xref: /llvm-project/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp (revision 408cc944453df35770d994990c2419e34ed5f63e)
1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass merges loads/stores to/from sequential memory addresses into vector
10 // loads/stores.  Although there's nothing GPU-specific in here, this pass is
11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs.
12 //
13 // (For simplicity below we talk about loads only, but everything also applies
14 // to stores.)
15 //
16 // This pass is intended to be run late in the pipeline, after other
17 // vectorization opportunities have been exploited.  So the assumption here is
18 // that immediately following our new vector load we'll need to extract out the
19 // individual elements of the load, so we can operate on them individually.
20 //
21 // On CPUs this transformation is usually not beneficial, because extracting the
22 // elements of a vector register is expensive on most architectures.  It's
23 // usually better just to load each element individually into its own scalar
24 // register.
25 //
26 // However, nVidia and AMD GPUs don't have proper vector registers.  Instead, a
27 // "vector load" loads directly into a series of scalar registers.  In effect,
28 // extracting the elements of the vector is free.  It's therefore always
29 // beneficial to vectorize a sequence of loads on these architectures.
30 //
31 // Vectorizing (perhaps a better name might be "coalescing") loads can have
32 // large performance impacts on GPU kernels, and opportunities for vectorizing
33 // are common in GPU code.  This pass tries very hard to find such
34 // opportunities; its runtime is quadratic in the number of loads in a BB.
35 //
36 // Some CPU architectures, such as ARM, have instructions that load into
37 // multiple scalar registers, similar to a GPU vectorized load.  In theory ARM
38 // could use this pass (with some modifications), but currently it implements
39 // its own pass to do something similar to what we do here.
40 //
41 // Overview of the algorithm and terminology in this pass:
42 //
43 //  - Break up each basic block into pseudo-BBs, composed of instructions which
44 //    are guaranteed to transfer control to their successors.
45 //  - Within a single pseudo-BB, find all loads, and group them into
46 //    "equivalence classes" according to getUnderlyingObject() and loaded
47 //    element size.  Do the same for stores.
48 //  - For each equivalence class, greedily build "chains".  Each chain has a
49 //    leader instruction, and every other member of the chain has a known
50 //    constant offset from the first instr in the chain.
51 //  - Break up chains so that they contain only contiguous accesses of legal
52 //    size with no intervening may-alias instrs.
53 //  - Convert each chain to vector instructions.
54 //
55 // The O(n^2) behavior of this pass comes from initially building the chains.
56 // In the worst case we have to compare each new instruction to all of those
57 // that came before. To limit this, we only calculate the offset to the leaders
58 // of the N most recently-used chains.
59 
60 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/MapVector.h"
65 #include "llvm/ADT/PostOrderIterator.h"
66 #include "llvm/ADT/STLExtras.h"
67 #include "llvm/ADT/Sequence.h"
68 #include "llvm/ADT/SmallPtrSet.h"
69 #include "llvm/ADT/SmallVector.h"
70 #include "llvm/ADT/Statistic.h"
71 #include "llvm/ADT/iterator_range.h"
72 #include "llvm/Analysis/AliasAnalysis.h"
73 #include "llvm/Analysis/AssumptionCache.h"
74 #include "llvm/Analysis/MemoryLocation.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Analysis/ValueTracking.h"
78 #include "llvm/Analysis/VectorUtils.h"
79 #include "llvm/IR/Attributes.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/ConstantRange.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/DataLayout.h"
84 #include "llvm/IR/DerivedTypes.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/GetElementPtrTypeIterator.h"
88 #include "llvm/IR/IRBuilder.h"
89 #include "llvm/IR/InstrTypes.h"
90 #include "llvm/IR/Instruction.h"
91 #include "llvm/IR/Instructions.h"
92 #include "llvm/IR/LLVMContext.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Alignment.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/Debug.h"
101 #include "llvm/Support/KnownBits.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/ModRef.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include "llvm/Transforms/Vectorize.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <cstdlib>
111 #include <iterator>
112 #include <limits>
113 #include <numeric>
114 #include <optional>
115 #include <tuple>
116 #include <type_traits>
117 #include <utility>
118 #include <vector>
119 
120 using namespace llvm;
121 
122 #define DEBUG_TYPE "load-store-vectorizer"
123 
124 STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
125 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
126 
127 namespace {
128 
129 // Equivalence class key, the initial tuple by which we group loads/stores.
130 // Loads/stores with different EqClassKeys are never merged.
131 //
132 // (We could in theory remove element-size from the this tuple.  We'd just need
133 // to fix up the vector packing/unpacking code.)
134 using EqClassKey =
135     std::tuple<const Value * /* result of getUnderlyingObject() */,
136                unsigned /* AddrSpace */,
137                unsigned /* Load/Store element size bits */,
138                char /* IsLoad; char b/c bool can't be a DenseMap key */
139                >;
140 [[maybe_unused]] llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
141                                                const EqClassKey &K) {
142   const auto &[UnderlyingObject, AddrSpace, ElementSize, IsLoad] = K;
143   return OS << (IsLoad ? "load" : "store") << " of " << *UnderlyingObject
144             << " of element size " << ElementSize << " bits in addrspace "
145             << AddrSpace;
146 }
147 
148 // A Chain is a set of instructions such that:
149 //  - All instructions have the same equivalence class, so in particular all are
150 //    loads, or all are stores.
151 //  - We know the address accessed by the i'th chain elem relative to the
152 //    chain's leader instruction, which is the first instr of the chain in BB
153 //    order.
154 //
155 // Chains have two canonical orderings:
156 //  - BB order, sorted by Instr->comesBefore.
157 //  - Offset order, sorted by OffsetFromLeader.
158 // This pass switches back and forth between these orders.
159 struct ChainElem {
160   Instruction *Inst;
161   APInt OffsetFromLeader;
162 };
163 using Chain = SmallVector<ChainElem, 1>;
164 
165 void sortChainInBBOrder(Chain &C) {
166   sort(C, [](auto &A, auto &B) { return A.Inst->comesBefore(B.Inst); });
167 }
168 
169 void sortChainInOffsetOrder(Chain &C) {
170   sort(C, [](const auto &A, const auto &B) {
171     if (A.OffsetFromLeader != B.OffsetFromLeader)
172       return A.OffsetFromLeader.slt(B.OffsetFromLeader);
173     return A.Inst->comesBefore(B.Inst); // stable tiebreaker
174   });
175 }
176 
177 [[maybe_unused]] void dumpChain(ArrayRef<ChainElem> C) {
178   for (const auto &E : C) {
179     dbgs() << "  " << *E.Inst << " (offset " << E.OffsetFromLeader << ")\n";
180   }
181 }
182 
183 using EquivalenceClassMap =
184     MapVector<EqClassKey, SmallVector<Instruction *, 8>>;
185 
186 // FIXME: Assuming stack alignment of 4 is always good enough
187 constexpr unsigned StackAdjustedAlignment = 4;
188 
189 Instruction *propagateMetadata(Instruction *I, const Chain &C) {
190   SmallVector<Value *, 8> Values;
191   for (const ChainElem &E : C)
192     Values.push_back(E.Inst);
193   return propagateMetadata(I, Values);
194 }
195 
196 bool isInvariantLoad(const Instruction *I) {
197   const LoadInst *LI = dyn_cast<LoadInst>(I);
198   return LI != nullptr && LI->hasMetadata(LLVMContext::MD_invariant_load);
199 }
200 
201 /// Reorders the instructions that I depends on (the instructions defining its
202 /// operands), to ensure they dominate I.
203 void reorder(Instruction *I) {
204   SmallPtrSet<Instruction *, 16> InstructionsToMove;
205   SmallVector<Instruction *, 16> Worklist;
206 
207   Worklist.push_back(I);
208   while (!Worklist.empty()) {
209     Instruction *IW = Worklist.pop_back_val();
210     int NumOperands = IW->getNumOperands();
211     for (int i = 0; i < NumOperands; i++) {
212       Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
213       if (!IM || IM->getOpcode() == Instruction::PHI)
214         continue;
215 
216       // If IM is in another BB, no need to move it, because this pass only
217       // vectorizes instructions within one BB.
