1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass merges loads/stores to/from sequential memory addresses into vector 10 // loads/stores. Although there's nothing GPU-specific in here, this pass is 11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs. 12 // 13 // (For simplicity below we talk about loads only, but everything also applies 14 // to stores.) 15 // 16 // This pass is intended to be run late in the pipeline, after other 17 // vectorization opportunities have been exploited. So the assumption here is 18 // that immediately following our new vector load we'll need to extract out the 19 // individual elements of the load, so we can operate on them individually. 20 // 21 // On CPUs this transformation is usually not beneficial, because extracting the 22 // elements of a vector register is expensive on most architectures. It's 23 // usually better just to load each element individually into its own scalar 24 // register. 25 // 26 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a 27 // "vector load" loads directly into a series of scalar registers. In effect, 28 // extracting the elements of the vector is free. It's therefore always 29 // beneficial to vectorize a sequence of loads on these architectures. 30 // 31 // Vectorizing (perhaps a better name might be "coalescing") loads can have 32 // large performance impacts on GPU kernels, and opportunities for vectorizing 33 // are common in GPU code. This pass tries very hard to find such 34 // opportunities; its runtime is quadratic in the number of loads in a BB. 35 // 36 // Some CPU architectures, such as ARM, have instructions that load into 37 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM 38 // could use this pass (with some modifications), but currently it implements 39 // its own pass to do something similar to what we do here. 40 // 41 // Overview of the algorithm and terminology in this pass: 42 // 43 // - Break up each basic block into pseudo-BBs, composed of instructions which 44 // are guaranteed to transfer control to their successors. 45 // - Within a single pseudo-BB, find all loads, and group them into 46 // "equivalence classes" according to getUnderlyingObject() and loaded 47 // element size. Do the same for stores. 48 // - For each equivalence class, greedily build "chains". Each chain has a 49 // leader instruction, and every other member of the chain has a known 50 // constant offset from the first instr in the chain. 51 // - Break up chains so that they contain only contiguous accesses of legal 52 // size with no intervening may-alias instrs. 53 // - Convert each chain to vector instructions. 54 // 55 // The O(n^2) behavior of this pass comes from initially building the chains. 56 // In the worst case we have to compare each new instruction to all of those 57 // that came before. To limit this, we only calculate the offset to the leaders 58 // of the N most recently-used chains. 59 60 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/MapVector.h" 65 #include "llvm/ADT/PostOrderIterator.h" 66 #include "llvm/ADT/STLExtras.h" 67 #include "llvm/ADT/Sequence.h" 68 #include "llvm/ADT/SmallPtrSet.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/ADT/iterator_range.h" 72 #include "llvm/Analysis/AliasAnalysis.h" 73 #include "llvm/Analysis/AssumptionCache.h" 74 #include "llvm/Analysis/MemoryLocation.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/TargetTransformInfo.h" 77 #include "llvm/Analysis/ValueTracking.h" 78 #include "llvm/Analysis/VectorUtils.h" 79 #include "llvm/IR/Attributes.h" 80 #include "llvm/IR/BasicBlock.h" 81 #include "llvm/IR/ConstantRange.h" 82 #include "llvm/IR/Constants.h" 83 #include "llvm/IR/DataLayout.h" 84 #include "llvm/IR/DerivedTypes.h" 85 #include "llvm/IR/Dominators.h" 86 #include "llvm/IR/Function.h" 87 #include "llvm/IR/GetElementPtrTypeIterator.h" 88 #include "llvm/IR/IRBuilder.h" 89 #include "llvm/IR/InstrTypes.h" 90 #include "llvm/IR/Instruction.h" 91 #include "llvm/IR/Instructions.h" 92 #include "llvm/IR/LLVMContext.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/InitializePasses.h" 97 #include "llvm/Pass.h" 98 #include "llvm/Support/Alignment.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/KnownBits.h" 102 #include "llvm/Support/MathExtras.h" 103 #include "llvm/Support/ModRef.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <algorithm> 107 #include <cassert> 108 #include <cstdint> 109 #include <cstdlib> 110 #include <iterator> 111 #include <numeric> 112 #include <optional> 113 #include <tuple> 114 #include <type_traits> 115 #include <utility> 116 #include <vector> 117 118 using namespace llvm; 119 120 #define DEBUG_TYPE "load-store-vectorizer" 121 122 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 123 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 124 125 namespace { 126 127 // Equivalence class key, the initial tuple by which we group loads/stores. 128 // Loads/stores with different EqClassKeys are never merged. 129 // 130 // (We could in theory remove element-size from the this tuple. We'd just need 131 // to fix up the vector packing/unpacking code.) 132 using EqClassKey = 133 std::tuple<const Value * /* result of getUnderlyingObject() */, 134 unsigned /* AddrSpace */, 135 unsigned /* Load/Store element size bits */, 136 char /* IsLoad; char b/c bool can't be a DenseMap key */ 137 >; 138 [[maybe_unused]] llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 139 const EqClassKey &K) { 140 const auto &[UnderlyingObject, AddrSpace, ElementSize, IsLoad] = K; 141 return OS << (IsLoad ? "load" : "store") << " of " << *UnderlyingObject 142 << " of element size " << ElementSize << " bits in addrspace " 143 << AddrSpace; 144 } 145 146 // A Chain is a set of instructions such that: 147 // - All instructions have the same equivalence class, so in particular all are 148 // loads, or all are stores. 149 // - We know the address accessed by the i'th chain elem relative to the 150 // chain's leader instruction, which is the first instr of the chain in BB 151 // order. 152 // 153 // Chains have two canonical orderings: 154 // - BB order, sorted by Instr->comesBefore. 155 // - Offset order, sorted by OffsetFromLeader. 156 // This pass switches back and forth between these orders. 