xref: /llvm-project/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp (revision 2400c54c37d5afdfec016b9a71f161ac10a49b31)
1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass merges loads/stores to/from sequential memory addresses into vector
10 // loads/stores.  Although there's nothing GPU-specific in here, this pass is
11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs.
12 //
13 // (For simplicity below we talk about loads only, but everything also applies
14 // to stores.)
15 //
16 // This pass is intended to be run late in the pipeline, after other
17 // vectorization opportunities have been exploited.  So the assumption here is
18 // that immediately following our new vector load we'll need to extract out the
19 // individual elements of the load, so we can operate on them individually.
20 //
21 // On CPUs this transformation is usually not beneficial, because extracting the
22 // elements of a vector register is expensive on most architectures.  It's
23 // usually better just to load each element individually into its own scalar
24 // register.
25 //
26 // However, nVidia and AMD GPUs don't have proper vector registers.  Instead, a
27 // "vector load" loads directly into a series of scalar registers.  In effect,
28 // extracting the elements of the vector is free.  It's therefore always
29 // beneficial to vectorize a sequence of loads on these architectures.
30 //
31 // Vectorizing (perhaps a better name might be "coalescing") loads can have
32 // large performance impacts on GPU kernels, and opportunities for vectorizing
33 // are common in GPU code.  This pass tries very hard to find such
34 // opportunities; its runtime is quadratic in the number of loads in a BB.
35 //
36 // Some CPU architectures, such as ARM, have instructions that load into
37 // multiple scalar registers, similar to a GPU vectorized load.  In theory ARM
38 // could use this pass (with some modifications), but currently it implements
39 // its own pass to do something similar to what we do here.
40 //
41 // Overview of the algorithm and terminology in this pass:
42 //
43 //  - Break up each basic block into pseudo-BBs, composed of instructions which
44 //    are guaranteed to transfer control to their successors.
45 //  - Within a single pseudo-BB, find all loads, and group them into
46 //    "equivalence classes" according to getUnderlyingObject() and loaded
47 //    element size.  Do the same for stores.
48 //  - For each equivalence class, greedily build "chains".  Each chain has a
49 //    leader instruction, and every other member of the chain has a known
50 //    constant offset from the first instr in the chain.
51 //  - Break up chains so that they contain only contiguous accesses of legal
52 //    size with no intervening may-alias instrs.
53 //  - Convert each chain to vector instructions.
54 //
55 // The O(n^2) behavior of this pass comes from initially building the chains.
56 // In the worst case we have to compare each new instruction to all of those
57 // that came before. To limit this, we only calculate the offset to the leaders
58 // of the N most recently-used chains.
59 
60 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/MapVector.h"
65 #include "llvm/ADT/PostOrderIterator.h"
66 #include "llvm/ADT/STLExtras.h"
67 #include "llvm/ADT/Sequence.h"
68 #include "llvm/ADT/SmallPtrSet.h"
69 #include "llvm/ADT/SmallVector.h"
70 #include "llvm/ADT/Statistic.h"
71 #include "llvm/ADT/iterator_range.h"
72 #include "llvm/Analysis/AliasAnalysis.h"
73 #include "llvm/Analysis/AssumptionCache.h"
74 #include "llvm/Analysis/MemoryLocation.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Analysis/ValueTracking.h"
78 #include "llvm/Analysis/VectorUtils.h"
79 #include "llvm/IR/Attributes.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/ConstantRange.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/DataLayout.h"
84 #include "llvm/IR/DerivedTypes.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/GetElementPtrTypeIterator.h"
88 #include "llvm/IR/IRBuilder.h"
89 #include "llvm/IR/InstrTypes.h"
90 #include "llvm/IR/Instruction.h"
91 #include "llvm/IR/Instructions.h"
92 #include "llvm/IR/LLVMContext.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Alignment.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/Debug.h"
101 #include "llvm/Support/KnownBits.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/ModRef.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <cstdlib>
110 #include <iterator>
111 #include <limits>
112 #include <numeric>
113 #include <optional>
114 #include <tuple>
115 #include <type_traits>
116 #include <utility>
117 #include <vector>
118 
119 using namespace llvm;
120 
121 #define DEBUG_TYPE "load-store-vectorizer"
122 
123 STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
124 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
125 
126 namespace {
127 
128 // Equivalence class key, the initial tuple by which we group loads/stores.
129 // Loads/stores with different EqClassKeys are never merged.
130 //
131 // (We could in theory remove element-size from the this tuple.  We'd just need
132 // to fix up the vector packing/unpacking code.)
133 using EqClassKey =
134     std::tuple<const Value * /* result of getUnderlyingObject() */,
135                unsigned /* AddrSpace */,
136                unsigned /* Load/Store element size bits */,
137                char /* IsLoad; char b/c bool can't be a DenseMap key */
138                >;
139 [[maybe_unused]] llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
140                                                const EqClassKey &K) {
141   const auto &[UnderlyingObject, AddrSpace, ElementSize, IsLoad] = K;
142   return OS << (IsLoad ? "load" : "store") << " of " << *UnderlyingObject
143             << " of element size " << ElementSize << " bits in addrspace "
144             << AddrSpace;
145 }
146 
147 // A Chain is a set of instructions such that:
148 //  - All instructions have the same equivalence class, so in particular all are
149 //    loads, or all are stores.
150 //  - We know the address accessed by the i'th chain elem relative to the
151 //    chain's leader instruction, which is the first instr of the chain in BB
152 //    order.
153 //
154 // Chains have two canonical orderings:
155 //  - BB order, sorted by Instr->comesBefore.
156 //  - Offset order, sorted by OffsetFromLeader.
157 // This pass switches back and forth between these orders.
158 struct ChainElem {
159   Instruction *Inst;
160   APInt OffsetFromLeader;
161 };
162 using Chain = SmallVector<ChainElem, 1>;
163 
164 void sortChainInBBOrder(Chain &C) {
165   sort(C, [](auto &A, auto &B) { return A.Inst->comesBefore(B.Inst); });
166 }
167 
168 void sortChainInOffsetOrder(Chain &C) {
169   sort(C, [](const auto &A, const auto &B) {
170     if (A.OffsetFromLeader != B.OffsetFromLeader)
171       return A.OffsetFromLeader.slt(B.OffsetFromLeader);
172     return A.Inst->comesBefore(B.Inst); // stable tiebreaker
173   });
174 }
175 
176 [[maybe_unused]] void dumpChain(ArrayRef<ChainElem> C) {
177   for (const auto &E : C) {
178     dbgs() << "  " << *E.Inst << " (offset " << E.OffsetFromLeader << ")\n";
179   }
180 }
181 
182 using EquivalenceClassMap =
183     MapVector<EqClassKey, SmallVector<Instruction *, 8>>;
184 
185 // FIXME: Assuming stack alignment of 4 is always good enough
186 constexpr unsigned StackAdjustedAlignment = 4;
187 
188 Instruction *propagateMetadata(Instruction *I, const Chain &C) {
189   SmallVector<Value *, 8> Values;
190   for (const ChainElem &E : C)
191     Values.push_back(E.Inst);
192   return propagateMetadata(I, Values);
193 }
194 
195 bool isInvariantLoad(const Instruction *I) {
196   const LoadInst *LI = dyn_cast<LoadInst>(I);
197   return LI != nullptr && LI->hasMetadata(LLVMContext::MD_invariant_load);
198 }
199 
200 /// Reorders the instructions that I depends on (the instructions defining its
201 /// operands), to ensure they dominate I.
