xref: /llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp (revision 45c01e8a33bbb1790ea16577e47b1e6a34fa1548)
1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Transforms/Utils/SizeOpts.h"
29 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
30 
31 using namespace llvm;
32 using namespace PatternMatch;
33 
34 #define LV_NAME "loop-vectorize"
35 #define DEBUG_TYPE LV_NAME
36 
37 static cl::opt<bool>
38     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
39                        cl::desc("Enable if-conversion during vectorization."));
40 
41 static cl::opt<bool>
42 AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
43                        cl::desc("Enable recognition of non-constant strided "
44                                 "pointer induction variables."));
45 
46 namespace llvm {
47 cl::opt<bool>
48     HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
49                          cl::desc("Allow enabling loop hints to reorder "
50                                   "FP operations during vectorization."));
51 } // namespace llvm
52 
53 // TODO: Move size-based thresholds out of legality checking, make cost based
54 // decisions instead of hard thresholds.
55 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
56     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
57     cl::desc("The maximum number of SCEV checks allowed."));
58 
59 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
60     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
61     cl::desc("The maximum number of SCEV checks allowed with a "
62              "vectorize(enable) pragma"));
63 
64 static cl::opt<LoopVectorizeHints::ScalableForceKind>
65     ForceScalableVectorization(
66         "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
67         cl::Hidden,
68         cl::desc("Control whether the compiler can use scalable vectors to "
69                  "vectorize a loop"),
70         cl::values(
71             clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
72                        "Scalable vectorization is disabled."),
73             clEnumValN(
74                 LoopVectorizeHints::SK_PreferScalable, "preferred",
75                 "Scalable vectorization is available and favored when the "
76                 "cost is inconclusive."),
77             clEnumValN(
78                 LoopVectorizeHints::SK_PreferScalable, "on",
79                 "Scalable vectorization is available and favored when the "
80                 "cost is inconclusive.")));
81 
82 static cl::opt<bool> EnableHistogramVectorization(
83     "enable-histogram-loop-vectorization", cl::init(false), cl::Hidden,
84     cl::desc("Enables autovectorization of some loops containing histograms"));
85 
86 /// Maximum vectorization interleave count.
87 static const unsigned MaxInterleaveFactor = 16;
88 
89 namespace llvm {
90 
91 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
92   switch (Kind) {
93   case HK_WIDTH:
94     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
95   case HK_INTERLEAVE:
96     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
97   case HK_FORCE:
98     return (Val <= 1);
99   case HK_ISVECTORIZED:
100   case HK_PREDICATE:
101   case HK_SCALABLE:
102     return (Val == 0 || Val == 1);
103   }
104   return false;
105 }
106 
107 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
108                                        bool InterleaveOnlyWhenForced,
109                                        OptimizationRemarkEmitter &ORE,
110                                        const TargetTransformInfo *TTI)
111     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
112       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
113       Force("vectorize.enable", FK_Undefined, HK_FORCE),
114       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
115       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
116       Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
117       TheLoop(L), ORE(ORE) {
118   // Populate values with existing loop metadata.
119   getHintsFromMetadata();
120 
121   // force-vector-interleave overrides DisableInterleaving.
122   if (VectorizerParams::isInterleaveForced())
123     Interleave.Value = VectorizerParams::VectorizationInterleave;
124 
125   // If the metadata doesn't explicitly specify whether to enable scalable
126   // vectorization, then decide based on the following criteria (increasing
127   // level of priority):
128   //  - Target default
129   //  - Metadata width
130   //  - Force option (always overrides)
131   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
132     if (TTI)
133       Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
134                                                           : SK_FixedWidthOnly;
135 
136     if (Width.Value)
137       // If the width is set, but the metadata says nothing about the scalable
138       // property, then assume it concerns only a fixed-width UserVF.
139       // If width is not set, the flag takes precedence.
140       Scalable.Value = SK_FixedWidthOnly;
141   }
142 
143   // If the flag is set to force any use of scalable vectors, override the loop
144   // hints.
145   if (ForceScalableVectorization.getValue() !=
146       LoopVectorizeHints::SK_Unspecified)
147     Scalable.Value = ForceScalableVectorization.getValue();
148 
149   // Scalable vectorization is disabled if no preference is specified.
150   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
151     Scalable.Value = SK_FixedWidthOnly;
152 
153   if (IsVectorized.Value != 1)
154     // If the vectorization width and interleaving count are both 1 then
155     // consider the loop to have been already vectorized because there's
156     // nothing more that we can do.
157     IsVectorized.Value =
158         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
159   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
160              << "LV: Interleaving disabled by the pass manager\n");
161 }
162 
163 void LoopVectorizeHints::setAlreadyVectorized() {
164   LLVMContext &Context = TheLoop->getHeader()->getContext();
165 
166   MDNode *IsVectorizedMD = MDNode::get(
167       Context,
168       {MDString::get(Context, "llvm.loop.isvectorized"),
169        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
170   MDNode *LoopID = TheLoop->getLoopID();
171   MDNode *NewLoopID =
172       makePostTransformationMetadata(Context, LoopID,
173                                      {Twine(Prefix(), "vectorize.").str(),
174                                       Twine(Prefix(), "interleave.").str()},
175                                      {IsVectorizedMD});
176   TheLoop->setLoopID(NewLoopID);
177 
178   // Update internal cache.
179   IsVectorized.Value = 1;
180 }
181 
182 bool LoopVectorizeHints::allowVectorization(
183     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
184   if (getForce() == LoopVectorizeHints::FK_Disabled) {
185     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
186     emitRemarkWithHints();
187     return false;
188   }
189 
190   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
191     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
192     emitRemarkWithHints();
193     return false;
194   }
195 
196   if (getIsVectorized() == 1) {
197     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
198     // FIXME: Add interleave.disable metadata. This will allow
199     // vectorize.disable to be used without disabling the pass and errors
200     // to differentiate between disabled vectorization and a width of 1.
201     ORE.emit([&]() {
202       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
203                                         "AllDisabled", L->getStartLoc(),
204                                         L->getHeader())
205              << "loop not vectorized: vectorization and interleaving are "
206                 "explicitly disabled, or the loop has already been "
207                 "vectorized";
208     });
209     return false;
210   }
211 
212   return true;
213 }
214 
215 void LoopVectorizeHints::emitRemarkWithHints() const {
216   using namespace ore;
217 
218   ORE.emit([&]() {
219     if (Force.Value == LoopVectorizeHints::FK_Disabled)
220       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
221                                       TheLoop->getStartLoc(),
222                                       TheLoop->getHeader())
223              << "loop not vectorized: vectorization is explicitly disabled";
224 
225     OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(),
226                                TheLoop->getHeader());
227     R << "loop not vectorized";
228     if (Force.Value == LoopVectorizeHints::FK_Enabled) {
229       R << " (Force=" << NV("Force", true);
230       if (Width.Value != 0)
231         R << ", Vector Width=" << NV("VectorWidth", getWidth());
232       if (getInterleave() != 0)
233         R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
234       R << ")";
235     }
236     return R;
237   });
238 }
239 
240 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
241   if (getWidth() == ElementCount::getFixed(1))
242     return LV_NAME;
243   if (getForce() == LoopVectorizeHints::FK_Disabled)
244     return LV_NAME;
245   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
246     return LV_NAME;
247   return OptimizationRemarkAnalysis::AlwaysPrint;
248 }
249 
250 bool LoopVectorizeHints::allowReordering() const {
251   // Allow the vectorizer to change the order of operations if enabling
252   // loop hints are provided
253   ElementCount EC = getWidth();
254   return HintsAllowReordering &&
255          (getForce() == LoopVectorizeHints::FK_Enabled ||
256           EC.getKnownMinValue() > 1);
257 }
258 
259 void LoopVectorizeHints::getHintsFromMetadata() {
260   MDNode *LoopID = TheLoop->getLoopID();
261   if (!LoopID)
262     return;
263 
264   // First operand should refer to the loop id itself.
265   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
266   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
267 
268   for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
269     const MDString *S = nullptr;
270     SmallVector<Metadata *, 4> Args;
271 
272     // The expected hint is either a MDString or a MDNode with the first
273     // operand a MDString.
