1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Transforms/Utils/SizeOpts.h" 29 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 30 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 #define LV_NAME "loop-vectorize" 35 #define DEBUG_TYPE LV_NAME 36 37 static cl::opt<bool> 38 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 39 cl::desc("Enable if-conversion during vectorization.")); 40 41 static cl::opt<bool> 42 AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden, 43 cl::desc("Enable recognition of non-constant strided " 44 "pointer induction variables.")); 45 46 namespace llvm { 47 cl::opt<bool> 48 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, 49 cl::desc("Allow enabling loop hints to reorder " 50 "FP operations during vectorization.")); 51 } // namespace llvm 52 53 // TODO: Move size-based thresholds out of legality checking, make cost based 54 // decisions instead of hard thresholds. 55 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 56 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 57 cl::desc("The maximum number of SCEV checks allowed.")); 58 59 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 60 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 61 cl::desc("The maximum number of SCEV checks allowed with a " 62 "vectorize(enable) pragma")); 63 64 static cl::opt<LoopVectorizeHints::ScalableForceKind> 65 ForceScalableVectorization( 66 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), 67 cl::Hidden, 68 cl::desc("Control whether the compiler can use scalable vectors to " 69 "vectorize a loop"), 70 cl::values( 71 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 72 "Scalable vectorization is disabled."), 73 clEnumValN( 74 LoopVectorizeHints::SK_PreferScalable, "preferred", 75 "Scalable vectorization is available and favored when the " 76 "cost is inconclusive."), 77 clEnumValN( 78 LoopVectorizeHints::SK_PreferScalable, "on", 79 "Scalable vectorization is available and favored when the " 80 "cost is inconclusive."))); 81 82 static cl::opt<bool> EnableHistogramVectorization( 83 "enable-histogram-loop-vectorization", cl::init(false), cl::Hidden, 84 cl::desc("Enables autovectorization of some loops containing histograms")); 85 86 /// Maximum vectorization interleave count. 87 static const unsigned MaxInterleaveFactor = 16; 88 89 namespace llvm { 90 91 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 92 switch (Kind) { 93 case HK_WIDTH: 94 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 95 case HK_INTERLEAVE: 96 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 97 case HK_FORCE: 98 return (Val <= 1); 99 case HK_ISVECTORIZED: 100 case HK_PREDICATE: 101 case HK_SCALABLE: 102 return (Val == 0 || Val == 1); 103 } 104 return false; 105 } 106 107 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 108 bool InterleaveOnlyWhenForced, 109 OptimizationRemarkEmitter &ORE, 110 const TargetTransformInfo *TTI) 111 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 112 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 113 Force("vectorize.enable", FK_Undefined, HK_FORCE), 114 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 115 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 116 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 117 TheLoop(L), ORE(ORE) { 118 // Populate values with existing loop metadata. 119 getHintsFromMetadata(); 120 121 // force-vector-interleave overrides DisableInterleaving. 122 if (VectorizerParams::isInterleaveForced()) 123 Interleave.Value = VectorizerParams::VectorizationInterleave; 124 125 // If the metadata doesn't explicitly specify whether to enable scalable 126 // vectorization, then decide based on the following criteria (increasing 127 // level of priority): 128 // - Target default 129 // - Metadata width 130 // - Force option (always overrides) 131 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { 132 if (TTI) 133 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable 134 : SK_FixedWidthOnly; 135 136 if (Width.Value) 137 // If the width is set, but the metadata says nothing about the scalable 138 // property, then assume it concerns only a fixed-width UserVF. 139 // If width is not set, the flag takes precedence. 140 Scalable.Value = SK_FixedWidthOnly; 141 } 142 143 // If the flag is set to force any use of scalable vectors, override the loop 144 // hints. 145 if (ForceScalableVectorization.getValue() != 146 LoopVectorizeHints::SK_Unspecified) 147 Scalable.Value = ForceScalableVectorization.getValue(); 148 149 // Scalable vectorization is disabled if no preference is specified. 150 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 151 Scalable.Value = SK_FixedWidthOnly; 152 153 if (IsVectorized.Value != 1) 154 // If the vectorization width and interleaving count are both 1 then 155 // consider the loop to have been already vectorized because there's 156 // nothing more that we can do. 157 IsVectorized.Value = 158 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 159 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 160 << "LV: Interleaving disabled by the pass manager\n"); 161 } 162 163 void LoopVectorizeHints::setAlreadyVectorized() { 164 LLVMContext &Context = TheLoop->getHeader()->getContext(); 165 166 MDNode *IsVectorizedMD = MDNode::get( 167 Context, 168 {MDString::get(Context, "llvm.loop.isvectorized"), 169 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 170 MDNode *LoopID = TheLoop->getLoopID(); 171 MDNode *NewLoopID = 172 makePostTransformationMetadata(Context, LoopID, 173 {Twine(Prefix(), "vectorize.").str(), 174 Twine(Prefix(), "interleave.").str()}, 175 {IsVectorizedMD}); 176 TheLoop->setLoopID(NewLoopID); 177 178 // Update internal cache. 179 IsVectorized.Value = 1; 180 } 181 182 bool LoopVectorizeHints::allowVectorization( 183 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 184 if (getForce() == LoopVectorizeHints::FK_Disabled) { 185 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 186 emitRemarkWithHints(); 187 return false; 188 } 189 190 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 191 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 192 emitRemarkWithHints(); 193 return false; 194 } 195 196 if (getIsVectorized() == 1) { 197 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 198 // FIXME: Add interleave.disable metadata. This will allow 199 // vectorize.disable to be used without disabling the pass and errors 200 // to differentiate between disabled vectorization and a width of 1. 201 ORE.emit([&]() { 202 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 203 "AllDisabled", L->getStartLoc(), 204 L->getHeader()) 205 << "loop not vectorized: vectorization and interleaving are " 206 "explicitly disabled, or the loop has already been " 207 "vectorized"; 208 }); 209 return false; 210 } 211 212 return true; 213 } 214 215 void LoopVectorizeHints::emitRemarkWithHints() const { 216 using namespace ore; 217 218 ORE.emit([&]() { 219 if (Force.Value == LoopVectorizeHints::FK_Disabled) 220 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 221 TheLoop->getStartLoc(), 222 TheLoop->getHeader()) 223 << "loop not vectorized: vectorization is explicitly disabled"; 224 225 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(), 226 TheLoop->getHeader()); 227 R << "loop not vectorized"; 228 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 229 R << " (Force=" << NV("Force", true); 230 if (Width.Value != 0) 231 R << ", Vector Width=" << NV("VectorWidth", getWidth()); 232 if (getInterleave() != 0) 233 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 234 R << ")"; 235 } 236 return R; 237 }); 238 } 239 240 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 241 if (getWidth() == ElementCount::getFixed(1)) 242 return LV_NAME; 243 if (getForce() == LoopVectorizeHints::FK_Disabled) 244 return LV_NAME; 245 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 246 return LV_NAME; 247 return OptimizationRemarkAnalysis::AlwaysPrint; 248 } 249 250 bool LoopVectorizeHints::allowReordering() const { 251 // Allow the vectorizer to change the order of operations if enabling 252 // loop hints are provided 253 ElementCount EC = getWidth(); 254 return HintsAllowReordering && 255 (getForce() == LoopVectorizeHints::FK_Enabled || 256 EC.getKnownMinValue() > 1); 257 } 258 259 void LoopVectorizeHints::getHintsFromMetadata() { 260 MDNode *LoopID = TheLoop->getLoopID(); 261 if (!LoopID) 262 return; 263 264 // First operand should refer to the loop id itself. 265 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 266 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 267 268 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 269 const MDString *S = nullptr; 270 SmallVector<Metadata *, 4> Args; 271 272 // The expected hint is either a MDString or a MDNode with the first 273 // operand a MDString. 