157 struct ChainElem { 158 Instruction *Inst; 159 APInt OffsetFromLeader; 160 ChainElem(Instruction *Inst, APInt OffsetFromLeader) 161 : Inst(std::move(Inst)), OffsetFromLeader(std::move(OffsetFromLeader)) {} 162 }; 163 using Chain = SmallVector<ChainElem, 1>; 164 165 void sortChainInBBOrder(Chain &C) { 166 sort(C, [](auto &A, auto &B) { return A.Inst->comesBefore(B.Inst); }); 167 } 168 169 void sortChainInOffsetOrder(Chain &C) { 170 sort(C, [](const auto &A, const auto &B) { 171 if (A.OffsetFromLeader != B.OffsetFromLeader) 172 return A.OffsetFromLeader.slt(B.OffsetFromLeader); 173 return A.Inst->comesBefore(B.Inst); // stable tiebreaker 174 }); 175 } 176 177 [[maybe_unused]] void dumpChain(ArrayRef<ChainElem> C) { 178 for (const auto &E : C) { 179 dbgs() << " " << *E.Inst << " (offset " << E.OffsetFromLeader << ")\n"; 180 } 181 } 182 183 using EquivalenceClassMap = 184 MapVector<EqClassKey, SmallVector<Instruction *, 8>>; 185 186 // FIXME: Assuming stack alignment of 4 is always good enough 187 constexpr unsigned StackAdjustedAlignment = 4; 188 189 Instruction *propagateMetadata(Instruction *I, const Chain &C) { 190 SmallVector<Value *, 8> Values; 191 for (const ChainElem &E : C) 192 Values.emplace_back(E.Inst); 193 return propagateMetadata(I, Values); 194 } 195 196 bool isInvariantLoad(const Instruction *I) { 197 const LoadInst *LI = dyn_cast<LoadInst>(I); 198 return LI != nullptr && LI->hasMetadata(LLVMContext::MD_invariant_load); 199 } 200 201 /// Reorders the instructions that I depends on (the instructions defining its 202 /// operands), to ensure they dominate I. 203 void reorder(Instruction *I) { 204 SmallPtrSet<Instruction *, 16> InstructionsToMove; 205 SmallVector<Instruction *, 16> Worklist; 206 207 Worklist.emplace_back(I); 208 while (!Worklist.empty()) { 209 Instruction *IW = Worklist.pop_back_val(); 210 int NumOperands = IW->getNumOperands(); 211 for (int Idx = 0; Idx < NumOperands; Idx++) { 212 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(Idx)); 213 if (!IM || IM->getOpcode() == Instruction::PHI) 214 continue; 215 216 // If IM is in another BB, no need to move it, because this pass only 217 // vectorizes instructions within one BB. 218 if (IM->getParent() != I->getParent()) 219 continue; 220 221 assert(IM != I && "Unexpected cycle while re-ordering instructions"); 222 223 if (!IM->comesBefore(I)) { 224 InstructionsToMove.insert(IM); 225 Worklist.emplace_back(IM); 226 } 227 } 228 } 229 230 // All instructions to move should follow I. Start from I, not from begin(). 231 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;) { 232 Instruction *IM = &*(BBI++); 233 if (!InstructionsToMove.contains(IM)) 234 continue; 235 IM->moveBefore(I); 236 } 237 } 238 239 class Vectorizer { 240 Function &F; 241 AliasAnalysis &AA; 242 AssumptionCache &AC; 243 DominatorTree &DT; 244 ScalarEvolution &SE; 245 TargetTransformInfo &TTI; 246 const DataLayout &DL; 247 IRBuilder<> Builder; 248 249 // We could erase instrs right after vectorizing them, but that can mess up 250 // our BB iterators, and also can make the equivalence class keys point to 251 // freed memory. This is fixable, but it's simpler just to wait until we're 252 // done with the BB and erase all at once. 253 SmallVector<Instruction *, 128> ToErase; 254 255 public: 256 Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC, 257 DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI) 258 : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI), 259 DL(F.getDataLayout()), Builder(SE.getContext()) {} 260 261 bool run(); 262 263 private: 264 static const unsigned MaxDepth = 3; 265 266 /// Runs the vectorizer on a "pseudo basic block", which is a range of 267 /// instructions [Begin, End) within one BB all of which have 268 /// isGuaranteedToTransferExecutionToSuccessor(I) == true. 269 bool runOnPseudoBB(BasicBlock::iterator Begin, BasicBlock::iterator End); 270 271 /// Runs the vectorizer on one equivalence class, i.e. one set of loads/stores 272 /// in the same BB with the same value for getUnderlyingObject() etc. 273 bool runOnEquivalenceClass(const EqClassKey &EqClassKey, 274 ArrayRef<Instruction *> EqClass); 275 276 /// Runs the vectorizer on one chain, i.e. a subset of an equivalence class 277 /// where all instructions access a known, constant offset from the first 278 /// instruction. 279 bool runOnChain(Chain &C); 280 281 /// Splits the chain into subchains of instructions which read/write a 282 /// contiguous block of memory. Discards any length-1 subchains (because 283 /// there's nothing to vectorize in there). 284 std::vector<Chain> splitChainByContiguity(Chain &C); 285 286 /// Splits the chain into subchains where it's safe to hoist loads up to the 287 /// beginning of the sub-chain and it's safe to sink loads up to the end of 288 /// the sub-chain. Discards any length-1 subchains. 289 std::vector<Chain> splitChainByMayAliasInstrs(Chain &C); 290 291 /// Splits the chain into subchains that make legal, aligned accesses. 292 /// Discards any length-1 subchains. 293 std::vector<Chain> splitChainByAlignment(Chain &C); 294 295 /// Converts the instrs in the chain into a single vectorized load or store. 296 /// Adds the old scalar loads/stores to ToErase. 297 bool vectorizeChain(Chain &C); 298 299 /// Tries to compute the offset in bytes PtrB - PtrA. 300 std::optional<APInt> getConstantOffset(Value *PtrA, Value *PtrB, 301 Instruction *ContextInst, 302 unsigned Depth = 0); 303 std::optional<APInt> getConstantOffsetComplexAddrs(Value *PtrA, Value *PtrB, 304 Instruction *ContextInst, 305 unsigned Depth); 306 std::optional<APInt> getConstantOffsetSelects(Value *PtrA, Value *PtrB, 307 Instruction *ContextInst, 308 unsigned Depth); 309 310 /// Gets the element type of the vector that the chain will load or store. 311 /// This is nontrivial because the chain may contain elements of different 312 /// types; e.g. it's legal to have a chain that contains both i32 and float. 313 Type *getChainElemTy(const Chain &C); 314 315 /// Determines whether ChainElem can be moved up (if IsLoad) or down (if 316 /// !IsLoad) to ChainBegin -- i.e. there are no intervening may-alias 317 /// instructions. 318 /// 319 /// The map ChainElemOffsets must contain all of the elements in 320 /// [ChainBegin, ChainElem] and their offsets from some arbitrary base 321 /// address. It's ok if it contains additional entries. 322 template <bool IsLoadChain> 323 bool isSafeToMove( 324 Instruction *ChainElem, Instruction *ChainBegin, 325 const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets); 326 327 /// Collects loads and stores grouped by "equivalence class", where: 328 /// - all elements in an eq class are a load or all are a store, 329 /// - they all load/store the same element size (it's OK to have e.g. i8 and 330 /// <4 x i8> in the same class, but not i32 and <4 x i8>), and 331 /// - they all have the same value for getUnderlyingObject(). 332 EquivalenceClassMap collectEquivalenceClasses(BasicBlock::iterator Begin, 333 BasicBlock::iterator End); 334 335 /// Partitions Instrs into "chains" where every instruction has a known 336 /// constant offset from the first instr in the chain. 337 /// 338 /// Postcondition: For all i, ret[i][0].second == 0, because the first instr 339 /// in the chain is the leader, and an instr touches distance 0 from itself. 