1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass merges loads/stores to/from sequential memory addresses into vector 10 // loads/stores. Although there's nothing GPU-specific in here, this pass is 11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs. 12 // 13 // (For simplicity below we talk about loads only, but everything also applies 14 // to stores.) 15 // 16 // This pass is intended to be run late in the pipeline, after other 17 // vectorization opportunities have been exploited. So the assumption here is 18 // that immediately following our new vector load we'll need to extract out the 19 // individual elements of the load, so we can operate on them individually. 20 // 21 // On CPUs this transformation is usually not beneficial, because extracting the 22 // elements of a vector register is expensive on most architectures. It's 23 // usually better just to load each element individually into its own scalar 24 // register. 25 // 26 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a 27 // "vector load" loads directly into a series of scalar registers. In effect, 28 // extracting the elements of the vector is free. It's therefore always 29 // beneficial to vectorize a sequence of loads on these architectures. 30 // 31 // Vectorizing (perhaps a better name might be "coalescing") loads can have 32 // large performance impacts on GPU kernels, and opportunities for vectorizing 33 // are common in GPU code. This pass tries very hard to find such 34 // opportunities; its runtime is quadratic in the number of loads in a BB. 35 // 36 // Some CPU architectures, such as ARM, have instructions that load into 37 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM 38 // could use this pass (with some modifications), but currently it implements 39 // its own pass to do something similar to what we do here. 40 // 41 // Overview of the algorithm and terminology in this pass: 42 // 43 // - Break up each basic block into pseudo-BBs, composed of instructions which 44 // are guaranteed to transfer control to their successors. 45 // - Within a single pseudo-BB, find all loads, and group them into 46 // "equivalence classes" according to getUnderlyingObject() and loaded 47 // element size. Do the same for stores. 48 // - For each equivalence class, greedily build "chains". Each chain has a 49 // leader instruction, and every other member of the chain has a known 50 // constant offset from the first instr in the chain. 51 // - Break up chains so that they contain only contiguous accesses of legal 52 // size with no intervening may-alias instrs. 53 // - Convert each chain to vector instructions. 54 // 55 // The O(n^2) behavior of this pass comes from initially building the chains. 56 // In the worst case we have to compare each new instruction to all of those 57 // that came before. To limit this, we only calculate the offset to the leaders 58 // of the N most recently-used chains. 59 60 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PostOrderIterator.h" 66 #include "llvm/ADT/STLExtras.h" 67 #include "llvm/ADT/Sequence.h" 68 #include "llvm/ADT/SmallPtrSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/AssumptionCache.h" 74 #include "llvm/Analysis/MemoryLocation.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/TargetTransformInfo.h" 77 #include "llvm/Analysis/ValueTracking.h" 78 #include "llvm/Analysis/VectorUtils.h" 79 #include "llvm/IR/Attributes.h" 80 #include "llvm/IR/BasicBlock.h" 81 #include "llvm/IR/ConstantRange.h" 82 #include "llvm/IR/Constants.h" 83 #include "llvm/IR/DataLayout.h" 84 #include "llvm/IR/DerivedTypes.h" 85 #include "llvm/IR/Dominators.h" 86 #include "llvm/IR/Function.h" 87 #include "llvm/IR/GetElementPtrTypeIterator.h" 88 #include "llvm/IR/IRBuilder.h" 89 #include "llvm/IR/InstrTypes.h" 90 #include "llvm/IR/Instruction.h" 91 #include "llvm/IR/Instructions.h" 92 #include "llvm/IR/LLVMContext.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/InitializePasses.h" 97 #include "llvm/Pass.h" 98 #include "llvm/Support/Alignment.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/KnownBits.h" 102 #include "llvm/Support/MathExtras.h" 103 #include "llvm/Support/ModRef.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include "llvm/Transforms/Vectorize.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <cstdlib> 111 #include <iterator> 112 #include <limits> 113 #include <numeric> 114 #include <optional> 115 #include <tuple> 116 #include <type_traits> 117 #include <utility> 118 #include <vector> 119 120 using namespace llvm; 121 122 #define DEBUG_TYPE "load-store-vectorizer" 123 124 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 125 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 126 127 namespace { 128 129 // Equivalence class key, the initial tuple by which we group loads/stores. 130 // Loads/stores with different EqClassKeys are never merged. 131 // 132 // (We could in theory remove element-size from the this tuple. We'd just need 133 // to fix up the vector packing/unpacking code.) 134 using EqClassKey = 135 std::tuple<const Value * /* result of getUnderlyingObject() */, 136 unsigned /* AddrSpace */, 137 unsigned /* Load/Store element size bits */, 138 char /* IsLoad; char b/c bool can't be a DenseMap key */ 139 >; 140 [[maybe_unused]] llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 141 const EqClassKey &K) { 142 const auto &[UnderlyingObject, AddrSpace, ElementSize, IsLoad] = K; 143 return OS << (IsLoad ? "load" : "store") << " of " << *UnderlyingObject 144 << " of element size " << ElementSize << " bits in addrspace " 145 << AddrSpace; 146 } 147 148 // A Chain is a set of instructions such that: 149 // - All instructions have the same equivalence class, so in particular all are 150 // loads, or all are stores. 151 // - We know the address accessed by the i'th chain elem relative to the 152 // chain's leader instruction, which is the first instr of the chain in BB 153 // order. 154 // 155 // Chains have two canonical orderings: 156 // - BB order, sorted by Instr->comesBefore. 157 // - Offset order, sorted by OffsetFromLeader. 158 // This pass switches back and forth between these orders. 