274 if (const MDNode *MD = dyn_cast<MDNode>(MDO)) { 275 if (!MD || MD->getNumOperands() == 0) 276 continue; 277 S = dyn_cast<MDString>(MD->getOperand(0)); 278 for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx) 279 Args.push_back(MD->getOperand(Idx)); 280 } else { 281 S = dyn_cast<MDString>(MDO); 282 assert(Args.size() == 0 && "too many arguments for MDString"); 283 } 284 285 if (!S) 286 continue; 287 288 // Check if the hint starts with the loop metadata prefix. 289 StringRef Name = S->getString(); 290 if (Args.size() == 1) 291 setHint(Name, Args[0]); 292 } 293 } 294 295 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 296 if (!Name.starts_with(Prefix())) 297 return; 298 Name = Name.substr(Prefix().size(), StringRef::npos); 299 300 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 301 if (!C) 302 return; 303 unsigned Val = C->getZExtValue(); 304 305 Hint *Hints[] = {&Width, &Interleave, &Force, 306 &IsVectorized, &Predicate, &Scalable}; 307 for (auto *H : Hints) { 308 if (Name == H->Name) { 309 if (H->validate(Val)) 310 H->Value = Val; 311 else 312 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 313 break; 314 } 315 } 316 } 317 318 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 319 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 320 // executing the inner loop will execute the same iterations). This check is 321 // very constrained for now but it will be relaxed in the future. \p Lp is 322 // considered uniform if it meets all the following conditions: 323 // 1) it has a canonical IV (starting from 0 and with stride 1), 324 // 2) its latch terminator is a conditional branch and, 325 // 3) its latch condition is a compare instruction whose operands are the 326 // canonical IV and an OuterLp invariant. 327 // This check doesn't take into account the uniformity of other conditions not 328 // related to the loop latch because they don't affect the loop uniformity. 329 // 330 // NOTE: We decided to keep all these checks and its associated documentation 331 // together so that we can easily have a picture of the current supported loop 332 // nests. However, some of the current checks don't depend on \p OuterLp and 333 // would be redundantly executed for each \p Lp if we invoked this function for 334 // different candidate outer loops. This is not the case for now because we 335 // don't currently have the infrastructure to evaluate multiple candidate outer 336 // loops and \p OuterLp will be a fixed parameter while we only support explicit 337 // outer loop vectorization. It's also very likely that these checks go away 338 // before introducing the aforementioned infrastructure. However, if this is not 339 // the case, we should move the \p OuterLp independent checks to a separate 340 // function that is only executed once for each \p Lp. 341 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 342 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 343 344 // If Lp is the outer loop, it's uniform by definition. 345 if (Lp == OuterLp) 346 return true; 347 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 348 349 // 1. 350 PHINode *IV = Lp->getCanonicalInductionVariable(); 351 if (!IV) { 352 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 353 return false; 354 } 355 356 // 2. 357 BasicBlock *Latch = Lp->getLoopLatch(); 358 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 359 if (!LatchBr || LatchBr->isUnconditional()) { 360 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 361 return false; 362 } 363 364 // 3. 365 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 366 if (!LatchCmp) { 367 LLVM_DEBUG( 368 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 369 return false; 370 } 371 372 Value *CondOp0 = LatchCmp->getOperand(0); 373 Value *CondOp1 = LatchCmp->getOperand(1); 374 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 375 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 376 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 377 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 378 return false; 379 } 380 381 return true; 382 } 383 384 // Return true if \p Lp and all its nested loops are uniform with regard to \p 385 // OuterLp. 386 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 387 if (!isUniformLoop(Lp, OuterLp)) 388 return false; 389 390 // Check if nested loops are uniform. 391 for (Loop *SubLp : *Lp) 392 if (!isUniformLoopNest(SubLp, OuterLp)) 393 return false; 394 395 return true; 396 } 397 398 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 399 if (Ty->isPointerTy()) 400 return DL.getIntPtrType(Ty); 401 402 // It is possible that char's or short's overflow when we ask for the loop's 403 // trip count, work around this by changing the type size. 404 if (Ty->getScalarSizeInBits() < 32) 405 return Type::getInt32Ty(Ty->getContext()); 406 407 return Ty; 408 } 409 410 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 411 Ty0 = convertPointerToIntegerType(DL, Ty0); 412 Ty1 = convertPointerToIntegerType(DL, Ty1); 413 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 414 return Ty0; 415 return Ty1; 416 } 417 418 /// Check that the instruction has outside loop users and is not an 419 /// identified reduction variable. 420 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 421 SmallPtrSetImpl<Value *> &AllowedExit) { 422 // Reductions, Inductions and non-header phis are allowed to have exit users. All 423 // other instructions must not have external users. 424 if (!AllowedExit.count(Inst)) 425 // Check that all of the users of the loop are inside the BB. 426 for (User *U : Inst->users()) { 427 Instruction *UI = cast<Instruction>(U); 428 // This user may be a reduction exit value. 429 if (!TheLoop->contains(UI)) { 430 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 431 return true; 432 } 433 } 434 return false; 435 } 436 437 /// Returns true if A and B have same pointer operands or same SCEVs addresses 438 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, 439 StoreInst *B) { 440 // Compare store 441 if (A == B) 442 return true; 443 444 // Otherwise Compare pointers 445 Value *APtr = A->getPointerOperand(); 446 Value *BPtr = B->getPointerOperand(); 447 if (APtr == BPtr) 448 return true; 449 450 // Otherwise compare address SCEVs 451 return SE->getSCEV(APtr) == SE->getSCEV(BPtr); 452 } 453 454 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, 455 Value *Ptr) const { 456 // FIXME: Currently, the set of symbolic strides is sometimes queried before 457 // it's collected. This happens from canVectorizeWithIfConvert, when the 458 // pointer is checked to reference consecutive elements suitable for a 459 // masked access. 460 const auto &Strides = 461 LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>(); 462 463 bool CanAddPredicate = !llvm::shouldOptimizeForSize( 464 TheLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, 466 CanAddPredicate, false).value_or(0); 467 if (Stride == 1 || Stride == -1) 468 return Stride; 469 return 0; 470 } 471 472 bool LoopVectorizationLegality::isInvariant(Value *V) const { 473 return LAI->isInvariant(V); 474 } 475 476 namespace { 477 /// A rewriter to build the SCEVs for each of the VF lanes in the expected 478 /// vectorized loop, which can then be compared to detect their uniformity. This 479 /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop) 480 /// with new AddRecs where the step is multiplied by StepMultiplier and Offset * 481 /// Step is added. Also checks if all sub-expressions are analyzable w.r.t. 482 /// uniformity. 483 class SCEVAddRecForUniformityRewriter 484 : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> { 485 /// Multiplier to be applied to the step of AddRecs in TheLoop. 486 unsigned StepMultiplier; 487 488 /// Offset to be added to the AddRecs in TheLoop. 489 unsigned Offset; 490 491 /// Loop for which to rewrite AddRecsFor. 492 Loop *TheLoop; 493 494 /// Is any sub-expressions not analyzable w.r.t. uniformity? 495 bool CannotAnalyze = false; 496 497 bool canAnalyze() const { return !CannotAnalyze; } 498 499 public: 500 SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier, 501 unsigned Offset, Loop *TheLoop) 502 : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset), 503 TheLoop(TheLoop) {} 504 505 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 506 assert(Expr->getLoop() == TheLoop && 507 "addrec outside of TheLoop must be invariant and should have been " 508 "handled earlier"); 509 // Build a new AddRec by multiplying the step by StepMultiplier and 510 // incrementing the start by Offset * step. 511 Type *Ty = Expr->getType(); 512 const SCEV *Step = Expr->getStepRecurrence(SE); 513 if (!SE.isLoopInvariant(Step, TheLoop)) { 514 CannotAnalyze = true; 515 return Expr; 516 } 517 const SCEV *NewStep = 518 SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier)); 519 const SCEV *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset)); 520 const SCEV *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset); 521 return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap); 522 } 523 524 const SCEV *visit(const SCEV *S) { 525 if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop)) 526 return S; 527 return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S); 528 } 529 530 const SCEV *visitUnknown(const SCEVUnknown *S) { 531 if (SE.isLoopInvariant(S, TheLoop)) 532 return S; 533 // The value could vary across iterations. 