202 void reorder(Instruction *I) {
203   SmallPtrSet<Instruction *, 16> InstructionsToMove;
204   SmallVector<Instruction *, 16> Worklist;
205 
206   Worklist.push_back(I);
207   while (!Worklist.empty()) {
208     Instruction *IW = Worklist.pop_back_val();
209     int NumOperands = IW->getNumOperands();
210     for (int i = 0; i < NumOperands; i++) {
211       Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
212       if (!IM || IM->getOpcode() == Instruction::PHI)
213         continue;
214 
215       // If IM is in another BB, no need to move it, because this pass only
216       // vectorizes instructions within one BB.
217       if (IM->getParent() != I->getParent())
218         continue;
219 
220       if (!IM->comesBefore(I)) {
221         InstructionsToMove.insert(IM);
222         Worklist.push_back(IM);
223       }
224     }
225   }
226 
227   // All instructions to move should follow I. Start from I, not from begin().
228   for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;) {
229     Instruction *IM = &*(BBI++);
230     if (!InstructionsToMove.count(IM))
231       continue;
232     IM->moveBefore(I);
233   }
234 }
235 
236 class Vectorizer {
237   Function &F;
238   AliasAnalysis &AA;
239   AssumptionCache &AC;
240   DominatorTree &DT;
241   ScalarEvolution &SE;
242   TargetTransformInfo &TTI;
243   const DataLayout &DL;
244   IRBuilder<> Builder;
245 
246   // We could erase instrs right after vectorizing them, but that can mess up
247   // our BB iterators, and also can make the equivalence class keys point to
248   // freed memory.  This is fixable, but it's simpler just to wait until we're
249   // done with the BB and erase all at once.
250   SmallVector<Instruction *, 128> ToErase;
251 
252 public:
253   Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC,
254              DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI)
255       : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI),
256         DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
257 
258   bool run();
259 
260 private:
261   static const unsigned MaxDepth = 3;
262 
263   /// Runs the vectorizer on a "pseudo basic block", which is a range of
264   /// instructions [Begin, End) within one BB all of which have
265   /// isGuaranteedToTransferExecutionToSuccessor(I) == true.
266   bool runOnPseudoBB(BasicBlock::iterator Begin, BasicBlock::iterator End);
267 
268   /// Runs the vectorizer on one equivalence class, i.e. one set of loads/stores
269   /// in the same BB with the same value for getUnderlyingObject() etc.
270   bool runOnEquivalenceClass(const EqClassKey &EqClassKey,
271                              ArrayRef<Instruction *> EqClass);
272 
273   /// Runs the vectorizer on one chain, i.e. a subset of an equivalence class
274   /// where all instructions access a known, constant offset from the first
275   /// instruction.
276   bool runOnChain(Chain &C);
277 
278   /// Splits the chain into subchains of instructions which read/write a
279   /// contiguous block of memory.  Discards any length-1 subchains (because
280   /// there's nothing to vectorize in there).
281   std::vector<Chain> splitChainByContiguity(Chain &C);
282 
283   /// Splits the chain into subchains where it's safe to hoist loads up to the
284   /// beginning of the sub-chain and it's safe to sink loads up to the end of
285   /// the sub-chain.  Discards any length-1 subchains.
286   std::vector<Chain> splitChainByMayAliasInstrs(Chain &C);
287 
288   /// Splits the chain into subchains that make legal, aligned accesses.
289   /// Discards any length-1 subchains.
290   std::vector<Chain> splitChainByAlignment(Chain &C);
291 
292   /// Converts the instrs in the chain into a single vectorized load or store.
293   /// Adds the old scalar loads/stores to ToErase.
294   bool vectorizeChain(Chain &C);
295 
296   /// Tries to compute the offset in bytes PtrB - PtrA.
297   std::optional<APInt> getConstantOffset(Value *PtrA, Value *PtrB,
298                                          Instruction *ContextInst,
299                                          unsigned Depth = 0);
300   std::optional<APInt> getConstantOffsetComplexAddrs(Value *PtrA, Value *PtrB,
301                                                      Instruction *ContextInst,
302                                                      unsigned Depth);
303   std::optional<APInt> getConstantOffsetSelects(Value *PtrA, Value *PtrB,
304                                                 Instruction *ContextInst,
305                                                 unsigned Depth);
306 
307   /// Gets the element type of the vector that the chain will load or store.
308   /// This is nontrivial because the chain may contain elements of different
309   /// types; e.g. it's legal to have a chain that contains both i32 and float.
310   Type *getChainElemTy(const Chain &C);
311 
312   /// Determines whether ChainElem can be moved up (if IsLoad) or down (if
313   /// !IsLoad) to ChainBegin -- i.e. there are no intervening may-alias
314   /// instructions.
315   ///
316   /// The map ChainElemOffsets must contain all of the elements in
317   /// [ChainBegin, ChainElem] and their offsets from some arbitrary base
318   /// address.  It's ok if it contains additional entries.
319   template <bool IsLoadChain>
320   bool isSafeToMove(
321       Instruction *ChainElem, Instruction *ChainBegin,
322       const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets);
323 
324   /// Collects loads and stores grouped by "equivalence class", where:
325   ///   - all elements in an eq class are a load or all are a store,
326   ///   - they all load/store the same element size (it's OK to have e.g. i8 and
327   ///     <4 x i8> in the same class, but not i32 and <4 x i8>), and
328   ///   - they all have the same value for getUnderlyingObject().
329   EquivalenceClassMap collectEquivalenceClasses(BasicBlock::iterator Begin,
330                                                 BasicBlock::iterator End);
331 
332   /// Partitions Instrs into "chains" where every instruction has a known
333   /// constant offset from the first instr in the chain.
334   ///
335   /// Postcondition: For all i, ret[i][0].second == 0, because the first instr
336   /// in the chain is the leader, and an instr touches distance 0 from itself.
337   std::vector<Chain> gatherChains(ArrayRef<Instruction *> Instrs);
338 };
339 
340 class LoadStoreVectorizerLegacyPass : public FunctionPass {
341 public:
342   static char ID;
343 
344   LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
345     initializeLoadStoreVectorizerLegacyPassPass(
346         *PassRegistry::getPassRegistry());
347   }
348 
349   bool runOnFunction(Function &F) override;
350 
351   StringRef getPassName() const override {
352     return "GPU Load and Store Vectorizer";
353   }
354 
355   void getAnalysisUsage(AnalysisUsage &AU) const override {
356     AU.addRequired<AAResultsWrapperPass>();
357     AU.addRequired<AssumptionCacheTracker>();
358     AU.addRequired<ScalarEvolutionWrapperPass>();
359     AU.addRequired<DominatorTreeWrapperPass>();
360     AU.addRequired<TargetTransformInfoWrapperPass>();
361     AU.setPreservesCFG();
362   }
363 };
364 
365 } // end anonymous namespace
366 
367 char LoadStoreVectorizerLegacyPass::ID = 0;
368 
369 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
370                       "Vectorize load and Store instructions", false, false)
371 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
372 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
373 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
374 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
375 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
376 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
377 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
378                     "Vectorize load and store instructions", false, false)
379 
380 Pass *llvm::createLoadStoreVectorizerPass() {
381   return new LoadStoreVectorizerLegacyPass();
382 }
383 
384 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
385   // Don't vectorize when the attribute NoImplicitFloat is used.
386   if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
387     return false;
388 
389   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
390   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
391   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
392   TargetTransformInfo &TTI =
393       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
394 
395   AssumptionCache &AC =
396       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
397 
398   return Vectorizer(F, AA, AC, DT, SE, TTI).run();
399 }
400 
401 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F,
402                                                FunctionAnalysisManager &AM) {
403   // Don't vectorize when the attribute NoImplicitFloat is used.