274     if (const MDNode *MD = dyn_cast<MDNode>(MDO)) {
275       if (!MD || MD->getNumOperands() == 0)
276         continue;
277       S = dyn_cast<MDString>(MD->getOperand(0));
278       for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx)
279         Args.push_back(MD->getOperand(Idx));
280     } else {
281       S = dyn_cast<MDString>(MDO);
282       assert(Args.size() == 0 && "too many arguments for MDString");
283     }
284 
285     if (!S)
286       continue;
287 
288     // Check if the hint starts with the loop metadata prefix.
289     StringRef Name = S->getString();
290     if (Args.size() == 1)
291       setHint(Name, Args[0]);
292   }
293 }
294 
295 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
296   if (!Name.starts_with(Prefix()))
297     return;
298   Name = Name.substr(Prefix().size(), StringRef::npos);
299 
300   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
301   if (!C)
302     return;
303   unsigned Val = C->getZExtValue();
304 
305   Hint *Hints[] = {&Width,        &Interleave, &Force,
306                    &IsVectorized, &Predicate,  &Scalable};
307   for (auto *H : Hints) {
308     if (Name == H->Name) {
309       if (H->validate(Val))
310         H->Value = Val;
311       else
312         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
313       break;
314     }
315   }
316 }
317 
318 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
319 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
320 // executing the inner loop will execute the same iterations). This check is
321 // very constrained for now but it will be relaxed in the future. \p Lp is
322 // considered uniform if it meets all the following conditions:
323 //   1) it has a canonical IV (starting from 0 and with stride 1),
324 //   2) its latch terminator is a conditional branch and,
325 //   3) its latch condition is a compare instruction whose operands are the
326 //      canonical IV and an OuterLp invariant.
327 // This check doesn't take into account the uniformity of other conditions not
328 // related to the loop latch because they don't affect the loop uniformity.
329 //
330 // NOTE: We decided to keep all these checks and its associated documentation
331 // together so that we can easily have a picture of the current supported loop
332 // nests. However, some of the current checks don't depend on \p OuterLp and
333 // would be redundantly executed for each \p Lp if we invoked this function for
334 // different candidate outer loops. This is not the case for now because we
335 // don't currently have the infrastructure to evaluate multiple candidate outer
336 // loops and \p OuterLp will be a fixed parameter while we only support explicit
337 // outer loop vectorization. It's also very likely that these checks go away
338 // before introducing the aforementioned infrastructure. However, if this is not
339 // the case, we should move the \p OuterLp independent checks to a separate
340 // function that is only executed once for each \p Lp.
341 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
342   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
343 
344   // If Lp is the outer loop, it's uniform by definition.
345   if (Lp == OuterLp)
346     return true;
347   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
348 
349   // 1.
350   PHINode *IV = Lp->getCanonicalInductionVariable();
351   if (!IV) {
352     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
353     return false;
354   }
355 
356   // 2.
357   BasicBlock *Latch = Lp->getLoopLatch();
358   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
359   if (!LatchBr || LatchBr->isUnconditional()) {
360     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
361     return false;
362   }
363 
364   // 3.
365   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
366   if (!LatchCmp) {
367     LLVM_DEBUG(
368         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
369     return false;
370   }
371 
372   Value *CondOp0 = LatchCmp->getOperand(0);
373   Value *CondOp1 = LatchCmp->getOperand(1);
374   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
375   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
376       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
377     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
378     return false;
379   }
380 
381   return true;
382 }
383 
384 // Return true if \p Lp and all its nested loops are uniform with regard to \p
385 // OuterLp.
386 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
387   if (!isUniformLoop(Lp, OuterLp))
388     return false;
389 
390   // Check if nested loops are uniform.
391   for (Loop *SubLp : *Lp)
392     if (!isUniformLoopNest(SubLp, OuterLp))
393       return false;
394 
395   return true;
396 }
397 
398 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
399   if (Ty->isPointerTy())
400     return DL.getIntPtrType(Ty);
401 
402   // It is possible that char's or short's overflow when we ask for the loop's
403   // trip count, work around this by changing the type size.
404   if (Ty->getScalarSizeInBits() < 32)
405     return Type::getInt32Ty(Ty->getContext());
406 
407   return Ty;
408 }
409 
410 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
411   Ty0 = convertPointerToIntegerType(DL, Ty0);
412   Ty1 = convertPointerToIntegerType(DL, Ty1);
413   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
414     return Ty0;
415   return Ty1;
416 }
417 
418 /// Check that the instruction has outside loop users and is not an
419 /// identified reduction variable.
420 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
421                                SmallPtrSetImpl<Value *> &AllowedExit) {
422   // Reductions, Inductions and non-header phis are allowed to have exit users. All
423   // other instructions must not have external users.
424   if (!AllowedExit.count(Inst))
425     // Check that all of the users of the loop are inside the BB.
426     for (User *U : Inst->users()) {
427       Instruction *UI = cast<Instruction>(U);
428       // This user may be a reduction exit value.
429       if (!TheLoop->contains(UI)) {
430         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
431         return true;
432       }
433     }
434   return false;
435 }
436 
437 /// Returns true if A and B have same pointer operands or same SCEVs addresses
438 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
439                                StoreInst *B) {
440   // Compare store
441   if (A == B)
442     return true;
443 
444   // Otherwise Compare pointers
445   Value *APtr = A->getPointerOperand();
446   Value *BPtr = B->getPointerOperand();
447   if (APtr == BPtr)
448     return true;
449 
450   // Otherwise compare address SCEVs
451   return SE->getSCEV(APtr) == SE->getSCEV(BPtr);
452 }
453 
454 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
455                                                 Value *Ptr) const {
456   // FIXME: Currently, the set of symbolic strides is sometimes queried before
457   // it's collected.  This happens from canVectorizeWithIfConvert, when the
458   // pointer is checked to reference consecutive elements suitable for a
459   // masked access.
460   const auto &Strides =
461     LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
462 
463   bool CanAddPredicate = !llvm::shouldOptimizeForSize(
464       TheLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
466                             CanAddPredicate, false).value_or(0);
467   if (Stride == 1 || Stride == -1)
468     return Stride;
469   return 0;
470 }
471 
472 bool LoopVectorizationLegality::isInvariant(Value *V) const {
473   return LAI->isInvariant(V);
474 }
475 
476 namespace {
477 /// A rewriter to build the SCEVs for each of the VF lanes in the expected
478 /// vectorized loop, which can then be compared to detect their uniformity. This
479 /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
480 /// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
481 /// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
482 /// uniformity.
483 class SCEVAddRecForUniformityRewriter
484     : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
485   /// Multiplier to be applied to the step of AddRecs in TheLoop.
486   unsigned StepMultiplier;
487 
488   /// Offset to be added to the AddRecs in TheLoop.
489   unsigned Offset;
490 
491   /// Loop for which to rewrite AddRecsFor.
492   Loop *TheLoop;
493 
494   /// Is any sub-expressions not analyzable w.r.t. uniformity?
495   bool CannotAnalyze = false;
496 
497   bool canAnalyze() const { return !CannotAnalyze; }
498 
499 public:
500   SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
501                                   unsigned Offset, Loop *TheLoop)
502       : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
503         TheLoop(TheLoop) {}
504 
505   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
506     assert(Expr->getLoop() == TheLoop &&
507            "addrec outside of TheLoop must be invariant and should have been "
508            "handled earlier");
509     // Build a new AddRec by multiplying the step by StepMultiplier and
510     // incrementing the start by Offset * step.
511     Type *Ty = Expr->getType();
512     const SCEV *Step = Expr->getStepRecurrence(SE);
513     if (!SE.isLoopInvariant(Step, TheLoop)) {
514       CannotAnalyze = true;
515       return Expr;
516     }
517     const SCEV *NewStep =
518         SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
519     const SCEV *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
520     const SCEV *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
521     return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
522   }
523 
524   const SCEV *visit(const SCEV *S) {
525     if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
526       return S;
527     return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S);
528   }
529 
530   const SCEV *visitUnknown(const SCEVUnknown *S) {
531     if (SE.isLoopInvariant(S, TheLoop))
532       return S;
533     // The value could vary across iterations.
534     CannotAnalyze = true;
535     return S;
536   }
537 
538   const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
539     // Could not analyze the expression.