534 CannotAnalyze = true; 535 return S; 536 } 537 538 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) { 539 // Could not analyze the expression. 540 CannotAnalyze = true; 541 return S; 542 } 543 544 static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE, 545 unsigned StepMultiplier, unsigned Offset, 546 Loop *TheLoop) { 547 /// Bail out if the expression does not contain an UDiv expression. 548 /// Uniform values which are not loop invariant require operations to strip 549 /// out the lowest bits. For now just look for UDivs and use it to avoid 550 /// re-writing UDIV-free expressions for other lanes to limit compile time. 551 if (!SCEVExprContains(S, 552 [](const SCEV *S) { return isa<SCEVUDivExpr>(S); })) 553 return SE.getCouldNotCompute(); 554 555 SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset, 556 TheLoop); 557 const SCEV *Result = Rewriter.visit(S); 558 559 if (Rewriter.canAnalyze()) 560 return Result; 561 return SE.getCouldNotCompute(); 562 } 563 }; 564 565 } // namespace 566 567 bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const { 568 if (isInvariant(V)) 569 return true; 570 if (VF.isScalable()) 571 return false; 572 if (VF.isScalar()) 573 return true; 574 575 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 576 // never considered uniform. 577 auto *SE = PSE.getSE(); 578 if (!SE->isSCEVable(V->getType())) 579 return false; 580 const SCEV *S = SE->getSCEV(V); 581 582 // Rewrite AddRecs in TheLoop to step by VF and check if the expression for 583 // lane 0 matches the expressions for all other lanes. 584 unsigned FixedVF = VF.getKnownMinValue(); 585 const SCEV *FirstLaneExpr = 586 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop); 587 if (isa<SCEVCouldNotCompute>(FirstLaneExpr)) 588 return false; 589 590 // Make sure the expressions for lanes FixedVF-1..1 match the expression for 591 // lane 0. We check lanes in reverse order for compile-time, as frequently 592 // checking the last lane is sufficient to rule out uniformity. 593 return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) { 594 const SCEV *IthLaneExpr = 595 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop); 596 return FirstLaneExpr == IthLaneExpr; 597 }); 598 } 599 600 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I, 601 ElementCount VF) const { 602 Value *Ptr = getLoadStorePointerOperand(&I); 603 if (!Ptr) 604 return false; 605 // Note: There's nothing inherent which prevents predicated loads and 606 // stores from being uniform. The current lowering simply doesn't handle 607 // it; in particular, the cost model distinguishes scatter/gather from 608 // scalar w/predication, and we currently rely on the scalar path. 609 return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent()); 610 } 611 612 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 613 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 614 // Store the result and return it at the end instead of exiting early, in case 615 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 616 bool Result = true; 617 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 618 619 for (BasicBlock *BB : TheLoop->blocks()) { 620 // Check whether the BB terminator is a BranchInst. Any other terminator is 621 // not supported yet. 622 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 623 if (!Br) { 624 reportVectorizationFailure("Unsupported basic block terminator", 625 "loop control flow is not understood by vectorizer", 626 "CFGNotUnderstood", ORE, TheLoop); 627 if (DoExtraAnalysis) 628 Result = false; 629 else 630 return false; 631 } 632 633 // Check whether the BranchInst is a supported one. Only unconditional 634 // branches, conditional branches with an outer loop invariant condition or 635 // backedges are supported. 636 // FIXME: We skip these checks when VPlan predication is enabled as we 637 // want to allow divergent branches. This whole check will be removed 638 // once VPlan predication is on by default. 639 if (Br && Br->isConditional() && 640 !TheLoop->isLoopInvariant(Br->getCondition()) && 641 !LI->isLoopHeader(Br->getSuccessor(0)) && 642 !LI->isLoopHeader(Br->getSuccessor(1))) { 643 reportVectorizationFailure("Unsupported conditional branch", 644 "loop control flow is not understood by vectorizer", 645 "CFGNotUnderstood", ORE, TheLoop); 646 if (DoExtraAnalysis) 647 Result = false; 648 else 649 return false; 650 } 651 } 652 653 // Check whether inner loops are uniform. At this point, we only support 654 // simple outer loops scenarios with uniform nested loops. 655 if (!isUniformLoopNest(TheLoop /*loop nest*/, 656 TheLoop /*context outer loop*/)) { 657 reportVectorizationFailure("Outer loop contains divergent loops", 658 "loop control flow is not understood by vectorizer", 659 "CFGNotUnderstood", ORE, TheLoop); 660 if (DoExtraAnalysis) 661 Result = false; 662 else 663 return false; 664 } 665 666 // Check whether we are able to set up outer loop induction. 667 if (!setupOuterLoopInductions()) { 668 reportVectorizationFailure("Unsupported outer loop Phi(s)", 669 "UnsupportedPhi", ORE, TheLoop); 670 if (DoExtraAnalysis) 671 Result = false; 672 else 673 return false; 674 } 675 676 return Result; 677 } 678 679 void LoopVectorizationLegality::addInductionPhi( 680 PHINode *Phi, const InductionDescriptor &ID, 681 SmallPtrSetImpl<Value *> &AllowedExit) { 682 Inductions[Phi] = ID; 683 684 // In case this induction also comes with casts that we know we can ignore 685 // in the vectorized loop body, record them here. All casts could be recorded 686 // here for ignoring, but suffices to record only the first (as it is the 687 // only one that may bw used outside the cast sequence). 688 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 689 if (!Casts.empty()) 690 InductionCastsToIgnore.insert(*Casts.begin()); 691 692 Type *PhiTy = Phi->getType(); 693 const DataLayout &DL = Phi->getDataLayout(); 694 695 // Get the widest type. 696 if (!PhiTy->isFloatingPointTy()) { 697 if (!WidestIndTy) 698 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 699 else 700 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 701 } 702 703 // Int inductions are special because we only allow one IV. 704 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 705 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 706 isa<Constant>(ID.getStartValue()) && 707 cast<Constant>(ID.getStartValue())->isNullValue()) { 708 709 // Use the phi node with the widest type as induction. Use the last 710 // one if there are multiple (no good reason for doing this other 711 // than it is expedient). We've checked that it begins at zero and 712 // steps by one, so this is a canonical induction variable. 713 if (!PrimaryInduction || PhiTy == WidestIndTy) 714 PrimaryInduction = Phi; 715 } 716 717 // Both the PHI node itself, and the "post-increment" value feeding 718 // back into the PHI node may have external users. 719 // We can allow those uses, except if the SCEVs we have for them rely 720 // on predicates that only hold within the loop, since allowing the exit 721 // currently means re-using this SCEV outside the loop (see PR33706 for more 722 // details). 723 if (PSE.getPredicate().isAlwaysTrue()) { 724 AllowedExit.insert(Phi); 725 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 726 } 727 728 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 729 } 730 731 bool LoopVectorizationLegality::setupOuterLoopInductions() { 732 BasicBlock *Header = TheLoop->getHeader(); 733 734 // Returns true if a given Phi is a supported induction. 735 auto IsSupportedPhi = [&](PHINode &Phi) -> bool { 736 InductionDescriptor ID; 737 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 738 ID.getKind() == InductionDescriptor::IK_IntInduction) { 739 addInductionPhi(&Phi, ID, AllowedExit); 740 return true; 741 } 742 // Bail out for any Phi in the outer loop header that is not a supported 743 // induction. 