218       if (IM->getParent() != I->getParent())
219         continue;
220 
221       if (!IM->comesBefore(I)) {
222         InstructionsToMove.insert(IM);
223         Worklist.push_back(IM);
224       }
225     }
226   }
227 
228   // All instructions to move should follow I. Start from I, not from begin().
229   for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;) {
230     Instruction *IM = &*(BBI++);
231     if (!InstructionsToMove.count(IM))
232       continue;
233     IM->moveBefore(I);
234   }
235 }
236 
237 class Vectorizer {
238   Function &F;
239   AliasAnalysis &AA;
240   AssumptionCache &AC;
241   DominatorTree &DT;
242   ScalarEvolution &SE;
243   TargetTransformInfo &TTI;
244   const DataLayout &DL;
245   IRBuilder<> Builder;
246 
247   // We could erase instrs right after vectorizing them, but that can mess up
248   // our BB iterators, and also can make the equivalence class keys point to
249   // freed memory.  This is fixable, but it's simpler just to wait until we're
250   // done with the BB and erase all at once.
251   SmallVector<Instruction *, 128> ToErase;
252 
253 public:
254   Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC,
255              DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI)
256       : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI),
257         DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
258 
259   bool run();
260 
261 private:
262   static const unsigned MaxDepth = 3;
263 
264   /// Runs the vectorizer on a "pseudo basic block", which is a range of
265   /// instructions [Begin, End) within one BB all of which have
266   /// isGuaranteedToTransferExecutionToSuccessor(I) == true.
267   bool runOnPseudoBB(BasicBlock::iterator Begin, BasicBlock::iterator End);
268 
269   /// Runs the vectorizer on one equivalence class, i.e. one set of loads/stores
270   /// in the same BB with the same value for getUnderlyingObject() etc.
271   bool runOnEquivalenceClass(const EqClassKey &EqClassKey,
272                              ArrayRef<Instruction *> EqClass);
273 
274   /// Runs the vectorizer on one chain, i.e. a subset of an equivalence class
275   /// where all instructions access a known, constant offset from the first
276   /// instruction.
277   bool runOnChain(Chain &C);
278 
279   /// Splits the chain into subchains of instructions which read/write a
280   /// contiguous block of memory.  Discards any length-1 subchains (because
281   /// there's nothing to vectorize in there).
282   std::vector<Chain> splitChainByContiguity(Chain &C);
283 
284   /// Splits the chain into subchains where it's safe to hoist loads up to the
285   /// beginning of the sub-chain and it's safe to sink loads up to the end of
286   /// the sub-chain.  Discards any length-1 subchains.
287   std::vector<Chain> splitChainByMayAliasInstrs(Chain &C);
288 
289   /// Splits the chain into subchains that make legal, aligned accesses.
290   /// Discards any length-1 subchains.
291   std::vector<Chain> splitChainByAlignment(Chain &C);
292 
293   /// Converts the instrs in the chain into a single vectorized load or store.
294   /// Adds the old scalar loads/stores to ToErase.
295   bool vectorizeChain(Chain &C);
296 
297   /// Tries to compute the offset in bytes PtrB - PtrA.
298   std::optional<APInt> getConstantOffset(Value *PtrA, Value *PtrB,
299                                          Instruction *ContextInst,
300                                          unsigned Depth = 0);
301   std::optional<APInt> getConstantOffsetComplexAddrs(Value *PtrA, Value *PtrB,
302                                                      Instruction *ContextInst,
303                                                      unsigned Depth);
304   std::optional<APInt> getConstantOffsetSelects(Value *PtrA, Value *PtrB,
305                                                 Instruction *ContextInst,
306                                                 unsigned Depth);
307 
308   /// Gets the element type of the vector that the chain will load or store.
309   /// This is nontrivial because the chain may contain elements of different
310   /// types; e.g. it's legal to have a chain that contains both i32 and float.
311   Type *getChainElemTy(const Chain &C);
312 
313   /// Determines whether ChainElem can be moved up (if IsLoad) or down (if
314   /// !IsLoad) to ChainBegin -- i.e. there are no intervening may-alias
315   /// instructions.
316   ///
317   /// The map ChainElemOffsets must contain all of the elements in
318   /// [ChainBegin, ChainElem] and their offsets from some arbitrary base
319   /// address.  It's ok if it contains additional entries.
320   template <bool IsLoadChain>
321   bool isSafeToMove(
322       Instruction *ChainElem, Instruction *ChainBegin,
323       const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets);
324 
325   /// Collects loads and stores grouped by "equivalence class", where:
326   ///   - all elements in an eq class are a load or all are a store,
327   ///   - they all load/store the same element size (it's OK to have e.g. i8 and
328   ///     <4 x i8> in the same class, but not i32 and <4 x i8>), and
329   ///   - they all have the same value for getUnderlyingObject().
330   EquivalenceClassMap collectEquivalenceClasses(BasicBlock::iterator Begin,
331                                                 BasicBlock::iterator End);
332 
333   /// Partitions Instrs into "chains" where every instruction has a known
334   /// constant offset from the first instr in the chain.
335   ///
336   /// Postcondition: For all i, ret[i][0].second == 0, because the first instr
337   /// in the chain is the leader, and an instr touches distance 0 from itself.
338   std::vector<Chain> gatherChains(ArrayRef<Instruction *> Instrs);
339 };
340 
341 class LoadStoreVectorizerLegacyPass : public FunctionPass {
342 public:
343   static char ID;
344 
345   LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
346     initializeLoadStoreVectorizerLegacyPassPass(
347         *PassRegistry::getPassRegistry());
348   }
349 
350   bool runOnFunction(Function &F) override;
351 
352   StringRef getPassName() const override {
353     return "GPU Load and Store Vectorizer";
354   }
355 
356   void getAnalysisUsage(AnalysisUsage &AU) const override {
357     AU.addRequired<AAResultsWrapperPass>();
358     AU.addRequired<AssumptionCacheTracker>();
359     AU.addRequired<ScalarEvolutionWrapperPass>();
360     AU.addRequired<DominatorTreeWrapperPass>();
361     AU.addRequired<TargetTransformInfoWrapperPass>();
362     AU.setPreservesCFG();
363   }
364 };
365 
366 } // end anonymous namespace
367 
368 char LoadStoreVectorizerLegacyPass::ID = 0;
369 
370 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
371                       "Vectorize load and Store instructions", false, false)
372 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
373 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
374 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
375 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
376 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
377 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
378 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
379                     "Vectorize load and store instructions", false, false)
380 
381 Pass *llvm::createLoadStoreVectorizerPass() {
382   return new LoadStoreVectorizerLegacyPass();
383 }
384 
385 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
386   // Don't vectorize when the attribute NoImplicitFloat is used.
387   if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
388     return false;
389 
390   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
391   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
392   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
393   TargetTransformInfo &TTI =
394       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
395 
396   AssumptionCache &AC =
397       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
398 
399   return Vectorizer(F, AA, AC, DT, SE, TTI).run();
400 }
401 
402 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F,
403                                                FunctionAnalysisManager &AM) {
404   // Don't vectorize when the attribute NoImplicitFloat is used.
405   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
406     return PreservedAnalyses::all();
407 
408   AliasAnalysis &AA = AM.getResult<AAManager>(F);
409   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
410   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
411   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
412   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
413 
414   bool Changed = Vectorizer(F, AA, AC, DT, SE, TTI).run();
415   PreservedAnalyses PA;
416   PA.preserveSet<CFGAnalyses>();
417   return Changed ? PA : PreservedAnalyses::all();
418 }
419 
420 bool Vectorizer::run() {
421   bool Changed = false;
422   // Break up the BB if there are any instrs which aren't guaranteed to transfer
423   // execution to their successor.
424   //
425   // Consider, for example:
426   //
427   //   def assert_arr_len(int n) { if (n < 2) exit(); }
428   //
429   //   load arr[0]
430   //   call assert_array_len(arr.length)
431   //   load arr[1]
432   //
433   // Even though assert_arr_len does not read or write any memory, we can't
434   // speculate the second load before the call.  More info at
435   // https://github.com/llvm/llvm-project/issues/52950.