540     CannotAnalyze = true;
541     return S;
542   }
543 
544   static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
545                              unsigned StepMultiplier, unsigned Offset,
546                              Loop *TheLoop) {
547     /// Bail out if the expression does not contain an UDiv expression.
548     /// Uniform values which are not loop invariant require operations to strip
549     /// out the lowest bits. For now just look for UDivs and use it to avoid
550     /// re-writing UDIV-free expressions for other lanes to limit compile time.
551     if (!SCEVExprContains(S,
552                           [](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
553       return SE.getCouldNotCompute();
554 
555     SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
556                                              TheLoop);
557     const SCEV *Result = Rewriter.visit(S);
558 
559     if (Rewriter.canAnalyze())
560       return Result;
561     return SE.getCouldNotCompute();
562   }
563 };
564 
565 } // namespace
566 
567 bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const {
568   if (isInvariant(V))
569     return true;
570   if (VF.isScalable())
571     return false;
572   if (VF.isScalar())
573     return true;
574 
575   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
576   // never considered uniform.
577   auto *SE = PSE.getSE();
578   if (!SE->isSCEVable(V->getType()))
579     return false;
580   const SCEV *S = SE->getSCEV(V);
581 
582   // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
583   // lane 0 matches the expressions for all other lanes.
584   unsigned FixedVF = VF.getKnownMinValue();
585   const SCEV *FirstLaneExpr =
586       SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
587   if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
588     return false;
589 
590   // Make sure the expressions for lanes FixedVF-1..1 match the expression for
591   // lane 0. We check lanes in reverse order for compile-time, as frequently
592   // checking the last lane is sufficient to rule out uniformity.
593   return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
594     const SCEV *IthLaneExpr =
595         SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
596     return FirstLaneExpr == IthLaneExpr;
597   });
598 }
599 
600 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I,
601                                                ElementCount VF) const {
602   Value *Ptr = getLoadStorePointerOperand(&I);
603   if (!Ptr)
604     return false;
605   // Note: There's nothing inherent which prevents predicated loads and
606   // stores from being uniform.  The current lowering simply doesn't handle
607   // it; in particular, the cost model distinguishes scatter/gather from
608   // scalar w/predication, and we currently rely on the scalar path.
609   return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
610 }
611 
612 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
613   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
614   // Store the result and return it at the end instead of exiting early, in case
615   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
616   bool Result = true;
617   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
618 
619   for (BasicBlock *BB : TheLoop->blocks()) {
620     // Check whether the BB terminator is a BranchInst. Any other terminator is
621     // not supported yet.
622     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
623     if (!Br) {
624       reportVectorizationFailure("Unsupported basic block terminator",
625           "loop control flow is not understood by vectorizer",
626           "CFGNotUnderstood", ORE, TheLoop);
627       if (DoExtraAnalysis)
628         Result = false;
629       else
630         return false;
631     }
632 
633     // Check whether the BranchInst is a supported one. Only unconditional
634     // branches, conditional branches with an outer loop invariant condition or
635     // backedges are supported.
636     // FIXME: We skip these checks when VPlan predication is enabled as we
637     // want to allow divergent branches. This whole check will be removed
638     // once VPlan predication is on by default.
639     if (Br && Br->isConditional() &&
640         !TheLoop->isLoopInvariant(Br->getCondition()) &&
641         !LI->isLoopHeader(Br->getSuccessor(0)) &&
642         !LI->isLoopHeader(Br->getSuccessor(1))) {
643       reportVectorizationFailure("Unsupported conditional branch",
644           "loop control flow is not understood by vectorizer",
645           "CFGNotUnderstood", ORE, TheLoop);
646       if (DoExtraAnalysis)
647         Result = false;
648       else
649         return false;
650     }
651   }
652 
653   // Check whether inner loops are uniform. At this point, we only support
654   // simple outer loops scenarios with uniform nested loops.
655   if (!isUniformLoopNest(TheLoop /*loop nest*/,
656                          TheLoop /*context outer loop*/)) {
657     reportVectorizationFailure("Outer loop contains divergent loops",
658         "loop control flow is not understood by vectorizer",
659         "CFGNotUnderstood", ORE, TheLoop);
660     if (DoExtraAnalysis)
661       Result = false;
662     else
663       return false;
664   }
665 
666   // Check whether we are able to set up outer loop induction.
667   if (!setupOuterLoopInductions()) {
668     reportVectorizationFailure("Unsupported outer loop Phi(s)",
669                                "UnsupportedPhi", ORE, TheLoop);
670     if (DoExtraAnalysis)
671       Result = false;
672     else
673       return false;
674   }
675 
676   return Result;
677 }
678 
679 void LoopVectorizationLegality::addInductionPhi(
680     PHINode *Phi, const InductionDescriptor &ID,
681     SmallPtrSetImpl<Value *> &AllowedExit) {
682   Inductions[Phi] = ID;
683 
684   // In case this induction also comes with casts that we know we can ignore
685   // in the vectorized loop body, record them here. All casts could be recorded
686   // here for ignoring, but suffices to record only the first (as it is the
687   // only one that may bw used outside the cast sequence).
688   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
689   if (!Casts.empty())
690     InductionCastsToIgnore.insert(*Casts.begin());
691 
692   Type *PhiTy = Phi->getType();
693   const DataLayout &DL = Phi->getDataLayout();
694 
695   // Get the widest type.
696   if (!PhiTy->isFloatingPointTy()) {
697     if (!WidestIndTy)
698       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
699     else
700       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
701   }
702 
703   // Int inductions are special because we only allow one IV.
704   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
705       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
706       isa<Constant>(ID.getStartValue()) &&
707       cast<Constant>(ID.getStartValue())->isNullValue()) {
708 
709     // Use the phi node with the widest type as induction. Use the last
710     // one if there are multiple (no good reason for doing this other
711     // than it is expedient). We've checked that it begins at zero and
712     // steps by one, so this is a canonical induction variable.
713     if (!PrimaryInduction || PhiTy == WidestIndTy)
714       PrimaryInduction = Phi;
715   }
716 
717   // Both the PHI node itself, and the "post-increment" value feeding
718   // back into the PHI node may have external users.
719   // We can allow those uses, except if the SCEVs we have for them rely
720   // on predicates that only hold within the loop, since allowing the exit
721   // currently means re-using this SCEV outside the loop (see PR33706 for more
722   // details).
723   if (PSE.getPredicate().isAlwaysTrue()) {
724     AllowedExit.insert(Phi);
725     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
726   }
727 
728   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
729 }
730 
731 bool LoopVectorizationLegality::setupOuterLoopInductions() {
732   BasicBlock *Header = TheLoop->getHeader();
733 
734   // Returns true if a given Phi is a supported induction.
735   auto IsSupportedPhi = [&](PHINode &Phi) -> bool {
736     InductionDescriptor ID;
737     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
738         ID.getKind() == InductionDescriptor::IK_IntInduction) {
739       addInductionPhi(&Phi, ID, AllowedExit);
740       return true;
741     }
742     // Bail out for any Phi in the outer loop header that is not a supported
743     // induction.
744     LLVM_DEBUG(
745         dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n");
746     return false;
747   };
748 
749   return llvm::all_of(Header->phis(), IsSupportedPhi);
750 }
751 
752 /// Checks if a function is scalarizable according to the TLI, in
753 /// the sense that it should be vectorized and then expanded in
754 /// multiple scalar calls. This is represented in the
755 /// TLI via mappings that do not specify a vector name, as in the
756 /// following example:
757 ///
758 ///    const VecDesc VecIntrinsics[] = {
759 ///      {"llvm.phx.abs.i32", "", 4}
760 ///    };
761 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
762   const StringRef ScalarName = CI.getCalledFunction()->getName();
763   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
764   // Check that all known VFs are not associated to a vector
765   // function, i.e. the vector name is emty.
766   if (Scalarize) {
767     ElementCount WidestFixedVF, WidestScalableVF;
768     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
769     for (ElementCount VF = ElementCount::getFixed(2);
770          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
771       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
772     for (ElementCount VF = ElementCount::getScalable(1);
773          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
774       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
775     assert((WidestScalableVF.isZero() || !Scalarize) &&
776            "Caller may decide to scalarize a variant using a scalable VF");
777   }
778   return Scalarize;
779 }
780 
781 bool LoopVectorizationLegality::canVectorizeInstrs() {
782   BasicBlock *Header = TheLoop->getHeader();
783 
784   // For each block in the loop.