744 LLVM_DEBUG( 745 dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n"); 746 return false; 747 }; 748 749 return llvm::all_of(Header->phis(), IsSupportedPhi); 750 } 751 752 /// Checks if a function is scalarizable according to the TLI, in 753 /// the sense that it should be vectorized and then expanded in 754 /// multiple scalar calls. This is represented in the 755 /// TLI via mappings that do not specify a vector name, as in the 756 /// following example: 757 /// 758 /// const VecDesc VecIntrinsics[] = { 759 /// {"llvm.phx.abs.i32", "", 4} 760 /// }; 761 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 762 const StringRef ScalarName = CI.getCalledFunction()->getName(); 763 bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 764 // Check that all known VFs are not associated to a vector 765 // function, i.e. the vector name is emty. 766 if (Scalarize) { 767 ElementCount WidestFixedVF, WidestScalableVF; 768 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 769 for (ElementCount VF = ElementCount::getFixed(2); 770 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 771 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 772 for (ElementCount VF = ElementCount::getScalable(1); 773 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 774 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 775 assert((WidestScalableVF.isZero() || !Scalarize) && 776 "Caller may decide to scalarize a variant using a scalable VF"); 777 } 778 return Scalarize; 779 } 780 781 bool LoopVectorizationLegality::canVectorizeInstrs() { 782 BasicBlock *Header = TheLoop->getHeader(); 783 784 // For each block in the loop. 785 for (BasicBlock *BB : TheLoop->blocks()) { 786 // Scan the instructions in the block and look for hazards. 787 for (Instruction &I : *BB) { 788 if (auto *Phi = dyn_cast<PHINode>(&I)) { 789 Type *PhiTy = Phi->getType(); 790 // Check that this PHI type is allowed. 791 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 792 !PhiTy->isPointerTy()) { 793 reportVectorizationFailure("Found a non-int non-pointer PHI", 794 "loop control flow is not understood by vectorizer", 795 "CFGNotUnderstood", ORE, TheLoop); 796 return false; 797 } 798 799 // If this PHINode is not in the header block, then we know that we 800 // can convert it to select during if-conversion. No need to check if 801 // the PHIs in this block are induction or reduction variables. 802 if (BB != Header) { 803 // Non-header phi nodes that have outside uses can be vectorized. Add 804 // them to the list of allowed exits. 805 // Unsafe cyclic dependencies with header phis are identified during 806 // legalization for reduction, induction and fixed order 807 // recurrences. 808 AllowedExit.insert(&I); 809 continue; 810 } 811 812 // We only allow if-converted PHIs with exactly two incoming values. 813 if (Phi->getNumIncomingValues() != 2) { 814 reportVectorizationFailure("Found an invalid PHI", 815 "loop control flow is not understood by vectorizer", 816 "CFGNotUnderstood", ORE, TheLoop, Phi); 817 return false; 818 } 819 820 RecurrenceDescriptor RedDes; 821 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 822 DT, PSE.getSE())) { 823 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 824 AllowedExit.insert(RedDes.getLoopExitInstr()); 825 Reductions[Phi] = RedDes; 826 continue; 827 } 828 829 // We prevent matching non-constant strided pointer IVS to preserve 830 // historical vectorizer behavior after a generalization of the 831 // IVDescriptor code. The intent is to remove this check, but we 832 // have to fix issues around code quality for such loops first. 833 auto IsDisallowedStridedPointerInduction = 834 [](const InductionDescriptor &ID) { 835 if (AllowStridedPointerIVs) 836 return false; 837 return ID.getKind() == InductionDescriptor::IK_PtrInduction && 838 ID.getConstIntStepValue() == nullptr; 839 }; 840 841 // TODO: Instead of recording the AllowedExit, it would be good to 842 // record the complementary set: NotAllowedExit. These include (but may 843 // not be limited to): 844 // 1. Reduction phis as they represent the one-before-last value, which 845 // is not available when vectorized 846 // 2. Induction phis and increment when SCEV predicates cannot be used 847 // outside the loop - see addInductionPhi 848 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 849 // outside the loop - see call to hasOutsideLoopUser in the non-phi 850 // handling below 851 // 4. FixedOrderRecurrence phis that can possibly be handled by 852 // extraction. 853 // By recording these, we can then reason about ways to vectorize each 854 // of these NotAllowedExit. 855 InductionDescriptor ID; 856 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) && 857 !IsDisallowedStridedPointerInduction(ID)) { 858 addInductionPhi(Phi, ID, AllowedExit); 859 Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 860 continue; 861 } 862 863 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) { 864 AllowedExit.insert(Phi); 865 FixedOrderRecurrences.insert(Phi); 866 continue; 867 } 868 869 // As a last resort, coerce the PHI to a AddRec expression 870 // and re-try classifying it a an induction PHI. 871 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) && 872 !IsDisallowedStridedPointerInduction(ID)) { 873 addInductionPhi(Phi, ID, AllowedExit); 874 continue; 875 } 876 877 reportVectorizationFailure("Found an unidentified PHI", 878 "value that could not be identified as " 879 "reduction is used outside the loop", 880 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 881 return false; 882 } // end of PHI handling 883 884 // We handle calls that: 885 // * Are debug info intrinsics. 886 // * Have a mapping to an IR intrinsic. 887 // * Have a vector version available. 888 auto *CI = dyn_cast<CallInst>(&I); 889 890 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 891 !isa<DbgInfoIntrinsic>(CI) && 892 !(CI->getCalledFunction() && TLI && 893 (!VFDatabase::getMappings(*CI).empty() || 894 isTLIScalarize(*TLI, *CI)))) { 895 // If the call is a recognized math libary call, it is likely that 896 // we can vectorize it given loosened floating-point constraints. 897 LibFunc Func; 898 bool IsMathLibCall = 899 TLI && CI->getCalledFunction() && 900 CI->getType()->isFloatingPointTy() && 901 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 902 TLI->hasOptimizedCodeGen(Func); 903 904 if (IsMathLibCall) { 905 // TODO: Ideally, we should not use clang-specific language here, 906 // but it's hard to provide meaningful yet generic advice. 907 // Also, should this be guarded by allowExtraAnalysis() and/or be part 908 // of the returned info from isFunctionVectorizable()? 909 reportVectorizationFailure( 910 "Found a non-intrinsic callsite", 911 "library call cannot be vectorized. " 912 "Try compiling with -fno-math-errno, -ffast-math, " 913 "or similar flags", 914 "CantVectorizeLibcall", ORE, TheLoop, CI); 915 } else { 916 reportVectorizationFailure("Found a non-intrinsic callsite", 917 "call instruction cannot be vectorized", 918 "CantVectorizeLibcall", ORE, TheLoop, CI); 919 } 920 return false; 921 } 922 923 // Some intrinsics have scalar arguments and should be same in order for 924 // them to be vectorized (i.e. loop invariant). 925 if (CI) { 926 auto *SE = PSE.getSE(); 927 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 928 for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx) 929 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, Idx, TTI)) { 930 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)), 931 TheLoop)) { 932 reportVectorizationFailure("Found unvectorizable intrinsic", 933 "intrinsic instruction cannot be vectorized", 934 "CantVectorizeIntrinsic", ORE, TheLoop, CI); 935 return false; 936 } 937 } 938 } 939 940 // If we found a vectorized variant of a function, note that so LV can 941 // make better decisions about maximum VF. 942 if (CI && !VFDatabase::getMappings(*CI).empty()) 943 VecCallVariantsFound = true; 944 945 // Check that the instruction return type is vectorizable. 946 // We can't vectorize casts from vector type to scalar type. 947 // Also, we can't vectorize extractelement instructions. 948 if ((!VectorType::isValidElementType(I.getType()) && 949 !I.getType()->isVoidTy()) || 950 (isa<CastInst>(I) && 951 !VectorType::isValidElementType(I.getOperand(0)->getType())) || 952 isa<ExtractElementInst>(I)) { 953 reportVectorizationFailure("Found unvectorizable type", 954 "instruction return type cannot be vectorized", 955 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 956 return false; 957 } 958 959 // Check that the stored type is vectorizable. 960 if (auto *ST = dyn_cast<StoreInst>(&I)) { 961 Type *T = ST->getValueOperand()->getType(); 962 if (!VectorType::isValidElementType(T)) { 963 reportVectorizationFailure("Store instruction cannot be vectorized", 964 "CantVectorizeStore", ORE, TheLoop, ST); 965 return false; 966 } 967 968 // For nontemporal stores, check that a nontemporal vector version is 969 // supported on the target. 