", ORE, TheLoop); 1041 return false; 1042 } 1043 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 1044 } 1045 1046 // Now we know the widest induction type, check if our found induction 1047 // is the same size. If it's not, unset it here and InnerLoopVectorizer 1048 // will create another. 1049 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 1050 PrimaryInduction = nullptr; 1051 1052 return true; 1053 } 1054 1055 /// Find histogram operations that match high-level code in loops: 1056 /// \code 1057 /// buckets[indices[i]]+=step; 1058 /// \endcode 1059 /// 1060 /// It matches a pattern starting from \p HSt, which Stores to the 'buckets' 1061 /// array the computed histogram. It uses a BinOp to sum all counts, storing 1062 /// them using a loop-variant index Load from the 'indices' input array. 1063 /// 1064 /// On successful matches it updates the STATISTIC 'HistogramsDetected', 1065 /// regardless of hardware support. When there is support, it additionally 1066 /// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers 1067 /// used to update histogram in \p HistogramPtrs. 1068 static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop, 1069 const PredicatedScalarEvolution &PSE, 1070 SmallVectorImpl<HistogramInfo> &Histograms) { 1071 1072 // Store value must come from a Binary Operation. 1073 Instruction *HPtrInstr = nullptr; 1074 BinaryOperator *HBinOp = nullptr; 1075 if (!match(HSt, m_Store(m_BinOp(HBinOp), m_Instruction(HPtrInstr)))) 1076 return false; 1077 1078 // BinOp must be an Add or a Sub modifying the bucket value by a 1079 // loop invariant amount. 1080 // FIXME: We assume the loop invariant term is on the RHS. 1081 // Fine for an immediate/constant, but maybe not a generic value? 1082 Value *HIncVal = nullptr; 1083 if (!match(HBinOp, m_Add(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))) && 1084 !match(HBinOp, m_Sub(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal)))) 1085 return false; 1086 1087 // Make sure the increment value is loop invariant. 1088 if (!TheLoop->isLoopInvariant(HIncVal)) 1089 return false; 1090 1091 // The address to store is calculated through a GEP Instruction. 1092 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(HPtrInstr); 1093 if (!GEP) 1094 return false; 1095 1096 // Restrict address calculation to constant indices except for the last term. 1097 Value *HIdx = nullptr; 1098 for (Value *Index : GEP->indices()) { 1099 if (HIdx) 1100 return false; 1101 if (!isa<ConstantInt>(Index)) 1102 HIdx = Index; 1103 } 1104 1105 if (!HIdx) 1106 return false; 1107 1108 // Check that the index is calculated by loading from another array. Ignore 1109 // any extensions. 1110 // FIXME: Support indices from other sources than a linear load from memory? 1111 // We're currently trying to match an operation looping over an array 1112 // of indices, but there could be additional levels of indirection 1113 // in place, or possibly some additional calculation to form the index 1114 // from the loaded data. 1115 Value *VPtrVal; 1116 if (!match(HIdx, m_ZExtOrSExtOrSelf(m_Load(m_Value(VPtrVal))))) 1117 return false; 1118 1119 // Make sure the index address varies in this loop, not an outer loop. 1120 const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(VPtrVal)); 1121 if (!AR || AR->getLoop() != TheLoop) 1122 return false; 1123 1124 // Ensure we'll have the same mask by checking that all parts of the histogram 1125 // (gather load, update, scatter store) are in the same block. 1126 LoadInst *IndexedLoad = cast<LoadInst>(HBinOp->getOperand(0)); 1127 BasicBlock *LdBB = IndexedLoad->getParent(); 1128 if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent()) 1129 return false; 1130 1131 LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n"); 1132 1133 // Store the operations that make up the histogram. 1134 Histograms.emplace_back(IndexedLoad, HBinOp, HSt); 1135 return true; 1136 } 1137 1138 bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() { 1139 // For now, we only support an IndirectUnsafe dependency that calculates 1140 // a histogram 1141 if (!EnableHistogramVectorization) 1142 return false; 1143 1144 // Find a single IndirectUnsafe dependency. 