785   for (BasicBlock *BB : TheLoop->blocks()) {
786     // Scan the instructions in the block and look for hazards.
787     for (Instruction &I : *BB) {
788       if (auto *Phi = dyn_cast<PHINode>(&I)) {
789         Type *PhiTy = Phi->getType();
790         // Check that this PHI type is allowed.
791         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
792             !PhiTy->isPointerTy()) {
793           reportVectorizationFailure("Found a non-int non-pointer PHI",
794                                      "loop control flow is not understood by vectorizer",
795                                      "CFGNotUnderstood", ORE, TheLoop);
796           return false;
797         }
798 
799         // If this PHINode is not in the header block, then we know that we
800         // can convert it to select during if-conversion. No need to check if
801         // the PHIs in this block are induction or reduction variables.
802         if (BB != Header) {
803           // Non-header phi nodes that have outside uses can be vectorized. Add
804           // them to the list of allowed exits.
805           // Unsafe cyclic dependencies with header phis are identified during
806           // legalization for reduction, induction and fixed order
807           // recurrences.
808           AllowedExit.insert(&I);
809           continue;
810         }
811 
812         // We only allow if-converted PHIs with exactly two incoming values.
813         if (Phi->getNumIncomingValues() != 2) {
814           reportVectorizationFailure("Found an invalid PHI",
815               "loop control flow is not understood by vectorizer",
816               "CFGNotUnderstood", ORE, TheLoop, Phi);
817           return false;
818         }
819 
820         RecurrenceDescriptor RedDes;
821         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
822                                                  DT, PSE.getSE())) {
823           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
824           AllowedExit.insert(RedDes.getLoopExitInstr());
825           Reductions[Phi] = RedDes;
826           continue;
827         }
828 
829         // We prevent matching non-constant strided pointer IVS to preserve
830         // historical vectorizer behavior after a generalization of the
831         // IVDescriptor code.  The intent is to remove this check, but we
832         // have to fix issues around code quality for such loops first.
833         auto IsDisallowedStridedPointerInduction =
834             [](const InductionDescriptor &ID) {
835               if (AllowStridedPointerIVs)
836                 return false;
837               return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
838                      ID.getConstIntStepValue() == nullptr;
839             };
840 
841         // TODO: Instead of recording the AllowedExit, it would be good to
842         // record the complementary set: NotAllowedExit. These include (but may
843         // not be limited to):
844         // 1. Reduction phis as they represent the one-before-last value, which
845         // is not available when vectorized
846         // 2. Induction phis and increment when SCEV predicates cannot be used
847         // outside the loop - see addInductionPhi
848         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
849         // outside the loop - see call to hasOutsideLoopUser in the non-phi
850         // handling below
851         // 4. FixedOrderRecurrence phis that can possibly be handled by
852         // extraction.
853         // By recording these, we can then reason about ways to vectorize each
854         // of these NotAllowedExit.
855         InductionDescriptor ID;
856         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
857             !IsDisallowedStridedPointerInduction(ID)) {
858           addInductionPhi(Phi, ID, AllowedExit);
859           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
860           continue;
861         }
862 
863         if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
864           AllowedExit.insert(Phi);
865           FixedOrderRecurrences.insert(Phi);
866           continue;
867         }
868 
869         // As a last resort, coerce the PHI to a AddRec expression
870         // and re-try classifying it a an induction PHI.
871         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
872             !IsDisallowedStridedPointerInduction(ID)) {
873           addInductionPhi(Phi, ID, AllowedExit);
874           continue;
875         }
876 
877         reportVectorizationFailure("Found an unidentified PHI",
878             "value that could not be identified as "
879             "reduction is used outside the loop",
880             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
881         return false;
882       } // end of PHI handling
883 
884       // We handle calls that:
885       //   * Are debug info intrinsics.
886       //   * Have a mapping to an IR intrinsic.
887       //   * Have a vector version available.
888       auto *CI = dyn_cast<CallInst>(&I);
889 
890       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
891           !isa<DbgInfoIntrinsic>(CI) &&
892           !(CI->getCalledFunction() && TLI &&
893             (!VFDatabase::getMappings(*CI).empty() ||
894              isTLIScalarize(*TLI, *CI)))) {
895         // If the call is a recognized math libary call, it is likely that
896         // we can vectorize it given loosened floating-point constraints.
897         LibFunc Func;
898         bool IsMathLibCall =
899             TLI && CI->getCalledFunction() &&
900             CI->getType()->isFloatingPointTy() &&
901             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
902             TLI->hasOptimizedCodeGen(Func);
903 
904         if (IsMathLibCall) {
905           // TODO: Ideally, we should not use clang-specific language here,
906           // but it's hard to provide meaningful yet generic advice.
907           // Also, should this be guarded by allowExtraAnalysis() and/or be part
908           // of the returned info from isFunctionVectorizable()?
909           reportVectorizationFailure(
910               "Found a non-intrinsic callsite",
911               "library call cannot be vectorized. "
912               "Try compiling with -fno-math-errno, -ffast-math, "
913               "or similar flags",
914               "CantVectorizeLibcall", ORE, TheLoop, CI);
915         } else {
916           reportVectorizationFailure("Found a non-intrinsic callsite",
917                                      "call instruction cannot be vectorized",
918                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
919         }
920         return false;
921       }
922 
923       // Some intrinsics have scalar arguments and should be same in order for
924       // them to be vectorized (i.e. loop invariant).
925       if (CI) {
926         auto *SE = PSE.getSE();
927         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
928         for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx)
929           if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, Idx, TTI)) {
930             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)),
931                                      TheLoop)) {
932               reportVectorizationFailure("Found unvectorizable intrinsic",
933                   "intrinsic instruction cannot be vectorized",
934                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
935               return false;
936             }
937           }
938       }
939 
940       // If we found a vectorized variant of a function, note that so LV can
941       // make better decisions about maximum VF.
942       if (CI && !VFDatabase::getMappings(*CI).empty())
943         VecCallVariantsFound = true;
944 
945       // Check that the instruction return type is vectorizable.
946       // We can't vectorize casts from vector type to scalar type.
947       // Also, we can't vectorize extractelement instructions.
948       if ((!VectorType::isValidElementType(I.getType()) &&
949            !I.getType()->isVoidTy()) ||
950           (isa<CastInst>(I) &&
951            !VectorType::isValidElementType(I.getOperand(0)->getType())) ||
952           isa<ExtractElementInst>(I)) {
953         reportVectorizationFailure("Found unvectorizable type",
954             "instruction return type cannot be vectorized",
955             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
956         return false;
957       }
958 
959       // Check that the stored type is vectorizable.
960       if (auto *ST = dyn_cast<StoreInst>(&I)) {
961         Type *T = ST->getValueOperand()->getType();
962         if (!VectorType::isValidElementType(T)) {
963           reportVectorizationFailure("Store instruction cannot be vectorized",
964                                      "CantVectorizeStore", ORE, TheLoop, ST);
965           return false;
966         }
967 
968         // For nontemporal stores, check that a nontemporal vector version is
969         // supported on the target.
970         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
971           // Arbitrarily try a vector of 2 elements.
972           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
973           assert(VecTy && "did not find vectorized version of stored type");
974           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
975             reportVectorizationFailure(
976                 "nontemporal store instruction cannot be vectorized",
977                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
978             return false;
979           }
980         }
981 
982       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
983         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
984           // For nontemporal loads, check that a nontemporal vector version is
985           // supported on the target (arbitrarily try a vector of 2 elements).
986           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
987           assert(VecTy && "did not find vectorized version of load type");
988           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
989             reportVectorizationFailure(
990                 "nontemporal load instruction cannot be vectorized",
991                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
992             return false;
993           }
994         }
995 
996         // FP instructions can allow unsafe algebra, thus vectorizable by
997         // non-IEEE-754 compliant SIMD units.
998         // This applies to floating-point math operations and calls, not memory
999         // operations, shuffles, or casts, as they don't change precision or
1000         // semantics.