970 if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 971 // Arbitrarily try a vector of 2 elements. 972 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 973 assert(VecTy && "did not find vectorized version of stored type"); 974 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 975 reportVectorizationFailure( 976 "nontemporal store instruction cannot be vectorized", 977 "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 978 return false; 979 } 980 } 981 982 } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 983 if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 984 // For nontemporal loads, check that a nontemporal vector version is 985 // supported on the target (arbitrarily try a vector of 2 elements). 986 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 987 assert(VecTy && "did not find vectorized version of load type"); 988 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 989 reportVectorizationFailure( 990 "nontemporal load instruction cannot be vectorized", 991 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 992 return false; 993 } 994 } 995 996 // FP instructions can allow unsafe algebra, thus vectorizable by 997 // non-IEEE-754 compliant SIMD units. 998 // This applies to floating-point math operations and calls, not memory 999 // operations, shuffles, or casts, as they don't change precision or 1000 // semantics. 1001 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 1002 !I.isFast()) { 1003 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 1004 Hints->setPotentiallyUnsafe(); 1005 } 1006 1007 // Reduction instructions are allowed to have exit users. 1008 // All other instructions must not have external users. 1009 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 1010 // We can safely vectorize loops where instructions within the loop are 1011 // used outside the loop only if the SCEV predicates within the loop is 1012 // same as outside the loop. Allowing the exit means reusing the SCEV 1013 // outside the loop. 1014 if (PSE.getPredicate().isAlwaysTrue()) { 1015 AllowedExit.insert(&I); 1016 continue; 1017 } 1018 reportVectorizationFailure("Value cannot be used outside the loop", 1019 "ValueUsedOutsideLoop", ORE, TheLoop, &I); 1020 return false; 1021 } 1022 } // next instr. 1023 } 1024 1025 if (!PrimaryInduction) { 1026 if (Inductions.empty()) { 1027 reportVectorizationFailure("Did not find one integer induction var", 1028 "loop induction variable could not be identified", 1029 "NoInductionVariable", ORE, TheLoop); 1030 return false; 1031 } 1032 if (!WidestIndTy) { 1033 reportVectorizationFailure("Did not find one integer induction var", 1034 "integer loop induction variable could not be identified", 1035 "NoIntegerInductionVariable", ORE, TheLoop); 1036 return false; 1037 } 1038 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 1039 } 1040 1041 // Now we know the widest induction type, check if our found induction 1042 // is the same size. If it's not, unset it here and InnerLoopVectorizer 1043 // will create another. 1044 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 1045 PrimaryInduction = nullptr; 1046 1047 return true; 1048 } 1049 1050 /// Find histogram operations that match high-level code in loops: 1051 /// \code 1052 /// buckets[indices[i]]+=step; 1053 /// \endcode 1054 /// 1055 /// It matches a pattern starting from \p HSt, which Stores to the 'buckets' 1056 /// array the computed histogram. It uses a BinOp to sum all counts, storing 1057 /// them using a loop-variant index Load from the 'indices' input array. 1058 /// 1059 /// On successful matches it updates the STATISTIC 'HistogramsDetected', 1060 /// regardless of hardware support. When there is support, it additionally 1061 /// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers 1062 /// used to update histogram in \p HistogramPtrs. 1063 static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop, 1064 const PredicatedScalarEvolution &PSE, 1065 SmallVectorImpl<HistogramInfo> &Histograms) { 1066 1067 // Store value must come from a Binary Operation. 1068 Instruction *HPtrInstr = nullptr; 1069 BinaryOperator *HBinOp = nullptr; 1070 if (!match(HSt, m_Store(m_BinOp(HBinOp), m_Instruction(HPtrInstr)))) 1071 return false; 1072 1073 // BinOp must be an Add or a Sub modifying the bucket value by a 1074 // loop invariant amount. 1075 // FIXME: We assume the loop invariant term is on the RHS. 1076 // Fine for an immediate/constant, but maybe not a generic value? 1077 Value *HIncVal = nullptr; 1078 if (!match(HBinOp, m_Add(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))) && 1079 !match(HBinOp, m_Sub(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal)))) 1080 return false; 1081 1082 // Make sure the increment value is loop invariant. 1083 if (!TheLoop->isLoopInvariant(HIncVal)) 1084 return false; 1085 1086 // The address to store is calculated through a GEP Instruction. 1087 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(HPtrInstr); 1088 if (!GEP) 1089 return false; 1090 1091 // Restrict address calculation to constant indices except for the last term. 1092 Value *HIdx = nullptr; 1093 for (Value *Index : GEP->indices()) { 1094 if (HIdx) 1095 return false; 1096 if (!isa<ConstantInt>(Index)) 1097 HIdx = Index; 1098 } 1099 1100 if (!HIdx) 1101 return false; 1102 1103 // Check that the index is calculated by loading from another array. Ignore 1104 // any extensions. 1105 // FIXME: Support indices from other sources than a linear load from memory? 1106 // We're currently trying to match an operation looping over an array 1107 // of indices, but there could be additional levels of indirection 1108 // in place, or possibly some additional calculation to form the index 1109 // from the loaded data. 1110 Value *VPtrVal; 1111 if (!match(HIdx, m_ZExtOrSExtOrSelf(m_Load(m_Value(VPtrVal))))) 1112 return false; 1113 1114 // Make sure the index address varies in this loop, not an outer loop. 1115 const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(VPtrVal)); 1116 if (!AR || AR->getLoop() != TheLoop) 1117 return false; 1118 1119 // Ensure we'll have the same mask by checking that all parts of the histogram 1120 // (gather load, update, scatter store) are in the same block. 1121 LoadInst *IndexedLoad = cast<LoadInst>(HBinOp->getOperand(0)); 1122 BasicBlock *LdBB = IndexedLoad->getParent(); 1123 if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent()) 1124 return false; 1125 1126 LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n"); 1127 1128 // Store the operations that make up the histogram. 1129 Histograms.emplace_back(IndexedLoad, HBinOp, HSt); 1130 return true; 1131 } 1132 1133 bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() { 1134 // For now, we only support an IndirectUnsafe dependency that calculates 1135 // a histogram 1136 if (!EnableHistogramVectorization) 1137 return false; 1138 1139 // Find a single IndirectUnsafe dependency. 1140 const MemoryDepChecker::Dependence *IUDep = nullptr; 1141 const MemoryDepChecker &DepChecker = LAI->getDepChecker(); 1142 const auto *Deps = DepChecker.getDependences(); 1143 // If there were too many dependences, LAA abandons recording them. We can't 1144 // proceed safely if we don't know what the dependences are. 1145 if (!Deps) 1146 return false; 1147 1148 for (const MemoryDepChecker::Dependence &Dep : *Deps) { 1149 // Ignore dependencies that are either known to be safe or can be 1150 // checked at runtime. 1151 if (MemoryDepChecker::Dependence::isSafeForVectorization(Dep.Type) != 1152 MemoryDepChecker::VectorizationSafetyStatus::Unsafe) 1153 continue; 1154 1155 // We're only interested in IndirectUnsafe dependencies here, where the 1156 // address might come from a load from memory. We also only want to handle 1157 // one such dependency, at least for now. 1158 if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep) 1159 return false; 1160 1161 IUDep = &Dep; 1162 } 1163 if (!IUDep) 1164 return false; 1165 1166 // For now only normal loads and stores are supported. 1167 LoadInst *LI = dyn_cast<LoadInst>(IUDep->getSource(DepChecker)); 1168 StoreInst *SI = dyn_cast<StoreInst>(IUDep->getDestination(DepChecker)); 1169 1170 if (!LI || !SI) 1171 return false; 1172 1173 LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n"); 1174 return findHistogram(LI, SI, TheLoop, LAI->getPSE(), Histograms); 1175 } 1176 1177 bool LoopVectorizationLegality::canVectorizeMemory() { 1178 LAI = &LAIs.getInfo(*TheLoop); 1179 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 1180 if (LAR) { 1181 ORE->emit([&]() { 1182 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 1183 "loop not vectorized: ", *LAR); 1184 }); 1185 } 1186 1187 if (!LAI->canVectorizeMemory()) 1188 return canVectorizeIndirectUnsafeDependences(); 1189 1190 if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) { 1191 reportVectorizationFailure("We don't allow storing to uniform addresses", 1192 "write to a loop invariant address could not " 1193 "be vectorized", 1194 "CantVectorizeStoreToLoopInvariantAddress", ORE, 1195 TheLoop); 1196 return false; 1197 } 1198 1199 // We can vectorize stores to invariant address when final reduction value is 1200 // guaranteed to be stored at the end of the loop. Also, if decision to 1201 // vectorize loop is made, runtime checks are added so as to make sure that 1202 // invariant address won't alias with any other objects. 