436   for (BasicBlock *BB : post_order(&F)) {
437     // BB must at least have a terminator.
438     assert(!BB->empty());
439 
440     SmallVector<BasicBlock::iterator, 8> Barriers;
441     Barriers.push_back(BB->begin());
442     for (Instruction &I : *BB)
443       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
444         Barriers.push_back(I.getIterator());
445     Barriers.push_back(BB->end());
446 
447     for (auto It = Barriers.begin(), End = std::prev(Barriers.end()); It != End;
448          ++It)
449       Changed |= runOnPseudoBB(*It, *std::next(It));
450 
451     for (Instruction *I : ToErase) {
452       auto *PtrOperand = getLoadStorePointerOperand(I);
453       if (I->use_empty())
454         I->eraseFromParent();
455       RecursivelyDeleteTriviallyDeadInstructions(PtrOperand);
456     }
457     ToErase.clear();
458   }
459 
460   return Changed;
461 }
462 
463 bool Vectorizer::runOnPseudoBB(BasicBlock::iterator Begin,
464                                BasicBlock::iterator End) {
465   LLVM_DEBUG({
466     dbgs() << "LSV: Running on pseudo-BB [" << *Begin << " ... ";
467     if (End != Begin->getParent()->end())
468       dbgs() << *End;
469     else
470       dbgs() << "<BB end>";
471     dbgs() << ")\n";
472   });
473 
474   bool Changed = false;
475   for (const auto &[EqClassKey, EqClass] :
476        collectEquivalenceClasses(Begin, End))
477     Changed |= runOnEquivalenceClass(EqClassKey, EqClass);
478 
479   return Changed;
480 }
481 
482 bool Vectorizer::runOnEquivalenceClass(const EqClassKey &EqClassKey,
483                                        ArrayRef<Instruction *> EqClass) {
484   bool Changed = false;
485 
486   LLVM_DEBUG({
487     dbgs() << "LSV: Running on equivalence class of size " << EqClass.size()
488            << " keyed on " << EqClassKey << ":\n";
489     for (Instruction *I : EqClass)
490       dbgs() << "  " << *I << "\n";
491   });
492 
493   std::vector<Chain> Chains = gatherChains(EqClass);
494   LLVM_DEBUG(dbgs() << "LSV: Got " << Chains.size()
495                     << " nontrivial chains.\n";);
496   for (Chain &C : Chains)
497     Changed |= runOnChain(C);
498   return Changed;
499 }
500 
501 bool Vectorizer::runOnChain(Chain &C) {
502   LLVM_DEBUG({
503     dbgs() << "LSV: Running on chain with " << C.size() << " instructions:\n";
504     dumpChain(C);
505   });
506 
507   // Split up the chain into increasingly smaller chains, until we can finally
508   // vectorize the chains.
509   //
510   // (Don't be scared by the depth of the loop nest here.  These operations are
511   // all at worst O(n lg n) in the number of instructions, and splitting chains
512   // doesn't change the number of instrs.  So the whole loop nest is O(n lg n).)
513   bool Changed = false;
514   for (auto &C : splitChainByMayAliasInstrs(C))
515     for (auto &C : splitChainByContiguity(C))
516       for (auto &C : splitChainByAlignment(C))
517         Changed |= vectorizeChain(C);
518   return Changed;
519 }
520 
521 std::vector<Chain> Vectorizer::splitChainByMayAliasInstrs(Chain &C) {
522   if (C.empty())
523     return {};
524 
525   sortChainInBBOrder(C);
526 
527   LLVM_DEBUG({
528     dbgs() << "LSV: splitChainByMayAliasInstrs considering chain:\n";
529     dumpChain(C);
530   });
531 
532   // We know that elements in the chain with nonverlapping offsets can't
533   // alias, but AA may not be smart enough to figure this out.  Use a
534   // hashtable.
535   DenseMap<Instruction *, APInt /*OffsetFromLeader*/> ChainOffsets;
536   for (const auto &E : C)
537     ChainOffsets.insert({&*E.Inst, E.OffsetFromLeader});
538 
539   // Loads get hoisted up to the first load in the chain.  Stores get sunk
540   // down to the last store in the chain.  Our algorithm for loads is:
541   //
542   //  - Take the first element of the chain.  This is the start of a new chain.
543   //  - Take the next element of `Chain` and check for may-alias instructions
544   //    up to the start of NewChain.  If no may-alias instrs, add it to
545   //    NewChain.  Otherwise, start a new NewChain.
546   //
547   // For stores it's the same except in the reverse direction.
548   //
549   // We expect IsLoad to be an std::bool_constant.
550   auto Impl = [&](auto IsLoad) {
551     // MSVC is unhappy if IsLoad is a capture, so pass it as an arg.
552     auto [ChainBegin, ChainEnd] = [&](auto IsLoad) {
553       if constexpr (IsLoad())
554         return std::make_pair(C.begin(), C.end());
555       else
556         return std::make_pair(C.rbegin(), C.rend());
557     }(IsLoad);
558     assert(ChainBegin != ChainEnd);
559 
560     std::vector<Chain> Chains;
561     SmallVector<ChainElem, 1> NewChain;
562     NewChain.push_back(*ChainBegin);
563     for (auto ChainIt = std::next(ChainBegin); ChainIt != ChainEnd; ++ChainIt) {
564       if (isSafeToMove<IsLoad>(ChainIt->Inst, NewChain.front().Inst,
565                                ChainOffsets)) {
566         LLVM_DEBUG(dbgs() << "LSV: No intervening may-alias instrs; can merge "
567                           << *ChainIt->Inst << " into " << *ChainBegin->Inst
568                           << "\n");
569         NewChain.push_back(*ChainIt);
570       } else {
571         LLVM_DEBUG(
572             dbgs() << "LSV: Found intervening may-alias instrs; cannot merge "
573                    << *ChainIt->Inst << " into " << *ChainBegin->Inst << "\n");
574         if (NewChain.size() > 1) {
575           LLVM_DEBUG({
576             dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n";
577             dumpChain(NewChain);
578           });
579           Chains.push_back(std::move(NewChain));
580         }
581 
582         // Start a new chain.
583         NewChain = SmallVector<ChainElem, 1>({*ChainIt});
584       }
585     }
586     if (NewChain.size() > 1) {
587       LLVM_DEBUG({
588         dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n";
589         dumpChain(NewChain);
590       });
591       Chains.push_back(std::move(NewChain));
592     }
593     return Chains;
594   };
595 
596   if (isa<LoadInst>(C[0].Inst))
597     return Impl(/*IsLoad=*/std::bool_constant<true>());
598 
599   assert(isa<StoreInst>(C[0].Inst));
600   return Impl(/*IsLoad=*/std::bool_constant<false>());
601 }
602 
603 std::vector<Chain> Vectorizer::splitChainByContiguity(Chain &C) {
604   if (C.empty())
605     return {};
606 
607   sortChainInOffsetOrder(C);
608 
609   LLVM_DEBUG({
610     dbgs() << "LSV: splitChainByContiguity considering chain:\n";
611     dumpChain(C);
612   });
613 
614   std::vector<Chain> Ret;
615   Ret.push_back({C.front()});
616 
617   for (auto It = std::next(C.begin()), End = C.end(); It != End; ++It) {
618     // `prev` accesses offsets [PrevDistFromBase, PrevReadEnd).
619     auto &CurChain = Ret.back();
620     const ChainElem &Prev = CurChain.back();
621     unsigned SzBits = DL.getTypeSizeInBits(getLoadStoreType(&*Prev.Inst));
622     assert(SzBits % 8 == 0 && "Non-byte sizes should have been filtered out by "
623                               "collectEquivalenceClass");
624     APInt PrevReadEnd = Prev.OffsetFromLeader + SzBits / 8;
625 
626     // Add this instruction to the end of the current chain, or start a new one.