1001       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
1002                  !I.isFast()) {
1003         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1004         Hints->setPotentiallyUnsafe();
1005       }
1006 
1007       // Reduction instructions are allowed to have exit users.
1008       // All other instructions must not have external users.
1009       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
1010         // We can safely vectorize loops where instructions within the loop are
1011         // used outside the loop only if the SCEV predicates within the loop is
1012         // same as outside the loop. Allowing the exit means reusing the SCEV
1013         // outside the loop.
1014         if (PSE.getPredicate().isAlwaysTrue()) {
1015           AllowedExit.insert(&I);
1016           continue;
1017         }
1018         reportVectorizationFailure("Value cannot be used outside the loop",
1019                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
1020         return false;
1021       }
1022     } // next instr.
1023   }
1024 
1025   if (!PrimaryInduction) {
1026     if (Inductions.empty()) {
1027       reportVectorizationFailure("Did not find one integer induction var",
1028           "loop induction variable could not be identified",
1029           "NoInductionVariable", ORE, TheLoop);
1030       return false;
1031     }
1032     if (!WidestIndTy) {
1033       reportVectorizationFailure("Did not find one integer induction var",
1034           "integer loop induction variable could not be identified",
1035           "NoIntegerInductionVariable", ORE, TheLoop);
1036       return false;
1037     }
1038     LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1039   }
1040 
1041   // Now we know the widest induction type, check if our found induction
1042   // is the same size. If it's not, unset it here and InnerLoopVectorizer
1043   // will create another.
1044   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
1045     PrimaryInduction = nullptr;
1046 
1047   return true;
1048 }
1049 
1050 /// Find histogram operations that match high-level code in loops:
1051 /// \code
1052 /// buckets[indices[i]]+=step;
1053 /// \endcode
1054 ///
1055 /// It matches a pattern starting from \p HSt, which Stores to the 'buckets'
1056 /// array the computed histogram. It uses a BinOp to sum all counts, storing
1057 /// them using a loop-variant index Load from the 'indices' input array.
1058 ///
1059 /// On successful matches it updates the STATISTIC 'HistogramsDetected',
1060 /// regardless of hardware support. When there is support, it additionally
1061 /// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers
1062 /// used to update histogram in \p HistogramPtrs.
1063 static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop,
1064                           const PredicatedScalarEvolution &PSE,
1065                           SmallVectorImpl<HistogramInfo> &Histograms) {
1066 
1067   // Store value must come from a Binary Operation.
1068   Instruction *HPtrInstr = nullptr;
1069   BinaryOperator *HBinOp = nullptr;
1070   if (!match(HSt, m_Store(m_BinOp(HBinOp), m_Instruction(HPtrInstr))))
1071     return false;
1072 
1073   // BinOp must be an Add or a Sub modifying the bucket value by a
1074   // loop invariant amount.
1075   // FIXME: We assume the loop invariant term is on the RHS.
1076   //        Fine for an immediate/constant, but maybe not a generic value?
1077   Value *HIncVal = nullptr;
1078   if (!match(HBinOp, m_Add(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))) &&
1079       !match(HBinOp, m_Sub(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))))
1080     return false;
1081 
1082   // Make sure the increment value is loop invariant.
1083   if (!TheLoop->isLoopInvariant(HIncVal))
1084     return false;
1085 
1086   // The address to store is calculated through a GEP Instruction.
1087   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(HPtrInstr);
1088   if (!GEP)
1089     return false;
1090 
1091   // Restrict address calculation to constant indices except for the last term.
1092   Value *HIdx = nullptr;
1093   for (Value *Index : GEP->indices()) {
1094     if (HIdx)
1095       return false;
1096     if (!isa<ConstantInt>(Index))
1097       HIdx = Index;
1098   }
1099 
1100   if (!HIdx)
1101     return false;
1102 
1103   // Check that the index is calculated by loading from another array. Ignore
1104   // any extensions.
1105   // FIXME: Support indices from other sources than a linear load from memory?
1106   //        We're currently trying to match an operation looping over an array
1107   //        of indices, but there could be additional levels of indirection
1108   //        in place, or possibly some additional calculation to form the index
1109   //        from the loaded data.
1110   Value *VPtrVal;
1111   if (!match(HIdx, m_ZExtOrSExtOrSelf(m_Load(m_Value(VPtrVal)))))
1112     return false;
1113 
1114   // Make sure the index address varies in this loop, not an outer loop.
1115   const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(VPtrVal));
1116   if (!AR || AR->getLoop() != TheLoop)
1117     return false;
1118 
1119   // Ensure we'll have the same mask by checking that all parts of the histogram
1120   // (gather load, update, scatter store) are in the same block.
1121   LoadInst *IndexedLoad = cast<LoadInst>(HBinOp->getOperand(0));
1122   BasicBlock *LdBB = IndexedLoad->getParent();
1123   if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent())
1124     return false;
1125 
1126   LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n");
1127 
1128   // Store the operations that make up the histogram.
1129   Histograms.emplace_back(IndexedLoad, HBinOp, HSt);
1130   return true;
1131 }
1132 
1133 bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() {
1134   // For now, we only support an IndirectUnsafe dependency that calculates
1135   // a histogram
1136   if (!EnableHistogramVectorization)
1137     return false;
1138 
1139   // Find a single IndirectUnsafe dependency.
1140   const MemoryDepChecker::Dependence *IUDep = nullptr;
1141   const MemoryDepChecker &DepChecker = LAI->getDepChecker();
1142   const auto *Deps = DepChecker.getDependences();
1143   // If there were too many dependences, LAA abandons recording them. We can't
1144   // proceed safely if we don't know what the dependences are.
1145   if (!Deps)
1146     return false;
1147 
1148   for (const MemoryDepChecker::Dependence &Dep : *Deps) {
1149     // Ignore dependencies that are either known to be safe or can be
1150     // checked at runtime.
1151     if (MemoryDepChecker::Dependence::isSafeForVectorization(Dep.Type) !=
1152         MemoryDepChecker::VectorizationSafetyStatus::Unsafe)
1153       continue;
1154 
1155     // We're only interested in IndirectUnsafe dependencies here, where the
1156     // address might come from a load from memory. We also only want to handle
1157     // one such dependency, at least for now.
1158     if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep)
1159       return false;
1160 
1161     IUDep = &Dep;
1162   }
1163   if (!IUDep)
1164     return false;
1165 
1166   // For now only normal loads and stores are supported.
1167   LoadInst *LI = dyn_cast<LoadInst>(IUDep->getSource(DepChecker));
1168   StoreInst *SI = dyn_cast<StoreInst>(IUDep->getDestination(DepChecker));
1169 
1170   if (!LI || !SI)
1171     return false;
1172 
1173   LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n");
1174   return findHistogram(LI, SI, TheLoop, LAI->getPSE(), Histograms);
1175 }
1176 
1177 bool LoopVectorizationLegality::canVectorizeMemory() {
1178   LAI = &LAIs.getInfo(*TheLoop);
1179   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
1180   if (LAR) {
1181     ORE->emit([&]() {
1182       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
1183                                         "loop not vectorized: ", *LAR);
1184     });
1185   }
1186 
1187   if (!LAI->canVectorizeMemory())
1188     return canVectorizeIndirectUnsafeDependences();
1189 
1190   if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) {
1191     reportVectorizationFailure("We don't allow storing to uniform addresses",
1192                                "write to a loop invariant address could not "
1193                                "be vectorized",
1194                                "CantVectorizeStoreToLoopInvariantAddress", ORE,
1195                                TheLoop);
1196     return false;
1197   }
1198 
1199   // We can vectorize stores to invariant address when final reduction value is
1200   // guaranteed to be stored at the end of the loop. Also, if decision to
1201   // vectorize loop is made, runtime checks are added so as to make sure that
1202   // invariant address won't alias with any other objects.
1203   if (!LAI->getStoresToInvariantAddresses().empty()) {
1204     // For each invariant address, check if last stored value is unconditional
1205     // and the address is not calculated inside the loop.