159 struct ChainElem { 160 Instruction *Inst; 161 APInt OffsetFromLeader; 162 }; 163 using Chain = SmallVector<ChainElem, 1>; 164 165 void sortChainInBBOrder(Chain &C) { 166 sort(C, [](auto &A, auto &B) { return A.Inst->comesBefore(B.Inst); }); 167 } 168 169 void sortChainInOffsetOrder(Chain &C) { 170 sort(C, [](const auto &A, const auto &B) { 171 if (A.OffsetFromLeader != B.OffsetFromLeader) 172 return A.OffsetFromLeader.slt(B.OffsetFromLeader); 173 return A.Inst->comesBefore(B.Inst); // stable tiebreaker 174 }); 175 } 176 177 [[maybe_unused]] void dumpChain(ArrayRef<ChainElem> C) { 178 for (const auto &E : C) { 179 dbgs() << " " << *E.Inst << " (offset " << E.OffsetFromLeader << ")\n"; 180 } 181 } 182 183 using EquivalenceClassMap = 184 MapVector<EqClassKey, SmallVector<Instruction *, 8>>; 185 186 // FIXME: Assuming stack alignment of 4 is always good enough 187 constexpr unsigned StackAdjustedAlignment = 4; 188 189 Instruction *propagateMetadata(Instruction *I, const Chain &C) { 190 SmallVector<Value *, 8> Values; 191 for (const ChainElem &E : C) 192 Values.push_back(E.Inst); 193 return propagateMetadata(I, Values); 194 } 195 196 bool isInvariantLoad(const Instruction *I) { 197 const LoadInst *LI = dyn_cast<LoadInst>(I); 198 return LI != nullptr && LI->hasMetadata(LLVMContext::MD_invariant_load); 199 } 200 201 /// Reorders the instructions that I depends on (the instructions defining its 202 /// operands), to ensure they dominate I. 203 void reorder(Instruction *I) { 204 SmallPtrSet<Instruction *, 16> InstructionsToMove; 205 SmallVector<Instruction *, 16> Worklist; 206 207 Worklist.push_back(I); 208 while (!Worklist.empty()) { 209 Instruction *IW = Worklist.pop_back_val(); 210 int NumOperands = IW->getNumOperands(); 211 for (int i = 0; i < NumOperands; i++) { 212 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 213 if (!IM || IM->getOpcode() == Instruction::PHI) 214 continue; 215 216 // If IM is in another BB, no need to move it, because this pass only 217 // vectorizes instructions within one BB. 218 if (IM->getParent() != I->getParent()) 219 continue; 220 221 if (!IM->comesBefore(I)) { 222 InstructionsToMove.insert(IM); 223 Worklist.push_back(IM); 224 } 225 } 226 } 227 228 // All instructions to move should follow I. Start from I, not from begin(). 229 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;) { 230 Instruction *IM = &*(BBI++); 231 if (!InstructionsToMove.count(IM)) 232 continue; 233 IM->moveBefore(I); 234 } 235 } 236 237 class Vectorizer { 238 Function &F; 239 AliasAnalysis &AA; 240 AssumptionCache &AC; 241 DominatorTree &DT; 242 ScalarEvolution &SE; 243 TargetTransformInfo &TTI; 244 const DataLayout &DL; 245 IRBuilder<> Builder; 246 247 // We could erase instrs right after vectorizing them, but that can mess up 248 // our BB iterators, and also can make the equivalence class keys point to 249 // freed memory. This is fixable, but it's simpler just to wait until we're 250 // done with the BB and erase all at once. 251 SmallVector<Instruction *, 128> ToErase; 252 253 public: 254 Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC, 255 DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI) 256 : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI), 257 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 258 259 bool run(); 260 261 private: 262 static const unsigned MaxDepth = 3; 263 264 /// Runs the vectorizer on a "pseudo basic block", which is a range of 265 /// instructions [Begin, End) within one BB all of which have 266 /// isGuaranteedToTransferExecutionToSuccessor(I) == true. 267 bool runOnPseudoBB(BasicBlock::iterator Begin, BasicBlock::iterator End); 268 269 /// Runs the vectorizer on one equivalence class, i.e. one set of loads/stores 270 /// in the same BB with the same value for getUnderlyingObject() etc. 271 bool runOnEquivalenceClass(const EqClassKey &EqClassKey, 272 ArrayRef<Instruction *> EqClass); 273 274 /// Runs the vectorizer on one chain, i.e. a subset of an equivalence class 275 /// where all instructions access a known, constant offset from the first 276 /// instruction. 277 bool runOnChain(Chain &C); 278 279 /// Splits the chain into subchains of instructions which read/write a 280 /// contiguous block of memory. Discards any length-1 subchains (because 281 /// there's nothing to vectorize in there). 282 std::vector<Chain> splitChainByContiguity(Chain &C); 283 284 /// Splits the chain into subchains where it's safe to hoist loads up to the 285 /// beginning of the sub-chain and it's safe to sink loads up to the end of 286 /// the sub-chain. Discards any length-1 subchains. 287 std::vector<Chain> splitChainByMayAliasInstrs(Chain &C); 288 289 /// Splits the chain into subchains that make legal, aligned accesses. 290 /// Discards any length-1 subchains. 291 std::vector<Chain> splitChainByAlignment(Chain &C); 292 293 /// Converts the instrs in the chain into a single vectorized load or store. 294 /// Adds the old scalar loads/stores to ToErase. 295 bool vectorizeChain(Chain &C); 296 297 /// Tries to compute the offset in bytes PtrB - PtrA. 298 std::optional<APInt> getConstantOffset(Value *PtrA, Value *PtrB, 299 unsigned Depth = 0); 300 std::optional<APInt> gtConstantOffsetComplexAddrs(Value *PtrA, Value *PtrB, 301 unsigned Depth); 302 std::optional<APInt> getConstantOffsetSelects(Value *PtrA, Value *PtrB, 303 unsigned Depth); 304 305 /// Gets the element type of the vector that the chain will load or store. 306 /// This is nontrivial because the chain may contain elements of different 307 /// types; e.g. it's legal to have a chain that contains both i32 and float. 308 Type *getChainElemTy(const Chain &C); 309 310 /// Determines whether ChainElem can be moved up (if IsLoad) or down (if 311 /// !IsLoad) to ChainBegin -- i.e. there are no intervening may-alias 312 /// instructions. 313 /// 314 /// The map ChainElemOffsets must contain all of the elements in 315 /// [ChainBegin, ChainElem] and their offsets from some arbitrary base 316 /// address. It's ok if it contains additional entries. 317 template <bool IsLoadChain> 318 bool isSafeToMove( 319 Instruction *ChainElem, Instruction *ChainBegin, 320 const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets); 321 322 /// Collects loads and stores grouped by "equivalence class", where: 323 /// - all elements in an eq class are a load or all are a store, 324 /// - they all load/store the same element size (it's OK to have e.g. i8 and 325 /// <4 x i8> in the same class, but not i32 and <4 x i8>), and 326 /// - they all have the same value for getUnderlyingObject(). 327 EquivalenceClassMap collectEquivalenceClasses(BasicBlock::iterator Begin, 328 BasicBlock::iterator End); 329 330 /// Partitions Instrs into "chains" where every instruction has a known 331 /// constant offset from the first instr in the chain. 332 /// 333 /// Postcondition: For all i, ret[i][0].second == 0, because the first instr 334 /// in the chain is the leader, and an instr touches distance 0 from itself. 335 std::vector<Chain> gatherChains(ArrayRef<Instruction *> Instrs); 336 }; 337 338 class LoadStoreVectorizerLegacyPass : public FunctionPass { 339 public: 340 static char ID; 341 342 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) { 343 initializeLoadStoreVectorizerLegacyPassPass( 344 *PassRegistry::getPassRegistry()); 345 } 346 347 bool runOnFunction(Function &F) override; 348 349 StringRef getPassName() const override { 350 return "GPU Load and Store Vectorizer"; 351 } 352 353 void getAnalysisUsage(AnalysisUsage &AU) const override { 354 AU.addRequired<AAResultsWrapperPass>(); 355 AU.addRequired<AssumptionCacheTracker>(); 356 AU.addRequired<ScalarEvolutionWrapperPass>(); 357 AU.addRequired<DominatorTreeWrapperPass>(); 358 AU.addRequired<TargetTransformInfoWrapperPass>(); 359 AU.setPreservesCFG(); 360 } 361 }; 362 363 } // end anonymous namespace 364 365 char LoadStoreVectorizerLegacyPass::ID = 0; 366 367 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 368 "Vectorize load and Store instructions", false, false) 369 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 