627     bool AreContiguous = It->OffsetFromLeader == PrevReadEnd;
628     LLVM_DEBUG(dbgs() << "LSV: Instructions are "
629                       << (AreContiguous ? "" : "not ") << "contiguous: "
630                       << *Prev.Inst << " (ends at offset " << PrevReadEnd
631                       << ") -> " << *It->Inst << " (starts at offset "
632                       << It->OffsetFromLeader << ")\n");
633     if (AreContiguous)
634       CurChain.push_back(*It);
635     else
636       Ret.push_back({*It});
637   }
638 
639   // Filter out length-1 chains, these are uninteresting.
640   llvm::erase_if(Ret, [](const auto &Chain) { return Chain.size() <= 1; });
641   return Ret;
642 }
643 
644 Type *Vectorizer::getChainElemTy(const Chain &C) {
645   assert(!C.empty());
646   // The rules are:
647   //  - If there are any pointer types in the chain, use an integer type.
648   //  - Prefer an integer type if it appears in the chain.
649   //  - Otherwise, use the first type in the chain.
650   //
651   // The rule about pointer types is a simplification when we merge e.g.  a load
652   // of a ptr and a double.  There's no direct conversion from a ptr to a
653   // double; it requires a ptrtoint followed by a bitcast.
654   //
655   // It's unclear to me if the other rules have any practical effect, but we do
656   // it to match this pass's previous behavior.
657   if (any_of(C, [](const ChainElem &E) {
658         return getLoadStoreType(E.Inst)->getScalarType()->isPointerTy();
659       })) {
660     return Type::getIntNTy(
661         F.getContext(),
662         DL.getTypeSizeInBits(getLoadStoreType(C[0].Inst)->getScalarType()));
663   }
664 
665   for (const ChainElem &E : C)
666     if (Type *T = getLoadStoreType(E.Inst)->getScalarType(); T->isIntegerTy())
667       return T;
668   return getLoadStoreType(C[0].Inst)->getScalarType();
669 }
670 
671 std::vector<Chain> Vectorizer::splitChainByAlignment(Chain &C) {
672   // We use a simple greedy algorithm.
673   //  - Given a chain of length N, find all prefixes that
674   //    (a) are not longer than the max register length, and
675   //    (b) are a power of 2.
676   //  - Starting from the longest prefix, try to create a vector of that length.
677   //  - If one of them works, great.  Repeat the algorithm on any remaining
678   //    elements in the chain.
679   //  - If none of them work, discard the first element and repeat on a chain
680   //    of length N-1.
681   if (C.empty())
682     return {};
683 
684   sortChainInOffsetOrder(C);
685 
686   LLVM_DEBUG({
687     dbgs() << "LSV: splitChainByAlignment considering chain:\n";
688     dumpChain(C);
689   });
690 
691   bool IsLoadChain = isa<LoadInst>(C[0].Inst);
692   auto getVectorFactor = [&](unsigned VF, unsigned LoadStoreSize,
693                              unsigned ChainSizeBytes, VectorType *VecTy) {
694     return IsLoadChain ? TTI.getLoadVectorFactor(VF, LoadStoreSize,
695                                                  ChainSizeBytes, VecTy)
696                        : TTI.getStoreVectorFactor(VF, LoadStoreSize,
697                                                   ChainSizeBytes, VecTy);
698   };
699 
700 #ifndef NDEBUG
701   for (const auto &E : C) {
702     Type *Ty = getLoadStoreType(E.Inst)->getScalarType();
703     assert(isPowerOf2_32(DL.getTypeSizeInBits(Ty)) &&
704            "Should have filtered out non-power-of-two elements in "
705            "collectEquivalenceClasses.");
706   }
707 #endif
708 
709   unsigned AS = getLoadStoreAddressSpace(C[0].Inst);
710   unsigned VecRegBytes = TTI.getLoadStoreVecRegBitWidth(AS) / 8;
711 
712   std::vector<Chain> Ret;
713   for (unsigned CBegin = 0; CBegin < C.size(); ++CBegin) {
714     // Find candidate chains of size not greater than the largest vector reg.
715     // These chains are over the closed interval [CBegin, CEnd].
716     SmallVector<std::pair<unsigned /*CEnd*/, unsigned /*SizeBytes*/>, 8>
717         CandidateChains;
718     for (unsigned CEnd = CBegin + 1, Size = C.size(); CEnd < Size; ++CEnd) {
719       APInt Sz = C[CEnd].OffsetFromLeader +
720                  DL.getTypeStoreSize(getLoadStoreType(C[CEnd].Inst)) -
721                  C[CBegin].OffsetFromLeader;
722       if (Sz.sgt(VecRegBytes))
723         break;
724       CandidateChains.push_back(
725           {CEnd, static_cast<unsigned>(Sz.getLimitedValue())});
726     }
727 
728     // Consider the longest chain first.
729     for (auto It = CandidateChains.rbegin(), End = CandidateChains.rend();
730          It != End; ++It) {
731       auto [CEnd, SizeBytes] = *It;
732       LLVM_DEBUG(
733           dbgs() << "LSV: splitChainByAlignment considering candidate chain ["
734                  << *C[CBegin].Inst << " ... " << *C[CEnd].Inst << "]\n");
735 
736       Type *VecElemTy = getChainElemTy(C);
737       // Note, VecElemTy is a power of 2, but might be less than one byte.  For
738       // example, we can vectorize 2 x <2 x i4> to <4 x i4>, and in this case
739       // VecElemTy would be i4.
740       unsigned VecElemBits = DL.getTypeSizeInBits(VecElemTy);
741 
742       // SizeBytes and VecElemBits are powers of 2, so they divide evenly.
743       assert((8 * SizeBytes) % VecElemBits == 0);
744       unsigned NumVecElems = 8 * SizeBytes / VecElemBits;
745       FixedVectorType *VecTy = FixedVectorType::get(VecElemTy, NumVecElems);
746       unsigned VF = 8 * VecRegBytes / VecElemBits;
747 
748       // Check that TTI is happy with this vectorization factor.
749       unsigned TargetVF = getVectorFactor(VF, VecElemBits,
750                                           VecElemBits * NumVecElems / 8, VecTy);
751       if (TargetVF != VF && TargetVF < NumVecElems) {
752         LLVM_DEBUG(
753             dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
754                       "because TargetVF="
755                    << TargetVF << " != VF=" << VF
756                    << " and TargetVF < NumVecElems=" << NumVecElems << "\n");
757         continue;
758       }
759 
760       // Is a load/store with this alignment allowed by TTI and at least as fast
761       // as an unvectorized load/store?
762       //
763       // TTI and F are passed as explicit captures to WAR an MSVC misparse (??).
764       auto IsAllowedAndFast = [&, SizeBytes = SizeBytes, &TTI = TTI,
765                                &F = F](Align Alignment) {
766         if (Alignment.value() % SizeBytes == 0)
767           return true;
768         unsigned VectorizedSpeed = 0;
769         bool AllowsMisaligned = TTI.allowsMisalignedMemoryAccesses(
770             F.getContext(), SizeBytes * 8, AS, Alignment, &VectorizedSpeed);
771         if (!AllowsMisaligned) {
772           LLVM_DEBUG(dbgs()
773                      << "LSV: Access of " << SizeBytes << "B in addrspace "
774                      << AS << " with alignment " << Alignment.value()
775                      << " is misaligned, and therefore can't be vectorized.\n");
776           return false;
777         }
778 
779         unsigned ElementwiseSpeed = 0;
780         (TTI).allowsMisalignedMemoryAccesses((F).getContext(), VecElemBits, AS,
781                                              Alignment, &ElementwiseSpeed);
782         if (VectorizedSpeed < ElementwiseSpeed) {
783           LLVM_DEBUG(dbgs()
784                      << "LSV: Access of " << SizeBytes << "B in addrspace "
785                      << AS << " with alignment " << Alignment.value()
786                      << " has relative speed " << VectorizedSpeed
787                      << ", which is lower than the elementwise speed of "
788                      << ElementwiseSpeed
789                      << ".  Therefore this access won't be vectorized.\n");
790           return false;
791         }
792         return true;
793       };
794 
795       // If we're loading/storing from an alloca, align it if possible.