404   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
405     return PreservedAnalyses::all();
406 
407   AliasAnalysis &AA = AM.getResult<AAManager>(F);
408   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
409   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
410   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
411   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
412 
413   bool Changed = Vectorizer(F, AA, AC, DT, SE, TTI).run();
414   PreservedAnalyses PA;
415   PA.preserveSet<CFGAnalyses>();
416   return Changed ? PA : PreservedAnalyses::all();
417 }
418 
419 bool Vectorizer::run() {
420   bool Changed = false;
421   // Break up the BB if there are any instrs which aren't guaranteed to transfer
422   // execution to their successor.
423   //
424   // Consider, for example:
425   //
426   //   def assert_arr_len(int n) { if (n < 2) exit(); }
427   //
428   //   load arr[0]
429   //   call assert_array_len(arr.length)
430   //   load arr[1]
431   //
432   // Even though assert_arr_len does not read or write any memory, we can't
433   // speculate the second load before the call.  More info at
434   // https://github.com/llvm/llvm-project/issues/52950.
435   for (BasicBlock *BB : post_order(&F)) {
436     // BB must at least have a terminator.
437     assert(!BB->empty());
438 
439     SmallVector<BasicBlock::iterator, 8> Barriers;
440     Barriers.push_back(BB->begin());
441     for (Instruction &I : *BB)
442       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
443         Barriers.push_back(I.getIterator());
444     Barriers.push_back(BB->end());
445 
446     for (auto It = Barriers.begin(), End = std::prev(Barriers.end()); It != End;
447          ++It)
448       Changed |= runOnPseudoBB(*It, *std::next(It));
449 
450     for (Instruction *I : ToErase) {
451       auto *PtrOperand = getLoadStorePointerOperand(I);
452       if (I->use_empty())
453         I->eraseFromParent();
454       RecursivelyDeleteTriviallyDeadInstructions(PtrOperand);
455     }
456     ToErase.clear();
457   }
458 
459   return Changed;
460 }
461 
462 bool Vectorizer::runOnPseudoBB(BasicBlock::iterator Begin,
463                                BasicBlock::iterator End) {
464   LLVM_DEBUG({
465     dbgs() << "LSV: Running on pseudo-BB [" << *Begin << " ... ";
466     if (End != Begin->getParent()->end())
467       dbgs() << *End;
468     else
469       dbgs() << "<BB end>";
470     dbgs() << ")\n";
471   });
472 
473   bool Changed = false;
474   for (const auto &[EqClassKey, EqClass] :
475        collectEquivalenceClasses(Begin, End))
476     Changed |= runOnEquivalenceClass(EqClassKey, EqClass);
477 
478   return Changed;
479 }
480 
481 bool Vectorizer::runOnEquivalenceClass(const EqClassKey &EqClassKey,
482                                        ArrayRef<Instruction *> EqClass) {
483   bool Changed = false;
484 
485   LLVM_DEBUG({
486     dbgs() << "LSV: Running on equivalence class of size " << EqClass.size()
487            << " keyed on " << EqClassKey << ":\n";
488     for (Instruction *I : EqClass)
489       dbgs() << "  " << *I << "\n";
490   });
491 
492   std::vector<Chain> Chains = gatherChains(EqClass);
493   LLVM_DEBUG(dbgs() << "LSV: Got " << Chains.size()
494                     << " nontrivial chains.\n";);
495   for (Chain &C : Chains)
496     Changed |= runOnChain(C);
497   return Changed;
498 }
499 
500 bool Vectorizer::runOnChain(Chain &C) {
501   LLVM_DEBUG({
502     dbgs() << "LSV: Running on chain with " << C.size() << " instructions:\n";
503     dumpChain(C);
504   });
505 
506   // Split up the chain into increasingly smaller chains, until we can finally
507   // vectorize the chains.
508   //
509   // (Don't be scared by the depth of the loop nest here.  These operations are
510   // all at worst O(n lg n) in the number of instructions, and splitting chains
511   // doesn't change the number of instrs.  So the whole loop nest is O(n lg n).)
512   bool Changed = false;
513   for (auto &C : splitChainByMayAliasInstrs(C))
514     for (auto &C : splitChainByContiguity(C))
515       for (auto &C : splitChainByAlignment(C))
516         Changed |= vectorizeChain(C);
517   return Changed;
518 }
519 
520 std::vector<Chain> Vectorizer::splitChainByMayAliasInstrs(Chain &C) {
521   if (C.empty())
522     return {};
523 
524   sortChainInBBOrder(C);
525 
526   LLVM_DEBUG({
527     dbgs() << "LSV: splitChainByMayAliasInstrs considering chain:\n";
528     dumpChain(C);
529   });
530 
531   // We know that elements in the chain with nonverlapping offsets can't
532   // alias, but AA may not be smart enough to figure this out.  Use a
533   // hashtable.
534   DenseMap<Instruction *, APInt /*OffsetFromLeader*/> ChainOffsets;
535   for (const auto &E : C)
536     ChainOffsets.insert({&*E.Inst, E.OffsetFromLeader});
537 
538   // Loads get hoisted up to the first load in the chain.  Stores get sunk
539   // down to the last store in the chain.  Our algorithm for loads is:
540   //
541   //  - Take the first element of the chain.  This is the start of a new chain.
542   //  - Take the next element of `Chain` and check for may-alias instructions
543   //    up to the start of NewChain.  If no may-alias instrs, add it to
544   //    NewChain.  Otherwise, start a new NewChain.
545   //
546   // For stores it's the same except in the reverse direction.
547   //
548   // We expect IsLoad to be an std::bool_constant.
549   auto Impl = [&](auto IsLoad) {
550     // MSVC is unhappy if IsLoad is a capture, so pass it as an arg.
551     auto [ChainBegin, ChainEnd] = [&](auto IsLoad) {
552       if constexpr (IsLoad())
553         return std::make_pair(C.begin(), C.end());
554       else
555         return std::make_pair(C.rbegin(), C.rend());
556     }(IsLoad);
557     assert(ChainBegin != ChainEnd);
558 
559     std::vector<Chain> Chains;
560     SmallVector<ChainElem, 1> NewChain;
561     NewChain.push_back(*ChainBegin);
562     for (auto ChainIt = std::next(ChainBegin); ChainIt != ChainEnd; ++ChainIt) {
563       if (isSafeToMove<IsLoad>(ChainIt->Inst, NewChain.front().Inst,
564                                ChainOffsets)) {
565         LLVM_DEBUG(dbgs() << "LSV: No intervening may-alias instrs; can merge "
566                           << *ChainIt->Inst << " into " << *ChainBegin->Inst
567                           << "\n");
568         NewChain.push_back(*ChainIt);
569       } else {
570         LLVM_DEBUG(
571             dbgs() << "LSV: Found intervening may-alias instrs; cannot merge "
572                    << *ChainIt->Inst << " into " << *ChainBegin->Inst << "\n");
573         if (NewChain.size() > 1) {
574           LLVM_DEBUG({
575             dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n";
576             dumpChain(NewChain);
577           });
578           Chains.push_back(std::move(NewChain));
579         }
580 
581         // Start a new chain.