370 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker); 371 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 372 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 373 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 374 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 375 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 376 "Vectorize load and store instructions", false, false) 377 378 Pass *llvm::createLoadStoreVectorizerPass() { 379 return new LoadStoreVectorizerLegacyPass(); 380 } 381 382 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) { 383 // Don't vectorize when the attribute NoImplicitFloat is used. 384 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 385 return false; 386 387 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 388 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 389 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 390 TargetTransformInfo &TTI = 391 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 392 393 AssumptionCache &AC = 394 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 395 396 return Vectorizer(F, AA, AC, DT, SE, TTI).run(); 397 } 398 399 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, 400 FunctionAnalysisManager &AM) { 401 // Don't vectorize when the attribute NoImplicitFloat is used. 402 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 403 return PreservedAnalyses::all(); 404 405 AliasAnalysis &AA = AM.getResult<AAManager>(F); 406 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 407 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 408 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 409 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 410 411 bool Changed = Vectorizer(F, AA, AC, DT, SE, TTI).run(); 412 PreservedAnalyses PA; 413 PA.preserveSet<CFGAnalyses>(); 414 return Changed ? PA : PreservedAnalyses::all(); 415 } 416 417 bool Vectorizer::run() { 418 bool Changed = false; 419 // Break up the BB if there are any instrs which aren't guaranteed to transfer 420 // execution to their successor. 421 // 422 // Consider, for example: 423 // 424 // def assert_arr_len(int n) { if (n < 2) exit(); } 425 // 426 // load arr[0] 427 // call assert_array_len(arr.length) 428 // load arr[1] 429 // 430 // Even though assert_arr_len does not read or write any memory, we can't 431 // speculate the second load before the call. More info at 432 // https://github.com/llvm/llvm-project/issues/52950. 433 for (BasicBlock *BB : post_order(&F)) { 434 // BB must at least have a terminator. 435 assert(!BB->empty()); 436 437 SmallVector<BasicBlock::iterator, 8> Barriers; 438 Barriers.push_back(BB->begin()); 439 for (Instruction &I : *BB) 440 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 441 Barriers.push_back(I.getIterator()); 442 Barriers.push_back(BB->end()); 443 444 for (auto It = Barriers.begin(), End = std::prev(Barriers.end()); It != End; 445 ++It) 446 Changed |= runOnPseudoBB(*It, *std::next(It)); 447 448 for (Instruction *I : ToErase) { 449 auto *PtrOperand = getLoadStorePointerOperand(I); 450 if (I->use_empty()) 451 I->eraseFromParent(); 452 RecursivelyDeleteTriviallyDeadInstructions(PtrOperand); 453 } 454 ToErase.clear(); 455 } 456 457 return Changed; 458 } 459 460 bool Vectorizer::runOnPseudoBB(BasicBlock::iterator Begin, 461 BasicBlock::iterator End) { 462 LLVM_DEBUG({ 463 dbgs() << "LSV: Running on pseudo-BB [" << *Begin << " ... "; 464 if (End != Begin->getParent()->end()) 465 dbgs() << *End; 466 else 467 dbgs() << "<BB end>"; 468 dbgs() << ")\n"; 469 }); 470 471 bool Changed = false; 472 for (const auto &[EqClassKey, EqClass] : 473 collectEquivalenceClasses(Begin, End)) 474 Changed |= runOnEquivalenceClass(EqClassKey, EqClass); 475 476 return Changed; 477 } 478 479 bool Vectorizer::runOnEquivalenceClass(const EqClassKey &EqClassKey, 480 ArrayRef<Instruction *> EqClass) { 481 bool Changed = false; 482 483 LLVM_DEBUG({ 484 dbgs() << "LSV: Running on equivalence class of size " << EqClass.size() 485 << " keyed on " << EqClassKey << ":\n"; 486 for (Instruction *I : EqClass) 487 dbgs() << " " << *I << "\n"; 488 }); 489 490 std::vector<Chain> Chains = gatherChains(EqClass); 491 LLVM_DEBUG(dbgs() << "LSV: Got " << Chains.size() 492 << " nontrivial chains.\n";); 493 for (Chain &C : Chains) 494 Changed |= runOnChain(C); 495 return Changed; 496 } 497 498 bool Vectorizer::runOnChain(Chain &C) { 499 LLVM_DEBUG({ 500 dbgs() << "LSV: Running on chain with " << C.size() << " instructions:\n"; 501 dumpChain(C); 502 }); 503 504 // Split up the chain into increasingly smaller chains, until we can finally 505 // vectorize the chains. 506 // 507 // (Don't be scared by the depth of the loop nest here. These operations are 508 // all at worst O(n lg n) in the number of instructions, and splitting chains 509 // doesn't change the number of instrs. So the whole loop nest is O(n lg n).) 510 bool Changed = false; 511 for (auto &C : splitChainByMayAliasInstrs(C)) 512 for (auto &C : splitChainByContiguity(C)) 513 for (auto &C : splitChainByAlignment(C)) 514 Changed |= vectorizeChain(C); 515 return Changed; 516 } 517 518 std::vector<Chain> Vectorizer::splitChainByMayAliasInstrs(Chain &C) { 519 if (C.empty()) 520 return {}; 521 522 sortChainInBBOrder(C); 523 524 LLVM_DEBUG({ 525 dbgs() << "LSV: splitChainByMayAliasInstrs considering chain:\n"; 526 dumpChain(C); 527 }); 528 529 // We know that elements in the chain with nonverlapping offsets can't 530 // alias, but AA may not be smart enough to figure this out. Use a 531 // hashtable. 532 DenseMap<Instruction *, APInt /*OffsetFromLeader*/> ChainOffsets; 533 for (const auto &E : C) 534 ChainOffsets.insert({&*E.Inst, E.OffsetFromLeader}); 535 536 // Loads get hoisted up to the first load in the chain. Stores get sunk 537 // down to the last store in the chain. Our algorithm for loads is: 538 // 539 // - Take the first element of the chain. This is the start of a new chain. 540 // - Take the next element of `Chain` and check for may-alias instructions 541 // up to the start of NewChain. If no may-alias instrs, add it to 542 // NewChain. Otherwise, start a new NewChain. 543 // 544 // For stores it's the same except in the reverse direction. 545 // 546 // We expect IsLoad to be an std::bool_constant. 547 auto Impl = [&](auto IsLoad) { 548 // MSVC is unhappy if IsLoad is a capture, so pass it as an arg. 549 auto [ChainBegin, ChainEnd] = [&](auto IsLoad) { 550 if constexpr (IsLoad()) 551 return std::make_pair(C.begin(), C.end()); 552 else 553 return std::make_pair(C.rbegin(), C.rend()); 554 }(IsLoad); 555 assert(ChainBegin != ChainEnd); 556 557 std::vector<Chain> Chains; 558 SmallVector<ChainElem, 1> NewChain; 559 NewChain.push_back(*ChainBegin); 560 for (auto ChainIt = std::next(ChainBegin); ChainIt != ChainEnd; ++ChainIt) { 561 if (isSafeToMove<IsLoad>(ChainIt->Inst, NewChain.front().Inst, 562 ChainOffsets)) { 563 LLVM_DEBUG(dbgs() << "LSV: No intervening may-alias instrs; can merge " 564 << *ChainIt->Inst << " into " << *ChainBegin->Inst 565 << "\n"); 566 NewChain.push_back(*ChainIt); 567 } else { 568 LLVM_DEBUG( 569 dbgs() << "LSV: Found intervening may-alias instrs; cannot merge " 570 << *ChainIt->Inst << " into " << *ChainBegin->Inst << "\n"); 571 if (NewChain.size() > 1) { 572 LLVM_DEBUG({ 573 dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n"; 574 dumpChain(NewChain); 575 }); 576 Chains.push_back(std::move(NewChain)); 577 } 578 579 // Start a new chain. 