1145 const MemoryDepChecker::Dependence *IUDep = nullptr; 1146 const MemoryDepChecker &DepChecker = LAI->getDepChecker(); 1147 const auto *Deps = DepChecker.getDependences(); 1148 // If there were too many dependences, LAA abandons recording them. We can't 1149 // proceed safely if we don't know what the dependences are. 1150 if (!Deps) 1151 return false; 1152 1153 for (const MemoryDepChecker::Dependence &Dep : *Deps) { 1154 // Ignore dependencies that are either known to be safe or can be 1155 // checked at runtime. 1156 if (MemoryDepChecker::Dependence::isSafeForVectorization(Dep.Type) != 1157 MemoryDepChecker::VectorizationSafetyStatus::Unsafe) 1158 continue; 1159 1160 // We're only interested in IndirectUnsafe dependencies here, where the 1161 // address might come from a load from memory. We also only want to handle 1162 // one such dependency, at least for now. 1163 if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep) 1164 return false; 1165 1166 IUDep = &Dep; 1167 } 1168 if (!IUDep) 1169 return false; 1170 1171 // For now only normal loads and stores are supported. 1172 LoadInst *LI = dyn_cast<LoadInst>(IUDep->getSource(DepChecker)); 1173 StoreInst *SI = dyn_cast<StoreInst>(IUDep->getDestination(DepChecker)); 1174 1175 if (!LI || !SI) 1176 return false; 1177 1178 LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n"); 1179 return findHistogram(LI, SI, TheLoop, LAI->getPSE(), Histograms); 1180 } 1181 1182 bool LoopVectorizationLegality::canVectorizeMemory() { 1183 LAI = &LAIs.getInfo(*TheLoop); 1184 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 1185 if (LAR) { 1186 ORE->emit([&]() { 1187 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 1188 "loop not vectorized: ", *LAR); 1189 }); 1190 } 1191 1192 if (!LAI->canVectorizeMemory()) 1193 return canVectorizeIndirectUnsafeDependences(); 1194 1195 if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) { 1196 reportVectorizationFailure("We don't allow storing to uniform addresses", 1197 "write to a loop invariant address could not " 1198 "be vectorized", 1199 "CantVectorizeStoreToLoopInvariantAddress", ORE, 1200 TheLoop); 1201 return false; 1202 } 1203 1204 // We can vectorize stores to invariant address when final reduction value is 1205 // guaranteed to be stored at the end of the loop. Also, if decision to 1206 // vectorize loop is made, runtime checks are added so as to make sure that 1207 // invariant address won't alias with any other objects. 1208 if (!LAI->getStoresToInvariantAddresses().empty()) { 1209 // For each invariant address, check if last stored value is unconditional 1210 // and the address is not calculated inside the loop. 1211 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 1212 if (!isInvariantStoreOfReduction(SI)) 1213 continue; 1214 1215 if (blockNeedsPredication(SI->getParent())) { 1216 reportVectorizationFailure( 1217 "We don't allow storing to uniform addresses", 1218 "write of conditional recurring variant value to a loop " 1219 "invariant address could not be vectorized", 1220 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 1221 return false; 1222 } 1223 1224 // Invariant address should be defined outside of loop. LICM pass usually 1225 // makes sure it happens, but in rare cases it does not, we do not want 1226 // to overcomplicate vectorization to support this case. 1227 if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) { 1228 if (TheLoop->contains(Ptr)) { 1229 reportVectorizationFailure( 1230 "Invariant address is calculated inside the loop", 1231 "write to a loop invariant address could not " 1232 "be vectorized", 1233 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 1234 return false; 1235 } 1236 } 1237 } 1238 1239 if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) { 1240 // For each invariant address, check its last stored value is the result 1241 // of one of our reductions. 