582         NewChain = SmallVector<ChainElem, 1>({*ChainIt});
583       }
584     }
585     if (NewChain.size() > 1) {
586       LLVM_DEBUG({
587         dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n";
588         dumpChain(NewChain);
589       });
590       Chains.push_back(std::move(NewChain));
591     }
592     return Chains;
593   };
594 
595   if (isa<LoadInst>(C[0].Inst))
596     return Impl(/*IsLoad=*/std::bool_constant<true>());
597 
598   assert(isa<StoreInst>(C[0].Inst));
599   return Impl(/*IsLoad=*/std::bool_constant<false>());
600 }
601 
602 std::vector<Chain> Vectorizer::splitChainByContiguity(Chain &C) {
603   if (C.empty())
604     return {};
605 
606   sortChainInOffsetOrder(C);
607 
608   LLVM_DEBUG({
609     dbgs() << "LSV: splitChainByContiguity considering chain:\n";
610     dumpChain(C);
611   });
612 
613   std::vector<Chain> Ret;
614   Ret.push_back({C.front()});
615 
616   for (auto It = std::next(C.begin()), End = C.end(); It != End; ++It) {
617     // `prev` accesses offsets [PrevDistFromBase, PrevReadEnd).
618     auto &CurChain = Ret.back();
619     const ChainElem &Prev = CurChain.back();
620     unsigned SzBits = DL.getTypeSizeInBits(getLoadStoreType(&*Prev.Inst));
621     assert(SzBits % 8 == 0 && "Non-byte sizes should have been filtered out by "
622                               "collectEquivalenceClass");
623     APInt PrevReadEnd = Prev.OffsetFromLeader + SzBits / 8;
624 
625     // Add this instruction to the end of the current chain, or start a new one.
626     bool AreContiguous = It->OffsetFromLeader == PrevReadEnd;
627     LLVM_DEBUG(dbgs() << "LSV: Instructions are "
628                       << (AreContiguous ? "" : "not ") << "contiguous: "
629                       << *Prev.Inst << " (ends at offset " << PrevReadEnd
630                       << ") -> " << *It->Inst << " (starts at offset "
631                       << It->OffsetFromLeader << ")\n");
632     if (AreContiguous)
633       CurChain.push_back(*It);
634     else
635       Ret.push_back({*It});
636   }
637 
638   // Filter out length-1 chains, these are uninteresting.
639   llvm::erase_if(Ret, [](const auto &Chain) { return Chain.size() <= 1; });
640   return Ret;
641 }
642 
643 Type *Vectorizer::getChainElemTy(const Chain &C) {
644   assert(!C.empty());
645   // The rules are:
646   //  - If there are any pointer types in the chain, use an integer type.
647   //  - Prefer an integer type if it appears in the chain.
648   //  - Otherwise, use the first type in the chain.
649   //
650   // The rule about pointer types is a simplification when we merge e.g.  a load
651   // of a ptr and a double.  There's no direct conversion from a ptr to a
652   // double; it requires a ptrtoint followed by a bitcast.
653   //
654   // It's unclear to me if the other rules have any practical effect, but we do
655   // it to match this pass's previous behavior.
656   if (any_of(C, [](const ChainElem &E) {
657         return getLoadStoreType(E.Inst)->getScalarType()->isPointerTy();
658       })) {
659     return Type::getIntNTy(
660         F.getContext(),
661         DL.getTypeSizeInBits(getLoadStoreType(C[0].Inst)->getScalarType()));
662   }
663 
664   for (const ChainElem &E : C)
665     if (Type *T = getLoadStoreType(E.Inst)->getScalarType(); T->isIntegerTy())
666       return T;
667   return getLoadStoreType(C[0].Inst)->getScalarType();
668 }
669 
670 std::vector<Chain> Vectorizer::splitChainByAlignment(Chain &C) {
671   // We use a simple greedy algorithm.
672   //  - Given a chain of length N, find all prefixes that
673   //    (a) are not longer than the max register length, and
674   //    (b) are a power of 2.
675   //  - Starting from the longest prefix, try to create a vector of that length.
676   //  - If one of them works, great.  Repeat the algorithm on any remaining
677   //    elements in the chain.
678   //  - If none of them work, discard the first element and repeat on a chain
679   //    of length N-1.
680   if (C.empty())
681     return {};
682 
683   sortChainInOffsetOrder(C);
684 
685   LLVM_DEBUG({
686     dbgs() << "LSV: splitChainByAlignment considering chain:\n";
687     dumpChain(C);
688   });
689 
690   bool IsLoadChain = isa<LoadInst>(C[0].Inst);
691   auto getVectorFactor = [&](unsigned VF, unsigned LoadStoreSize,
692                              unsigned ChainSizeBytes, VectorType *VecTy) {
693     return IsLoadChain ? TTI.getLoadVectorFactor(VF, LoadStoreSize,
694                                                  ChainSizeBytes, VecTy)
695                        : TTI.getStoreVectorFactor(VF, LoadStoreSize,
696                                                   ChainSizeBytes, VecTy);
697   };
698 
699 #ifndef NDEBUG
700   for (const auto &E : C) {
701     Type *Ty = getLoadStoreType(E.Inst)->getScalarType();
702     assert(isPowerOf2_32(DL.getTypeSizeInBits(Ty)) &&
703            "Should have filtered out non-power-of-two elements in "
704            "collectEquivalenceClasses.");
705   }
706 #endif
707 
708   unsigned AS = getLoadStoreAddressSpace(C[0].Inst);
709   unsigned VecRegBytes = TTI.getLoadStoreVecRegBitWidth(AS) / 8;
710 
711   std::vector<Chain> Ret;
712   for (unsigned CBegin = 0; CBegin < C.size(); ++CBegin) {
713     // Find candidate chains of size not greater than the largest vector reg.
714     // These chains are over the closed interval [CBegin, CEnd].
715     SmallVector<std::pair<unsigned /*CEnd*/, unsigned /*SizeBytes*/>, 8>
716         CandidateChains;
717     for (unsigned CEnd = CBegin + 1, Size = C.size(); CEnd < Size; ++CEnd) {
718       APInt Sz = C[CEnd].OffsetFromLeader +
719                  DL.getTypeStoreSize(getLoadStoreType(C[CEnd].Inst)) -
720                  C[CBegin].OffsetFromLeader;
721       if (Sz.sgt(VecRegBytes))
722         break;
723       CandidateChains.push_back(
724           {CEnd, static_cast<unsigned>(Sz.getLimitedValue())});
725     }
726 
727     // Consider the longest chain first.
728     for (auto It = CandidateChains.rbegin(), End = CandidateChains.rend();
729          It != End; ++It) {
730       auto [CEnd, SizeBytes] = *It;
731       LLVM_DEBUG(
732           dbgs() << "LSV: splitChainByAlignment considering candidate chain ["
733                  << *C[CBegin].Inst << " ... " << *C[CEnd].Inst << "]\n");
734 
735       Type *VecElemTy = getChainElemTy(C);
736       // Note, VecElemTy is a power of 2, but might be less than one byte.  For
737       // example, we can vectorize 2 x <2 x i4> to <4 x i4>, and in this case
738       // VecElemTy would be i4.
739       unsigned VecElemBits = DL.getTypeSizeInBits(VecElemTy);
740 
741       // SizeBytes and VecElemBits are powers of 2, so they divide evenly.
742       assert((8 * SizeBytes) % VecElemBits == 0);
743       unsigned NumVecElems = 8 * SizeBytes / VecElemBits;
744       FixedVectorType *VecTy = FixedVectorType::get(VecElemTy, NumVecElems);
745       unsigned VF = 8 * VecRegBytes / VecElemBits;
746 
747       // Check that TTI is happy with this vectorization factor.
748       unsigned TargetVF = getVectorFactor(VF, VecElemBits,
749                                           VecElemBits * NumVecElems / 8, VecTy);
750       if (TargetVF != VF && TargetVF < NumVecElems) {
751         LLVM_DEBUG(
752             dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
753                       "because TargetVF="
754                    << TargetVF << " != VF=" << VF
755                    << " and TargetVF < NumVecElems=" << NumVecElems << "\n");
756         continue;
757       }
758 
759       // Is a load/store with this alignment allowed by TTI and at least as fast
760       // as an unvectorized load/store?