340 std::vector<Chain> gatherChains(ArrayRef<Instruction *> Instrs); 341 }; 342 343 class LoadStoreVectorizerLegacyPass : public FunctionPass { 344 public: 345 static char ID; 346 347 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) { 348 initializeLoadStoreVectorizerLegacyPassPass( 349 *PassRegistry::getPassRegistry()); 350 } 351 352 bool runOnFunction(Function &F) override; 353 354 StringRef getPassName() const override { 355 return "GPU Load and Store Vectorizer"; 356 } 357 358 void getAnalysisUsage(AnalysisUsage &AU) const override { 359 AU.addRequired<AAResultsWrapperPass>(); 360 AU.addRequired<AssumptionCacheTracker>(); 361 AU.addRequired<ScalarEvolutionWrapperPass>(); 362 AU.addRequired<DominatorTreeWrapperPass>(); 363 AU.addRequired<TargetTransformInfoWrapperPass>(); 364 AU.setPreservesCFG(); 365 } 366 }; 367 368 } // end anonymous namespace 369 370 char LoadStoreVectorizerLegacyPass::ID = 0; 371 372 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 373 "Vectorize load and Store instructions", false, false) 374 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 375 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker); 376 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 377 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 378 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 379 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 380 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 381 "Vectorize load and store instructions", false, false) 382 383 Pass *llvm::createLoadStoreVectorizerPass() { 384 return new LoadStoreVectorizerLegacyPass(); 385 } 386 387 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) { 388 // Don't vectorize when the attribute NoImplicitFloat is used. 389 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 390 return false; 391 392 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 393 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 394 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 395 TargetTransformInfo &TTI = 396 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 397 398 AssumptionCache &AC = 399 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 400 401 return Vectorizer(F, AA, AC, DT, SE, TTI).run(); 402 } 403 404 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, 405 FunctionAnalysisManager &AM) { 406 // Don't vectorize when the attribute NoImplicitFloat is used. 407 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 408 return PreservedAnalyses::all(); 409 410 AliasAnalysis &AA = AM.getResult<AAManager>(F); 411 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 412 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 413 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 414 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 415 416 bool Changed = Vectorizer(F, AA, AC, DT, SE, TTI).run(); 417 PreservedAnalyses PA; 418 PA.preserveSet<CFGAnalyses>(); 419 return Changed ? PA : PreservedAnalyses::all(); 420 } 421 422 bool Vectorizer::run() { 423 bool Changed = false; 424 // Break up the BB if there are any instrs which aren't guaranteed to transfer 425 // execution to their successor. 426 // 427 // Consider, for example: 428 // 429 // def assert_arr_len(int n) { if (n < 2) exit(); } 430 // 431 // load arr[0] 432 // call assert_array_len(arr.length) 433 // load arr[1] 434 // 435 // Even though assert_arr_len does not read or write any memory, we can't 436 // speculate the second load before the call. More info at 437 // https://github.com/llvm/llvm-project/issues/52950. 438 for (BasicBlock *BB : post_order(&F)) { 439 // BB must at least have a terminator. 440 assert(!BB->empty()); 441 442 SmallVector<BasicBlock::iterator, 8> Barriers; 443 Barriers.emplace_back(BB->begin()); 444 for (Instruction &I : *BB) 445 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 446 Barriers.emplace_back(I.getIterator()); 447 Barriers.emplace_back(BB->end()); 448 449 for (auto It = Barriers.begin(), End = std::prev(Barriers.end()); It != End; 450 ++It) 451 Changed |= runOnPseudoBB(*It, *std::next(It)); 452 453 for (Instruction *I : ToErase) { 454 auto *PtrOperand = getLoadStorePointerOperand(I); 455 if (I->use_empty()) 456 I->eraseFromParent(); 457 RecursivelyDeleteTriviallyDeadInstructions(PtrOperand); 458 } 459 ToErase.clear(); 460 } 461 462 return Changed; 463 } 464 465 bool Vectorizer::runOnPseudoBB(BasicBlock::iterator Begin, 466 BasicBlock::iterator End) { 467 LLVM_DEBUG({ 468 dbgs() << "LSV: Running on pseudo-BB [" << *Begin << " ... "; 469 if (End != Begin->getParent()->end()) 470 dbgs() << *End; 471 else 472 dbgs() << "<BB end>"; 473 dbgs() << ")\n"; 474 }); 475 476 bool Changed = false; 477 for (const auto &[EqClassKey, EqClass] : 478 collectEquivalenceClasses(Begin, End)) 479 Changed |= runOnEquivalenceClass(EqClassKey, EqClass); 480 481 return Changed; 482 } 483 484 bool Vectorizer::runOnEquivalenceClass(const EqClassKey &EqClassKey, 485 ArrayRef<Instruction *> EqClass) { 486 bool Changed = false; 487 488 LLVM_DEBUG({ 489 dbgs() << "LSV: Running on equivalence class of size " << EqClass.size() 490 << " keyed on " << EqClassKey << ":\n"; 491 for (Instruction *I : EqClass) 492 dbgs() << " " << *I << "\n"; 493 }); 494 495 std::vector<Chain> Chains = gatherChains(EqClass); 496 LLVM_DEBUG(dbgs() << "LSV: Got " << Chains.size() 497 << " nontrivial chains.\n";); 498 for (Chain &C : Chains) 499 Changed |= runOnChain(C); 500 return Changed; 501 } 502 503 bool Vectorizer::runOnChain(Chain &C) { 504 LLVM_DEBUG({ 505 dbgs() << "LSV: Running on chain with " << C.size() << " instructions:\n"; 506 dumpChain(C); 507 }); 508 509 // Split up the chain into increasingly smaller chains, until we can finally 510 // vectorize the chains. 511 // 512 // (Don't be scared by the depth of the loop nest here. These operations are 513 // all at worst O(n lg n) in the number of instructions, and splitting chains 514 // doesn't change the number of instrs. So the whole loop nest is O(n lg n).) 515 bool Changed = false; 516 for (auto &C : splitChainByMayAliasInstrs(C)) 517 for (auto &C : splitChainByContiguity(C)) 518 for (auto &C : splitChainByAlignment(C)) 519 Changed |= vectorizeChain(C); 520 return Changed; 521 } 522 523 std::vector<Chain> Vectorizer::splitChainByMayAliasInstrs(Chain &C) { 524 if (C.empty()) 525 return {}; 526 527 sortChainInBBOrder(C); 528 529 LLVM_DEBUG({ 530 dbgs() << "LSV: splitChainByMayAliasInstrs considering chain:\n"; 531 dumpChain(C); 532 }); 533 534 // We know that elements in the chain with nonverlapping offsets can't 535 // alias, but AA may not be smart enough to figure this out. Use a 536 // hashtable. 537 DenseMap<Instruction *, APInt /*OffsetFromLeader*/> ChainOffsets; 538 for (const auto &E : C) 539 ChainOffsets.insert({&*E.Inst, E.OffsetFromLeader}); 540 541 // Loads get hoisted up to the first load in the chain. Stores get sunk 542 // down to the last store in the chain. Our algorithm for loads is: 543 // 544 // - Take the first element of the chain. This is the start of a new chain. 545 // - Take the next element of `Chain` and check for may-alias instructions 546 // up to the start of NewChain. If no may-alias instrs, add it to 547 // NewChain. Otherwise, start a new NewChain. 548 // 549 // For stores it's the same except in the reverse direction. 550 // 551 // We expect IsLoad to be an std::bool_constant. 552 auto Impl = [&](auto IsLoad) { 553 // MSVC is unhappy if IsLoad is a capture, so pass it as an arg. 554 auto [ChainBegin, ChainEnd] = [&](auto IsLoad) { 555 if constexpr (IsLoad()) 556 return std::make_pair(C.begin(), C.end()); 557 else 558 return std::make_pair(C.rbegin(), C.rend()); 559 }(IsLoad); 560 assert(ChainBegin != ChainEnd); 561 562 std::vector<Chain> Chains; 563 SmallVector<ChainElem, 1> NewChain; 564 NewChain.emplace_back(*ChainBegin); 565 for (auto ChainIt = std::next(ChainBegin); ChainIt != ChainEnd; ++ChainIt) { 566 if (isSafeToMove<IsLoad>(ChainIt->Inst, NewChain.front().Inst, 567 ChainOffsets)) { 568 LLVM_DEBUG(dbgs() << "LSV: No intervening may-alias instrs; can merge " 569 << *ChainIt->Inst << " into " << *ChainBegin->Inst 570 << "\n"); 571 NewChain.emplace_back(*ChainIt); 572 } else { 573 LLVM_DEBUG( 574 dbgs() << "LSV: Found intervening may-alias instrs; cannot merge " 575 << *ChainIt->Inst << " into " << *ChainBegin->Inst << "\n"); 576 if (NewChain.size() > 1) { 577 LLVM_DEBUG({ 578 dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n"; 579 dumpChain(NewChain); 580 }); 581 Chains.emplace_back(std::move(NewChain)); 582 } 583 584 // Start a new chain. 