1203 if (!LAI->getStoresToInvariantAddresses().empty()) { 1204 // For each invariant address, check if last stored value is unconditional 1205 // and the address is not calculated inside the loop. 1206 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 1207 if (!isInvariantStoreOfReduction(SI)) 1208 continue; 1209 1210 if (blockNeedsPredication(SI->getParent())) { 1211 reportVectorizationFailure( 1212 "We don't allow storing to uniform addresses", 1213 "write of conditional recurring variant value to a loop " 1214 "invariant address could not be vectorized", 1215 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 1216 return false; 1217 } 1218 1219 // Invariant address should be defined outside of loop. LICM pass usually 1220 // makes sure it happens, but in rare cases it does not, we do not want 1221 // to overcomplicate vectorization to support this case. 1222 if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) { 1223 if (TheLoop->contains(Ptr)) { 1224 reportVectorizationFailure( 1225 "Invariant address is calculated inside the loop", 1226 "write to a loop invariant address could not " 1227 "be vectorized", 1228 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 1229 return false; 1230 } 1231 } 1232 } 1233 1234 if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) { 1235 // For each invariant address, check its last stored value is the result 1236 // of one of our reductions. 1237 // 1238 // We do not check if dependence with loads exists because that is already 1239 // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress. 1240 ScalarEvolution *SE = PSE.getSE(); 1241 SmallVector<StoreInst *, 4> UnhandledStores; 1242 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 1243 if (isInvariantStoreOfReduction(SI)) { 1244 // Earlier stores to this address are effectively deadcode. 1245 // With opaque pointers it is possible for one pointer to be used with 1246 // different sizes of stored values: 1247 // store i32 0, ptr %x 1248 // store i8 0, ptr %x 1249 // The latest store doesn't complitely overwrite the first one in the 1250 // example. That is why we have to make sure that types of stored 1251 // values are same. 1252 // TODO: Check that bitwidth of unhandled store is smaller then the 1253 // one that overwrites it and add a test. 1254 erase_if(UnhandledStores, [SE, SI](StoreInst *I) { 1255 return storeToSameAddress(SE, SI, I) && 1256 I->getValueOperand()->getType() == 1257 SI->getValueOperand()->getType(); 1258 }); 1259 continue; 1260 } 1261 UnhandledStores.push_back(SI); 1262 } 1263 1264 bool IsOK = UnhandledStores.empty(); 1265 // TODO: we should also validate against InvariantMemSets. 1266 if (!IsOK) { 1267 reportVectorizationFailure( 1268 "We don't allow storing to uniform addresses", 1269 "write to a loop invariant address could not " 1270 "be vectorized", 1271 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 1272 return false; 1273 } 1274 } 1275 } 1276 1277 PSE.addPredicate(LAI->getPSE().getPredicate()); 1278 return true; 1279 } 1280 1281 bool LoopVectorizationLegality::canVectorizeFPMath( 1282 bool EnableStrictReductions) { 1283 1284 // First check if there is any ExactFP math or if we allow reassociations 1285 if (!Requirements->getExactFPInst() || Hints->allowReordering()) 1286 return true; 1287 1288 // If the above is false, we have ExactFPMath & do not allow reordering. 1289 // If the EnableStrictReductions flag is set, first check if we have any 1290 // Exact FP induction vars, which we cannot vectorize. 1291 if (!EnableStrictReductions || 1292 any_of(getInductionVars(), [&](auto &Induction) -> bool { 1293 InductionDescriptor IndDesc = Induction.second; 1294 return IndDesc.getExactFPMathInst(); 1295 })) 1296 return false; 1297 1298 // We can now only vectorize if all reductions with Exact FP math also 1299 // have the isOrdered flag set, which indicates that we can move the 1300 // reduction operations in-loop. 1301 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { 1302 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1303 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered(); 1304 })); 1305 } 1306 1307 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) { 1308 return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1309 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1310 return RdxDesc.IntermediateStore == SI; 1311 }); 1312 } 1313 1314 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) { 1315 return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1316 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1317 if (!RdxDesc.IntermediateStore) 1318 return false; 1319 1320 ScalarEvolution *SE = PSE.getSE(); 1321 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand(); 1322 return V == InvariantAddress || 1323 SE->getSCEV(V) == SE->getSCEV(InvariantAddress); 1324 }); 1325 } 1326 1327 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { 1328 Value *In0 = const_cast<Value *>(V); 1329 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 1330 if (!PN) 1331 return false; 1332 1333 return Inductions.count(PN); 1334 } 1335 1336 const InductionDescriptor * 1337 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { 1338 if (!isInductionPhi(Phi)) 1339 return nullptr; 1340 auto &ID = getInductionVars().find(Phi)->second; 1341 if (ID.getKind() == InductionDescriptor::IK_IntInduction || 1342 ID.getKind() == InductionDescriptor::IK_FpInduction) 1343 return &ID; 1344 return nullptr; 1345 } 1346 1347 const InductionDescriptor * 1348 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const { 1349 if (!isInductionPhi(Phi)) 1350 return nullptr; 1351 auto &ID = getInductionVars().find(Phi)->second; 1352 if (ID.getKind() == InductionDescriptor::IK_PtrInduction) 1353 return &ID; 1354 return nullptr; 1355 } 1356 1357 bool LoopVectorizationLegality::isCastedInductionVariable( 1358 const Value *V) const { 1359 auto *Inst = dyn_cast<Instruction>(V); 1360 return (Inst && InductionCastsToIgnore.count(Inst)); 1361 } 1362 1363 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { 1364 return isInductionPhi(V) || isCastedInductionVariable(V); 1365 } 1366 1367 bool LoopVectorizationLegality::isFixedOrderRecurrence( 1368 const PHINode *Phi) const { 1369 return FixedOrderRecurrences.count(Phi); 1370 } 1371 1372 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 1373 // When vectorizing early exits, create predicates for the latch block only. 1374 // The early exiting block must be a direct predecessor of the latch at the 1375 // moment. 1376 BasicBlock *Latch = TheLoop->getLoopLatch(); 1377 if (hasUncountableEarlyExit()) { 1378 assert( 1379 is_contained(predecessors(Latch), getUncountableEarlyExitingBlock()) && 1380 "Uncountable exiting block must be a direct predecessor of latch"); 1381 return BB == Latch; 1382 } 1383 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1384 } 1385 1386 bool LoopVectorizationLegality::blockCanBePredicated( 1387 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 1388 SmallPtrSetImpl<const Instruction *> &MaskedOp) const { 1389 for (Instruction &I : *BB) { 1390 // We can predicate blocks with calls to assume, as long as we drop them in 1391 // case we flatten the CFG via predication. 1392 if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 1393 MaskedOp.insert(&I); 1394 continue; 1395 } 1396 1397 // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 1398 // TODO: there might be cases that it should block the vectorization. Let's 1399 // ignore those for now. 1400 if (isa<NoAliasScopeDeclInst>(&I)) 1401 continue; 1402 1403 // We can allow masked calls if there's at least one vector variant, even 1404 // if we end up scalarizing due to the cost model calculations. 1405 // TODO: Allow other calls if they have appropriate attributes... readonly 1406 // and argmemonly? 