761       //
762       // TTI and F are passed as explicit captures to WAR an MSVC misparse (??).
763       auto IsAllowedAndFast = [&, SizeBytes = SizeBytes, &TTI = TTI,
764                                &F = F](Align Alignment) {
765         if (Alignment.value() % SizeBytes == 0)
766           return true;
767         unsigned VectorizedSpeed = 0;
768         bool AllowsMisaligned = TTI.allowsMisalignedMemoryAccesses(
769             F.getContext(), SizeBytes * 8, AS, Alignment, &VectorizedSpeed);
770         if (!AllowsMisaligned) {
771           LLVM_DEBUG(dbgs()
772                      << "LSV: Access of " << SizeBytes << "B in addrspace "
773                      << AS << " with alignment " << Alignment.value()
774                      << " is misaligned, and therefore can't be vectorized.\n");
775           return false;
776         }
777 
778         unsigned ElementwiseSpeed = 0;
779         (TTI).allowsMisalignedMemoryAccesses((F).getContext(), VecElemBits, AS,
780                                              Alignment, &ElementwiseSpeed);
781         if (VectorizedSpeed < ElementwiseSpeed) {
782           LLVM_DEBUG(dbgs()
783                      << "LSV: Access of " << SizeBytes << "B in addrspace "
784                      << AS << " with alignment " << Alignment.value()
785                      << " has relative speed " << VectorizedSpeed
786                      << ", which is lower than the elementwise speed of "
787                      << ElementwiseSpeed
788                      << ".  Therefore this access won't be vectorized.\n");
789           return false;
790         }
791         return true;
792       };
793 
794       // If we're loading/storing from an alloca, align it if possible.
795       //
796       // FIXME: We eagerly upgrade the alignment, regardless of whether TTI
797       // tells us this is beneficial.  This feels a bit odd, but it matches
798       // existing tests.  This isn't *so* bad, because at most we align to 4
799       // bytes (current value of StackAdjustedAlignment).
800       //
801       // FIXME: We will upgrade the alignment of the alloca even if it turns out
802       // we can't vectorize for some other reason.
803       Value *PtrOperand = getLoadStorePointerOperand(C[CBegin].Inst);
804       bool IsAllocaAccess = AS == DL.getAllocaAddrSpace() &&
805                             isa<AllocaInst>(PtrOperand->stripPointerCasts());
806       Align Alignment = getLoadStoreAlignment(C[CBegin].Inst);
807       Align PrefAlign = Align(StackAdjustedAlignment);
808       if (IsAllocaAccess && Alignment.value() % SizeBytes != 0 &&
809           IsAllowedAndFast(PrefAlign)) {
810         Align NewAlign = getOrEnforceKnownAlignment(
811             PtrOperand, PrefAlign, DL, C[CBegin].Inst, nullptr, &DT);
812         if (NewAlign >= Alignment) {
813           LLVM_DEBUG(dbgs()
814                      << "LSV: splitByChain upgrading alloca alignment from "
815                      << Alignment.value() << " to " << NewAlign.value()
816                      << "\n");
817           Alignment = NewAlign;
818         }
819       }
820 
821       if (!IsAllowedAndFast(Alignment)) {
822         LLVM_DEBUG(
823             dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
824                       "because its alignment is not AllowedAndFast: "
825                    << Alignment.value() << "\n");
826         continue;
827       }
828 
829       if ((IsLoadChain &&
830            !TTI.isLegalToVectorizeLoadChain(SizeBytes, Alignment, AS)) ||
831           (!IsLoadChain &&
832            !TTI.isLegalToVectorizeStoreChain(SizeBytes, Alignment, AS))) {
833         LLVM_DEBUG(
834             dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
835                       "because !isLegalToVectorizeLoad/StoreChain.");
836         continue;
837       }
838 
839       // Hooray, we can vectorize this chain!
840       Chain &NewChain = Ret.emplace_back();
841       for (unsigned I = CBegin; I <= CEnd; ++I)
842         NewChain.push_back(C[I]);
843       CBegin = CEnd; // Skip over the instructions we've added to the chain.
844       break;
845     }
846   }
847   return Ret;
848 }
849 
850 bool Vectorizer::vectorizeChain(Chain &C) {
851   if (C.size() < 2)
852     return false;
853 
854   sortChainInOffsetOrder(C);
855 
856   LLVM_DEBUG({
857     dbgs() << "LSV: Vectorizing chain of " << C.size() << " instructions:\n";
858     dumpChain(C);
859   });
860 
861   Type *VecElemTy = getChainElemTy(C);
862   bool IsLoadChain = isa<LoadInst>(C[0].Inst);
863   unsigned AS = getLoadStoreAddressSpace(C[0].Inst);
864   unsigned ChainBytes = std::accumulate(
865       C.begin(), C.end(), 0u, [&](unsigned Bytes, const ChainElem &E) {
866         return Bytes + DL.getTypeStoreSize(getLoadStoreType(E.Inst));
867       });
868   assert(ChainBytes % DL.getTypeStoreSize(VecElemTy) == 0);
869   // VecTy is a power of 2 and 1 byte at smallest, but VecElemTy may be smaller
870   // than 1 byte (e.g. VecTy == <32 x i1>).
871   Type *VecTy = FixedVectorType::get(
872       VecElemTy, 8 * ChainBytes / DL.getTypeSizeInBits(VecElemTy));
873 
874   Align Alignment = getLoadStoreAlignment(C[0].Inst);
875   // If this is a load/store of an alloca, we might have upgraded the alloca's
876   // alignment earlier.  Get the new alignment.
877   if (AS == DL.getAllocaAddrSpace()) {
878     Alignment = std::max(
879         Alignment,
880         getOrEnforceKnownAlignment(getLoadStorePointerOperand(C[0].Inst),
881                                    MaybeAlign(), DL, C[0].Inst, nullptr, &DT));
882   }
883 
884   // All elements of the chain must have the same scalar-type size.
885 #ifndef NDEBUG
886   for (const ChainElem &E : C)
887     assert(DL.getTypeStoreSize(getLoadStoreType(E.Inst)->getScalarType()) ==
888            DL.getTypeStoreSize(VecElemTy));
889 #endif
890 
891   Instruction *VecInst;
892   if (IsLoadChain) {
893     // Loads get hoisted to the location of the first load in the chain.  We may
894     // also need to hoist the (transitive) operands of the loads.
895     Builder.SetInsertPoint(
896         std::min_element(C.begin(), C.end(), [](const auto &A, const auto &B) {
897           return A.Inst->comesBefore(B.Inst);
898         })->Inst);
899 
900     // Chain is in offset order, so C[0] is the instr with the lowest offset,
901     // i.e. the root of the vector.
902     VecInst = Builder.CreateAlignedLoad(VecTy,
903                                         getLoadStorePointerOperand(C[0].Inst),
904                                         Alignment);
905 
906     unsigned VecIdx = 0;
907     for (const ChainElem &E : C) {
908       Instruction *I = E.Inst;
909       Value *V;
910       Type *T = getLoadStoreType(I);
911       if (auto *VT = dyn_cast<FixedVectorType>(T)) {
912         auto Mask = llvm::to_vector<8>(
913             llvm::seq<int>(VecIdx, VecIdx + VT->getNumElements()));
914         V = Builder.CreateShuffleVector(VecInst, Mask, I->getName());
915         VecIdx += VT->getNumElements();
916       } else {
917         V = Builder.CreateExtractElement(VecInst, Builder.getInt32(VecIdx),
918                                          I->getName());
919         ++VecIdx;
920       }
921       if (V->getType() != I->getType())
922         V = Builder.CreateBitOrPointerCast(V, I->getType());
923       I->replaceAllUsesWith(V);
924     }
925 
926     // Finally, we need to reorder the instrs in the BB so that the (transitive)
927     // operands of VecInst appear before it.  To see why, suppose we have
928     // vectorized the following code:
929     //
930     //   ptr1  = gep a, 1
931     //   load1 = load i32 ptr1
932     //   ptr0  = gep a, 0
933     //   load0 = load i32 ptr0
934     //
935     // We will put the vectorized load at the location of the earliest load in
936     // the BB, i.e. load1.  We get:
937     //
938     //   ptr1  = gep a, 1
939     //   loadv = load <2 x i32> ptr0
940     //   load0 = extractelement loadv, 0
941     //   load1 = extractelement loadv, 1
942     //   ptr0 = gep a, 0
943     //
944     // Notice that loadv uses ptr0, which is defined *after* it!