580 NewChain = SmallVector<ChainElem, 1>({*ChainIt}); 581 } 582 } 583 if (NewChain.size() > 1) { 584 LLVM_DEBUG({ 585 dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n"; 586 dumpChain(NewChain); 587 }); 588 Chains.push_back(std::move(NewChain)); 589 } 590 return Chains; 591 }; 592 593 if (isa<LoadInst>(C[0].Inst)) 594 return Impl(/*IsLoad=*/std::bool_constant<true>()); 595 596 assert(isa<StoreInst>(C[0].Inst)); 597 return Impl(/*IsLoad=*/std::bool_constant<false>()); 598 } 599 600 std::vector<Chain> Vectorizer::splitChainByContiguity(Chain &C) { 601 if (C.empty()) 602 return {}; 603 604 sortChainInOffsetOrder(C); 605 606 LLVM_DEBUG({ 607 dbgs() << "LSV: splitChainByContiguity considering chain:\n"; 608 dumpChain(C); 609 }); 610 611 std::vector<Chain> Ret; 612 Ret.push_back({C.front()}); 613 614 for (auto It = std::next(C.begin()), End = C.end(); It != End; ++It) { 615 // `prev` accesses offsets [PrevDistFromBase, PrevReadEnd). 616 auto &CurChain = Ret.back(); 617 const ChainElem &Prev = CurChain.back(); 618 unsigned SzBits = DL.getTypeSizeInBits(getLoadStoreType(&*Prev.Inst)); 619 assert(SzBits % 8 == 0 && "Non-byte sizes should have been filtered out by " 620 "collectEquivalenceClass"); 621 APInt PrevReadEnd = Prev.OffsetFromLeader + SzBits / 8; 622 623 // Add this instruction to the end of the current chain, or start a new one. 624 bool AreContiguous = It->OffsetFromLeader == PrevReadEnd; 625 LLVM_DEBUG(dbgs() << "LSV: Instructions are " 626 << (AreContiguous ? "" : "not ") << "contiguous: " 627 << *Prev.Inst << " (ends at offset " << PrevReadEnd 628 << ") -> " << *It->Inst << " (starts at offset " 629 << It->OffsetFromLeader << ")\n"); 630 if (AreContiguous) 631 CurChain.push_back(*It); 632 else 633 Ret.push_back({*It}); 634 } 635 636 // Filter out length-1 chains, these are uninteresting. 637 llvm::erase_if(Ret, [](const auto &Chain) { return Chain.size() <= 1; }); 638 return Ret; 639 } 640 641 Type *Vectorizer::getChainElemTy(const Chain &C) { 642 assert(!C.empty()); 643 // The rules are: 644 // - If there are any pointer types in the chain, use an integer type. 645 // - Prefer an integer type if it appears in the chain. 646 // - Otherwise, use the first type in the chain. 647 // 648 // The rule about pointer types is a simplification when we merge e.g. a load 649 // of a ptr and a double. There's no direct conversion from a ptr to a 650 // double; it requires a ptrtoint followed by a bitcast. 651 // 652 // It's unclear to me if the other rules have any practical effect, but we do 653 // it to match this pass's previous behavior. 654 if (any_of(C, [](const ChainElem &E) { 655 return getLoadStoreType(E.Inst)->getScalarType()->isPointerTy(); 656 })) { 657 return Type::getIntNTy( 658 F.getContext(), 659 DL.getTypeSizeInBits(getLoadStoreType(C[0].Inst)->getScalarType())); 660 } 661 662 for (const ChainElem &E : C) 663 if (Type *T = getLoadStoreType(E.Inst)->getScalarType(); T->isIntegerTy()) 664 return T; 665 return getLoadStoreType(C[0].Inst)->getScalarType(); 666 } 667 668 std::vector<Chain> Vectorizer::splitChainByAlignment(Chain &C) { 669 // We use a simple greedy algorithm. 670 // - Given a chain of length N, find all prefixes that 671 // (a) are not longer than the max register length, and 672 // (b) are a power of 2. 673 // - Starting from the longest prefix, try to create a vector of that length. 674 // - If one of them works, great. Repeat the algorithm on any remaining 675 // elements in the chain. 676 // - If none of them work, discard the first element and repeat on a chain 677 // of length N-1. 678 if (C.empty()) 679 return {}; 680 681 sortChainInOffsetOrder(C); 682 683 LLVM_DEBUG({ 684 dbgs() << "LSV: splitChainByAlignment considering chain:\n"; 685 dumpChain(C); 686 }); 687 688 bool IsLoadChain = isa<LoadInst>(C[0].Inst); 689 auto getVectorFactor = [&](unsigned VF, unsigned LoadStoreSize, 690 unsigned ChainSizeBytes, VectorType *VecTy) { 691 return IsLoadChain ? TTI.getLoadVectorFactor(VF, LoadStoreSize, 692 ChainSizeBytes, VecTy) 693 : TTI.getStoreVectorFactor(VF, LoadStoreSize, 694 ChainSizeBytes, VecTy); 695 }; 696 697 #ifndef NDEBUG 698 for (const auto &E : C) { 699 Type *Ty = getLoadStoreType(E.Inst)->getScalarType(); 700 assert(isPowerOf2_32(DL.getTypeSizeInBits(Ty)) && 701 "Should have filtered out non-power-of-two elements in " 702 "collectEquivalenceClasses."); 703 } 704 #endif 705 706 unsigned AS = getLoadStoreAddressSpace(C[0].Inst); 707 unsigned VecRegBytes = TTI.getLoadStoreVecRegBitWidth(AS) / 8; 708 709 std::vector<Chain> Ret; 710 for (unsigned CBegin = 0; CBegin < C.size(); ++CBegin) { 711 // Find candidate chains of size not greater than the largest vector reg. 712 // These chains are over the closed interval [CBegin, CEnd]. 713 SmallVector<std::pair<unsigned /*CEnd*/, unsigned /*SizeBytes*/>, 8> 714 CandidateChains; 715 for (unsigned CEnd = CBegin + 1, Size = C.size(); CEnd < Size; ++CEnd) { 716 APInt Sz = C[CEnd].OffsetFromLeader + 717 DL.getTypeStoreSize(getLoadStoreType(C[CEnd].Inst)) - 718 C[CBegin].OffsetFromLeader; 719 if (Sz.sgt(VecRegBytes)) 720 break; 721 CandidateChains.push_back( 722 {CEnd, static_cast<unsigned>(Sz.getLimitedValue())}); 723 } 724 725 // Consider the longest chain first. 726 for (auto It = CandidateChains.rbegin(), End = CandidateChains.rend(); 727 It != End; ++It) { 728 auto [CEnd, SizeBytes] = *It; 729 LLVM_DEBUG( 730 dbgs() << "LSV: splitChainByAlignment considering candidate chain [" 731 << *C[CBegin].Inst << " ... " << *C[CEnd].Inst << "]\n"); 732 733 Type *VecElemTy = getChainElemTy(C); 734 // Note, VecElemTy is a power of 2, but might be less than one byte. For 735 // example, we can vectorize 2 x <2 x i4> to <4 x i4>, and in this case 736 // VecElemTy would be i4. 737 unsigned VecElemBits = DL.getTypeSizeInBits(VecElemTy); 738 739 // SizeBytes and VecElemBits are powers of 2, so they divide evenly. 740 assert((8 * SizeBytes) % VecElemBits == 0); 741 unsigned NumVecElems = 8 * SizeBytes / VecElemBits; 742 FixedVectorType *VecTy = FixedVectorType::get(VecElemTy, NumVecElems); 743 unsigned VF = 8 * VecRegBytes / VecElemBits; 744 745 // Check that TTI is happy with this vectorization factor. 746 unsigned TargetVF = getVectorFactor(VF, VecElemBits, 747 VecElemBits * NumVecElems / 8, VecTy); 748 if (TargetVF != VF && TargetVF < NumVecElems) { 749 LLVM_DEBUG( 750 dbgs() << "LSV: splitChainByAlignment discarding candidate chain " 751 "because TargetVF=" 752 << TargetVF << " != VF=" << VF 753 << " and TargetVF < NumVecElems=" << NumVecElems << "\n"); 754 continue; 755 } 756 757 // Is a load/store with this alignment allowed by TTI and at least as fast 758 // as an unvectorized load/store? 759 // 760 // TTI and F are passed as explicit captures to WAR an MSVC misparse (??). 