585 NewChain = SmallVector<ChainElem, 1>({*ChainIt}); 586 } 587 } 588 if (NewChain.size() > 1) { 589 LLVM_DEBUG({ 590 dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n"; 591 dumpChain(NewChain); 592 }); 593 Chains.emplace_back(std::move(NewChain)); 594 } 595 return Chains; 596 }; 597 598 if (isa<LoadInst>(C[0].Inst)) 599 return Impl(/*IsLoad=*/std::bool_constant<true>()); 600 601 assert(isa<StoreInst>(C[0].Inst)); 602 return Impl(/*IsLoad=*/std::bool_constant<false>()); 603 } 604 605 std::vector<Chain> Vectorizer::splitChainByContiguity(Chain &C) { 606 if (C.empty()) 607 return {}; 608 609 sortChainInOffsetOrder(C); 610 611 LLVM_DEBUG({ 612 dbgs() << "LSV: splitChainByContiguity considering chain:\n"; 613 dumpChain(C); 614 }); 615 616 std::vector<Chain> Ret; 617 Ret.push_back({C.front()}); 618 619 for (auto It = std::next(C.begin()), End = C.end(); It != End; ++It) { 620 // `prev` accesses offsets [PrevDistFromBase, PrevReadEnd). 621 auto &CurChain = Ret.back(); 622 const ChainElem &Prev = CurChain.back(); 623 unsigned SzBits = DL.getTypeSizeInBits(getLoadStoreType(&*Prev.Inst)); 624 assert(SzBits % 8 == 0 && "Non-byte sizes should have been filtered out by " 625 "collectEquivalenceClass"); 626 APInt PrevReadEnd = Prev.OffsetFromLeader + SzBits / 8; 627 628 // Add this instruction to the end of the current chain, or start a new one. 629 bool AreContiguous = It->OffsetFromLeader == PrevReadEnd; 630 LLVM_DEBUG(dbgs() << "LSV: Instructions are " 631 << (AreContiguous ? "" : "not ") << "contiguous: " 632 << *Prev.Inst << " (ends at offset " << PrevReadEnd 633 << ") -> " << *It->Inst << " (starts at offset " 634 << It->OffsetFromLeader << ")\n"); 635 if (AreContiguous) 636 CurChain.push_back(*It); 637 else 638 Ret.push_back({*It}); 639 } 640 641 // Filter out length-1 chains, these are uninteresting. 642 llvm::erase_if(Ret, [](const auto &Chain) { return Chain.size() <= 1; }); 643 return Ret; 644 } 645 646 Type *Vectorizer::getChainElemTy(const Chain &C) { 647 assert(!C.empty()); 648 // The rules are: 649 // - If there are any pointer types in the chain, use an integer type. 650 // - Prefer an integer type if it appears in the chain. 651 // - Otherwise, use the first type in the chain. 652 // 653 // The rule about pointer types is a simplification when we merge e.g. a load 654 // of a ptr and a double. There's no direct conversion from a ptr to a 655 // double; it requires a ptrtoint followed by a bitcast. 656 // 657 // It's unclear to me if the other rules have any practical effect, but we do 658 // it to match this pass's previous behavior. 659 if (any_of(C, [](const ChainElem &E) { 660 return getLoadStoreType(E.Inst)->getScalarType()->isPointerTy(); 661 })) { 662 return Type::getIntNTy( 663 F.getContext(), 664 DL.getTypeSizeInBits(getLoadStoreType(C[0].Inst)->getScalarType())); 665 } 666 667 for (const ChainElem &E : C) 668 if (Type *T = getLoadStoreType(E.Inst)->getScalarType(); T->isIntegerTy()) 669 return T; 670 return getLoadStoreType(C[0].Inst)->getScalarType(); 671 } 672 673 std::vector<Chain> Vectorizer::splitChainByAlignment(Chain &C) { 674 // We use a simple greedy algorithm. 675 // - Given a chain of length N, find all prefixes that 676 // (a) are not longer than the max register length, and 677 // (b) are a power of 2. 678 // - Starting from the longest prefix, try to create a vector of that length. 679 // - If one of them works, great. Repeat the algorithm on any remaining 680 // elements in the chain. 681 // - If none of them work, discard the first element and repeat on a chain 682 // of length N-1. 683 if (C.empty()) 684 return {}; 685 686 sortChainInOffsetOrder(C); 687 688 LLVM_DEBUG({ 689 dbgs() << "LSV: splitChainByAlignment considering chain:\n"; 690 dumpChain(C); 691 }); 692 693 bool IsLoadChain = isa<LoadInst>(C[0].Inst); 694 auto GetVectorFactor = [&](unsigned VF, unsigned LoadStoreSize, 695 unsigned ChainSizeBytes, VectorType *VecTy) { 696 return IsLoadChain ? TTI.getLoadVectorFactor(VF, LoadStoreSize, 697 ChainSizeBytes, VecTy) 698 : TTI.getStoreVectorFactor(VF, LoadStoreSize, 699 ChainSizeBytes, VecTy); 700 }; 701 702 #ifndef NDEBUG 703 for (const auto &E : C) { 704 Type *Ty = getLoadStoreType(E.Inst)->getScalarType(); 705 assert(isPowerOf2_32(DL.getTypeSizeInBits(Ty)) && 706 "Should have filtered out non-power-of-two elements in " 707 "collectEquivalenceClasses."); 708 } 709 #endif 710 711 unsigned AS = getLoadStoreAddressSpace(C[0].Inst); 712 unsigned VecRegBytes = TTI.getLoadStoreVecRegBitWidth(AS) / 8; 713 714 std::vector<Chain> Ret; 715 for (unsigned CBegin = 0; CBegin < C.size(); ++CBegin) { 716 // Find candidate chains of size not greater than the largest vector reg. 717 // These chains are over the closed interval [CBegin, CEnd]. 718 SmallVector<std::pair<unsigned /*CEnd*/, unsigned /*SizeBytes*/>, 8> 719 CandidateChains; 720 for (unsigned CEnd = CBegin + 1, Size = C.size(); CEnd < Size; ++CEnd) { 721 APInt Sz = C[CEnd].OffsetFromLeader + 722 DL.getTypeStoreSize(getLoadStoreType(C[CEnd].Inst)) - 723 C[CBegin].OffsetFromLeader; 724 if (Sz.sgt(VecRegBytes)) 725 break; 726 CandidateChains.emplace_back(CEnd, 727 static_cast<unsigned>(Sz.getLimitedValue())); 728 } 729 730 // Consider the longest chain first. 731 for (auto It = CandidateChains.rbegin(), End = CandidateChains.rend(); 732 It != End; ++It) { 733 auto [CEnd, SizeBytes] = *It; 734 LLVM_DEBUG( 735 dbgs() << "LSV: splitChainByAlignment considering candidate chain [" 736 << *C[CBegin].Inst << " ... " << *C[CEnd].Inst << "]\n"); 737 738 Type *VecElemTy = getChainElemTy(C); 739 // Note, VecElemTy is a power of 2, but might be less than one byte. For 740 // example, we can vectorize 2 x <2 x i4> to <4 x i4>, and in this case 741 // VecElemTy would be i4. 742 unsigned VecElemBits = DL.getTypeSizeInBits(VecElemTy); 743 744 // SizeBytes and VecElemBits are powers of 2, so they divide evenly. 745 assert((8 * SizeBytes) % VecElemBits == 0); 746 unsigned NumVecElems = 8 * SizeBytes / VecElemBits; 747 FixedVectorType *VecTy = FixedVectorType::get(VecElemTy, NumVecElems); 748 unsigned VF = 8 * VecRegBytes / VecElemBits; 749 750 // Check that TTI is happy with this vectorization factor. 751 unsigned TargetVF = GetVectorFactor(VF, VecElemBits, 752 VecElemBits * NumVecElems / 8, VecTy); 753 if (TargetVF != VF && TargetVF < NumVecElems) { 754 LLVM_DEBUG( 755 dbgs() << "LSV: splitChainByAlignment discarding candidate chain " 756 "because TargetVF=" 757 << TargetVF << " != VF=" << VF 758 << " and TargetVF < NumVecElems=" << NumVecElems << "\n"); 759 continue; 760 } 761 762 // Is a load/store with this alignment allowed by TTI and at least as fast 763 // as an unvectorized load/store? 764 // 765 // TTI and F are passed as explicit captures to WAR an MSVC misparse (??). 