945     reorder(VecInst);
946   } else {
947     // Stores get sunk to the location of the last store in the chain.
948     Builder.SetInsertPoint(
949         std::max_element(C.begin(), C.end(), [](auto &A, auto &B) {
950           return A.Inst->comesBefore(B.Inst);
951         })->Inst);
952 
953     // Build the vector to store.
954     Value *Vec = PoisonValue::get(VecTy);
955     unsigned VecIdx = 0;
956     auto InsertElem = [&](Value *V) {
957       if (V->getType() != VecElemTy)
958         V = Builder.CreateBitOrPointerCast(V, VecElemTy);
959       Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(VecIdx++));
960     };
961     for (const ChainElem &E : C) {
962       auto I = cast<StoreInst>(E.Inst);
963       if (FixedVectorType *VT =
964               dyn_cast<FixedVectorType>(getLoadStoreType(I))) {
965         for (int J = 0, JE = VT->getNumElements(); J < JE; ++J) {
966           InsertElem(Builder.CreateExtractElement(I->getValueOperand(),
967                                                   Builder.getInt32(J)));
968         }
969       } else {
970         InsertElem(I->getValueOperand());
971       }
972     }
973 
974     // Chain is in offset order, so C[0] is the instr with the lowest offset,
975     // i.e. the root of the vector.
976     VecInst = Builder.CreateAlignedStore(
977         Vec,
978         getLoadStorePointerOperand(C[0].Inst),
979         Alignment);
980   }
981 
982   propagateMetadata(VecInst, C);
983 
984   for (const ChainElem &E : C)
985     ToErase.push_back(E.Inst);
986 
987   ++NumVectorInstructions;
988   NumScalarsVectorized += C.size();
989   return true;
990 }
991 
992 template <bool IsLoadChain>
993 bool Vectorizer::isSafeToMove(
994     Instruction *ChainElem, Instruction *ChainBegin,
995     const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets) {
996   LLVM_DEBUG(dbgs() << "LSV: isSafeToMove(" << *ChainElem << " -> "
997                     << *ChainBegin << ")\n");
998 
999   assert(isa<LoadInst>(ChainElem) == IsLoadChain);
1000   if (ChainElem == ChainBegin)
1001     return true;
1002 
1003   // Invariant loads can always be reordered; by definition they are not
1004   // clobbered by stores.
1005   if (isInvariantLoad(ChainElem))
1006     return true;
1007 
1008   auto BBIt = std::next([&] {
1009     if constexpr (IsLoadChain)
1010       return BasicBlock::reverse_iterator(ChainElem);
1011     else
1012       return BasicBlock::iterator(ChainElem);
1013   }());
1014   auto BBItEnd = std::next([&] {
1015     if constexpr (IsLoadChain)
1016       return BasicBlock::reverse_iterator(ChainBegin);
1017     else
1018       return BasicBlock::iterator(ChainBegin);
1019   }());
1020 
1021   const APInt &ChainElemOffset = ChainOffsets.at(ChainElem);
1022   const unsigned ChainElemSize =
1023       DL.getTypeStoreSize(getLoadStoreType(ChainElem));
1024 
1025   for (; BBIt != BBItEnd; ++BBIt) {
1026     Instruction *I = &*BBIt;
1027 
1028     if (!I->mayReadOrWriteMemory())
1029       continue;
1030 
1031     // Loads can be reordered with other loads.
1032     if (IsLoadChain && isa<LoadInst>(I))
1033       continue;
1034 
1035     // Stores can be sunk below invariant loads.
1036     if (!IsLoadChain && isInvariantLoad(I))
1037       continue;
1038 
1039     // If I is in the chain, we can tell whether it aliases ChainIt by checking
1040     // what offset ChainIt accesses.  This may be better than AA is able to do.
1041     //
1042     // We should really only have duplicate offsets for stores (the duplicate
1043     // loads should be CSE'ed), but in case we have a duplicate load, we'll
1044     // split the chain so we don't have to handle this case specially.
1045     if (auto OffsetIt = ChainOffsets.find(I); OffsetIt != ChainOffsets.end()) {
1046       // I and ChainElem overlap if:
1047       //   - I and ChainElem have the same offset, OR
1048       //   - I's offset is less than ChainElem's, but I touches past the
1049       //     beginning of ChainElem, OR
1050       //   - ChainElem's offset is less than I's, but ChainElem touches past the
1051       //     beginning of I.
1052       const APInt &IOffset = OffsetIt->second;
1053       unsigned IElemSize = DL.getTypeStoreSize(getLoadStoreType(I));
1054       if (IOffset == ChainElemOffset ||
1055           (IOffset.sle(ChainElemOffset) &&
1056            (IOffset + IElemSize).sgt(ChainElemOffset)) ||
1057           (ChainElemOffset.sle(IOffset) &&
1058            (ChainElemOffset + ChainElemSize).sgt(OffsetIt->second))) {
1059         LLVM_DEBUG({
1060           // Double check that AA also sees this alias.  If not, we probably
1061           // have a bug.
1062           ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem));
1063           assert(IsLoadChain ? isModSet(MR) : isModOrRefSet(MR));
1064           dbgs() << "LSV: Found alias in chain: " << *I << "\n";
1065         });
1066         return false; // We found an aliasing instruction; bail.
1067       }
1068 
1069       continue; // We're confident there's no alias.
1070     }
1071 
1072     LLVM_DEBUG(dbgs() << "LSV: Querying AA for " << *I << "\n");
1073     ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem));
1074     if (IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)) {
1075       LLVM_DEBUG(dbgs() << "LSV: Found alias in chain:\n"
1076                         << "  Aliasing instruction:\n"
1077                         << "    " << *I << '\n'
1078                         << "  Aliased instruction and pointer:\n"
1079                         << "    " << *ChainElem << '\n'
1080                         << "    " << *getLoadStorePointerOperand(ChainElem)
1081                         << '\n');
1082 
1083       return false;
1084     }
1085   }
1086   return true;
1087 }
1088 
1089 static bool checkNoWrapFlags(Instruction *I, bool Signed) {
1090   BinaryOperator *BinOpI = cast<BinaryOperator>(I);
1091   return (Signed && BinOpI->hasNoSignedWrap()) ||
1092          (!Signed && BinOpI->hasNoUnsignedWrap());
1093 }
1094 
1095 static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA,
1096                                    unsigned MatchingOpIdxA, Instruction *AddOpB,
1097                                    unsigned MatchingOpIdxB, bool Signed) {
1098   LLVM_DEBUG(dbgs() << "LSV: checkIfSafeAddSequence IdxDiff=" << IdxDiff
1099                     << ", AddOpA=" << *AddOpA << ", MatchingOpIdxA="
1100                     << MatchingOpIdxA << ", AddOpB=" << *AddOpB
1101                     << ", MatchingOpIdxB=" << MatchingOpIdxB
1102                     << ", Signed=" << Signed << "\n");
1103   // If both OpA and OpB are adds with NSW/NUW and with one of the operands
1104   // being the same, we can guarantee that the transformation is safe if we can
1105   // prove that OpA won't overflow when Ret added to the other operand of OpA.