1242 // 1243 // We do not check if dependence with loads exists because that is already 1244 // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress. 1245 ScalarEvolution *SE = PSE.getSE(); 1246 SmallVector<StoreInst *, 4> UnhandledStores; 1247 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 1248 if (isInvariantStoreOfReduction(SI)) { 1249 // Earlier stores to this address are effectively deadcode. 1250 // With opaque pointers it is possible for one pointer to be used with 1251 // different sizes of stored values: 1252 // store i32 0, ptr %x 1253 // store i8 0, ptr %x 1254 // The latest store doesn't complitely overwrite the first one in the 1255 // example. That is why we have to make sure that types of stored 1256 // values are same. 1257 // TODO: Check that bitwidth of unhandled store is smaller then the 1258 // one that overwrites it and add a test. 1259 erase_if(UnhandledStores, [SE, SI](StoreInst *I) { 1260 return storeToSameAddress(SE, SI, I) && 1261 I->getValueOperand()->getType() == 1262 SI->getValueOperand()->getType(); 1263 }); 1264 continue; 1265 } 1266 UnhandledStores.push_back(SI); 1267 } 1268 1269 bool IsOK = UnhandledStores.empty(); 1270 // TODO: we should also validate against InvariantMemSets. 1271 if (!IsOK) { 1272 reportVectorizationFailure( 1273 "We don't allow storing to uniform addresses", 1274 "write to a loop invariant address could not " 1275 "be vectorized", 1276 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 1277 return false; 1278 } 1279 } 1280 } 1281 1282 PSE.addPredicate(LAI->getPSE().getPredicate()); 1283 return true; 1284 } 1285 1286 bool LoopVectorizationLegality::canVectorizeFPMath( 1287 bool EnableStrictReductions) { 1288 1289 // First check if there is any ExactFP math or if we allow reassociations 1290 if (!Requirements->getExactFPInst() || Hints->allowReordering()) 1291 return true; 1292 1293 // If the above is false, we have ExactFPMath & do not allow reordering. 1294 // If the EnableStrictReductions flag is set, first check if we have any 1295 // Exact FP induction vars, which we cannot vectorize. 1296 if (!EnableStrictReductions || 1297 any_of(getInductionVars(), [&](auto &Induction) -> bool { 1298 InductionDescriptor IndDesc = Induction.second; 1299 return IndDesc.getExactFPMathInst(); 1300 })) 1301 return false; 1302 1303 // We can now only vectorize if all reductions with Exact FP math also 1304 // have the isOrdered flag set, which indicates that we can move the 1305 // reduction operations in-loop. 1306 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { 1307 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1308 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered(); 1309 })); 1310 } 1311 1312 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) { 1313 return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1314 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1315 return RdxDesc.IntermediateStore == SI; 1316 }); 1317 } 1318 1319 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) { 1320 return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1321 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1322 if (!RdxDesc.IntermediateStore) 1323 return false; 1324 1325 ScalarEvolution *SE = PSE.getSE(); 1326 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand(); 1327 return V == InvariantAddress || 1328 SE->getSCEV(V) == SE->getSCEV(InvariantAddress); 1329 }); 1330 } 1331 1332 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { 1333 Value *In0 = const_cast<Value *>(V); 1334 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 1335 if (!PN) 1336 return false; 1337 1338 return Inductions.count(PN); 1339 } 1340 1341 const InductionDescriptor * 1342 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { 1343 if (!isInductionPhi(Phi)) 1344 return nullptr; 1345 auto &ID = getInductionVars().find(Phi)->second; 1346 if (ID.getKind() == InductionDescriptor::IK_IntInduction || 1347 