766 auto IsAllowedAndFast = [&, SizeBytes = SizeBytes, &TTI = TTI, 767 &F = F](Align Alignment) { 768 if (Alignment.value() % SizeBytes == 0) 769 return true; 770 unsigned VectorizedSpeed = 0; 771 bool AllowsMisaligned = TTI.allowsMisalignedMemoryAccesses( 772 F.getContext(), SizeBytes * 8, AS, Alignment, &VectorizedSpeed); 773 if (!AllowsMisaligned) { 774 LLVM_DEBUG(dbgs() 775 << "LSV: Access of " << SizeBytes << "B in addrspace " 776 << AS << " with alignment " << Alignment.value() 777 << " is misaligned, and therefore can't be vectorized.\n"); 778 return false; 779 } 780 781 unsigned ElementwiseSpeed = 0; 782 (TTI).allowsMisalignedMemoryAccesses((F).getContext(), VecElemBits, AS, 783 Alignment, &ElementwiseSpeed); 784 if (VectorizedSpeed < ElementwiseSpeed) { 785 LLVM_DEBUG(dbgs() 786 << "LSV: Access of " << SizeBytes << "B in addrspace " 787 << AS << " with alignment " << Alignment.value() 788 << " has relative speed " << VectorizedSpeed 789 << ", which is lower than the elementwise speed of " 790 << ElementwiseSpeed 791 << ". Therefore this access won't be vectorized.\n"); 792 return false; 793 } 794 return true; 795 }; 796 797 // If we're loading/storing from an alloca, align it if possible. 798 // 799 // FIXME: We eagerly upgrade the alignment, regardless of whether TTI 800 // tells us this is beneficial. This feels a bit odd, but it matches 801 // existing tests. This isn't *so* bad, because at most we align to 4 802 // bytes (current value of StackAdjustedAlignment). 803 // 804 // FIXME: We will upgrade the alignment of the alloca even if it turns out 805 // we can't vectorize for some other reason. 806 Value *PtrOperand = getLoadStorePointerOperand(C[CBegin].Inst); 807 bool IsAllocaAccess = AS == DL.getAllocaAddrSpace() && 808 isa<AllocaInst>(PtrOperand->stripPointerCasts()); 809 Align Alignment = getLoadStoreAlignment(C[CBegin].Inst); 810 Align PrefAlign = Align(StackAdjustedAlignment); 811 if (IsAllocaAccess && Alignment.value() % SizeBytes != 0 && 812 IsAllowedAndFast(PrefAlign)) { 813 Align NewAlign = getOrEnforceKnownAlignment( 814 PtrOperand, PrefAlign, DL, C[CBegin].Inst, nullptr, &DT); 815 if (NewAlign >= Alignment) { 816 LLVM_DEBUG(dbgs() 817 << "LSV: splitByChain upgrading alloca alignment from " 818 << Alignment.value() << " to " << NewAlign.value() 819 << "\n"); 820 Alignment = NewAlign; 821 } 822 } 823 824 if (!IsAllowedAndFast(Alignment)) { 825 LLVM_DEBUG( 826 dbgs() << "LSV: splitChainByAlignment discarding candidate chain " 827 "because its alignment is not AllowedAndFast: " 828 << Alignment.value() << "\n"); 829 continue; 830 } 831 832 if ((IsLoadChain && 833 !TTI.isLegalToVectorizeLoadChain(SizeBytes, Alignment, AS)) || 834 (!IsLoadChain && 835 !TTI.isLegalToVectorizeStoreChain(SizeBytes, Alignment, AS))) { 836 LLVM_DEBUG( 837 dbgs() << "LSV: splitChainByAlignment discarding candidate chain " 838 "because !isLegalToVectorizeLoad/StoreChain."); 839 continue; 840 } 841 842 // Hooray, we can vectorize this chain! 843 Chain &NewChain = Ret.emplace_back(); 844 for (unsigned I = CBegin; I <= CEnd; ++I) 845 NewChain.emplace_back(C[I]); 846 CBegin = CEnd; // Skip over the instructions we've added to the chain. 847 break; 848 } 849 } 850 return Ret; 851 } 852 853 bool Vectorizer::vectorizeChain(Chain &C) { 854 if (C.size() < 2) 855 return false; 856 857 sortChainInOffsetOrder(C); 858 859 LLVM_DEBUG({ 860 dbgs() << "LSV: Vectorizing chain of " << C.size() << " instructions:\n"; 861 dumpChain(C); 862 }); 863 864 Type *VecElemTy = getChainElemTy(C); 865 bool IsLoadChain = isa<LoadInst>(C[0].Inst); 866 unsigned AS = getLoadStoreAddressSpace(C[0].Inst); 867 unsigned ChainBytes = std::accumulate( 868 C.begin(), C.end(), 0u, [&](unsigned Bytes, const ChainElem &E) { 869 return Bytes + DL.getTypeStoreSize(getLoadStoreType(E.Inst)); 870 }); 871 assert(ChainBytes % DL.getTypeStoreSize(VecElemTy) == 0); 872 // VecTy is a power of 2 and 1 byte at smallest, but VecElemTy may be smaller 873 // than 1 byte (e.g. VecTy == <32 x i1>). 874 Type *VecTy = FixedVectorType::get( 875 VecElemTy, 8 * ChainBytes / DL.getTypeSizeInBits(VecElemTy)); 876 877 Align Alignment = getLoadStoreAlignment(C[0].Inst); 878 // If this is a load/store of an alloca, we might have upgraded the alloca's 879 // alignment earlier. Get the new alignment. 880 if (AS == DL.getAllocaAddrSpace()) { 881 Alignment = std::max( 882 Alignment, 883 getOrEnforceKnownAlignment(getLoadStorePointerOperand(C[0].Inst), 884 MaybeAlign(), DL, C[0].Inst, nullptr, &DT)); 885 } 886 887 // All elements of the chain must have the same scalar-type size. 888 #ifndef NDEBUG 889 for (const ChainElem &E : C) 890 assert(DL.getTypeStoreSize(getLoadStoreType(E.Inst)->getScalarType()) == 891 DL.getTypeStoreSize(VecElemTy)); 892 #endif 893 894 Instruction *VecInst; 895 if (IsLoadChain) { 896 // Loads get hoisted to the location of the first load in the chain. We may 897 // also need to hoist the (transitive) operands of the loads. 898 Builder.SetInsertPoint( 899 llvm::min_element(C, [](const auto &A, const auto &B) { 900 return A.Inst->comesBefore(B.Inst); 901 })->Inst); 902 903 // Chain is in offset order, so C[0] is the instr with the lowest offset, 904 // i.e. the root of the vector. 905 VecInst = Builder.CreateAlignedLoad(VecTy, 906 getLoadStorePointerOperand(C[0].Inst), 907 Alignment); 908 909 unsigned VecIdx = 0; 910 for (const ChainElem &E : C) { 911 Instruction *I = E.Inst; 912 Value *V; 913 Type *T = getLoadStoreType(I); 914 if (auto *VT = dyn_cast<FixedVectorType>(T)) { 915 auto Mask = llvm::to_vector<8>( 916 llvm::seq<int>(VecIdx, VecIdx + VT->getNumElements())); 917 V = Builder.CreateShuffleVector(VecInst, Mask, I->getName()); 918 VecIdx += VT->getNumElements(); 919 } else { 920 V = Builder.CreateExtractElement(VecInst, Builder.getInt32(VecIdx), 921 I->getName()); 922 ++VecIdx; 923 } 924 if (V->getType() != I->getType()) 925 V = Builder.CreateBitOrPointerCast(V, I->getType()); 926 I->replaceAllUsesWith(V); 927 } 928 929 // Finally, we need to reorder the instrs in the BB so that the (transitive) 930 // operands of VecInst appear before it. To see why, suppose we have 931 // vectorized the following code: 932 // 933 // ptr1 = gep a, 1 934 // load1 = load i32 ptr1 935 // ptr0 = gep a, 0 936 // load0 = load i32 ptr0 937 // 938 // We will put the vectorized load at the location of the earliest load in 939 // the BB, i.e. load1. We get: 940 // 941 // ptr1 = gep a, 1 942 // loadv = load <2 x i32> ptr0 943 // load0 = extractelement loadv, 0 944 // load1 = extractelement loadv, 1 945 // ptr0 = gep a, 0 946 // 947 // Notice that loadv uses ptr0, which is defined *after* it! 948 reorder(VecInst); 949 } else { 950 // Stores get sunk to the location of the last store in the chain. 951 Builder.SetInsertPoint(llvm::max_element(C, [](auto &A, auto &B) { 952 return A.Inst->comesBefore(B.Inst); 953 })->Inst); 954 955 // Build the vector to store. 956 Value *Vec = PoisonValue::get(VecTy); 957 unsigned VecIdx = 0; 958 auto InsertElem = [&](Value *V) { 959 if (V->getType() != VecElemTy) 960 V = Builder.CreateBitOrPointerCast(V, VecElemTy); 961 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(VecIdx++)); 962 }; 963 for (const ChainElem &E : C) { 964 auto *I = cast<StoreInst>(E.Inst); 965 if (FixedVectorType *VT = 966 dyn_cast<FixedVectorType>(getLoadStoreType(I))) { 967 for (int J = 0, JE = VT->getNumElements(); J < JE; ++J) { 968 InsertElem(Builder.CreateExtractElement(I->getValueOperand(), 969 Builder.getInt32(J))); 970 } 971 } else { 972 InsertElem(I->getValueOperand()); 973 } 974 } 975 976 // Chain is in offset order, so C[0] is the instr with the lowest offset, 977 // i.e. the root of the vector. 