1106   // For example:
1107   //  %tmp7 = add nsw i32 %tmp2, %v0
1108   //  %tmp8 = sext i32 %tmp7 to i64
1109   //  ...
1110   //  %tmp11 = add nsw i32 %v0, 1
1111   //  %tmp12 = add nsw i32 %tmp2, %tmp11
1112   //  %tmp13 = sext i32 %tmp12 to i64
1113   //
1114   //  Both %tmp7 and %tmp12 have the nsw flag and the first operand is %tmp2.
1115   //  It's guaranteed that adding 1 to %tmp7 won't overflow because %tmp11 adds
1116   //  1 to %v0 and both %tmp11 and %tmp12 have the nsw flag.
1117   assert(AddOpA->getOpcode() == Instruction::Add &&
1118          AddOpB->getOpcode() == Instruction::Add &&
1119          checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed));
1120   if (AddOpA->getOperand(MatchingOpIdxA) ==
1121       AddOpB->getOperand(MatchingOpIdxB)) {
1122     Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1);
1123     Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1);
1124     Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA);
1125     Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB);
1126     // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
1127     if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add &&
1128         checkNoWrapFlags(OtherInstrB, Signed) &&
1129         isa<ConstantInt>(OtherInstrB->getOperand(1))) {
1130       int64_t CstVal =
1131           cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
1132       if (OtherInstrB->getOperand(0) == OtherOperandA &&
1133           IdxDiff.getSExtValue() == CstVal)
1134         return true;
1135     }
1136     // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
1137     if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add &&
1138         checkNoWrapFlags(OtherInstrA, Signed) &&
1139         isa<ConstantInt>(OtherInstrA->getOperand(1))) {
1140       int64_t CstVal =
1141           cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
1142       if (OtherInstrA->getOperand(0) == OtherOperandB &&
1143           IdxDiff.getSExtValue() == -CstVal)
1144         return true;
1145     }
1146     // Match `x +nsw/nuw (y +nsw/nuw c)` and
1147     // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
1148     if (OtherInstrA && OtherInstrB &&
1149         OtherInstrA->getOpcode() == Instruction::Add &&
1150         OtherInstrB->getOpcode() == Instruction::Add &&
1151         checkNoWrapFlags(OtherInstrA, Signed) &&
1152         checkNoWrapFlags(OtherInstrB, Signed) &&
1153         isa<ConstantInt>(OtherInstrA->getOperand(1)) &&
1154         isa<ConstantInt>(OtherInstrB->getOperand(1))) {
1155       int64_t CstValA =
1156           cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
1157       int64_t CstValB =
1158           cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
1159       if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) &&
1160           IdxDiff.getSExtValue() == (CstValB - CstValA))
1161         return true;
1162     }
1163   }
1164   return false;
1165 }
1166 
1167 std::optional<APInt> Vectorizer::getConstantOffsetComplexAddrs(
1168     Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) {
1169   LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs PtrA=" << *PtrA
1170                     << " PtrB=" << *PtrB << " ContextInst=" << *ContextInst
1171                     << " Depth=" << Depth << "\n");
1172   auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
1173   auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
1174   if (!GEPA || !GEPB)
1175     return getConstantOffsetSelects(PtrA, PtrB, ContextInst, Depth);
1176 
1177   // Look through GEPs after checking they're the same except for the last
1178   // index.
1179   if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
1180       GEPA->getPointerOperand() != GEPB->getPointerOperand())
1181     return std::nullopt;
1182   gep_type_iterator GTIA = gep_type_begin(GEPA);
1183   gep_type_iterator GTIB = gep_type_begin(GEPB);
1184   for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
1185     if (GTIA.getOperand() != GTIB.getOperand())
1186       return std::nullopt;
1187     ++GTIA;
1188     ++GTIB;
1189   }
1190 
1191   Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
1192   Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
1193   if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
1194       OpA->getType() != OpB->getType())
1195     return std::nullopt;
1196 
1197   uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
1198 
1199   // Only look through a ZExt/SExt.
1200   if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
1201     return std::nullopt;
1202 
1203   bool Signed = isa<SExtInst>(OpA);
1204 
1205   // At this point A could be a function parameter, i.e. not an instruction
1206   Value *ValA = OpA->getOperand(0);
1207   OpB = dyn_cast<Instruction>(OpB->getOperand(0));
1208   if (!OpB || ValA->getType() != OpB->getType())
1209     return std::nullopt;
1210 
1211   const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
1212   const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
1213   const SCEV *IdxDiffSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1214   if (IdxDiffSCEV == SE.getCouldNotCompute())
1215     return std::nullopt;
1216 
1217   ConstantRange IdxDiffRange = SE.getSignedRange(IdxDiffSCEV);
1218   if (!IdxDiffRange.isSingleElement())
1219     return std::nullopt;
1220   APInt IdxDiff = *IdxDiffRange.getSingleElement();
1221 
1222   LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs IdxDiff=" << IdxDiff
1223                     << "\n");
1224 
1225   // Now we need to prove that adding IdxDiff to ValA won't overflow.
1226   bool Safe = false;
1227 
1228   // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
1229   // ValA, we're okay.
1230   if (OpB->getOpcode() == Instruction::Add &&
1231       isa<ConstantInt>(OpB->getOperand(1)) &&
1232       IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
1233       checkNoWrapFlags(OpB, Signed))
1234     Safe = true;
1235 
1236   // Second attempt: check if we have eligible add NSW/NUW instruction
1237   // sequences.
1238   OpA = dyn_cast<Instruction>(ValA);
1239   if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
1240       OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) &&
1241       checkNoWrapFlags(OpB, Signed)) {
1242     // In the checks below a matching operand in OpA and OpB is an operand which
1243     // is the same in those two instructions.  Below we account for possible
1244     // orders of the operands of these add instructions.
1245     for (unsigned MatchingOpIdxA : {0, 1})
1246       for (unsigned MatchingOpIdxB : {0, 1})
1247         if (!Safe)
1248           Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB,
1249                                         MatchingOpIdxB, Signed);
1250   }
1251 
1252   unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
1253 
1254   // Third attempt:
1255   //
1256   // Assuming IdxDiff is positive: If all set bits of IdxDiff or any higher
1257   // order bit other than the sign bit are known to be zero in ValA, we can add
1258   // Diff to it while guaranteeing no overflow of any sort.
1259   //
1260   // If IdxDiff is negative, do the same, but swap ValA and ValB.
1261   if (!Safe) {
1262     // When computing known bits, use the GEPs as context instructions, since
1263     // they likely are in the same BB as the load/store.