796       //
797       // FIXME: We eagerly upgrade the alignment, regardless of whether TTI
798       // tells us this is beneficial.  This feels a bit odd, but it matches
799       // existing tests.  This isn't *so* bad, because at most we align to 4
800       // bytes (current value of StackAdjustedAlignment).
801       //
802       // FIXME: We will upgrade the alignment of the alloca even if it turns out
803       // we can't vectorize for some other reason.
804       Value *PtrOperand = getLoadStorePointerOperand(C[CBegin].Inst);
805       bool IsAllocaAccess = AS == DL.getAllocaAddrSpace() &&
806                             isa<AllocaInst>(PtrOperand->stripPointerCasts());
807       Align Alignment = getLoadStoreAlignment(C[CBegin].Inst);
808       Align PrefAlign = Align(StackAdjustedAlignment);
809       if (IsAllocaAccess && Alignment.value() % SizeBytes != 0 &&
810           IsAllowedAndFast(PrefAlign)) {
811         Align NewAlign = getOrEnforceKnownAlignment(
812             PtrOperand, PrefAlign, DL, C[CBegin].Inst, nullptr, &DT);
813         if (NewAlign >= Alignment) {
814           LLVM_DEBUG(dbgs()
815                      << "LSV: splitByChain upgrading alloca alignment from "
816                      << Alignment.value() << " to " << NewAlign.value()
817                      << "\n");
818           Alignment = NewAlign;
819         }
820       }
821 
822       if (!IsAllowedAndFast(Alignment)) {
823         LLVM_DEBUG(
824             dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
825                       "because its alignment is not AllowedAndFast: "
826                    << Alignment.value() << "\n");
827         continue;
828       }
829 
830       if ((IsLoadChain &&
831            !TTI.isLegalToVectorizeLoadChain(SizeBytes, Alignment, AS)) ||
832           (!IsLoadChain &&
833            !TTI.isLegalToVectorizeStoreChain(SizeBytes, Alignment, AS))) {
834         LLVM_DEBUG(
835             dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
836                       "because !isLegalToVectorizeLoad/StoreChain.");
837         continue;
838       }
839 
840       // Hooray, we can vectorize this chain!
841       Chain &NewChain = Ret.emplace_back();
842       for (unsigned I = CBegin; I <= CEnd; ++I)
843         NewChain.push_back(C[I]);
844       CBegin = CEnd; // Skip over the instructions we've added to the chain.
845       break;
846     }
847   }
848   return Ret;
849 }
850 
851 bool Vectorizer::vectorizeChain(Chain &C) {
852   if (C.size() < 2)
853     return false;
854 
855   sortChainInOffsetOrder(C);
856 
857   LLVM_DEBUG({
858     dbgs() << "LSV: Vectorizing chain of " << C.size() << " instructions:\n";
859     dumpChain(C);
860   });
861 
862   Type *VecElemTy = getChainElemTy(C);
863   bool IsLoadChain = isa<LoadInst>(C[0].Inst);
864   unsigned AS = getLoadStoreAddressSpace(C[0].Inst);
865   unsigned ChainBytes = std::accumulate(
866       C.begin(), C.end(), 0u, [&](unsigned Bytes, const ChainElem &E) {
867         return Bytes + DL.getTypeStoreSize(getLoadStoreType(E.Inst));
868       });
869   assert(ChainBytes % DL.getTypeStoreSize(VecElemTy) == 0);
870   // VecTy is a power of 2 and 1 byte at smallest, but VecElemTy may be smaller
871   // than 1 byte (e.g. VecTy == <32 x i1>).
872   Type *VecTy = FixedVectorType::get(
873       VecElemTy, 8 * ChainBytes / DL.getTypeSizeInBits(VecElemTy));
874 
875   Align Alignment = getLoadStoreAlignment(C[0].Inst);
876   // If this is a load/store of an alloca, we might have upgraded the alloca's
877   // alignment earlier.  Get the new alignment.
878   if (AS == DL.getAllocaAddrSpace()) {
879     Alignment = std::max(
880         Alignment,
881         getOrEnforceKnownAlignment(getLoadStorePointerOperand(C[0].Inst),
882                                    MaybeAlign(), DL, C[0].Inst, nullptr, &DT));
883   }
884 
885   // All elements of the chain must have the same scalar-type size.
886 #ifndef NDEBUG
887   for (const ChainElem &E : C)
888     assert(DL.getTypeStoreSize(getLoadStoreType(E.Inst)->getScalarType()) ==
889            DL.getTypeStoreSize(VecElemTy));
890 #endif
891 
892   Instruction *VecInst;
893   if (IsLoadChain) {
894     // Loads get hoisted to the location of the first load in the chain.  We may
895     // also need to hoist the (transitive) operands of the loads.
896     Builder.SetInsertPoint(
897         std::min_element(C.begin(), C.end(), [](const auto &A, const auto &B) {
898           return A.Inst->comesBefore(B.Inst);
899         })->Inst);
900 
901     // Chain is in offset order, so C[0] is the instr with the lowest offset,
902     // i.e. the root of the vector.
903     VecInst = Builder.CreateAlignedLoad(VecTy,
904                                         getLoadStorePointerOperand(C[0].Inst),
905                                         Alignment);
906 
907     unsigned VecIdx = 0;
908     for (const ChainElem &E : C) {
909       Instruction *I = E.Inst;
910       Value *V;
911       Type *T = getLoadStoreType(I);
912       if (auto *VT = dyn_cast<FixedVectorType>(T)) {
913         auto Mask = llvm::to_vector<8>(
914             llvm::seq<int>(VecIdx, VecIdx + VT->getNumElements()));
915         V = Builder.CreateShuffleVector(VecInst, Mask, I->getName());
916         VecIdx += VT->getNumElements();
917       } else {
918         V = Builder.CreateExtractElement(VecInst, Builder.getInt32(VecIdx),
919                                          I->getName());
920         ++VecIdx;
921       }
922       if (V->getType() != I->getType())
923         V = Builder.CreateBitOrPointerCast(V, I->getType());
924       I->replaceAllUsesWith(V);
925     }
926 
927     // Finally, we need to reorder the instrs in the BB so that the (transitive)
928     // operands of VecInst appear before it.  To see why, suppose we have
929     // vectorized the following code:
930     //
931     //   ptr1  = gep a, 1
932     //   load1 = load i32 ptr1
933     //   ptr0  = gep a, 0
934     //   load0 = load i32 ptr0
935     //
936     // We will put the vectorized load at the location of the earliest load in
937     // the BB, i.e. load1.  We get:
938     //
939     //   ptr1  = gep a, 1
940     //   loadv = load <2 x i32> ptr0
941     //   load0 = extractelement loadv, 0
942     //   load1 = extractelement loadv, 1
943     //   ptr0 = gep a, 0
944     //
945     // Notice that loadv uses ptr0, which is defined *after* it!
946     reorder(VecInst);
947   } else {
948     // Stores get sunk to the location of the last store in the chain.
949     Builder.SetInsertPoint(
950         std::max_element(C.begin(), C.end(), [](auto &A, auto &B) {
951           return A.Inst->comesBefore(B.Inst);
952         })->Inst);
953 
954     // Build the vector to store.
955     Value *Vec = PoisonValue::get(VecTy);
956     unsigned VecIdx = 0;
957     auto InsertElem = [&](Value *V) {
958       if (V->getType() != VecElemTy)
959         V = Builder.CreateBitOrPointerCast(V, VecElemTy);
960       Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(VecIdx++));
961     };
962     for (const ChainElem &E : C) {
963       auto I = cast<StoreInst>(E.Inst);
964       if (FixedVectorType *VT =
965               dyn_cast<FixedVectorType>(getLoadStoreType(I))) {
966         for (int J = 0, JE = VT->getNumElements(); J < JE; ++J) {
967           InsertElem(Builder.CreateExtractElement(I->getValueOperand(),
968                                                   Builder.getInt32(J)));
969         }
970       } else {
971         InsertElem(I->getValueOperand());
972       }
973     }
974 
975     // Chain is in offset order, so C[0] is the instr with the lowest offset,
976     // i.e. the root of the vector.