1407 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1408 if (VFDatabase::hasMaskedVariant(*CI)) { 1409 MaskedOp.insert(CI); 1410 continue; 1411 } 1412 1413 // Loads are handled via masking (or speculated if safe to do so.) 1414 if (auto *LI = dyn_cast<LoadInst>(&I)) { 1415 if (!SafePtrs.count(LI->getPointerOperand())) 1416 MaskedOp.insert(LI); 1417 continue; 1418 } 1419 1420 // Predicated store requires some form of masking: 1421 // 1) masked store HW instruction, 1422 // 2) emulation via load-blend-store (only if safe and legal to do so, 1423 // be aware on the race conditions), or 1424 // 3) element-by-element predicate check and scalar store. 1425 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1426 MaskedOp.insert(SI); 1427 continue; 1428 } 1429 1430 if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow()) 1431 return false; 1432 } 1433 1434 return true; 1435 } 1436 1437 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 1438 if (!EnableIfConversion) { 1439 reportVectorizationFailure("If-conversion is disabled", 1440 "IfConversionDisabled", ORE, TheLoop); 1441 return false; 1442 } 1443 1444 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 1445 1446 // A list of pointers which are known to be dereferenceable within scope of 1447 // the loop body for each iteration of the loop which executes. That is, 1448 // the memory pointed to can be dereferenced (with the access size implied by 1449 // the value's type) unconditionally within the loop header without 1450 // introducing a new fault. 1451 SmallPtrSet<Value *, 8> SafePointers; 1452 1453 // Collect safe addresses. 1454 for (BasicBlock *BB : TheLoop->blocks()) { 1455 if (!blockNeedsPredication(BB)) { 1456 for (Instruction &I : *BB) 1457 if (auto *Ptr = getLoadStorePointerOperand(&I)) 1458 SafePointers.insert(Ptr); 1459 continue; 1460 } 1461 1462 // For a block which requires predication, a address may be safe to access 1463 // in the loop w/o predication if we can prove dereferenceability facts 1464 // sufficient to ensure it'll never fault within the loop. For the moment, 1465 // we restrict this to loads; stores are more complicated due to 1466 // concurrency restrictions. 1467 ScalarEvolution &SE = *PSE.getSE(); 1468 SmallVector<const SCEVPredicate *, 4> Predicates; 1469 for (Instruction &I : *BB) { 1470 LoadInst *LI = dyn_cast<LoadInst>(&I); 1471 // Pass the Predicates pointer to isDereferenceableAndAlignedInLoop so 1472 // that it will consider loops that need guarding by SCEV checks. The 1473 // vectoriser will generate these checks if we decide to vectorise. 1474 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 1475 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC, 1476 &Predicates)) 1477 SafePointers.insert(LI->getPointerOperand()); 1478 Predicates.clear(); 1479 } 1480 } 1481 1482 // Collect the blocks that need predication. 1483 for (BasicBlock *BB : TheLoop->blocks()) { 1484 // We support only branches and switch statements as terminators inside the 1485 // loop. 1486 if (isa<SwitchInst>(BB->getTerminator())) { 1487 if (TheLoop->isLoopExiting(BB)) { 1488 reportVectorizationFailure("Loop contains an unsupported switch", 1489 "LoopContainsUnsupportedSwitch", ORE, 1490 TheLoop, BB->getTerminator()); 1491 return false; 1492 } 1493 } else if (!isa<BranchInst>(BB->getTerminator())) { 1494 reportVectorizationFailure("Loop contains an unsupported terminator", 1495 "LoopContainsUnsupportedTerminator", ORE, 1496 TheLoop, BB->getTerminator()); 1497 return false; 1498 } 1499 1500 // We must be able to predicate all blocks that need to be predicated. 1501 if (blockNeedsPredication(BB) && 1502 !blockCanBePredicated(BB, SafePointers, MaskedOp)) { 1503 reportVectorizationFailure( 1504 "Control flow cannot be substituted for a select", "NoCFGForSelect", 1505 ORE, TheLoop, BB->getTerminator()); 1506 return false; 1507 } 1508 } 1509 1510 // We can if-convert this loop. 1511 return true; 1512 } 1513 1514 // Helper function to canVectorizeLoopNestCFG. 1515 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1516 bool UseVPlanNativePath) { 1517 assert((UseVPlanNativePath || Lp->isInnermost()) && 1518 "VPlan-native path is not enabled."); 1519 1520 // TODO: ORE should be improved to show more accurate information when an 1521 // outer loop can't be vectorized because a nested loop is not understood or 1522 // legal. Something like: "outer_loop_location: loop not vectorized: 1523 // (inner_loop_location) loop control flow is not understood by vectorizer". 1524 1525 // Store the result and return it at the end instead of exiting early, in case 1526 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1527 bool Result = true; 1528 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1529 1530 // We must have a loop in canonical form. Loops with indirectbr in them cannot 1531 // be canonicalized. 1532 if (!Lp->getLoopPreheader()) { 1533 reportVectorizationFailure("Loop doesn't have a legal pre-header", 1534 "loop control flow is not understood by vectorizer", 1535 "CFGNotUnderstood", ORE, TheLoop); 1536 if (DoExtraAnalysis) 1537 Result = false; 1538 else 1539 return false; 1540 } 1541 1542 // We must have a single backedge. 1543 if (Lp->getNumBackEdges() != 1) { 1544 reportVectorizationFailure("The loop must have a single backedge", 1545 "loop control flow is not understood by vectorizer", 1546 "CFGNotUnderstood", ORE, TheLoop); 1547 if (DoExtraAnalysis) 1548 Result = false; 1549 else 1550 return false; 1551 } 1552 1553 return Result; 1554 } 1555 1556 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1557 Loop *Lp, bool UseVPlanNativePath) { 1558 // Store the result and return it at the end instead of exiting early, in case 1559 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1560 bool Result = true; 1561 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1562 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1563 if (DoExtraAnalysis) 1564 Result = false; 1565 else 1566 return false; 1567 } 1568 1569 // Recursively check whether the loop control flow of nested loops is 1570 // understood. 1571 for (Loop *SubLp : *Lp) 1572 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1573 if (DoExtraAnalysis) 1574 Result = false; 1575 else 1576 return false; 1577 } 1578 1579 return Result; 1580 } 1581 1582 bool LoopVectorizationLegality::isVectorizableEarlyExitLoop() { 1583 BasicBlock *LatchBB = TheLoop->getLoopLatch(); 1584 if (!LatchBB) { 1585 reportVectorizationFailure("Loop does not have a latch", 1586 "Cannot vectorize early exit loop", 1587 "NoLatchEarlyExit", ORE, TheLoop); 1588 return false; 1589 } 1590 1591 if (Reductions.size() || FixedOrderRecurrences.size()) { 1592 reportVectorizationFailure( 1593 "Found reductions or recurrences in early-exit loop", 1594 "Cannot vectorize early exit loop with reductions or recurrences", 1595 "RecurrencesInEarlyExitLoop", ORE, TheLoop); 1596 return false; 1597 } 1598 1599 SmallVector<BasicBlock *, 8> ExitingBlocks; 1600 TheLoop->getExitingBlocks(ExitingBlocks); 1601 1602 // Keep a record of all the exiting blocks. 1603 SmallVector<const SCEVPredicate *, 4> Predicates; 1604 for (BasicBlock *BB : ExitingBlocks) { 1605 const SCEV *EC = 1606 PSE.getSE()->getPredicatedExitCount(TheLoop, BB, &Predicates); 1607 if (isa<SCEVCouldNotCompute>(EC)) { 1608 UncountableExitingBlocks.push_back(BB); 1609 1610 SmallVector<BasicBlock *, 2> Succs(successors(BB)); 1611 if (Succs.size() != 2) { 1612 reportVectorizationFailure( 1613 "Early exiting block does not have exactly two successors", 1614 "Incorrect number of successors from early exiting block", 1615 "EarlyExitTooManySuccessors", ORE, TheLoop); 1616 return false; 1617 } 1618 1619 BasicBlock *ExitBlock; 1620 if (!TheLoop->contains(Succs[0])) 1621 ExitBlock = Succs[0]; 1622 else { 1623 assert(!TheLoop->contains(Succs[1])); 1624 ExitBlock = Succs[1]; 1625 } 1626 UncountableExitBlocks.push_back(ExitBlock); 1627 } else 1628 CountableExitingBlocks.push_back(BB); 1629 } 1630 // We can safely ignore the predicates here because when vectorizing the loop 1631 // the PredicatatedScalarEvolution class will keep track of all predicates 1632 // for each exiting block anyway. This happens when calling 1633 // PSE.getSymbolicMaxBackedgeTakenCount() below. 1634 Predicates.clear(); 1635 1636 // We only support one uncountable early exit. 1637 if (getUncountableExitingBlocks().size() != 1) { 1638 reportVectorizationFailure( 1639 "Loop has too many uncountable exits", 1640 "Cannot vectorize early exit loop with more than one early exit", 1641 "TooManyUncountableEarlyExits", ORE, TheLoop); 1642 return false; 1643 } 1644 1645 // The only supported early exit loops so far are ones where the early 1646 // exiting block is a unique predecessor of the latch block. 