761 auto IsAllowedAndFast = [&, SizeBytes = SizeBytes, &TTI = TTI, 762 &F = F](Align Alignment) { 763 if (Alignment.value() % SizeBytes == 0) 764 return true; 765 unsigned VectorizedSpeed = 0; 766 bool AllowsMisaligned = TTI.allowsMisalignedMemoryAccesses( 767 F.getContext(), SizeBytes * 8, AS, Alignment, &VectorizedSpeed); 768 if (!AllowsMisaligned) { 769 LLVM_DEBUG(dbgs() 770 << "LSV: Access of " << SizeBytes << "B in addrspace " 771 << AS << " with alignment " << Alignment.value() 772 << " is misaligned, and therefore can't be vectorized.\n"); 773 return false; 774 } 775 776 unsigned ElementwiseSpeed = 0; 777 (TTI).allowsMisalignedMemoryAccesses((F).getContext(), VecElemBits, AS, 778 Alignment, &ElementwiseSpeed); 779 if (VectorizedSpeed < ElementwiseSpeed) { 780 LLVM_DEBUG(dbgs() 781 << "LSV: Access of " << SizeBytes << "B in addrspace " 782 << AS << " with alignment " << Alignment.value() 783 << " has relative speed " << VectorizedSpeed 784 << ", which is lower than the elementwise speed of " 785 << ElementwiseSpeed 786 << ". Therefore this access won't be vectorized.\n"); 787 return false; 788 } 789 return true; 790 }; 791 792 // If we're loading/storing from an alloca, align it if possible. 793 // 794 // FIXME: We eagerly upgrade the alignment, regardless of whether TTI 795 // tells us this is beneficial. This feels a bit odd, but it matches 796 // existing tests. This isn't *so* bad, because at most we align to 4 797 // bytes (current value of StackAdjustedAlignment). 798 // 799 // FIXME: We will upgrade the alignment of the alloca even if it turns out 800 // we can't vectorize for some other reason. 801 Align Alignment = getLoadStoreAlignment(C[CBegin].Inst); 802 if (AS == DL.getAllocaAddrSpace() && Alignment.value() % SizeBytes != 0 && 803 IsAllowedAndFast(Align(StackAdjustedAlignment))) { 804 Align NewAlign = getOrEnforceKnownAlignment( 805 getLoadStorePointerOperand(C[CBegin].Inst), 806 Align(StackAdjustedAlignment), DL, C[CBegin].Inst, nullptr, &DT); 807 if (NewAlign >= Alignment) { 808 LLVM_DEBUG(dbgs() 809 << "LSV: splitByChain upgrading alloca alignment from " 810 << Alignment.value() << " to " << NewAlign.value() 811 << "\n"); 812 Alignment = NewAlign; 813 } 814 } 815 816 if (!IsAllowedAndFast(Alignment)) { 817 LLVM_DEBUG( 818 dbgs() << "LSV: splitChainByAlignment discarding candidate chain " 819 "because its alignment is not AllowedAndFast: " 820 << Alignment.value() << "\n"); 821 continue; 822 } 823 824 if ((IsLoadChain && 825 !TTI.isLegalToVectorizeLoadChain(SizeBytes, Alignment, AS)) || 826 (!IsLoadChain && 827 !TTI.isLegalToVectorizeStoreChain(SizeBytes, Alignment, AS))) { 828 LLVM_DEBUG( 829 dbgs() << "LSV: splitChainByAlignment discarding candidate chain " 830 "because !isLegalToVectorizeLoad/StoreChain."); 831 continue; 832 } 833 834 // Hooray, we can vectorize this chain! 835 Chain &NewChain = Ret.emplace_back(); 836 for (unsigned I = CBegin; I <= CEnd; ++I) 837 NewChain.push_back(C[I]); 838 CBegin = CEnd; // Skip over the instructions we've added to the chain. 839 break; 840 } 841 } 842 return Ret; 843 } 844 845 bool Vectorizer::vectorizeChain(Chain &C) { 846 if (C.size() < 2) 847 return false; 848 849 sortChainInOffsetOrder(C); 850 851 LLVM_DEBUG({ 852 dbgs() << "LSV: Vectorizing chain of " << C.size() << " instructions:\n"; 853 dumpChain(C); 854 }); 855 856 Type *VecElemTy = getChainElemTy(C); 857 bool IsLoadChain = isa<LoadInst>(C[0].Inst); 858 unsigned AS = getLoadStoreAddressSpace(C[0].Inst); 859 unsigned ChainBytes = std::accumulate( 860 C.begin(), C.end(), 0u, [&](unsigned Bytes, const ChainElem &E) { 861 return Bytes + DL.getTypeStoreSize(getLoadStoreType(E.Inst)); 862 }); 863 assert(ChainBytes % DL.getTypeStoreSize(VecElemTy) == 0); 864 // VecTy is a power of 2 and 1 byte at smallest, but VecElemTy may be smaller 865 // than 1 byte (e.g. VecTy == <32 x i1>). 866 Type *VecTy = FixedVectorType::get( 867 VecElemTy, 8 * ChainBytes / DL.getTypeSizeInBits(VecElemTy)); 868 869 Align Alignment = getLoadStoreAlignment(C[0].Inst); 870 // If this is a load/store of an alloca, we might have upgraded the alloca's 871 // alignment earlier. Get the new alignment. 872 if (AS == DL.getAllocaAddrSpace()) { 873 Alignment = std::max( 874 Alignment, 875 getOrEnforceKnownAlignment(getLoadStorePointerOperand(C[0].Inst), 876 MaybeAlign(), DL, C[0].Inst, nullptr, &DT)); 877 } 878 879 // All elements of the chain must have the same scalar-type size. 880 #ifndef NDEBUG 881 for (const ChainElem &E : C) 882 assert(DL.getTypeStoreSize(getLoadStoreType(E.Inst)->getScalarType()) == 883 DL.getTypeStoreSize(VecElemTy)); 884 #endif 885 886 Instruction *VecInst; 887 if (IsLoadChain) { 888 // Loads get hoisted to the location of the first load in the chain. We may 889 // also need to hoist the (transitive) operands of the loads. 890 Builder.SetInsertPoint( 891 std::min_element(C.begin(), C.end(), [](const auto &A, const auto &B) { 892 return A.Inst->comesBefore(B.Inst); 893 })->Inst); 894 895 // Chain is in offset order, so C[0] is the instr with the lowest offset, 896 // i.e. the root of the vector. 897 Value *Bitcast = Builder.CreateBitCast( 898 getLoadStorePointerOperand(C[0].Inst), VecTy->getPointerTo(AS)); 899 VecInst = Builder.CreateAlignedLoad(VecTy, Bitcast, Alignment); 900 901 unsigned VecIdx = 0; 902 for (const ChainElem &E : C) { 903 Instruction *I = E.Inst; 904 Value *V; 905 Type *T = getLoadStoreType(I); 906 if (auto *VT = dyn_cast<FixedVectorType>(T)) { 907 auto Mask = llvm::to_vector<8>( 908 llvm::seq<int>(VecIdx, VecIdx + VT->getNumElements())); 909 V = Builder.CreateShuffleVector(VecInst, Mask, I->getName()); 910 VecIdx += VT->getNumElements(); 911 } else { 912 V = Builder.CreateExtractElement(VecInst, Builder.getInt32(VecIdx), 913 I->getName()); 914 ++VecIdx; 915 } 916 if (V->getType() != I->getType()) 917 V = Builder.CreateBitOrPointerCast(V, I->getType()); 918 I->replaceAllUsesWith(V); 919 } 920 921 // Finally, we need to reorder the instrs in the BB so that the (transitive) 922 // operands of VecInst appear before it. To see why, suppose we have 923 // vectorized the following code: 924 // 925 // ptr1 = gep a, 1 926 // load1 = load i32 ptr1 927 // ptr0 = gep a, 0 928 // load0 = load i32 ptr0 929 // 930 // We will put the vectorized load at the location of the earliest load in 931 // the BB, i.e. load1. We get: 932 // 933 // ptr1 = gep a, 1 934 // loadv = load <2 x i32> ptr0 935 // load0 = extractelement loadv, 0 936 // load1 = extractelement loadv, 1 937 // ptr0 = gep a, 0 938 // 939 // Notice that loadv uses ptr0, which is defined *after* it! 940 reorder(VecInst); 941 } else { 942 // Stores get sunk to the location of the last store in the chain. 943 Builder.SetInsertPoint( 944 std::max_element(C.begin(), C.end(), [](auto &A, auto &B) { 945 return A.Inst->comesBefore(B.Inst); 946 })->Inst); 947 948 // Build the vector to store. 