977     VecInst = Builder.CreateAlignedStore(
978         Vec,
979         getLoadStorePointerOperand(C[0].Inst),
980         Alignment);
981   }
982 
983   propagateMetadata(VecInst, C);
984 
985   for (const ChainElem &E : C)
986     ToErase.push_back(E.Inst);
987 
988   ++NumVectorInstructions;
989   NumScalarsVectorized += C.size();
990   return true;
991 }
992 
993 template <bool IsLoadChain>
994 bool Vectorizer::isSafeToMove(
995     Instruction *ChainElem, Instruction *ChainBegin,
996     const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets) {
997   LLVM_DEBUG(dbgs() << "LSV: isSafeToMove(" << *ChainElem << " -> "
998                     << *ChainBegin << ")\n");
999 
1000   assert(isa<LoadInst>(ChainElem) == IsLoadChain);
1001   if (ChainElem == ChainBegin)
1002     return true;
1003 
1004   // Invariant loads can always be reordered; by definition they are not
1005   // clobbered by stores.
1006   if (isInvariantLoad(ChainElem))
1007     return true;
1008 
1009   auto BBIt = std::next([&] {
1010     if constexpr (IsLoadChain)
1011       return BasicBlock::reverse_iterator(ChainElem);
1012     else
1013       return BasicBlock::iterator(ChainElem);
1014   }());
1015   auto BBItEnd = std::next([&] {
1016     if constexpr (IsLoadChain)
1017       return BasicBlock::reverse_iterator(ChainBegin);
1018     else
1019       return BasicBlock::iterator(ChainBegin);
1020   }());
1021 
1022   const APInt &ChainElemOffset = ChainOffsets.at(ChainElem);
1023   const unsigned ChainElemSize =
1024       DL.getTypeStoreSize(getLoadStoreType(ChainElem));
1025 
1026   for (; BBIt != BBItEnd; ++BBIt) {
1027     Instruction *I = &*BBIt;
1028 
1029     if (!I->mayReadOrWriteMemory())
1030       continue;
1031 
1032     // Loads can be reordered with other loads.
1033     if (IsLoadChain && isa<LoadInst>(I))
1034       continue;
1035 
1036     // Stores can be sunk below invariant loads.
1037     if (!IsLoadChain && isInvariantLoad(I))
1038       continue;
1039 
1040     // If I is in the chain, we can tell whether it aliases ChainIt by checking
1041     // what offset ChainIt accesses.  This may be better than AA is able to do.
1042     //
1043     // We should really only have duplicate offsets for stores (the duplicate
1044     // loads should be CSE'ed), but in case we have a duplicate load, we'll
1045     // split the chain so we don't have to handle this case specially.
1046     if (auto OffsetIt = ChainOffsets.find(I); OffsetIt != ChainOffsets.end()) {
1047       // I and ChainElem overlap if:
1048       //   - I and ChainElem have the same offset, OR
1049       //   - I's offset is less than ChainElem's, but I touches past the
1050       //     beginning of ChainElem, OR
1051       //   - ChainElem's offset is less than I's, but ChainElem touches past the
1052       //     beginning of I.
1053       const APInt &IOffset = OffsetIt->second;
1054       unsigned IElemSize = DL.getTypeStoreSize(getLoadStoreType(I));
1055       if (IOffset == ChainElemOffset ||
1056           (IOffset.sle(ChainElemOffset) &&
1057            (IOffset + IElemSize).sgt(ChainElemOffset)) ||
1058           (ChainElemOffset.sle(IOffset) &&
1059            (ChainElemOffset + ChainElemSize).sgt(OffsetIt->second))) {
1060         LLVM_DEBUG({
1061           // Double check that AA also sees this alias.  If not, we probably
1062           // have a bug.
1063           ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem));
1064           assert(IsLoadChain ? isModSet(MR) : isModOrRefSet(MR));
1065           dbgs() << "LSV: Found alias in chain: " << *I << "\n";
1066         });
1067         return false; // We found an aliasing instruction; bail.
1068       }
1069 
1070       continue; // We're confident there's no alias.
1071     }
1072 
1073     LLVM_DEBUG(dbgs() << "LSV: Querying AA for " << *I << "\n");
1074     ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem));
1075     if (IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)) {
1076       LLVM_DEBUG(dbgs() << "LSV: Found alias in chain:\n"
1077                         << "  Aliasing instruction:\n"
1078                         << "    " << *I << '\n'
1079                         << "  Aliased instruction and pointer:\n"
1080                         << "    " << *ChainElem << '\n'
1081                         << "    " << *getLoadStorePointerOperand(ChainElem)
1082                         << '\n');
1083 
1084       return false;
1085     }
1086   }
1087   return true;
1088 }
1089 
1090 static bool checkNoWrapFlags(Instruction *I, bool Signed) {
1091   BinaryOperator *BinOpI = cast<BinaryOperator>(I);
1092   return (Signed && BinOpI->hasNoSignedWrap()) ||
1093          (!Signed && BinOpI->hasNoUnsignedWrap());
1094 }
1095 
1096 static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA,
1097                                    unsigned MatchingOpIdxA, Instruction *AddOpB,
1098                                    unsigned MatchingOpIdxB, bool Signed) {
1099   LLVM_DEBUG(dbgs() << "LSV: checkIfSafeAddSequence IdxDiff=" << IdxDiff
1100                     << ", AddOpA=" << *AddOpA << ", MatchingOpIdxA="
1101                     << MatchingOpIdxA << ", AddOpB=" << *AddOpB
1102                     << ", MatchingOpIdxB=" << MatchingOpIdxB
1103                     << ", Signed=" << Signed << "\n");
1104   // If both OpA and OpB are adds with NSW/NUW and with one of the operands
1105   // being the same, we can guarantee that the transformation is safe if we can
1106   // prove that OpA won't overflow when Ret added to the other operand of OpA.
1107   // For example:
1108   //  %tmp7 = add nsw i32 %tmp2, %v0
1109   //  %tmp8 = sext i32 %tmp7 to i64
1110   //  ...
1111   //  %tmp11 = add nsw i32 %v0, 1
1112   //  %tmp12 = add nsw i32 %tmp2, %tmp11
1113   //  %tmp13 = sext i32 %tmp12 to i64
1114   //
1115   //  Both %tmp7 and %tmp12 have the nsw flag and the first operand is %tmp2.
1116   //  It's guaranteed that adding 1 to %tmp7 won't overflow because %tmp11 adds
1117   //  1 to %v0 and both %tmp11 and %tmp12 have the nsw flag.
1118   assert(AddOpA->getOpcode() == Instruction::Add &&
1119          AddOpB->getOpcode() == Instruction::Add &&
1120          checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed));
1121   if (AddOpA->getOperand(MatchingOpIdxA) ==
1122       AddOpB->getOperand(MatchingOpIdxB)) {
1123     Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1);
1124     Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1);
1125     Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA);
1126     Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB);
1127     // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
1128     if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add &&
1129         checkNoWrapFlags(OtherInstrB, Signed) &&
1130         isa<ConstantInt>(OtherInstrB->getOperand(1))) {
1131       int64_t CstVal =
1132           cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
1133       if (OtherInstrB->getOperand(0) == OtherOperandA &&
1134           IdxDiff.getSExtValue() == CstVal)
1135         return true;
1136     }
1137     // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
1138     if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add &&
1139         checkNoWrapFlags(OtherInstrA, Signed) &&
1140         isa<ConstantInt>(OtherInstrA->getOperand(1))) {
1141       int64_t CstVal =
1142           cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
1143       if (OtherInstrA->getOperand(0) == OtherOperandB &&
1144           IdxDiff.getSExtValue() == -CstVal)
1145         return true;
1146     }
1147     // Match `x +nsw/nuw (y +nsw/nuw c)` and
1148     // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
1149     if (OtherInstrA && OtherInstrB &&
1150         OtherInstrA->getOpcode() == Instruction::Add &&
1151         OtherInstrB->getOpcode() == Instruction::Add &&
1152         checkNoWrapFlags(OtherInstrA, Signed) &&
1153         checkNoWrapFlags(OtherInstrB, Signed) &&
1154         isa<ConstantInt>(OtherInstrA->getOperand(1)) &&
1155         isa<ConstantInt>(OtherInstrB->getOperand(1))) {
1156       int64_t CstValA =
1157           cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
1158       int64_t CstValB =
1159           cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
1160       if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) &&
1161           IdxDiff.getSExtValue() == (CstValB - CstValA))
1162         return true;
1163     }
1164   }
1165   return false;
1166 }
1167 
1168 std::optional<APInt> Vectorizer::getConstantOffsetComplexAddrs(
1169     Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) {
1170   LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs PtrA=" << *PtrA
1171                     << " PtrB=" << *PtrB << " ContextInst=" << *ContextInst
1172                     << " Depth=" << Depth << "\n");
1173   auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
1174   auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
1175   if (!GEPA || !GEPB)
1176     return getConstantOffsetSelects(PtrA, PtrB, ContextInst, Depth);
1177 
1178   // Look through GEPs after checking they're the same except for the last
1179   // index.