1647 BasicBlock *LatchPredBB = LatchBB->getUniquePredecessor(); 1648 if (LatchPredBB != getUncountableEarlyExitingBlock()) { 1649 reportVectorizationFailure("Early exit is not the latch predecessor", 1650 "Cannot vectorize early exit loop", 1651 "EarlyExitNotLatchPredecessor", ORE, TheLoop); 1652 return false; 1653 } 1654 1655 // The latch block must have a countable exit. 1656 if (isa<SCEVCouldNotCompute>( 1657 PSE.getSE()->getPredicatedExitCount(TheLoop, LatchBB, &Predicates))) { 1658 reportVectorizationFailure( 1659 "Cannot determine exact exit count for latch block", 1660 "Cannot vectorize early exit loop", 1661 "UnknownLatchExitCountEarlyExitLoop", ORE, TheLoop); 1662 return false; 1663 } 1664 assert(llvm::is_contained(CountableExitingBlocks, LatchBB) && 1665 "Latch block not found in list of countable exits!"); 1666 1667 // Check to see if there are instructions that could potentially generate 1668 // exceptions or have side-effects. 1669 auto IsSafeOperation = [](Instruction *I) -> bool { 1670 switch (I->getOpcode()) { 1671 case Instruction::Load: 1672 case Instruction::Store: 1673 case Instruction::PHI: 1674 case Instruction::Br: 1675 // These are checked separately. 1676 return true; 1677 default: 1678 return isSafeToSpeculativelyExecute(I); 1679 } 1680 }; 1681 1682 for (auto *BB : TheLoop->blocks()) 1683 for (auto &I : *BB) { 1684 if (I.mayWriteToMemory()) { 1685 // We don't support writes to memory. 1686 reportVectorizationFailure( 1687 "Writes to memory unsupported in early exit loops", 1688 "Cannot vectorize early exit loop with writes to memory", 1689 "WritesInEarlyExitLoop", ORE, TheLoop); 1690 return false; 1691 } else if (!IsSafeOperation(&I)) { 1692 reportVectorizationFailure("Early exit loop contains operations that " 1693 "cannot be speculatively executed", 1694 "UnsafeOperationsEarlyExitLoop", ORE, 1695 TheLoop); 1696 return false; 1697 } 1698 } 1699 1700 // The vectoriser cannot handle loads that occur after the early exit block. 1701 assert(LatchBB->getUniquePredecessor() == getUncountableEarlyExitingBlock() && 1702 "Expected latch predecessor to be the early exiting block"); 1703 1704 // TODO: Handle loops that may fault. 1705 Predicates.clear(); 1706 if (!isDereferenceableReadOnlyLoop(TheLoop, PSE.getSE(), DT, AC, 1707 &Predicates)) { 1708 reportVectorizationFailure( 1709 "Loop may fault", 1710 "Cannot vectorize potentially faulting early exit loop", 1711 "PotentiallyFaultingEarlyExitLoop", ORE, TheLoop); 1712 return false; 1713 } 1714 1715 [[maybe_unused]] const SCEV *SymbolicMaxBTC = 1716 PSE.getSymbolicMaxBackedgeTakenCount(); 1717 // Since we have an exact exit count for the latch and the early exit 1718 // dominates the latch, then this should guarantee a computed SCEV value. 1719 assert(!isa<SCEVCouldNotCompute>(SymbolicMaxBTC) && 1720 "Failed to get symbolic expression for backedge taken count"); 1721 LLVM_DEBUG(dbgs() << "LV: Found an early exit loop with symbolic max " 1722 "backedge taken count: " 1723 << *SymbolicMaxBTC << '\n'); 1724 return true; 1725 } 1726 1727 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1728 // Store the result and return it at the end instead of exiting early, in case 1729 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1730 bool Result = true; 1731 1732 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1733 // Check whether the loop-related control flow in the loop nest is expected by 1734 // vectorizer. 1735 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1736 if (DoExtraAnalysis) { 1737 LLVM_DEBUG(dbgs() << "LV: legality check failed: loop nest"); 1738 Result = false; 1739 } else { 1740 return false; 1741 } 1742 } 1743 1744 // We need to have a loop header. 1745 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1746 << '\n'); 1747 1748 // Specific checks for outer loops. We skip the remaining legal checks at this 1749 // point because they don't support outer loops. 1750 if (!TheLoop->isInnermost()) { 1751 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1752 1753 if (!canVectorizeOuterLoop()) { 1754 reportVectorizationFailure("Unsupported outer loop", 1755 "UnsupportedOuterLoop", ORE, TheLoop); 1756 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1757 // outer loops. 1758 return false; 1759 } 1760 1761 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1762 return Result; 1763 } 1764 1765 assert(TheLoop->isInnermost() && "Inner loop expected."); 1766 // Check if we can if-convert non-single-bb loops. 1767 unsigned NumBlocks = TheLoop->getNumBlocks(); 1768 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1769 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1770 if (DoExtraAnalysis) 1771 Result = false; 1772 else 1773 return false; 1774 } 1775 1776 // Check if we can vectorize the instructions and CFG in this loop. 1777 if (!canVectorizeInstrs()) { 1778 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1779 if (DoExtraAnalysis) 1780 Result = false; 1781 else 1782 return false; 1783 } 1784 1785 HasUncountableEarlyExit = false; 1786 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 1787 HasUncountableEarlyExit = true; 1788 if (!isVectorizableEarlyExitLoop()) { 1789 UncountableExitingBlocks.clear(); 1790 HasUncountableEarlyExit = false; 1791 if (DoExtraAnalysis) 1792 Result = false; 1793 else 1794 return false; 1795 } 1796 } 1797 1798 // Go over each instruction and look at memory deps. 1799 if (!canVectorizeMemory()) { 1800 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1801 if (DoExtraAnalysis) 1802 Result = false; 1803 else 1804 return false; 1805 } 1806 1807 if (Result) { 1808 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1809 << (LAI->getRuntimePointerChecking()->Need 1810 ? " (with a runtime bound check)" 1811 : "") 1812 << "!\n"); 1813 } 1814 1815 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1816 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1817 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1818 1819 if (PSE.getPredicate().getComplexity() > SCEVThreshold) { 1820 LLVM_DEBUG(dbgs() << "LV: Vectorization not profitable " 1821 "due to SCEVThreshold"); 1822 reportVectorizationFailure("Too many SCEV checks needed", 1823 "Too many SCEV assumptions need to be made and checked at runtime", 1824 "TooManySCEVRunTimeChecks", ORE, TheLoop); 1825 if (DoExtraAnalysis) 1826 Result = false; 1827 else 1828 return false; 1829 } 1830 1831 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1832 // we can vectorize, and at this point we don't have any other mem analysis 1833 // which may limit our maximum vectorization factor, so just return true with 1834 // no restrictions. 1835 return Result; 1836 } 1837 1838 bool LoopVectorizationLegality::canFoldTailByMasking() const { 1839 1840 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1841 1842 SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1843 1844 for (const auto &Reduction : getReductionVars()) 1845 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1846 1847 // TODO: handle non-reduction outside users when tail is folded by masking. 1848 for (auto *AE : AllowedExit) { 1849 // Check that all users of allowed exit values are inside the loop or 1850 // are the live-out of a reduction. 1851 if (ReductionLiveOuts.count(AE)) 1852 continue; 1853 for (User *U : AE->users()) { 1854 Instruction *UI = cast<Instruction>(U); 1855 if (TheLoop->contains(UI)) 1856 continue; 1857 LLVM_DEBUG( 1858 dbgs() 1859 << "LV: Cannot fold tail by masking, loop has an outside user for " 1860 << *UI << "\n"); 1861 return false; 1862 } 1863 } 1864 1865 for (const auto &Entry : getInductionVars()) { 1866 PHINode *OrigPhi = Entry.first; 1867 for (User *U : OrigPhi->users()) { 1868 auto *UI = cast<Instruction>(U); 1869 if (!TheLoop->contains(UI)) { 1870 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an " 1871 "outside user for " 1872 << *UI << "\n"); 1873 return false; 1874 } 1875 } 1876 } 1877 1878 // The list of pointers that we can safely read and write to remains empty. 1879 SmallPtrSet<Value *, 8> SafePointers; 1880 1881 // Check all blocks for predication, including those that ordinarily do not 1882 // need predication such as the header block. 1883 SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1884 for (BasicBlock *BB : TheLoop->blocks()) { 1885 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) { 1886 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n"); 1887 return false; 1888 } 1889 } 1890 1891 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1892 1893 return true; 1894 } 1895 1896 void LoopVectorizationLegality::prepareToFoldTailByMasking() { 1897 // The list of pointers that we can safely read and write to remains empty. 1898 SmallPtrSet<Value *, 8> SafePointers; 1899 1900 // Mark all blocks for predication, including those that ordinarily do not 1901 // need predication such as the header block. 1902 for (BasicBlock *BB : TheLoop->blocks()) { 1903 [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp); 1904 assert(R && "Must be able to predicate block when tail-folding."); 1905 } 1906 } 1907 1908 } // namespace llvm 1909