ID.getKind() == InductionDescriptor::IK_FpInduction) 1348 return &ID; 1349 return nullptr; 1350 } 1351 1352 const InductionDescriptor * 1353 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const { 1354 if (!isInductionPhi(Phi)) 1355 return nullptr; 1356 auto &ID = getInductionVars().find(Phi)->second; 1357 if (ID.getKind() == InductionDescriptor::IK_PtrInduction) 1358 return &ID; 1359 return nullptr; 1360 } 1361 1362 bool LoopVectorizationLegality::isCastedInductionVariable( 1363 const Value *V) const { 1364 auto *Inst = dyn_cast<Instruction>(V); 1365 return (Inst && InductionCastsToIgnore.count(Inst)); 1366 } 1367 1368 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { 1369 return isInductionPhi(V) || isCastedInductionVariable(V); 1370 } 1371 1372 bool LoopVectorizationLegality::isFixedOrderRecurrence( 1373 const PHINode *Phi) const { 1374 return FixedOrderRecurrences.count(Phi); 1375 } 1376 1377 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 1378 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1379 } 1380 1381 bool LoopVectorizationLegality::blockCanBePredicated( 1382 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 1383 SmallPtrSetImpl<const Instruction *> &MaskedOp) const { 1384 for (Instruction &I : *BB) { 1385 // We can predicate blocks with calls to assume, as long as we drop them in 1386 // case we flatten the CFG via predication. 1387 if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 1388 MaskedOp.insert(&I); 1389 continue; 1390 } 1391 1392 // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 1393 // TODO: there might be cases that it should block the vectorization. Let's 1394 // ignore those for now. 1395 if (isa<NoAliasScopeDeclInst>(&I)) 1396 continue; 1397 1398 // We can allow masked calls if there's at least one vector variant, even 1399 // if we end up scalarizing due to the cost model calculations. 1400 // TODO: Allow other calls if they have appropriate attributes... readonly 1401 // and argmemonly? 1402 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1403 if (VFDatabase::hasMaskedVariant(*CI)) { 1404 MaskedOp.insert(CI); 1405 continue; 1406 } 1407 1408 // Loads are handled via masking (or speculated if safe to do so.) 1409 if (auto *LI = dyn_cast<LoadInst>(&I)) { 1410 if (!SafePtrs.count(LI->getPointerOperand())) 1411 MaskedOp.insert(LI); 1412 continue; 1413 } 1414 1415 // Predicated store requires some form of masking: 1416 // 1) masked store HW instruction, 1417 // 2) emulation via load-blend-store (only if safe and legal to do so, 1418 // be aware on the race conditions), or 1419 // 3) element-by-element predicate check and scalar store. 1420 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1421 MaskedOp.insert(SI); 1422 continue; 1423 } 1424 1425 if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow()) 1426 return false; 1427 } 1428 1429 return true; 1430 } 1431 1432 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 1433 if (!EnableIfConversion) { 1434 reportVectorizationFailure("If-conversion is disabled", 1435 "if-conversion is disabled", 1436 "IfConversionDisabled", 1437 ORE, TheLoop); 1438 return false; 1439 } 1440 1441 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 1442 1443 // A list of pointers which are known to be dereferenceable within scope of 1444 // the loop body for each iteration of the loop which executes. That is, 1445 // the memory pointed to can be dereferenced (with the access size implied by 1446 // the value's type) unconditionally within the loop header without 1447 // introducing a new fault. 1448 SmallPtrSet<Value *, 8> SafePointers; 1449 1450 // Collect safe addresses. 1451 for (BasicBlock *BB : TheLoop->blocks()) { 1452 if (!blockNeedsPredication(BB)) { 1453 for (Instruction &I : *BB) 1454 if (auto *Ptr = getLoadStorePointerOperand(&I)) 1455 SafePointers.insert(Ptr); 1456 continue; 1457 } 1458 1459 // For a block which requires predication, a address may be safe to access 1460 // in the loop w/o predication if we can prove dereferenceability facts 1461 // sufficient to ensure it'll never fault within the loop. For the moment, 1462 // we restrict this to loads; stores are more complicated due to 1463 // concurrency restrictions. 