978 VecInst = Builder.CreateAlignedStore( 979 Vec, 980 getLoadStorePointerOperand(C[0].Inst), 981 Alignment); 982 } 983 984 propagateMetadata(VecInst, C); 985 986 for (const ChainElem &E : C) 987 ToErase.emplace_back(E.Inst); 988 989 ++NumVectorInstructions; 990 NumScalarsVectorized += C.size(); 991 return true; 992 } 993 994 template <bool IsLoadChain> 995 bool Vectorizer::isSafeToMove( 996 Instruction *ChainElem, Instruction *ChainBegin, 997 const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets) { 998 LLVM_DEBUG(dbgs() << "LSV: isSafeToMove(" << *ChainElem << " -> " 999 << *ChainBegin << ")\n"); 1000 1001 assert(isa<LoadInst>(ChainElem) == IsLoadChain); 1002 if (ChainElem == ChainBegin) 1003 return true; 1004 1005 // Invariant loads can always be reordered; by definition they are not 1006 // clobbered by stores. 1007 if (isInvariantLoad(ChainElem)) 1008 return true; 1009 1010 auto BBIt = std::next([&] { 1011 if constexpr (IsLoadChain) 1012 return BasicBlock::reverse_iterator(ChainElem); 1013 else 1014 return BasicBlock::iterator(ChainElem); 1015 }()); 1016 auto BBItEnd = std::next([&] { 1017 if constexpr (IsLoadChain) 1018 return BasicBlock::reverse_iterator(ChainBegin); 1019 else 1020 return BasicBlock::iterator(ChainBegin); 1021 }()); 1022 1023 const APInt &ChainElemOffset = ChainOffsets.at(ChainElem); 1024 const unsigned ChainElemSize = 1025 DL.getTypeStoreSize(getLoadStoreType(ChainElem)); 1026 1027 for (; BBIt != BBItEnd; ++BBIt) { 1028 Instruction *I = &*BBIt; 1029 1030 if (!I->mayReadOrWriteMemory()) 1031 continue; 1032 1033 // Loads can be reordered with other loads. 1034 if (IsLoadChain && isa<LoadInst>(I)) 1035 continue; 1036 1037 // Stores can be sunk below invariant loads. 1038 if (!IsLoadChain && isInvariantLoad(I)) 1039 continue; 1040 1041 // If I is in the chain, we can tell whether it aliases ChainIt by checking 1042 // what offset ChainIt accesses. This may be better than AA is able to do. 1043 // 1044 // We should really only have duplicate offsets for stores (the duplicate 1045 // loads should be CSE'ed), but in case we have a duplicate load, we'll 1046 // split the chain so we don't have to handle this case specially. 1047 if (auto OffsetIt = ChainOffsets.find(I); OffsetIt != ChainOffsets.end()) { 1048 // I and ChainElem overlap if: 1049 // - I and ChainElem have the same offset, OR 1050 // - I's offset is less than ChainElem's, but I touches past the 1051 // beginning of ChainElem, OR 1052 // - ChainElem's offset is less than I's, but ChainElem touches past the 1053 // beginning of I. 1054 const APInt &IOffset = OffsetIt->second; 1055 unsigned IElemSize = DL.getTypeStoreSize(getLoadStoreType(I)); 1056 if (IOffset == ChainElemOffset || 1057 (IOffset.sle(ChainElemOffset) && 1058 (IOffset + IElemSize).sgt(ChainElemOffset)) || 1059 (ChainElemOffset.sle(IOffset) && 1060 (ChainElemOffset + ChainElemSize).sgt(OffsetIt->second))) { 1061 LLVM_DEBUG({ 1062 // Double check that AA also sees this alias. If not, we probably 1063 // have a bug. 1064 ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem)); 1065 assert(IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)); 1066 dbgs() << "LSV: Found alias in chain: " << *I << "\n"; 1067 }); 1068 return false; // We found an aliasing instruction; bail. 1069 } 1070 1071 continue; // We're confident there's no alias. 1072 } 1073 1074 LLVM_DEBUG(dbgs() << "LSV: Querying AA for " << *I << "\n"); 1075 ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem)); 1076 if (IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)) { 1077 LLVM_DEBUG(dbgs() << "LSV: Found alias in chain:\n" 1078 << " Aliasing instruction:\n" 1079 << " " << *I << '\n' 1080 << " Aliased instruction and pointer:\n" 1081 << " " << *ChainElem << '\n' 1082 << " " << *getLoadStorePointerOperand(ChainElem) 1083 << '\n'); 1084 1085 return false; 1086 } 1087 } 1088 return true; 1089 } 1090 1091 static bool checkNoWrapFlags(Instruction *I, bool Signed) { 1092 BinaryOperator *BinOpI = cast<BinaryOperator>(I); 1093 return (Signed && BinOpI->hasNoSignedWrap()) || 1094 (!Signed && BinOpI->hasNoUnsignedWrap()); 1095 } 1096 1097 static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA, 1098 unsigned MatchingOpIdxA, Instruction *AddOpB, 1099 unsigned MatchingOpIdxB, bool Signed) { 1100 LLVM_DEBUG(dbgs() << "LSV: checkIfSafeAddSequence IdxDiff=" << IdxDiff 1101 << ", AddOpA=" << *AddOpA << ", MatchingOpIdxA=" 1102 << MatchingOpIdxA << ", AddOpB=" << *AddOpB 1103 << ", MatchingOpIdxB=" << MatchingOpIdxB 1104 << ", Signed=" << Signed << "\n"); 1105 // If both OpA and OpB are adds with NSW/NUW and with one of the operands 1106 // being the same, we can guarantee that the transformation is safe if we can 1107 // prove that OpA won't overflow when Ret added to the other operand of OpA. 1108 // For example: 1109 // %tmp7 = add nsw i32 %tmp2, %v0 1110 // %tmp8 = sext i32 %tmp7 to i64 1111 // ... 1112 // %tmp11 = add nsw i32 %v0, 1 1113 // %tmp12 = add nsw i32 %tmp2, %tmp11 1114 // %tmp13 = sext i32 %tmp12 to i64 1115 // 1116 // Both %tmp7 and %tmp12 have the nsw flag and the first operand is %tmp2. 1117 // It's guaranteed that adding 1 to %tmp7 won't overflow because %tmp11 adds 1118 // 1 to %v0 and both %tmp11 and %tmp12 have the nsw flag. 1119 assert(AddOpA->getOpcode() == Instruction::Add && 1120 AddOpB->getOpcode() == Instruction::Add && 1121 checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed)); 1122 if (AddOpA->getOperand(MatchingOpIdxA) == 1123 AddOpB->getOperand(MatchingOpIdxB)) { 1124 Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1); 1125 Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1); 1126 Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA); 1127 Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB); 1128 // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`. 1129 if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add && 1130 checkNoWrapFlags(OtherInstrB, Signed) && 1131 isa<ConstantInt>(OtherInstrB->getOperand(1))) { 1132 int64_t CstVal = 1133 cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue(); 1134 if (OtherInstrB->getOperand(0) == OtherOperandA && 1135 IdxDiff.getSExtValue() == CstVal) 1136 return true; 1137 } 1138 // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`. 1139 if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add && 1140 checkNoWrapFlags(OtherInstrA, Signed) && 1141 isa<ConstantInt>(OtherInstrA->getOperand(1))) { 1142 int64_t CstVal = 1143 cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue(); 1144 if (OtherInstrA->getOperand(0) == OtherOperandB && 1145 IdxDiff.getSExtValue() == -CstVal) 1146 return true; 1147 } 1148 // Match `x +nsw/nuw (y +nsw/nuw c)` and 1149 // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`. 