949 Value *Vec = PoisonValue::get(VecTy); 950 unsigned VecIdx = 0; 951 auto InsertElem = [&](Value *V) { 952 if (V->getType() != VecElemTy) 953 V = Builder.CreateBitOrPointerCast(V, VecElemTy); 954 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(VecIdx++)); 955 }; 956 for (const ChainElem &E : C) { 957 auto I = cast<StoreInst>(E.Inst); 958 if (FixedVectorType *VT = 959 dyn_cast<FixedVectorType>(getLoadStoreType(I))) { 960 for (int J = 0, JE = VT->getNumElements(); J < JE; ++J) { 961 InsertElem(Builder.CreateExtractElement(I->getValueOperand(), 962 Builder.getInt32(J))); 963 } 964 } else { 965 InsertElem(I->getValueOperand()); 966 } 967 } 968 969 // Chain is in offset order, so C[0] is the instr with the lowest offset, 970 // i.e. the root of the vector. 971 VecInst = Builder.CreateAlignedStore( 972 Vec, 973 Builder.CreateBitCast(getLoadStorePointerOperand(C[0].Inst), 974 VecTy->getPointerTo(AS)), 975 Alignment); 976 } 977 978 propagateMetadata(VecInst, C); 979 980 for (const ChainElem &E : C) 981 ToErase.push_back(E.Inst); 982 983 ++NumVectorInstructions; 984 NumScalarsVectorized += C.size(); 985 return true; 986 } 987 988 template <bool IsLoadChain> 989 bool Vectorizer::isSafeToMove( 990 Instruction *ChainElem, Instruction *ChainBegin, 991 const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets) { 992 LLVM_DEBUG(dbgs() << "LSV: isSafeToMove(" << *ChainElem << " -> " 993 << *ChainBegin << ")\n"); 994 995 assert(isa<LoadInst>(ChainElem) == IsLoadChain); 996 if (ChainElem == ChainBegin) 997 return true; 998 999 // Invariant loads can always be reordered; by definition they are not 1000 // clobbered by stores. 1001 if (isInvariantLoad(ChainElem)) 1002 return true; 1003 1004 auto BBIt = std::next([&] { 1005 if constexpr (IsLoadChain) 1006 return BasicBlock::reverse_iterator(ChainElem); 1007 else 1008 return BasicBlock::iterator(ChainElem); 1009 }()); 1010 auto BBItEnd = std::next([&] { 1011 if constexpr (IsLoadChain) 1012 return BasicBlock::reverse_iterator(ChainBegin); 1013 else 1014 return BasicBlock::iterator(ChainBegin); 1015 }()); 1016 1017 const APInt &ChainElemOffset = ChainOffsets.at(ChainElem); 1018 const unsigned ChainElemSize = 1019 DL.getTypeStoreSize(getLoadStoreType(ChainElem)); 1020 1021 for (; BBIt != BBItEnd; ++BBIt) { 1022 Instruction *I = &*BBIt; 1023 1024 if (!I->mayReadOrWriteMemory()) 1025 continue; 1026 1027 // Loads can be reordered with other loads. 1028 if (IsLoadChain && isa<LoadInst>(I)) 1029 continue; 1030 1031 // Stores can be sunk below invariant loads. 1032 if (!IsLoadChain && isInvariantLoad(I)) 1033 continue; 1034 1035 // If I is in the chain, we can tell whether it aliases ChainIt by checking 1036 // what offset ChainIt accesses. This may be better than AA is able to do. 1037 // 1038 // We should really only have duplicate offsets for stores (the duplicate 1039 // loads should be CSE'ed), but in case we have a duplicate load, we'll 1040 // split the chain so we don't have to handle this case specially. 1041 if (auto OffsetIt = ChainOffsets.find(I); OffsetIt != ChainOffsets.end()) { 1042 // I and ChainElem overlap if: 1043 // - I and ChainElem have the same offset, OR 1044 // - I's offset is less than ChainElem's, but I touches past the 1045 // beginning of ChainElem, OR 1046 // - ChainElem's offset is less than I's, but ChainElem touches past the 1047 // beginning of I. 1048 const APInt &IOffset = OffsetIt->second; 1049 unsigned IElemSize = DL.getTypeStoreSize(getLoadStoreType(I)); 1050 if (IOffset == ChainElemOffset || 1051 (IOffset.sle(ChainElemOffset) && 1052 (IOffset + IElemSize).sgt(ChainElemOffset)) || 1053 (ChainElemOffset.sle(IOffset) && 1054 (ChainElemOffset + ChainElemSize).sgt(OffsetIt->second))) { 1055 LLVM_DEBUG({ 1056 // Double check that AA also sees this alias. If not, we probably 1057 // have a bug. 1058 ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem)); 1059 assert(IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)); 1060 dbgs() << "LSV: Found alias in chain: " << *I << "\n"; 1061 }); 1062 return false; // We found an aliasing instruction; bail. 1063 } 1064 1065 continue; // We're confident there's no alias. 1066 } 1067 1068 LLVM_DEBUG(dbgs() << "LSV: Querying AA for " << *I << "\n"); 1069 ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem)); 1070 if (IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)) { 1071 LLVM_DEBUG(dbgs() << "LSV: Found alias in chain:\n" 1072 << " Aliasing instruction:\n" 1073 << " " << *I << '\n' 1074 << " Aliased instruction and pointer:\n" 1075 << " " << *ChainElem << '\n' 1076 << " " << *getLoadStorePointerOperand(ChainElem) 1077 << '\n'); 1078 1079 return false; 1080 } 1081 } 1082 return true; 1083 } 1084 1085 static bool checkNoWrapFlags(Instruction *I, bool Signed) { 1086 BinaryOperator *BinOpI = cast<BinaryOperator>(I); 1087 return (Signed && BinOpI->hasNoSignedWrap()) || 1088 (!Signed && BinOpI->hasNoUnsignedWrap()); 1089 } 1090 1091 static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA, 1092 unsigned MatchingOpIdxA, Instruction *AddOpB, 1093 unsigned MatchingOpIdxB, bool Signed) { 1094 LLVM_DEBUG(dbgs() << "LSV: checkIfSafeAddSequence IdxDiff=" << IdxDiff 1095 << ", AddOpA=" << *AddOpA << ", MatchingOpIdxA=" 1096 << MatchingOpIdxA << ", AddOpB=" << *AddOpB 1097 << ", MatchingOpIdxB=" << MatchingOpIdxB 1098 << ", Signed=" << Signed << "\n"); 1099 // If both OpA and OpB are adds with NSW/NUW and with one of the operands 1100 // being the same, we can guarantee that the transformation is safe if we can 1101 // prove that OpA won't overflow when Ret added to the other operand of OpA. 1102 // For example: 1103 // %tmp7 = add nsw i32 %tmp2, %v0 1104 // %tmp8 = sext i32 %tmp7 to i64 1105 // ... 1106 // %tmp11 = add nsw i32 %v0, 1 1107 // %tmp12 = add nsw i32 %tmp2, %tmp11 1108 // %tmp13 = sext i32 %tmp12 to i64 1109 // 1110 // Both %tmp7 and %tmp12 have the nsw flag and the first operand is %tmp2. 1111 // It's guaranteed that adding 1 to %tmp7 won't overflow because %tmp11 adds 1112 // 1 to %v0 and both %tmp11 and %tmp12 have the nsw flag. 1113 assert(AddOpA->getOpcode() == Instruction::Add && 1114 AddOpB->getOpcode() == Instruction::Add && 1115 checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed)); 1116 if (AddOpA->getOperand(MatchingOpIdxA) == 1117 AddOpB->getOperand(MatchingOpIdxB)) { 1118 Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1); 1119 Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1); 1120 Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA); 1121 Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB); 1122 // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`. 1123 if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add && 1124 checkNoWrapFlags(OtherInstrB, Signed) && 1125 isa<ConstantInt>(OtherInstrB->getOperand(1))) { 1126 int64_t CstVal = 1127 cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue(); 1128 if (OtherInstrB->getOperand(0) == OtherOperandA && 1129 IdxDiff.getSExtValue() == CstVal) 1130 return true; 1131 } 1132 // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`. 1133 if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add && 1134 checkNoWrapFlags(OtherInstrA, Signed) && 1135 isa<ConstantInt>(OtherInstrA->getOperand(1))) { 1136 int64_t CstVal = 1137 cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue(); 1138 if (OtherInstrA->getOperand(0) == OtherOperandB && 1139 IdxDiff.getSExtValue() == -CstVal) 1140 return true; 1141 } 1142 // Match `x +nsw/nuw (y +nsw/nuw c)` and 1143 // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`. 