1464 ScalarEvolution &SE = *PSE.getSE(); 1465 SmallVector<const SCEVPredicate *, 4> Predicates; 1466 for (Instruction &I : *BB) { 1467 LoadInst *LI = dyn_cast<LoadInst>(&I); 1468 // Pass the Predicates pointer to isDereferenceableAndAlignedInLoop so 1469 // that it will consider loops that need guarding by SCEV checks. The 1470 // vectoriser will generate these checks if we decide to vectorise. 1471 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 1472 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC, 1473 &Predicates)) 1474 SafePointers.insert(LI->getPointerOperand()); 1475 Predicates.clear(); 1476 } 1477 } 1478 1479 // Collect the blocks that need predication. 1480 for (BasicBlock *BB : TheLoop->blocks()) { 1481 // We support only branches and switch statements as terminators inside the 1482 // loop. 1483 if (isa<SwitchInst>(BB->getTerminator())) { 1484 if (TheLoop->isLoopExiting(BB)) { 1485 reportVectorizationFailure("Loop contains an unsupported switch", 1486 "loop contains an unsupported switch", 1487 "LoopContainsUnsupportedSwitch", ORE, 1488 TheLoop, BB->getTerminator()); 1489 return false; 1490 } 1491 } else if (!isa<BranchInst>(BB->getTerminator())) { 1492 reportVectorizationFailure("Loop contains an unsupported terminator", 1493 "loop contains an unsupported terminator", 1494 "LoopContainsUnsupportedTerminator", ORE, 1495 TheLoop, BB->getTerminator()); 1496 return false; 1497 } 1498 1499 // We must be able to predicate all blocks that need to be predicated. 1500 if (blockNeedsPredication(BB) && 1501 !blockCanBePredicated(BB, SafePointers, MaskedOp)) { 1502 reportVectorizationFailure( 1503 "Control flow cannot be substituted for a select", 1504 "control flow cannot be substituted for a select", "NoCFGForSelect", 1505 ORE, TheLoop, BB->getTerminator()); 1506 return false; 1507 } 1508 } 1509 1510 // We can if-convert this loop. 1511 return true; 1512 } 1513 1514 // Helper function to canVectorizeLoopNestCFG. 1515 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1516 bool UseVPlanNativePath) { 1517 assert((UseVPlanNativePath || Lp->isInnermost()) && 1518 "VPlan-native path is not enabled."); 1519 1520 // TODO: ORE should be improved to show more accurate information when an 1521 // outer loop can't be vectorized because a nested loop is not understood or 1522 // legal. Something like: "outer_loop_location: loop not vectorized: 1523 // (inner_loop_location) loop control flow is not understood by vectorizer". 1524 1525 // Store the result and return it at the end instead of exiting early, in case 1526 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1527 bool Result = true; 1528 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1529 1530 // We must have a loop in canonical form. Loops with indirectbr in them cannot 1531 // be canonicalized. 1532 if (!Lp->getLoopPreheader()) { 1533 reportVectorizationFailure("Loop doesn't have a legal pre-header", 1534 "loop control flow is not understood by vectorizer", 1535 "CFGNotUnderstood", ORE, TheLoop); 1536 if (DoExtraAnalysis) 1537 Result = false; 1538 else 1539 return false; 1540 } 1541 1542 // We must have a single backedge. 1543 if (Lp->getNumBackEdges() != 1) { 1544 reportVectorizationFailure("The loop must have a single backedge", 1545 "loop control flow is not understood by vectorizer", 1546 "CFGNotUnderstood", ORE, TheLoop); 1547 if (DoExtraAnalysis) 1548 Result = false; 1549 else 1550 return false; 1551 } 1552 1553 return Result; 1554 } 1555 1556 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1557 Loop *Lp, bool UseVPlanNativePath) { 1558 // Store the result and return it at the end instead of exiting early, in case 1559 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1560 bool Result = true; 1561 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1562 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1563 if (DoExtraAnalysis) 1564 Result = false; 1565 else 1566 return false; 1567 } 1568 1569 // Recursively check whether the loop control flow of nested loops is 1570 // understood. 