1180   if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
1181       GEPA->getPointerOperand() != GEPB->getPointerOperand())
1182     return std::nullopt;
1183   gep_type_iterator GTIA = gep_type_begin(GEPA);
1184   gep_type_iterator GTIB = gep_type_begin(GEPB);
1185   for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
1186     if (GTIA.getOperand() != GTIB.getOperand())
1187       return std::nullopt;
1188     ++GTIA;
1189     ++GTIB;
1190   }
1191 
1192   Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
1193   Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
1194   if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
1195       OpA->getType() != OpB->getType())
1196     return std::nullopt;
1197 
1198   uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
1199 
1200   // Only look through a ZExt/SExt.
1201   if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
1202     return std::nullopt;
1203 
1204   bool Signed = isa<SExtInst>(OpA);
1205 
1206   // At this point A could be a function parameter, i.e. not an instruction
1207   Value *ValA = OpA->getOperand(0);
1208   OpB = dyn_cast<Instruction>(OpB->getOperand(0));
1209   if (!OpB || ValA->getType() != OpB->getType())
1210     return std::nullopt;
1211 
1212   const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
1213   const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
1214   const SCEV *IdxDiffSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1215   if (IdxDiffSCEV == SE.getCouldNotCompute())
1216     return std::nullopt;
1217 
1218   ConstantRange IdxDiffRange = SE.getSignedRange(IdxDiffSCEV);
1219   if (!IdxDiffRange.isSingleElement())
1220     return std::nullopt;
1221   APInt IdxDiff = *IdxDiffRange.getSingleElement();
1222 
1223   LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs IdxDiff=" << IdxDiff
1224                     << "\n");
1225 
1226   // Now we need to prove that adding IdxDiff to ValA won't overflow.
1227   bool Safe = false;
1228 
1229   // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
1230   // ValA, we're okay.
1231   if (OpB->getOpcode() == Instruction::Add &&
1232       isa<ConstantInt>(OpB->getOperand(1)) &&
1233       IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
1234       checkNoWrapFlags(OpB, Signed))
1235     Safe = true;
1236 
1237   // Second attempt: check if we have eligible add NSW/NUW instruction
1238   // sequences.
1239   OpA = dyn_cast<Instruction>(ValA);
1240   if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
1241       OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) &&
1242       checkNoWrapFlags(OpB, Signed)) {
1243     // In the checks below a matching operand in OpA and OpB is an operand which
1244     // is the same in those two instructions.  Below we account for possible
1245     // orders of the operands of these add instructions.
1246     for (unsigned MatchingOpIdxA : {0, 1})
1247       for (unsigned MatchingOpIdxB : {0, 1})
1248         if (!Safe)
1249           Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB,
1250                                         MatchingOpIdxB, Signed);
1251   }
1252 
1253   unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
1254 
1255   // Third attempt:
1256   //
1257   // Assuming IdxDiff is positive: If all set bits of IdxDiff or any higher
1258   // order bit other than the sign bit are known to be zero in ValA, we can add
1259   // Diff to it while guaranteeing no overflow of any sort.
1260   //
1261   // If IdxDiff is negative, do the same, but swap ValA and ValB.
1262   if (!Safe) {
1263     // When computing known bits, use the GEPs as context instructions, since
1264     // they likely are in the same BB as the load/store.
1265     KnownBits Known(BitWidth);
1266     computeKnownBits((IdxDiff.sge(0) ? ValA : OpB), Known, DL, 0, &AC,
1267                      ContextInst, &DT);
1268     APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
1269     if (Signed)
1270       BitsAllowedToBeSet.clearBit(BitWidth - 1);
1271     if (BitsAllowedToBeSet.ult(IdxDiff.abs()))
1272       return std::nullopt;
1273     Safe = true;
1274   }
1275 
1276   if (Safe)
1277     return IdxDiff * Stride;
1278   return std::nullopt;
1279 }
1280 
1281 std::optional<APInt> Vectorizer::getConstantOffsetSelects(
1282     Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) {
1283   if (Depth++ == MaxDepth)
1284     return std::nullopt;
1285 
1286   if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
1287     if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
1288       if (SelectA->getCondition() != SelectB->getCondition())
1289         return std::nullopt;
1290       LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetSelects, PtrA=" << *PtrA
1291                         << ", PtrB=" << *PtrB << ", ContextInst="
1292                         << *ContextInst << ", Depth=" << Depth << "\n");
1293       std::optional<APInt> TrueDiff = getConstantOffset(
1294           SelectA->getTrueValue(), SelectB->getTrueValue(), ContextInst, Depth);
1295       if (!TrueDiff.has_value())
1296         return std::nullopt;
1297       std::optional<APInt> FalseDiff =
1298           getConstantOffset(SelectA->getFalseValue(), SelectB->getFalseValue(),
1299                             ContextInst, Depth);
1300       if (TrueDiff == FalseDiff)
1301         return TrueDiff;
1302     }
1303   }
1304   return std::nullopt;
1305 }
1306 
1307 EquivalenceClassMap
1308 Vectorizer::collectEquivalenceClasses(BasicBlock::iterator Begin,
1309                                       BasicBlock::iterator End) {
1310   EquivalenceClassMap Ret;
1311 
1312   auto getUnderlyingObject = [](const Value *Ptr) -> const Value * {
1313     const Value *ObjPtr = llvm::getUnderlyingObject(Ptr);
1314     if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
1315       // The select's themselves are distinct instructions even if they share
1316       // the same condition and evaluate to consecutive pointers for true and
1317       // false values of the condition. Therefore using the select's themselves
1318       // for grouping instructions would put consecutive accesses into different
1319       // lists and they won't be even checked for being consecutive, and won't
1320       // be vectorized.
1321       return Sel->getCondition();
1322     }
1323     return ObjPtr;
1324   };
1325 
1326   for (Instruction &I : make_range(Begin, End)) {
1327     auto *LI = dyn_cast<LoadInst>(&I);
1328     auto *SI = dyn_cast<StoreInst>(&I);
1329     if (!LI && !SI)
1330       continue;
1331 
1332     if ((LI && !LI->isSimple()) || (SI && !SI->isSimple()))
1333       continue;
1334 
1335     if ((LI && !TTI.isLegalToVectorizeLoad(LI)) ||
1336         (SI && !TTI.isLegalToVectorizeStore(SI)))
1337       continue;
1338 
1339     Type *Ty = getLoadStoreType(&I);
1340     if (!VectorType::isValidElementType(Ty->getScalarType()))
1341       continue;
1342 
1343     // Skip weird non-byte sizes. They probably aren't worth the effort of
1344     // handling correctly.