1144 if (OtherInstrA && OtherInstrB && 1145 OtherInstrA->getOpcode() == Instruction::Add && 1146 OtherInstrB->getOpcode() == Instruction::Add && 1147 checkNoWrapFlags(OtherInstrA, Signed) && 1148 checkNoWrapFlags(OtherInstrB, Signed) && 1149 isa<ConstantInt>(OtherInstrA->getOperand(1)) && 1150 isa<ConstantInt>(OtherInstrB->getOperand(1))) { 1151 int64_t CstValA = 1152 cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue(); 1153 int64_t CstValB = 1154 cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue(); 1155 if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) && 1156 IdxDiff.getSExtValue() == (CstValB - CstValA)) 1157 return true; 1158 } 1159 } 1160 return false; 1161 } 1162 1163 std::optional<APInt> Vectorizer::gtConstantOffsetComplexAddrs(Value *PtrA, 1164 Value *PtrB, 1165 unsigned Depth) { 1166 LLVM_DEBUG(dbgs() << "LSV: gtConstantOffsetComplexAddrs PtrA=" << *PtrA 1167 << " PtrB=" << *PtrB << " Depth=" << Depth << "\n"); 1168 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA); 1169 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB); 1170 if (!GEPA || !GEPB) 1171 return getConstantOffsetSelects(PtrA, PtrB, Depth); 1172 1173 // Look through GEPs after checking they're the same except for the last 1174 // index. 1175 if (GEPA->getNumOperands() != GEPB->getNumOperands() || 1176 GEPA->getPointerOperand() != GEPB->getPointerOperand()) 1177 return std::nullopt; 1178 gep_type_iterator GTIA = gep_type_begin(GEPA); 1179 gep_type_iterator GTIB = gep_type_begin(GEPB); 1180 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) { 1181 if (GTIA.getOperand() != GTIB.getOperand()) 1182 return std::nullopt; 1183 ++GTIA; 1184 ++GTIB; 1185 } 1186 1187 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand()); 1188 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand()); 1189 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 1190 OpA->getType() != OpB->getType()) 1191 return std::nullopt; 1192 1193 uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType()); 1194 1195 // Only look through a ZExt/SExt. 1196 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 1197 return std::nullopt; 1198 1199 bool Signed = isa<SExtInst>(OpA); 1200 1201 // At this point A could be a function parameter, i.e. not an instruction 1202 Value *ValA = OpA->getOperand(0); 1203 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 1204 if (!OpB || ValA->getType() != OpB->getType()) 1205 return std::nullopt; 1206 1207 const SCEV *OffsetSCEVA = SE.getSCEV(ValA); 1208 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 1209 const SCEV *IdxDiffSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1210 if (IdxDiffSCEV == SE.getCouldNotCompute()) 1211 return std::nullopt; 1212 1213 ConstantRange IdxDiffRange = SE.getSignedRange(IdxDiffSCEV); 1214 if (!IdxDiffRange.isSingleElement()) 1215 return std::nullopt; 1216 APInt IdxDiff = *IdxDiffRange.getSingleElement(); 1217 1218 LLVM_DEBUG(dbgs() << "LSV: gtConstantOffsetComplexAddrs IdxDiff=" << IdxDiff 1219 << "\n"); 1220 1221 // Now we need to prove that adding IdxDiff to ValA won't overflow. 1222 bool Safe = false; 1223 1224 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to 1225 // ValA, we're okay. 1226 if (OpB->getOpcode() == Instruction::Add && 1227 isa<ConstantInt>(OpB->getOperand(1)) && 1228 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) && 1229 checkNoWrapFlags(OpB, Signed)) 1230 Safe = true; 1231 1232 // Second attempt: check if we have eligible add NSW/NUW instruction 1233 // sequences. 1234 OpA = dyn_cast<Instruction>(ValA); 1235 if (!Safe && OpA && OpA->getOpcode() == Instruction::Add && 1236 OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) && 1237 checkNoWrapFlags(OpB, Signed)) { 1238 // In the checks below a matching operand in OpA and OpB is an operand which 1239 // is the same in those two instructions. Below we account for possible 1240 // orders of the operands of these add instructions. 1241 for (unsigned MatchingOpIdxA : {0, 1}) 1242 for (unsigned MatchingOpIdxB : {0, 1}) 1243 if (!Safe) 1244 Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB, 1245 MatchingOpIdxB, Signed); 1246 } 1247 1248 unsigned BitWidth = ValA->getType()->getScalarSizeInBits(); 1249 1250 // Third attempt: 1251 // 1252 // Assuming IdxDiff is positive: If all set bits of IdxDiff or any higher 1253 // order bit other than the sign bit are known to be zero in ValA, we can add 1254 // Diff to it while guaranteeing no overflow of any sort. 1255 // 1256 // If IdxDiff is negative, do the same, but swap ValA and ValB. 1257 if (!Safe) { 1258 // When computing known bits, use the GEPs as context instructions, since 1259 // they likely are in the same BB as the load/store. 1260 Instruction *ContextInst = GEPA->comesBefore(GEPB) ? GEPB : GEPA; 1261 KnownBits Known(BitWidth); 1262 computeKnownBits((IdxDiff.sge(0) ? ValA : OpB), Known, DL, 0, &AC, 1263 ContextInst, &DT); 1264 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth()); 1265 if (Signed) 1266 BitsAllowedToBeSet.clearBit(BitWidth - 1); 1267 if (BitsAllowedToBeSet.ult(IdxDiff.abs())) 1268 return std::nullopt; 1269 Safe = true; 1270 } 1271 1272 if (Safe) 1273 return IdxDiff * Stride; 1274 return std::nullopt; 1275 } 1276 1277 std::optional<APInt> 1278 Vectorizer::getConstantOffsetSelects(Value *PtrA, Value *PtrB, unsigned Depth) { 1279 if (Depth++ == MaxDepth) 1280 return std::nullopt; 1281 1282 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) { 1283 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) { 1284 if (SelectA->getCondition() != SelectB->getCondition()) 1285 return std::nullopt; 1286 LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetSelects, PtrA=" << *PtrA 1287 << ", PtrB=" << *PtrB << ", Depth=" << Depth << "\n"); 1288 std::optional<APInt> TrueDiff = getConstantOffset( 1289 SelectA->getTrueValue(), SelectB->getTrueValue(), Depth); 1290 if (!TrueDiff.has_value()) 1291 return std::nullopt; 1292 std::optional<APInt> FalseDiff = getConstantOffset( 1293 SelectA->getFalseValue(), SelectB->getFalseValue(), Depth); 1294 if (TrueDiff == FalseDiff) 1295 return TrueDiff; 1296 } 1297 } 1298 return std::nullopt; 1299 } 1300 1301 EquivalenceClassMap 1302 Vectorizer::collectEquivalenceClasses(BasicBlock::iterator Begin, 1303 BasicBlock::iterator End) { 1304 EquivalenceClassMap Ret; 1305 1306 auto getUnderlyingObject = [](const Value *Ptr) -> const Value * { 1307 const Value *ObjPtr = llvm::getUnderlyingObject(Ptr); 1308 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) { 1309 // The select's themselves are distinct instructions even if they share 1310 // the same condition and evaluate to consecutive pointers for true and 1311 // false values of the condition. Therefore using the select's themselves 1312 // for grouping instructions would put consecutive accesses into different 1313 // lists and they won't be even checked for being consecutive, and won't 1314 // be vectorized. 