1206     for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1207       if (!isInvariantStoreOfReduction(SI))
1208         continue;
1209 
1210       if (blockNeedsPredication(SI->getParent())) {
1211         reportVectorizationFailure(
1212             "We don't allow storing to uniform addresses",
1213             "write of conditional recurring variant value to a loop "
1214             "invariant address could not be vectorized",
1215             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1216         return false;
1217       }
1218 
1219       // Invariant address should be defined outside of loop. LICM pass usually
1220       // makes sure it happens, but in rare cases it does not, we do not want
1221       // to overcomplicate vectorization to support this case.
1222       if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
1223         if (TheLoop->contains(Ptr)) {
1224           reportVectorizationFailure(
1225               "Invariant address is calculated inside the loop",
1226               "write to a loop invariant address could not "
1227               "be vectorized",
1228               "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1229           return false;
1230         }
1231       }
1232     }
1233 
1234     if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) {
1235       // For each invariant address, check its last stored value is the result
1236       // of one of our reductions.
1237       //
1238       // We do not check if dependence with loads exists because that is already
1239       // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress.
1240       ScalarEvolution *SE = PSE.getSE();
1241       SmallVector<StoreInst *, 4> UnhandledStores;
1242       for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1243         if (isInvariantStoreOfReduction(SI)) {
1244           // Earlier stores to this address are effectively deadcode.
1245           // With opaque pointers it is possible for one pointer to be used with
1246           // different sizes of stored values:
1247           //    store i32 0, ptr %x
1248           //    store i8 0, ptr %x
1249           // The latest store doesn't complitely overwrite the first one in the
1250           // example. That is why we have to make sure that types of stored
1251           // values are same.
1252           // TODO: Check that bitwidth of unhandled store is smaller then the
1253           // one that overwrites it and add a test.
1254           erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
1255             return storeToSameAddress(SE, SI, I) &&
1256                    I->getValueOperand()->getType() ==
1257                        SI->getValueOperand()->getType();
1258           });
1259           continue;
1260         }
1261         UnhandledStores.push_back(SI);
1262       }
1263 
1264       bool IsOK = UnhandledStores.empty();
1265       // TODO: we should also validate against InvariantMemSets.
1266       if (!IsOK) {
1267         reportVectorizationFailure(
1268             "We don't allow storing to uniform addresses",
1269             "write to a loop invariant address could not "
1270             "be vectorized",
1271             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1272         return false;
1273       }
1274     }
1275   }
1276 
1277   PSE.addPredicate(LAI->getPSE().getPredicate());
1278   return true;
1279 }
1280 
1281 bool LoopVectorizationLegality::canVectorizeFPMath(
1282     bool EnableStrictReductions) {
1283 
1284   // First check if there is any ExactFP math or if we allow reassociations
1285   if (!Requirements->getExactFPInst() || Hints->allowReordering())
1286     return true;
1287 
1288   // If the above is false, we have ExactFPMath & do not allow reordering.
1289   // If the EnableStrictReductions flag is set, first check if we have any
1290   // Exact FP induction vars, which we cannot vectorize.
1291   if (!EnableStrictReductions ||
1292       any_of(getInductionVars(), [&](auto &Induction) -> bool {
1293         InductionDescriptor IndDesc = Induction.second;
1294         return IndDesc.getExactFPMathInst();
1295       }))
1296     return false;
1297 
1298   // We can now only vectorize if all reductions with Exact FP math also
1299   // have the isOrdered flag set, which indicates that we can move the
1300   // reduction operations in-loop.
1301   return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1302     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1303     return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1304   }));
1305 }
1306 
1307 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1308   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1309     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1310     return RdxDesc.IntermediateStore == SI;
1311   });
1312 }
1313 
1314 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1315   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1316     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1317     if (!RdxDesc.IntermediateStore)
1318       return false;
1319 
1320     ScalarEvolution *SE = PSE.getSE();
1321     Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1322     return V == InvariantAddress ||
1323            SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1324   });
1325 }
1326 
1327 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1328   Value *In0 = const_cast<Value *>(V);
1329   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1330   if (!PN)
1331     return false;
1332 
1333   return Inductions.count(PN);
1334 }
1335 
1336 const InductionDescriptor *
1337 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1338   if (!isInductionPhi(Phi))
1339     return nullptr;
1340   auto &ID = getInductionVars().find(Phi)->second;
1341   if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1342       ID.getKind() == InductionDescriptor::IK_FpInduction)
1343     return &ID;
1344   return nullptr;
1345 }
1346 
1347 const InductionDescriptor *
1348 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
1349   if (!isInductionPhi(Phi))
1350     return nullptr;
1351   auto &ID = getInductionVars().find(Phi)->second;
1352   if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
1353     return &ID;
1354   return nullptr;
1355 }
1356 
1357 bool LoopVectorizationLegality::isCastedInductionVariable(
1358     const Value *V) const {
1359   auto *Inst = dyn_cast<Instruction>(V);
1360   return (Inst && InductionCastsToIgnore.count(Inst));
1361 }
1362 
1363 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1364   return isInductionPhi(V) || isCastedInductionVariable(V);
1365 }
1366 
1367 bool LoopVectorizationLegality::isFixedOrderRecurrence(
1368     const PHINode *Phi) const {
1369   return FixedOrderRecurrences.count(Phi);
1370 }
1371 
1372 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1373   // When vectorizing early exits, create predicates for the latch block only.
1374   // The early exiting block must be a direct predecessor of the latch at the
1375   // moment.
1376   BasicBlock *Latch = TheLoop->getLoopLatch();
1377   if (hasUncountableEarlyExit()) {
1378     assert(
1379         is_contained(predecessors(Latch), getUncountableEarlyExitingBlock()) &&
1380         "Uncountable exiting block must be a direct predecessor of latch");
1381     return BB == Latch;
1382   }
1383   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1384 }
1385 
1386 bool LoopVectorizationLegality::blockCanBePredicated(
1387     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1388     SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
1389   for (Instruction &I : *BB) {
1390     // We can predicate blocks with calls to assume, as long as we drop them in
1391     // case we flatten the CFG via predication.
1392     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1393       MaskedOp.insert(&I);
1394       continue;
1395     }
1396 
1397     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1398     // TODO: there might be cases that it should block the vectorization. Let's
1399     // ignore those for now.
1400     if (isa<NoAliasScopeDeclInst>(&I))
1401       continue;
1402 
1403     // We can allow masked calls if there's at least one vector variant, even
1404     // if we end up scalarizing due to the cost model calculations.
1405     // TODO: Allow other calls if they have appropriate attributes... readonly
1406     // and argmemonly?
1407     if (CallInst *CI = dyn_cast<CallInst>(&I))
1408       if (VFDatabase::hasMaskedVariant(*CI)) {
1409         MaskedOp.insert(CI);
1410         continue;
1411       }
1412 
1413     // Loads are handled via masking (or speculated if safe to do so.)
1414     if (auto *LI = dyn_cast<LoadInst>(&I)) {
1415       if (!SafePtrs.count(LI->getPointerOperand()))
1416         MaskedOp.insert(LI);
1417       continue;
1418     }
1419 
1420     // Predicated store requires some form of masking:
1421     // 1) masked store HW instruction,
1422     // 2) emulation via load-blend-store (only if safe and legal to do so,
1423     //    be aware on the race conditions), or
1424     // 3) element-by-element predicate check and scalar store.
1425     if (auto *SI = dyn_cast<StoreInst>(&I)) {
1426       MaskedOp.insert(SI);
1427       continue;
1428     }
1429 
1430     if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1431       return false;
1432   }
1433 
1434   return true;
1435 }
1436 
1437 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1438   if (!EnableIfConversion) {
1439     reportVectorizationFailure("If-conversion is disabled",
1440                                "IfConversionDisabled", ORE, TheLoop);
1441     return false;
1442   }
1443 
1444   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1445 
1446   // A list of pointers which are known to be dereferenceable within scope of
1447   // the loop body for each iteration of the loop which executes.  That is,
1448   // the memory pointed to can be dereferenced (with the access size implied by
1449   // the value's type) unconditionally within the loop header without
1450   // introducing a new fault.
1451   SmallPtrSet<Value *, 8> SafePointers;
1452 
1453   // Collect safe addresses.