1150 if (OtherInstrA && OtherInstrB && 1151 OtherInstrA->getOpcode() == Instruction::Add && 1152 OtherInstrB->getOpcode() == Instruction::Add && 1153 checkNoWrapFlags(OtherInstrA, Signed) && 1154 checkNoWrapFlags(OtherInstrB, Signed) && 1155 isa<ConstantInt>(OtherInstrA->getOperand(1)) && 1156 isa<ConstantInt>(OtherInstrB->getOperand(1))) { 1157 int64_t CstValA = 1158 cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue(); 1159 int64_t CstValB = 1160 cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue(); 1161 if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) && 1162 IdxDiff.getSExtValue() == (CstValB - CstValA)) 1163 return true; 1164 } 1165 } 1166 return false; 1167 } 1168 1169 std::optional<APInt> Vectorizer::getConstantOffsetComplexAddrs( 1170 Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) { 1171 LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs PtrA=" << *PtrA 1172 << " PtrB=" << *PtrB << " ContextInst=" << *ContextInst 1173 << " Depth=" << Depth << "\n"); 1174 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA); 1175 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB); 1176 if (!GEPA || !GEPB) 1177 return getConstantOffsetSelects(PtrA, PtrB, ContextInst, Depth); 1178 1179 // Look through GEPs after checking they're the same except for the last 1180 // index. 1181 if (GEPA->getNumOperands() != GEPB->getNumOperands() || 1182 GEPA->getPointerOperand() != GEPB->getPointerOperand()) 1183 return std::nullopt; 1184 gep_type_iterator GTIA = gep_type_begin(GEPA); 1185 gep_type_iterator GTIB = gep_type_begin(GEPB); 1186 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) { 1187 if (GTIA.getOperand() != GTIB.getOperand()) 1188 return std::nullopt; 1189 ++GTIA; 1190 ++GTIB; 1191 } 1192 1193 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand()); 1194 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand()); 1195 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 1196 OpA->getType() != OpB->getType()) 1197 return std::nullopt; 1198 1199 uint64_t Stride = GTIA.getSequentialElementStride(DL); 1200 1201 // Only look through a ZExt/SExt. 1202 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 1203 return std::nullopt; 1204 1205 bool Signed = isa<SExtInst>(OpA); 1206 1207 // At this point A could be a function parameter, i.e. not an instruction 1208 Value *ValA = OpA->getOperand(0); 1209 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 1210 if (!OpB || ValA->getType() != OpB->getType()) 1211 return std::nullopt; 1212 1213 const SCEV *OffsetSCEVA = SE.getSCEV(ValA); 1214 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 1215 const SCEV *IdxDiffSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1216 if (IdxDiffSCEV == SE.getCouldNotCompute()) 1217 return std::nullopt; 1218 1219 ConstantRange IdxDiffRange = SE.getSignedRange(IdxDiffSCEV); 1220 if (!IdxDiffRange.isSingleElement()) 1221 return std::nullopt; 1222 APInt IdxDiff = *IdxDiffRange.getSingleElement(); 1223 1224 LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs IdxDiff=" << IdxDiff 1225 << "\n"); 1226 1227 // Now we need to prove that adding IdxDiff to ValA won't overflow. 1228 bool Safe = false; 1229 1230 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to 1231 // ValA, we're okay. 1232 if (OpB->getOpcode() == Instruction::Add && 1233 isa<ConstantInt>(OpB->getOperand(1)) && 1234 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) && 1235 checkNoWrapFlags(OpB, Signed)) 1236 Safe = true; 1237 1238 // Second attempt: check if we have eligible add NSW/NUW instruction 1239 // sequences. 1240 OpA = dyn_cast<Instruction>(ValA); 1241 if (!Safe && OpA && OpA->getOpcode() == Instruction::Add && 1242 OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) && 1243 checkNoWrapFlags(OpB, Signed)) { 1244 // In the checks below a matching operand in OpA and OpB is an operand which 1245 // is the same in those two instructions. Below we account for possible 1246 // orders of the operands of these add instructions. 1247 for (unsigned MatchingOpIdxA : {0, 1}) 1248 for (unsigned MatchingOpIdxB : {0, 1}) 1249 if (!Safe) 1250 Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB, 1251 MatchingOpIdxB, Signed); 1252 } 1253 1254 unsigned BitWidth = ValA->getType()->getScalarSizeInBits(); 1255 1256 // Third attempt: 1257 // 1258 // Assuming IdxDiff is positive: If all set bits of IdxDiff or any higher 1259 // order bit other than the sign bit are known to be zero in ValA, we can add 1260 // Diff to it while guaranteeing no overflow of any sort. 1261 // 1262 // If IdxDiff is negative, do the same, but swap ValA and ValB. 1263 if (!Safe) { 1264 // When computing known bits, use the GEPs as context instructions, since 1265 // they likely are in the same BB as the load/store. 1266 KnownBits Known(BitWidth); 1267 computeKnownBits((IdxDiff.sge(0) ? ValA : OpB), Known, DL, 0, &AC, 1268 ContextInst, &DT); 1269 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth()); 1270 if (Signed) 1271 BitsAllowedToBeSet.clearBit(BitWidth - 1); 1272 if (BitsAllowedToBeSet.ult(IdxDiff.abs())) 1273 return std::nullopt; 1274 Safe = true; 1275 } 1276 1277 if (Safe) 1278 return IdxDiff * Stride; 1279 return std::nullopt; 1280 } 1281 1282 std::optional<APInt> Vectorizer::getConstantOffsetSelects( 1283 Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) { 1284 if (Depth++ == MaxDepth) 1285 return std::nullopt; 1286 1287 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) { 1288 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) { 1289 if (SelectA->getCondition() != SelectB->getCondition()) 1290 return std::nullopt; 1291 LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetSelects, PtrA=" << *PtrA 1292 << ", PtrB=" << *PtrB << ", ContextInst=" 1293 << *ContextInst << ", Depth=" << Depth << "\n"); 1294 std::optional<APInt> TrueDiff = getConstantOffset( 1295 SelectA->getTrueValue(), SelectB->getTrueValue(), ContextInst, Depth); 1296 if (!TrueDiff) 1297 return std::nullopt; 1298 std::optional<APInt> FalseDiff = 1299 getConstantOffset(SelectA->getFalseValue(), SelectB->getFalseValue(), 1300 ContextInst, Depth); 1301 if (TrueDiff == FalseDiff) 1302 return TrueDiff; 1303 } 1304 } 1305 return std::nullopt; 1306 } 1307 1308 EquivalenceClassMap 1309 Vectorizer::collectEquivalenceClasses(BasicBlock::iterator Begin, 1310 BasicBlock::iterator End) { 1311 EquivalenceClassMap Ret; 1312 1313 auto GetUnderlyingObject = [](const Value *Ptr) -> const Value * { 1314 const Value *ObjPtr = llvm::getUnderlyingObject(Ptr); 1315 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) { 1316 // The select's themselves are distinct instructions even if they share 1317 // the same condition and evaluate to consecutive pointers for true and 1318 // false values of the condition. Therefore using the select's themselves 1319 // for grouping instructions would put consecutive accesses into different 1320 // lists and they won't be even checked for being consecutive, and won't 1321 // be vectorized. 1322 return Sel->getCondition(); 1323 } 1324 return ObjPtr; 1325 }; 1326 1327 for (Instruction &I : make_range(Begin, End)) { 1328 auto *LI = dyn_cast<LoadInst>(&I); 1329 auto *SI = dyn_cast<StoreInst>(&I); 1330 if (!LI && !SI) 1331 continue; 1332 1333 if ((LI && !LI->isSimple()) || (SI && !SI->isSimple())) 1334 continue; 1335 1336 if ((LI && !TTI.isLegalToVectorizeLoad(LI)) || 1337 (SI && !TTI.isLegalToVectorizeStore(SI))) 1338 continue; 1339 1340 Type *Ty = getLoadStoreType(&I); 1341 if (!VectorType::isValidElementType(Ty->getScalarType())) 1342 continue; 1343 1344 // Skip weird non-byte sizes. They probably aren't worth the effort of 1345 // handling correctly. 