1315 return Sel->getCondition(); 1316 } 1317 return ObjPtr; 1318 }; 1319 1320 for (Instruction &I : make_range(Begin, End)) { 1321 auto *LI = dyn_cast<LoadInst>(&I); 1322 auto *SI = dyn_cast<StoreInst>(&I); 1323 if (!LI && !SI) 1324 continue; 1325 1326 if ((LI && !LI->isSimple()) || (SI && !SI->isSimple())) 1327 continue; 1328 1329 if ((LI && !TTI.isLegalToVectorizeLoad(LI)) || 1330 (SI && !TTI.isLegalToVectorizeStore(SI))) 1331 continue; 1332 1333 Type *Ty = getLoadStoreType(&I); 1334 if (!VectorType::isValidElementType(Ty->getScalarType())) 1335 continue; 1336 1337 // Skip weird non-byte sizes. They probably aren't worth the effort of 1338 // handling correctly. 1339 unsigned TySize = DL.getTypeSizeInBits(Ty); 1340 if ((TySize % 8) != 0) 1341 continue; 1342 1343 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 1344 // functions are currently using an integer type for the vectorized 1345 // load/store, and does not support casting between the integer type and a 1346 // vector of pointers (e.g. i64 to <2 x i16*>) 1347 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 1348 continue; 1349 1350 Value *Ptr = getLoadStorePointerOperand(&I); 1351 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1352 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 1353 1354 unsigned VF = VecRegSize / TySize; 1355 VectorType *VecTy = dyn_cast<VectorType>(Ty); 1356 1357 // Only handle power-of-two sized elements. 1358 if ((!VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(Ty))) || 1359 (VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(VecTy->getScalarType())))) 1360 continue; 1361 1362 // No point in looking at these if they're too big to vectorize. 1363 if (TySize > VecRegSize / 2 || 1364 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 1365 continue; 1366 1367 Ret[{getUnderlyingObject(Ptr), AS, 1368 DL.getTypeSizeInBits(getLoadStoreType(&I)->getScalarType()), 1369 /*IsLoad=*/LI != nullptr}] 1370 .push_back(&I); 1371 } 1372 1373 return Ret; 1374 } 1375 1376 std::vector<Chain> Vectorizer::gatherChains(ArrayRef<Instruction *> Instrs) { 1377 if (Instrs.empty()) 1378 return {}; 1379 1380 unsigned AS = getLoadStoreAddressSpace(Instrs[0]); 1381 unsigned ASPtrBits = DL.getIndexSizeInBits(AS); 1382 1383 #ifndef NDEBUG 1384 // Check that Instrs is in BB order and all have the same addr space. 1385 for (size_t I = 1; I < Instrs.size(); ++I) { 1386 assert(Instrs[I - 1]->comesBefore(Instrs[I])); 1387 assert(getLoadStoreAddressSpace(Instrs[I]) == AS); 1388 } 1389 #endif 1390 1391 // Machinery to build an MRU-hashtable of Chains. 1392 // 1393 // (Ideally this could be done with MapVector, but as currently implemented, 1394 // moving an element to the front of a MapVector is O(n).) 1395 struct InstrListElem : ilist_node<InstrListElem>, 1396 std::pair<Instruction *, Chain> { 1397 explicit InstrListElem(Instruction *I) 1398 : std::pair<Instruction *, Chain>(I, {}) {} 1399 }; 1400 struct InstrListElemDenseMapInfo { 1401 using PtrInfo = DenseMapInfo<InstrListElem *>; 1402 using IInfo = DenseMapInfo<Instruction *>; 1403 static InstrListElem *getEmptyKey() { return PtrInfo::getEmptyKey(); } 1404 static InstrListElem *getTombstoneKey() { 1405 return PtrInfo::getTombstoneKey(); 1406 } 1407 static unsigned getHashValue(const InstrListElem *E) { 1408 return IInfo::getHashValue(E->first); 1409 } 1410 static bool isEqual(const InstrListElem *A, const InstrListElem *B) { 1411 if (A == getEmptyKey() || B == getEmptyKey()) 1412 return A == getEmptyKey() && B == getEmptyKey(); 1413 if (A == getTombstoneKey() || B == getTombstoneKey()) 1414 return A == getTombstoneKey() && B == getTombstoneKey(); 1415 return IInfo::isEqual(A->first, B->first); 1416 } 1417 }; 1418 SpecificBumpPtrAllocator<InstrListElem> Allocator; 1419 simple_ilist<InstrListElem> MRU; 1420 DenseSet<InstrListElem *, InstrListElemDenseMapInfo> Chains; 1421 1422 // Compare each instruction in `instrs` to leader of the N most recently-used 1423 // chains. This limits the O(n^2) behavior of this pass while also allowing 1424 // us to build arbitrarily long chains. 1425 for (Instruction *I : Instrs) { 1426 constexpr int MaxChainsToTry = 64; 1427 1428 bool MatchFound = false; 1429 auto ChainIter = MRU.begin(); 1430 for (size_t J = 0; J < MaxChainsToTry && ChainIter != MRU.end(); 1431 ++J, ++ChainIter) { 1432 std::optional<APInt> Offset = 1433 getConstantOffset(getLoadStorePointerOperand(ChainIter->first), 1434 getLoadStorePointerOperand(I)); 1435 if (Offset.has_value()) { 1436 // `Offset` might not have the expected number of bits, if e.g. AS has a 1437 // different number of bits than opaque pointers. 1438 ChainIter->second.push_back( 1439 ChainElem{I, Offset.value().sextOrTrunc(ASPtrBits)}); 1440 // Move ChainIter to the front of the MRU list. 1441 MRU.remove(*ChainIter); 1442 MRU.push_front(*ChainIter); 1443 MatchFound = true; 1444 break; 1445 } 1446 } 1447 1448 if (!MatchFound) { 1449 APInt ZeroOffset(ASPtrBits, 0); 1450 InstrListElem *E = new (Allocator.Allocate()) InstrListElem(I); 1451 E->second.push_back(ChainElem{I, ZeroOffset}); 1452 MRU.push_front(*E); 1453 Chains.insert(E); 1454 } 1455 } 1456 1457 std::vector<Chain> Ret; 1458 Ret.reserve(Chains.size()); 1459 // Iterate over MRU rather than Chains so the order is deterministic. 1460 for (auto &E : MRU) 1461 if (E.second.size() > 1) 1462 Ret.push_back(std::move(E.second)); 1463 return Ret; 1464 } 1465 1466 std::optional<APInt> Vectorizer::getConstantOffset(Value *PtrA, Value *PtrB, 1467 unsigned Depth) { 1468 LLVM_DEBUG(dbgs() << "LSV: getConstantOffset, PtrA=" << *PtrA 1469 << ", PtrB=" << *PtrB << ", Depth=" << Depth << "\n"); 1470 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(PtrA->getType()); 1471 APInt OffsetA(OffsetBitWidth, 0); 1472 APInt OffsetB(OffsetBitWidth, 0); 1473 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1474 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1475 unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType()); 1476 if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType())) 1477 return std::nullopt; 1478 1479 // If we have to shrink the pointer, stripAndAccumulateInBoundsConstantOffsets 1480 // should properly handle a possible overflow and the value should fit into 1481 // the smallest data type used in the cast/gep chain. 1482 assert(OffsetA.getSignificantBits() <= NewPtrBitWidth && 1483 OffsetB.getSignificantBits() <= NewPtrBitWidth); 1484 1485 OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth); 1486 OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth); 1487 if (PtrA == PtrB) 1488 return OffsetB - OffsetA; 1489 1490 // Try to compute B - A. 1491 const SCEV *DistScev = SE.getMinusSCEV(SE.getSCEV(PtrB), SE.getSCEV(PtrA)); 1492 if (DistScev != SE.getCouldNotCompute()) { 1493 LLVM_DEBUG(dbgs() << "LSV: SCEV PtrB - PtrA =" << *DistScev << "\n"); 1494 ConstantRange DistRange = SE.getSignedRange(DistScev); 1495 if (DistRange.isSingleElement()) 1496 return OffsetB - OffsetA + *DistRange.getSingleElement(); 1497 } 1498 std::optional<APInt> Diff = gtConstantOffsetComplexAddrs(PtrA, PtrB, Depth); 1499 if (Diff.has_value()) 1500 return OffsetB - OffsetA + Diff->sext(OffsetB.getBitWidth()); 1501 return std::nullopt; 1502 } 1503