1454   for (BasicBlock *BB : TheLoop->blocks()) {
1455     if (!blockNeedsPredication(BB)) {
1456       for (Instruction &I : *BB)
1457         if (auto *Ptr = getLoadStorePointerOperand(&I))
1458           SafePointers.insert(Ptr);
1459       continue;
1460     }
1461 
1462     // For a block which requires predication, a address may be safe to access
1463     // in the loop w/o predication if we can prove dereferenceability facts
1464     // sufficient to ensure it'll never fault within the loop. For the moment,
1465     // we restrict this to loads; stores are more complicated due to
1466     // concurrency restrictions.
1467     ScalarEvolution &SE = *PSE.getSE();
1468     SmallVector<const SCEVPredicate *, 4> Predicates;
1469     for (Instruction &I : *BB) {
1470       LoadInst *LI = dyn_cast<LoadInst>(&I);
1471       // Pass the Predicates pointer to isDereferenceableAndAlignedInLoop so
1472       // that it will consider loops that need guarding by SCEV checks. The
1473       // vectoriser will generate these checks if we decide to vectorise.
1474       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1475           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC,
1476                                             &Predicates))
1477         SafePointers.insert(LI->getPointerOperand());
1478       Predicates.clear();
1479     }
1480   }
1481 
1482   // Collect the blocks that need predication.
1483   for (BasicBlock *BB : TheLoop->blocks()) {
1484     // We support only branches and switch statements as terminators inside the
1485     // loop.
1486     if (isa<SwitchInst>(BB->getTerminator())) {
1487       if (TheLoop->isLoopExiting(BB)) {
1488         reportVectorizationFailure("Loop contains an unsupported switch",
1489                                    "LoopContainsUnsupportedSwitch", ORE,
1490                                    TheLoop, BB->getTerminator());
1491         return false;
1492       }
1493     } else if (!isa<BranchInst>(BB->getTerminator())) {
1494       reportVectorizationFailure("Loop contains an unsupported terminator",
1495                                  "LoopContainsUnsupportedTerminator", ORE,
1496                                  TheLoop, BB->getTerminator());
1497       return false;
1498     }
1499 
1500     // We must be able to predicate all blocks that need to be predicated.
1501     if (blockNeedsPredication(BB) &&
1502         !blockCanBePredicated(BB, SafePointers, MaskedOp)) {
1503       reportVectorizationFailure(
1504           "Control flow cannot be substituted for a select", "NoCFGForSelect",
1505           ORE, TheLoop, BB->getTerminator());
1506       return false;
1507     }
1508   }
1509 
1510   // We can if-convert this loop.
1511   return true;
1512 }
1513 
1514 // Helper function to canVectorizeLoopNestCFG.
1515 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1516                                                     bool UseVPlanNativePath) {
1517   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1518          "VPlan-native path is not enabled.");
1519 
1520   // TODO: ORE should be improved to show more accurate information when an
1521   // outer loop can't be vectorized because a nested loop is not understood or
1522   // legal. Something like: "outer_loop_location: loop not vectorized:
1523   // (inner_loop_location) loop control flow is not understood by vectorizer".
1524 
1525   // Store the result and return it at the end instead of exiting early, in case
1526   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1527   bool Result = true;
1528   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1529 
1530   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1531   // be canonicalized.
1532   if (!Lp->getLoopPreheader()) {
1533     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1534         "loop control flow is not understood by vectorizer",
1535         "CFGNotUnderstood", ORE, TheLoop);
1536     if (DoExtraAnalysis)
1537       Result = false;
1538     else
1539       return false;
1540   }
1541 
1542   // We must have a single backedge.
1543   if (Lp->getNumBackEdges() != 1) {
1544     reportVectorizationFailure("The loop must have a single backedge",
1545         "loop control flow is not understood by vectorizer",
1546         "CFGNotUnderstood", ORE, TheLoop);
1547     if (DoExtraAnalysis)
1548       Result = false;
1549     else
1550       return false;
1551   }
1552 
1553   return Result;
1554 }
1555 
1556 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1557     Loop *Lp, bool UseVPlanNativePath) {
1558   // Store the result and return it at the end instead of exiting early, in case
1559   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1560   bool Result = true;
1561   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1562   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1563     if (DoExtraAnalysis)
1564       Result = false;
1565     else
1566       return false;
1567   }
1568 
1569   // Recursively check whether the loop control flow of nested loops is
1570   // understood.
1571   for (Loop *SubLp : *Lp)
1572     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1573       if (DoExtraAnalysis)
1574         Result = false;
1575       else
1576         return false;
1577     }
1578 
1579   return Result;
1580 }
1581 
1582 bool LoopVectorizationLegality::isVectorizableEarlyExitLoop() {
1583   BasicBlock *LatchBB = TheLoop->getLoopLatch();
1584   if (!LatchBB) {
1585     reportVectorizationFailure("Loop does not have a latch",
1586                                "Cannot vectorize early exit loop",
1587                                "NoLatchEarlyExit", ORE, TheLoop);
1588     return false;
1589   }
1590 
1591   if (Reductions.size() || FixedOrderRecurrences.size()) {
1592     reportVectorizationFailure(
1593         "Found reductions or recurrences in early-exit loop",
1594         "Cannot vectorize early exit loop with reductions or recurrences",
1595         "RecurrencesInEarlyExitLoop", ORE, TheLoop);
1596     return false;
1597   }
1598 
1599   SmallVector<BasicBlock *, 8> ExitingBlocks;
1600   TheLoop->getExitingBlocks(ExitingBlocks);
1601 
1602   // Keep a record of all the exiting blocks.
1603   SmallVector<const SCEVPredicate *, 4> Predicates;
1604   for (BasicBlock *BB : ExitingBlocks) {
1605     const SCEV *EC =
1606         PSE.getSE()->getPredicatedExitCount(TheLoop, BB, &Predicates);
1607     if (isa<SCEVCouldNotCompute>(EC)) {
1608       UncountableExitingBlocks.push_back(BB);
1609 
1610       SmallVector<BasicBlock *, 2> Succs(successors(BB));
1611       if (Succs.size() != 2) {
1612         reportVectorizationFailure(
1613             "Early exiting block does not have exactly two successors",
1614             "Incorrect number of successors from early exiting block",
1615             "EarlyExitTooManySuccessors", ORE, TheLoop);
1616         return false;
1617       }
1618 
1619       BasicBlock *ExitBlock;
1620       if (!TheLoop->contains(Succs[0]))
1621         ExitBlock = Succs[0];
1622       else {
1623         assert(!TheLoop->contains(Succs[1]));
1624         ExitBlock = Succs[1];
1625       }
1626       UncountableExitBlocks.push_back(ExitBlock);
1627     } else
1628       CountableExitingBlocks.push_back(BB);
1629   }
1630   // We can safely ignore the predicates here because when vectorizing the loop
1631   // the PredicatatedScalarEvolution class will keep track of all predicates
1632   // for each exiting block anyway. This happens when calling
1633   // PSE.getSymbolicMaxBackedgeTakenCount() below.
1634   Predicates.clear();
1635 
1636   // We only support one uncountable early exit.
1637   if (getUncountableExitingBlocks().size() != 1) {
1638     reportVectorizationFailure(
1639         "Loop has too many uncountable exits",
1640         "Cannot vectorize early exit loop with more than one early exit",
1641         "TooManyUncountableEarlyExits", ORE, TheLoop);
1642     return false;
1643   }
1644 
1645   // The only supported early exit loops so far are ones where the early
1646   // exiting block is a unique predecessor of the latch block.
1647   BasicBlock *LatchPredBB = LatchBB->getUniquePredecessor();
1648   if (LatchPredBB != getUncountableEarlyExitingBlock()) {
1649     reportVectorizationFailure("Early exit is not the latch predecessor",
1650                                "Cannot vectorize early exit loop",
1651                                "EarlyExitNotLatchPredecessor", ORE, TheLoop);
1652     return false;
1653   }
1654 
1655   // The latch block must have a countable exit.
1656   if (isa<SCEVCouldNotCompute>(
1657           PSE.getSE()->getPredicatedExitCount(TheLoop, LatchBB, &Predicates))) {
1658     reportVectorizationFailure(
1659         "Cannot determine exact exit count for latch block",
1660         "Cannot vectorize early exit loop",
1661         "UnknownLatchExitCountEarlyExitLoop", ORE, TheLoop);
1662     return false;
1663   }
1664   assert(llvm::is_contained(CountableExitingBlocks, LatchBB) &&
1665          "Latch block not found in list of countable exits!");
1666 
1667   // Check to see if there are instructions that could potentially generate
1668   // exceptions or have side-effects.