1571 for (Loop *SubLp : *Lp) 1572 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1573 if (DoExtraAnalysis) 1574 Result = false; 1575 else 1576 return false; 1577 } 1578 1579 return Result; 1580 } 1581 1582 bool LoopVectorizationLegality::isVectorizableEarlyExitLoop() { 1583 BasicBlock *LatchBB = TheLoop->getLoopLatch(); 1584 if (!LatchBB) { 1585 reportVectorizationFailure("Loop does not have a latch", 1586 "Cannot vectorize early exit loop", 1587 "NoLatchEarlyExit", ORE, TheLoop); 1588 return false; 1589 } 1590 1591 if (Reductions.size() || FixedOrderRecurrences.size()) { 1592 reportVectorizationFailure( 1593 "Found reductions or recurrences in early-exit loop", 1594 "Cannot vectorize early exit loop with reductions or recurrences", 1595 "RecurrencesInEarlyExitLoop", ORE, TheLoop); 1596 return false; 1597 } 1598 1599 SmallVector<BasicBlock *, 8> ExitingBlocks; 1600 TheLoop->getExitingBlocks(ExitingBlocks); 1601 1602 // Keep a record of all the exiting blocks. 1603 SmallVector<const SCEVPredicate *, 4> Predicates; 1604 for (BasicBlock *BB : ExitingBlocks) { 1605 const SCEV *EC = 1606 PSE.getSE()->getPredicatedExitCount(TheLoop, BB, &Predicates); 1607 if (isa<SCEVCouldNotCompute>(EC)) { 1608 UncountableExitingBlocks.push_back(BB); 1609 1610 SmallVector<BasicBlock *, 2> Succs(successors(BB)); 1611 if (Succs.size() != 2) { 1612 reportVectorizationFailure( 1613 "Early exiting block does not have exactly two successors", 1614 "Incorrect number of successors from early exiting block", 1615 "EarlyExitTooManySuccessors", ORE, TheLoop); 1616 return false; 1617 } 1618 1619 BasicBlock *ExitBlock; 1620 if (!TheLoop->contains(Succs[0])) 1621 ExitBlock = Succs[0]; 1622 else { 1623 assert(!TheLoop->contains(Succs[1])); 1624 ExitBlock = Succs[1]; 1625 } 1626 UncountableExitBlocks.push_back(ExitBlock); 1627 } else 1628 CountableExitingBlocks.push_back(BB); 1629 } 1630 // We can safely ignore the predicates here because when vectorizing the loop 1631 // the PredicatatedScalarEvolution class will keep track of all predicates 1632 // for each exiting block anyway. This happens when calling 1633 // PSE.getSymbolicMaxBackedgeTakenCount() below. 1634 Predicates.clear(); 1635 1636 // We only support one uncountable early exit. 1637 if (getUncountableExitingBlocks().size() != 1) { 1638 reportVectorizationFailure( 1639 "Loop has too many uncountable exits", 1640 "Cannot vectorize early exit loop with more than one early exit", 1641 "TooManyUncountableEarlyExits", ORE, TheLoop); 1642 return false; 1643 } 1644 1645 // The only supported early exit loops so far are ones where the early 1646 // exiting block is a unique predecessor of the latch block. 1647 BasicBlock *LatchPredBB = LatchBB->getUniquePredecessor(); 1648 if (LatchPredBB != getUncountableEarlyExitingBlock()) { 1649 reportVectorizationFailure("Early exit is not the latch predecessor", 1650 "Cannot vectorize early exit loop", 1651 "EarlyExitNotLatchPredecessor", ORE, TheLoop); 1652 return false; 1653 } 1654 1655 // The latch block must have a countable exit. 1656 if (isa<SCEVCouldNotCompute>( 1657 PSE.getSE()->getPredicatedExitCount(TheLoop, LatchBB, &Predicates))) { 1658 reportVectorizationFailure( 1659 "Cannot determine exact exit count for latch block", 1660 "Cannot vectorize early exit loop", 1661 "UnknownLatchExitCountEarlyExitLoop", ORE, TheLoop); 1662 return false; 1663 } 1664 assert(llvm::is_contained(CountableExitingBlocks, LatchBB) && 1665 "Latch block not found in list of countable exits!"); 1666 1667 // Check to see if there are instructions that could potentially generate 1668 // exceptions or have side-effects. 1669 auto IsSafeOperation = [](Instruction *I) -> bool { 1670 switch (I->getOpcode()) { 1671 case Instruction::Load: 1672 case Instruction::Store: 1673 case Instruction::PHI: 1674 case Instruction::Br: 1675 // These are checked separately. 