1345     unsigned TySize = DL.getTypeSizeInBits(Ty);
1346     if ((TySize % 8) != 0)
1347       continue;
1348 
1349     // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
1350     // functions are currently using an integer type for the vectorized
1351     // load/store, and does not support casting between the integer type and a
1352     // vector of pointers (e.g. i64 to <2 x i16*>)
1353     if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
1354       continue;
1355 
1356     Value *Ptr = getLoadStorePointerOperand(&I);
1357     unsigned AS = Ptr->getType()->getPointerAddressSpace();
1358     unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1359 
1360     unsigned VF = VecRegSize / TySize;
1361     VectorType *VecTy = dyn_cast<VectorType>(Ty);
1362 
1363     // Only handle power-of-two sized elements.
1364     if ((!VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(Ty))) ||
1365         (VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(VecTy->getScalarType()))))
1366       continue;
1367 
1368     // No point in looking at these if they're too big to vectorize.
1369     if (TySize > VecRegSize / 2 ||
1370         (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
1371       continue;
1372 
1373     Ret[{getUnderlyingObject(Ptr), AS,
1374          DL.getTypeSizeInBits(getLoadStoreType(&I)->getScalarType()),
1375          /*IsLoad=*/LI != nullptr}]
1376         .push_back(&I);
1377   }
1378 
1379   return Ret;
1380 }
1381 
1382 std::vector<Chain> Vectorizer::gatherChains(ArrayRef<Instruction *> Instrs) {
1383   if (Instrs.empty())
1384     return {};
1385 
1386   unsigned AS = getLoadStoreAddressSpace(Instrs[0]);
1387   unsigned ASPtrBits = DL.getIndexSizeInBits(AS);
1388 
1389 #ifndef NDEBUG
1390   // Check that Instrs is in BB order and all have the same addr space.
1391   for (size_t I = 1; I < Instrs.size(); ++I) {
1392     assert(Instrs[I - 1]->comesBefore(Instrs[I]));
1393     assert(getLoadStoreAddressSpace(Instrs[I]) == AS);
1394   }
1395 #endif
1396 
1397   // Machinery to build an MRU-hashtable of Chains.
1398   //
1399   // (Ideally this could be done with MapVector, but as currently implemented,
1400   // moving an element to the front of a MapVector is O(n).)
1401   struct InstrListElem : ilist_node<InstrListElem>,
1402                          std::pair<Instruction *, Chain> {
1403     explicit InstrListElem(Instruction *I)
1404         : std::pair<Instruction *, Chain>(I, {}) {}
1405   };
1406   struct InstrListElemDenseMapInfo {
1407     using PtrInfo = DenseMapInfo<InstrListElem *>;
1408     using IInfo = DenseMapInfo<Instruction *>;
1409     static InstrListElem *getEmptyKey() { return PtrInfo::getEmptyKey(); }
1410     static InstrListElem *getTombstoneKey() {
1411       return PtrInfo::getTombstoneKey();
1412     }
1413     static unsigned getHashValue(const InstrListElem *E) {
1414       return IInfo::getHashValue(E->first);
1415     }
1416     static bool isEqual(const InstrListElem *A, const InstrListElem *B) {
1417       if (A == getEmptyKey() || B == getEmptyKey())
1418         return A == getEmptyKey() && B == getEmptyKey();
1419       if (A == getTombstoneKey() || B == getTombstoneKey())
1420         return A == getTombstoneKey() && B == getTombstoneKey();
1421       return IInfo::isEqual(A->first, B->first);
1422     }
1423   };
1424   SpecificBumpPtrAllocator<InstrListElem> Allocator;
1425   simple_ilist<InstrListElem> MRU;
1426   DenseSet<InstrListElem *, InstrListElemDenseMapInfo> Chains;
1427 
1428   // Compare each instruction in `instrs` to leader of the N most recently-used
1429   // chains.  This limits the O(n^2) behavior of this pass while also allowing
1430   // us to build arbitrarily long chains.
1431   for (Instruction *I : Instrs) {
1432     constexpr int MaxChainsToTry = 64;
1433 
1434     bool MatchFound = false;
1435     auto ChainIter = MRU.begin();
1436     for (size_t J = 0; J < MaxChainsToTry && ChainIter != MRU.end();
1437          ++J, ++ChainIter) {
1438       std::optional<APInt> Offset = getConstantOffset(
1439           getLoadStorePointerOperand(ChainIter->first),
1440           getLoadStorePointerOperand(I),
1441           /*ContextInst=*/
1442           (ChainIter->first->comesBefore(I) ? I : ChainIter->first));
1443       if (Offset.has_value()) {
1444         // `Offset` might not have the expected number of bits, if e.g. AS has a
1445         // different number of bits than opaque pointers.
1446         ChainIter->second.push_back(ChainElem{I, Offset.value()});
1447         // Move ChainIter to the front of the MRU list.
1448         MRU.remove(*ChainIter);
1449         MRU.push_front(*ChainIter);
1450         MatchFound = true;
1451         break;
1452       }
1453     }
1454 
1455     if (!MatchFound) {
1456       APInt ZeroOffset(ASPtrBits, 0);
1457       InstrListElem *E = new (Allocator.Allocate()) InstrListElem(I);
1458       E->second.push_back(ChainElem{I, ZeroOffset});
1459       MRU.push_front(*E);
1460       Chains.insert(E);
1461     }
1462   }
1463 
1464   std::vector<Chain> Ret;
1465   Ret.reserve(Chains.size());
1466   // Iterate over MRU rather than Chains so the order is deterministic.
1467   for (auto &E : MRU)
1468     if (E.second.size() > 1)
1469       Ret.push_back(std::move(E.second));
1470   return Ret;
1471 }
1472 
1473 std::optional<APInt> Vectorizer::getConstantOffset(Value *PtrA, Value *PtrB,
1474                                                    Instruction *ContextInst,
1475                                                    unsigned Depth) {
1476   LLVM_DEBUG(dbgs() << "LSV: getConstantOffset, PtrA=" << *PtrA
1477                     << ", PtrB=" << *PtrB << ", ContextInst= " << *ContextInst
1478                     << ", Depth=" << Depth << "\n");
1479   // We'll ultimately return a value of this bit width, even if computations
1480   // happen in a different width.
1481   unsigned OrigBitWidth = DL.getIndexTypeSizeInBits(PtrA->getType());
1482   APInt OffsetA(OrigBitWidth, 0);
1483   APInt OffsetB(OrigBitWidth, 0);
1484   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1485   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1486   unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
1487   if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
1488     return std::nullopt;
1489 
1490   // If we have to shrink the pointer, stripAndAccumulateInBoundsConstantOffsets
1491   // should properly handle a possible overflow and the value should fit into
1492   // the smallest data type used in the cast/gep chain.
1493   assert(OffsetA.getSignificantBits() <= NewPtrBitWidth &&
1494          OffsetB.getSignificantBits() <= NewPtrBitWidth);
1495 
1496   OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
1497   OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
1498   if (PtrA == PtrB)
1499     return (OffsetB - OffsetA).sextOrTrunc(OrigBitWidth);
1500 
1501   // Try to compute B - A.
1502   const SCEV *DistScev = SE.getMinusSCEV(SE.getSCEV(PtrB), SE.getSCEV(PtrA));
1503   if (DistScev != SE.getCouldNotCompute()) {
1504     LLVM_DEBUG(dbgs() << "LSV: SCEV PtrB - PtrA =" << *DistScev << "\n");
1505     ConstantRange DistRange = SE.getSignedRange(DistScev);
1506     if (DistRange.isSingleElement()) {
1507       // Handle index width (the width of Dist) != pointer width (the width of
1508       // the Offset*s at this point).
1509       APInt Dist = DistRange.getSingleElement()->sextOrTrunc(NewPtrBitWidth);
1510       return (OffsetB - OffsetA + Dist).sextOrTrunc(OrigBitWidth);
1511     }
1512   }
1513   std::optional<APInt> Diff =
1514       getConstantOffsetComplexAddrs(PtrA, PtrB, ContextInst, Depth);
1515   if (Diff.has_value())
1516     return (OffsetB - OffsetA + Diff->sext(OffsetB.getBitWidth()))
1517         .sextOrTrunc(OrigBitWidth);
1518   return std::nullopt;
1519 }
1520