1669   auto IsSafeOperation = [](Instruction *I) -> bool {
1670     switch (I->getOpcode()) {
1671     case Instruction::Load:
1672     case Instruction::Store:
1673     case Instruction::PHI:
1674     case Instruction::Br:
1675       // These are checked separately.
1676       return true;
1677     default:
1678       return isSafeToSpeculativelyExecute(I);
1679     }
1680   };
1681 
1682   for (auto *BB : TheLoop->blocks())
1683     for (auto &I : *BB) {
1684       if (I.mayWriteToMemory()) {
1685         // We don't support writes to memory.
1686         reportVectorizationFailure(
1687             "Writes to memory unsupported in early exit loops",
1688             "Cannot vectorize early exit loop with writes to memory",
1689             "WritesInEarlyExitLoop", ORE, TheLoop);
1690         return false;
1691       } else if (!IsSafeOperation(&I)) {
1692         reportVectorizationFailure("Early exit loop contains operations that "
1693                                    "cannot be speculatively executed",
1694                                    "UnsafeOperationsEarlyExitLoop", ORE,
1695                                    TheLoop);
1696         return false;
1697       }
1698     }
1699 
1700   // The vectoriser cannot handle loads that occur after the early exit block.
1701   assert(LatchBB->getUniquePredecessor() == getUncountableEarlyExitingBlock() &&
1702          "Expected latch predecessor to be the early exiting block");
1703 
1704   // TODO: Handle loops that may fault.
1705   Predicates.clear();
1706   if (!isDereferenceableReadOnlyLoop(TheLoop, PSE.getSE(), DT, AC,
1707                                      &Predicates)) {
1708     reportVectorizationFailure(
1709         "Loop may fault",
1710         "Cannot vectorize potentially faulting early exit loop",
1711         "PotentiallyFaultingEarlyExitLoop", ORE, TheLoop);
1712     return false;
1713   }
1714 
1715   [[maybe_unused]] const SCEV *SymbolicMaxBTC =
1716       PSE.getSymbolicMaxBackedgeTakenCount();
1717   // Since we have an exact exit count for the latch and the early exit
1718   // dominates the latch, then this should guarantee a computed SCEV value.
1719   assert(!isa<SCEVCouldNotCompute>(SymbolicMaxBTC) &&
1720          "Failed to get symbolic expression for backedge taken count");
1721   LLVM_DEBUG(dbgs() << "LV: Found an early exit loop with symbolic max "
1722                        "backedge taken count: "
1723                     << *SymbolicMaxBTC << '\n');
1724   return true;
1725 }
1726 
1727 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1728   // Store the result and return it at the end instead of exiting early, in case
1729   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1730   bool Result = true;
1731 
1732   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1733   // Check whether the loop-related control flow in the loop nest is expected by
1734   // vectorizer.
1735   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1736     if (DoExtraAnalysis) {
1737       LLVM_DEBUG(dbgs() << "LV: legality check failed: loop nest");
1738       Result = false;
1739     } else {
1740       return false;
1741     }
1742   }
1743 
1744   // We need to have a loop header.
1745   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1746                     << '\n');
1747 
1748   // Specific checks for outer loops. We skip the remaining legal checks at this
1749   // point because they don't support outer loops.
1750   if (!TheLoop->isInnermost()) {
1751     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1752 
1753     if (!canVectorizeOuterLoop()) {
1754       reportVectorizationFailure("Unsupported outer loop",
1755                                  "UnsupportedOuterLoop", ORE, TheLoop);
1756       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1757       // outer loops.
1758       return false;
1759     }
1760 
1761     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1762     return Result;
1763   }
1764 
1765   assert(TheLoop->isInnermost() && "Inner loop expected.");
1766   // Check if we can if-convert non-single-bb loops.
1767   unsigned NumBlocks = TheLoop->getNumBlocks();
1768   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1769     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1770     if (DoExtraAnalysis)
1771       Result = false;
1772     else
1773       return false;
1774   }
1775 
1776   // Check if we can vectorize the instructions and CFG in this loop.
1777   if (!canVectorizeInstrs()) {
1778     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1779     if (DoExtraAnalysis)
1780       Result = false;
1781     else
1782       return false;
1783   }
1784 
1785   HasUncountableEarlyExit = false;
1786   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
1787     HasUncountableEarlyExit = true;
1788     if (!isVectorizableEarlyExitLoop()) {
1789       UncountableExitingBlocks.clear();
1790       HasUncountableEarlyExit = false;
1791       if (DoExtraAnalysis)
1792         Result = false;
1793       else
1794         return false;
1795     }
1796   }
1797 
1798   // Go over each instruction and look at memory deps.
1799   if (!canVectorizeMemory()) {
1800     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1801     if (DoExtraAnalysis)
1802       Result = false;
1803     else
1804       return false;
1805   }
1806 
1807   if (Result) {
1808     LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1809                       << (LAI->getRuntimePointerChecking()->Need
1810                               ? " (with a runtime bound check)"
1811                               : "")
1812                       << "!\n");
1813   }
1814 
1815   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1816   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1817     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1818 
1819   if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1820     LLVM_DEBUG(dbgs() << "LV: Vectorization not profitable "
1821                          "due to SCEVThreshold");
1822     reportVectorizationFailure("Too many SCEV checks needed",
1823         "Too many SCEV assumptions need to be made and checked at runtime",
1824         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1825     if (DoExtraAnalysis)
1826       Result = false;
1827     else
1828       return false;
1829   }
1830 
1831   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1832   // we can vectorize, and at this point we don't have any other mem analysis
1833   // which may limit our maximum vectorization factor, so just return true with
1834   // no restrictions.
1835   return Result;
1836 }
1837 
1838 bool LoopVectorizationLegality::canFoldTailByMasking() const {
1839 
1840   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1841 
1842   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1843 
1844   for (const auto &Reduction : getReductionVars())
1845     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1846 
1847   // TODO: handle non-reduction outside users when tail is folded by masking.
1848   for (auto *AE : AllowedExit) {
1849     // Check that all users of allowed exit values are inside the loop or
1850     // are the live-out of a reduction.
1851     if (ReductionLiveOuts.count(AE))
1852       continue;
1853     for (User *U : AE->users()) {
1854       Instruction *UI = cast<Instruction>(U);
1855       if (TheLoop->contains(UI))
1856         continue;
1857       LLVM_DEBUG(
1858           dbgs()
1859           << "LV: Cannot fold tail by masking, loop has an outside user for "
1860           << *UI << "\n");
1861       return false;
1862     }
1863   }
1864 
1865   for (const auto &Entry : getInductionVars()) {
1866     PHINode *OrigPhi = Entry.first;
1867     for (User *U : OrigPhi->users()) {
1868       auto *UI = cast<Instruction>(U);
1869       if (!TheLoop->contains(UI)) {
1870         LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an "
1871                              "outside user for "
1872                           << *UI << "\n");
1873         return false;
1874       }
1875     }
1876   }
1877 
1878   // The list of pointers that we can safely read and write to remains empty.
1879   SmallPtrSet<Value *, 8> SafePointers;
1880 
1881   // Check all blocks for predication, including those that ordinarily do not
1882   // need predication such as the header block.
1883   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1884   for (BasicBlock *BB : TheLoop->blocks()) {
1885     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) {
1886       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n");
1887       return false;
1888     }
1889   }
1890 
1891   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1892 
1893   return true;
1894 }
1895 
1896 void LoopVectorizationLegality::prepareToFoldTailByMasking() {
1897   // The list of pointers that we can safely read and write to remains empty.
1898   SmallPtrSet<Value *, 8> SafePointers;
1899 
1900   // Mark all blocks for predication, including those that ordinarily do not
1901   // need predication such as the header block.
1902   for (BasicBlock *BB : TheLoop->blocks()) {
1903     [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp);
1904     assert(R && "Must be able to predicate block when tail-folding.");
1905   }
1906 }
1907 
1908 } // namespace llvm
1909