1676 return true; 1677 default: 1678 return isSafeToSpeculativelyExecute(I); 1679 } 1680 }; 1681 1682 for (auto *BB : TheLoop->blocks()) 1683 for (auto &I : *BB) { 1684 if (I.mayWriteToMemory()) { 1685 // We don't support writes to memory. 1686 reportVectorizationFailure( 1687 "Writes to memory unsupported in early exit loops", 1688 "Cannot vectorize early exit loop with writes to memory", 1689 "WritesInEarlyExitLoop", ORE, TheLoop); 1690 return false; 1691 } else if (!IsSafeOperation(&I)) { 1692 reportVectorizationFailure("Early exit loop contains operations that " 1693 "cannot be speculatively executed", 1694 "Early exit loop contains operations that " 1695 "cannot be speculatively executed", 1696 "UnsafeOperationsEarlyExitLoop", ORE, 1697 TheLoop); 1698 return false; 1699 } 1700 } 1701 1702 // The vectoriser cannot handle loads that occur after the early exit block. 1703 assert(LatchBB->getUniquePredecessor() == getUncountableEarlyExitingBlock() && 1704 "Expected latch predecessor to be the early exiting block"); 1705 1706 // TODO: Handle loops that may fault. 1707 Predicates.clear(); 1708 if (!isDereferenceableReadOnlyLoop(TheLoop, PSE.getSE(), DT, AC, 1709 &Predicates)) { 1710 reportVectorizationFailure( 1711 "Loop may fault", 1712 "Cannot vectorize potentially faulting early exit loop", 1713 "PotentiallyFaultingEarlyExitLoop", ORE, TheLoop); 1714 return false; 1715 } 1716 1717 [[maybe_unused]] const SCEV *SymbolicMaxBTC = 1718 PSE.getSymbolicMaxBackedgeTakenCount(); 1719 // Since we have an exact exit count for the latch and the early exit 1720 // dominates the latch, then this should guarantee a computed SCEV value. 1721 assert(!isa<SCEVCouldNotCompute>(SymbolicMaxBTC) && 1722 "Failed to get symbolic expression for backedge taken count"); 1723 LLVM_DEBUG(dbgs() << "LV: Found an early exit loop with symbolic max " 1724 "backedge taken count: " 1725 << *SymbolicMaxBTC << '\n'); 1726 return true; 1727 } 1728 1729 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1730 // Store the result and return it at the end instead of exiting early, in case 1731 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1732 bool Result = true; 1733 1734 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1735 // Check whether the loop-related control flow in the loop nest is expected by 1736 // vectorizer. 1737 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1738 if (DoExtraAnalysis) { 1739 LLVM_DEBUG(dbgs() << "LV: legality check failed: loop nest"); 1740 Result = false; 1741 } else { 1742 return false; 1743 } 1744 } 1745 1746 // We need to have a loop header. 1747 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1748 << '\n'); 1749 1750 // Specific checks for outer loops. We skip the remaining legal checks at this 1751 // point because they don't support outer loops. 1752 if (!TheLoop->isInnermost()) { 1753 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1754 1755 if (!canVectorizeOuterLoop()) { 1756 reportVectorizationFailure("Unsupported outer loop", 1757 "unsupported outer loop", 1758 "UnsupportedOuterLoop", 1759 ORE, TheLoop); 1760 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1761 // outer loops. 1762 return false; 1763 } 1764 1765 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1766 return Result; 1767 } 1768 1769 assert(TheLoop->isInnermost() && "Inner loop expected."); 1770 // Check if we can if-convert non-single-bb loops. 