1346 unsigned TySize = DL.getTypeSizeInBits(Ty); 1347 if ((TySize % 8) != 0) 1348 continue; 1349 1350 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 1351 // functions are currently using an integer type for the vectorized 1352 // load/store, and does not support casting between the integer type and a 1353 // vector of pointers (e.g. i64 to <2 x i16*>) 1354 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 1355 continue; 1356 1357 Value *Ptr = getLoadStorePointerOperand(&I); 1358 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1359 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 1360 1361 unsigned VF = VecRegSize / TySize; 1362 VectorType *VecTy = dyn_cast<VectorType>(Ty); 1363 1364 // Only handle power-of-two sized elements. 1365 if ((!VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(Ty))) || 1366 (VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(VecTy->getScalarType())))) 1367 continue; 1368 1369 // No point in looking at these if they're too big to vectorize. 1370 if (TySize > VecRegSize / 2 || 1371 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 1372 continue; 1373 1374 Ret[{GetUnderlyingObject(Ptr), AS, 1375 DL.getTypeSizeInBits(getLoadStoreType(&I)->getScalarType()), 1376 /*IsLoad=*/LI != nullptr}] 1377 .emplace_back(&I); 1378 } 1379 1380 return Ret; 1381 } 1382 1383 std::vector<Chain> Vectorizer::gatherChains(ArrayRef<Instruction *> Instrs) { 1384 if (Instrs.empty()) 1385 return {}; 1386 1387 unsigned AS = getLoadStoreAddressSpace(Instrs[0]); 1388 unsigned ASPtrBits = DL.getIndexSizeInBits(AS); 1389 1390 #ifndef NDEBUG 1391 // Check that Instrs is in BB order and all have the same addr space. 1392 for (size_t I = 1; I < Instrs.size(); ++I) { 1393 assert(Instrs[I - 1]->comesBefore(Instrs[I])); 1394 assert(getLoadStoreAddressSpace(Instrs[I]) == AS); 1395 } 1396 #endif 1397 1398 // Machinery to build an MRU-hashtable of Chains. 1399 // 1400 // (Ideally this could be done with MapVector, but as currently implemented, 1401 // moving an element to the front of a MapVector is O(n).) 1402 struct InstrListElem : ilist_node<InstrListElem>, 1403 std::pair<Instruction *, Chain> { 1404 explicit InstrListElem(Instruction *I) 1405 : std::pair<Instruction *, Chain>(I, {}) {} 1406 }; 1407 struct InstrListElemDenseMapInfo { 1408 using PtrInfo = DenseMapInfo<InstrListElem *>; 1409 using IInfo = DenseMapInfo<Instruction *>; 1410 static InstrListElem *getEmptyKey() { return PtrInfo::getEmptyKey(); } 1411 static InstrListElem *getTombstoneKey() { 1412 return PtrInfo::getTombstoneKey(); 1413 } 1414 static unsigned getHashValue(const InstrListElem *E) { 1415 return IInfo::getHashValue(E->first); 1416 } 1417 static bool isEqual(const InstrListElem *A, const InstrListElem *B) { 1418 if (A == getEmptyKey() || B == getEmptyKey()) 1419 return A == getEmptyKey() && B == getEmptyKey(); 1420 if (A == getTombstoneKey() || B == getTombstoneKey()) 1421 return A == getTombstoneKey() && B == getTombstoneKey(); 1422 return IInfo::isEqual(A->first, B->first); 1423 } 1424 }; 1425 SpecificBumpPtrAllocator<InstrListElem> Allocator; 1426 simple_ilist<InstrListElem> MRU; 1427 DenseSet<InstrListElem *, InstrListElemDenseMapInfo> Chains; 1428 1429 // Compare each instruction in `instrs` to leader of the N most recently-used 1430 // chains. This limits the O(n^2) behavior of this pass while also allowing 1431 // us to build arbitrarily long chains. 1432 for (Instruction *I : Instrs) { 1433 constexpr int MaxChainsToTry = 64; 1434 1435 bool MatchFound = false; 1436 auto ChainIter = MRU.begin(); 1437 for (size_t J = 0; J < MaxChainsToTry && ChainIter != MRU.end(); 1438 ++J, ++ChainIter) { 1439 if (std::optional<APInt> Offset = getConstantOffset( 1440 getLoadStorePointerOperand(ChainIter->first), 1441 getLoadStorePointerOperand(I), 1442 /*ContextInst=*/ 1443 (ChainIter->first->comesBefore(I) ? I : ChainIter->first))) { 1444 // `Offset` might not have the expected number of bits, if e.g. AS has a 1445 // different number of bits than opaque pointers. 1446 ChainIter->second.emplace_back(I, Offset.value()); 1447 // Move ChainIter to the front of the MRU list. 1448 MRU.remove(*ChainIter); 1449 MRU.push_front(*ChainIter); 1450 MatchFound = true; 1451 break; 1452 } 1453 } 1454 1455 if (!MatchFound) { 1456 APInt ZeroOffset(ASPtrBits, 0); 1457 InstrListElem *E = new (Allocator.Allocate()) InstrListElem(I); 1458 E->second.emplace_back(I, ZeroOffset); 1459 MRU.push_front(*E); 1460 Chains.insert(E); 1461 } 1462 } 1463 1464 std::vector<Chain> Ret; 1465 Ret.reserve(Chains.size()); 1466 // Iterate over MRU rather than Chains so the order is deterministic. 1467 for (auto &E : MRU) 1468 if (E.second.size() > 1) 1469 Ret.emplace_back(std::move(E.second)); 1470 return Ret; 1471 } 1472 1473 std::optional<APInt> Vectorizer::getConstantOffset(Value *PtrA, Value *PtrB, 1474 Instruction *ContextInst, 1475 unsigned Depth) { 1476 LLVM_DEBUG(dbgs() << "LSV: getConstantOffset, PtrA=" << *PtrA 1477 << ", PtrB=" << *PtrB << ", ContextInst= " << *ContextInst 1478 << ", Depth=" << Depth << "\n"); 1479 // We'll ultimately return a value of this bit width, even if computations 1480 // happen in a different width. 1481 unsigned OrigBitWidth = DL.getIndexTypeSizeInBits(PtrA->getType()); 1482 APInt OffsetA(OrigBitWidth, 0); 1483 APInt OffsetB(OrigBitWidth, 0); 1484 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1485 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1486 unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType()); 1487 if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType())) 1488 return std::nullopt; 1489 1490 // If we have to shrink the pointer, stripAndAccumulateInBoundsConstantOffsets 1491 // should properly handle a possible overflow and the value should fit into 1492 // the smallest data type used in the cast/gep chain. 1493 assert(OffsetA.getSignificantBits() <= NewPtrBitWidth && 1494 OffsetB.getSignificantBits() <= NewPtrBitWidth); 1495 1496 OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth); 1497 OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth); 1498 if (PtrA == PtrB) 1499 return (OffsetB - OffsetA).sextOrTrunc(OrigBitWidth); 1500 1501 // Try to compute B - A. 1502 const SCEV *DistScev = SE.getMinusSCEV(SE.getSCEV(PtrB), SE.getSCEV(PtrA)); 1503 if (DistScev != SE.getCouldNotCompute()) { 1504 LLVM_DEBUG(dbgs() << "LSV: SCEV PtrB - PtrA =" << *DistScev << "\n"); 1505 ConstantRange DistRange = SE.getSignedRange(DistScev); 1506 if (DistRange.isSingleElement()) { 1507 // Handle index width (the width of Dist) != pointer width (the width of 1508 // the Offset*s at this point). 1509 APInt Dist = DistRange.getSingleElement()->sextOrTrunc(NewPtrBitWidth); 1510 return (OffsetB - OffsetA + Dist).sextOrTrunc(OrigBitWidth); 1511 } 1512 } 1513 if (std::optional<APInt> Diff = 1514 getConstantOffsetComplexAddrs(PtrA, PtrB, ContextInst, Depth)) 1515 return (OffsetB - OffsetA + Diff->sext(OffsetB.getBitWidth())) 1516 .sextOrTrunc(OrigBitWidth); 1517 return std::nullopt; 1518 } 1519