1771 unsigned NumBlocks = TheLoop->getNumBlocks(); 1772 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1773 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1774 if (DoExtraAnalysis) 1775 Result = false; 1776 else 1777 return false; 1778 } 1779 1780 // Check if we can vectorize the instructions and CFG in this loop. 1781 if (!canVectorizeInstrs()) { 1782 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1783 if (DoExtraAnalysis) 1784 Result = false; 1785 else 1786 return false; 1787 } 1788 1789 HasUncountableEarlyExit = false; 1790 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 1791 if (!isVectorizableEarlyExitLoop()) { 1792 if (DoExtraAnalysis) 1793 Result = false; 1794 else 1795 return false; 1796 } else 1797 HasUncountableEarlyExit = true; 1798 } 1799 1800 // Go over each instruction and look at memory deps. 1801 if (!canVectorizeMemory()) { 1802 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1803 if (DoExtraAnalysis) 1804 Result = false; 1805 else 1806 return false; 1807 } 1808 1809 if (Result) { 1810 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1811 << (LAI->getRuntimePointerChecking()->Need 1812 ? " (with a runtime bound check)" 1813 : "") 1814 << "!\n"); 1815 } 1816 1817 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1818 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1819 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1820 1821 if (PSE.getPredicate().getComplexity() > SCEVThreshold) { 1822 LLVM_DEBUG(dbgs() << "LV: Vectorization not profitable " 1823 "due to SCEVThreshold"); 1824 reportVectorizationFailure("Too many SCEV checks needed", 1825 "Too many SCEV assumptions need to be made and checked at runtime", 1826 "TooManySCEVRunTimeChecks", ORE, TheLoop); 1827 if (DoExtraAnalysis) 1828 Result = false; 1829 else 1830 return false; 1831 } 1832 1833 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1834 // we can vectorize, and at this point we don't have any other mem analysis 1835 // which may limit our maximum vectorization factor, so just return true with 1836 // no restrictions. 1837 return Result; 1838 } 1839 1840 bool LoopVectorizationLegality::canFoldTailByMasking() const { 1841 1842 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1843 1844 SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1845 1846 for (const auto &Reduction : getReductionVars()) 1847 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1848 1849 // TODO: handle non-reduction outside users when tail is folded by masking. 1850 for (auto *AE : AllowedExit) { 1851 // Check that all users of allowed exit values are inside the loop or 1852 // are the live-out of a reduction. 1853 if (ReductionLiveOuts.count(AE)) 1854 continue; 1855 for (User *U : AE->users()) { 1856 Instruction *UI = cast<Instruction>(U); 1857 if (TheLoop->contains(UI)) 1858 continue; 1859 LLVM_DEBUG( 1860 dbgs() 1861 << "LV: Cannot fold tail by masking, loop has an outside user for " 1862 << *UI << "\n"); 1863 return false; 1864 } 1865 } 1866 1867 for (const auto &Entry : getInductionVars()) { 1868 PHINode *OrigPhi = Entry.first; 1869 for (User *U : OrigPhi->users()) { 1870 auto *UI = cast<Instruction>(U); 1871 if (!TheLoop->contains(UI)) { 1872 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an " 1873 "outside user for " 1874 << *UI << "\n"); 1875 return false; 1876 } 1877 } 1878 } 1879 1880 // The list of pointers that we can safely read and write to remains empty. 1881 SmallPtrSet<Value *, 8> SafePointers; 1882 1883 // Check all blocks for predication, including those that ordinarily do not 1884 // need predication such as the header block. 1885 SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1886 for (BasicBlock *BB : TheLoop->blocks()) { 1887 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) { 1888 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n"); 1889 return false; 1890 } 1891 } 1892 1893 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1894 1895 return true; 1896 } 1897 1898 void LoopVectorizationLegality::prepareToFoldTailByMasking() { 1899 // The list of pointers that we can safely read and write to remains empty. 1900 SmallPtrSet<Value *, 8> SafePointers; 1901 1902 // Mark all blocks for predication, including those that ordinarily do not 1903 // need predication such as the header block. 1904 for (BasicBlock *BB : TheLoop->blocks()) { 1905 [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp); 1906 assert(R && "Must be able to predicate block when tail-folding."); 1907 } 1908 } 1909 1910 } // namespace llvm 1911