1264     KnownBits Known(BitWidth);
1265     computeKnownBits((IdxDiff.sge(0) ? ValA : OpB), Known, DL, 0, &AC,
1266                      ContextInst, &DT);
1267     APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
1268     if (Signed)
1269       BitsAllowedToBeSet.clearBit(BitWidth - 1);
1270     if (BitsAllowedToBeSet.ult(IdxDiff.abs()))
1271       return std::nullopt;
1272     Safe = true;
1273   }
1274 
1275   if (Safe)
1276     return IdxDiff * Stride;
1277   return std::nullopt;
1278 }
1279 
1280 std::optional<APInt> Vectorizer::getConstantOffsetSelects(
1281     Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) {
1282   if (Depth++ == MaxDepth)
1283     return std::nullopt;
1284 
1285   if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
1286     if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
1287       if (SelectA->getCondition() != SelectB->getCondition())
1288         return std::nullopt;
1289       LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetSelects, PtrA=" << *PtrA
1290                         << ", PtrB=" << *PtrB << ", ContextInst="
1291                         << *ContextInst << ", Depth=" << Depth << "\n");
1292       std::optional<APInt> TrueDiff = getConstantOffset(
1293           SelectA->getTrueValue(), SelectB->getTrueValue(), ContextInst, Depth);
1294       if (!TrueDiff.has_value())
1295         return std::nullopt;
1296       std::optional<APInt> FalseDiff =
1297           getConstantOffset(SelectA->getFalseValue(), SelectB->getFalseValue(),
1298                             ContextInst, Depth);
1299       if (TrueDiff == FalseDiff)
1300         return TrueDiff;
1301     }
1302   }
1303   return std::nullopt;
1304 }
1305 
1306 EquivalenceClassMap
1307 Vectorizer::collectEquivalenceClasses(BasicBlock::iterator Begin,
1308                                       BasicBlock::iterator End) {
1309   EquivalenceClassMap Ret;
1310 
1311   auto getUnderlyingObject = [](const Value *Ptr) -> const Value * {
1312     const Value *ObjPtr = llvm::getUnderlyingObject(Ptr);
1313     if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
1314       // The select's themselves are distinct instructions even if they share
1315       // the same condition and evaluate to consecutive pointers for true and
1316       // false values of the condition. Therefore using the select's themselves
1317       // for grouping instructions would put consecutive accesses into different
1318       // lists and they won't be even checked for being consecutive, and won't
1319       // be vectorized.
1320       return Sel->getCondition();
1321     }
1322     return ObjPtr;
1323   };
1324 
1325   for (Instruction &I : make_range(Begin, End)) {
1326     auto *LI = dyn_cast<LoadInst>(&I);
1327     auto *SI = dyn_cast<StoreInst>(&I);
1328     if (!LI && !SI)
1329       continue;
1330 
1331     if ((LI && !LI->isSimple()) || (SI && !SI->isSimple()))
1332       continue;
1333 
1334     if ((LI && !TTI.isLegalToVectorizeLoad(LI)) ||
1335         (SI && !TTI.isLegalToVectorizeStore(SI)))
1336       continue;
1337 
1338     Type *Ty = getLoadStoreType(&I);
1339     if (!VectorType::isValidElementType(Ty->getScalarType()))
1340       continue;
1341 
1342     // Skip weird non-byte sizes. They probably aren't worth the effort of
1343     // handling correctly.
1344     unsigned TySize = DL.getTypeSizeInBits(Ty);
1345     if ((TySize % 8) != 0)
1346       continue;
1347 
1348     // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
1349     // functions are currently using an integer type for the vectorized
1350     // load/store, and does not support casting between the integer type and a
1351     // vector of pointers (e.g. i64 to <2 x i16*>)
1352     if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
1353       continue;
1354 
1355     Value *Ptr = getLoadStorePointerOperand(&I);
1356     unsigned AS = Ptr->getType()->getPointerAddressSpace();
1357     unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1358 
1359     unsigned VF = VecRegSize / TySize;
1360     VectorType *VecTy = dyn_cast<VectorType>(Ty);
1361 
1362     // Only handle power-of-two sized elements.
1363     if ((!VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(Ty))) ||
1364         (VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(VecTy->getScalarType()))))
1365       continue;
1366 
1367     // No point in looking at these if they're too big to vectorize.
1368     if (TySize > VecRegSize / 2 ||
1369         (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
1370       continue;
1371 
1372     Ret[{getUnderlyingObject(Ptr), AS,
1373          DL.getTypeSizeInBits(getLoadStoreType(&I)->getScalarType()),
1374          /*IsLoad=*/LI != nullptr}]
1375         .push_back(&I);
1376   }
1377 
1378   return Ret;
1379 }
1380 
1381 std::vector<Chain> Vectorizer::gatherChains(ArrayRef<Instruction *> Instrs) {
1382   if (Instrs.empty())
1383     return {};
1384 
1385   unsigned AS = getLoadStoreAddressSpace(Instrs[0]);
1386   unsigned ASPtrBits = DL.getIndexSizeInBits(AS);
1387 
1388 #ifndef NDEBUG
1389   // Check that Instrs is in BB order and all have the same addr space.
1390   for (size_t I = 1; I < Instrs.size(); ++I) {
1391     assert(Instrs[I - 1]->comesBefore(Instrs[I]));
1392     assert(getLoadStoreAddressSpace(Instrs[I]) == AS);
1393   }
1394 #endif
1395 
1396   // Machinery to build an MRU-hashtable of Chains.
1397   //
1398   // (Ideally this could be done with MapVector, but as currently implemented,
1399   // moving an element to the front of a MapVector is O(n).)
1400   struct InstrListElem : ilist_node<InstrListElem>,
1401                          std::pair<Instruction *, Chain> {
1402     explicit InstrListElem(Instruction *I)
1403         : std::pair<Instruction *, Chain>(I, {}) {}
1404   };
1405   struct InstrListElemDenseMapInfo {
1406     using PtrInfo = DenseMapInfo<InstrListElem *>;
1407     using IInfo = DenseMapInfo<Instruction *>;
1408     static InstrListElem *getEmptyKey() { return PtrInfo::getEmptyKey(); }
1409     static InstrListElem *getTombstoneKey() {
1410       return PtrInfo::getTombstoneKey();
1411     }
1412     static unsigned getHashValue(const InstrListElem *E) {
1413       return IInfo::getHashValue(E->first);
1414     }
1415     static bool isEqual(const InstrListElem *A, const InstrListElem *B) {
1416       if (A == getEmptyKey() || B == getEmptyKey())
1417         return A == getEmptyKey() && B == getEmptyKey();
1418       if (A == getTombstoneKey() || B == getTombstoneKey())
1419         return A == getTombstoneKey() && B == getTombstoneKey();
1420       return IInfo::isEqual(A->first, B->first);
1421     }
1422   };
1423   SpecificBumpPtrAllocator<InstrListElem> Allocator;
1424   simple_ilist<InstrListElem> MRU;
1425   DenseSet<InstrListElem *, InstrListElemDenseMapInfo> Chains;
1426 
1427   // Compare each instruction in `instrs` to leader of the N most recently-used
1428   // chains.  This limits the O(n^2) behavior of this pass while also allowing
1429   // us to build arbitrarily long chains.
1430   for (Instruction *I : Instrs) {
1431     constexpr int MaxChainsToTry = 64;
1432 
1433     bool MatchFound = false;
1434     auto ChainIter = MRU.begin();
1435     for (size_t J = 0; J < MaxChainsToTry && ChainIter != MRU.end();
1436          ++J, ++ChainIter) {
1437       std::optional<APInt> Offset = getConstantOffset(
1438           getLoadStorePointerOperand(ChainIter->first),
1439           getLoadStorePointerOperand(I),
1440           /*ContextInst=*/
1441           (ChainIter->first->comesBefore(I) ? I : ChainIter->first));
1442       if (Offset.has_value()) {
1443         // `Offset` might not have the expected number of bits, if e.g. AS has a
1444         // different number of bits than opaque pointers.
1445         ChainIter->second.push_back(ChainElem{I, Offset.value()});
1446         // Move ChainIter to the front of the MRU list.
1447         MRU.remove(*ChainIter);
1448         MRU.push_front(*ChainIter);
1449         MatchFound = true;
1450         break;
1451       }
1452     }
1453 
1454     if (!MatchFound) {
1455       APInt ZeroOffset(ASPtrBits, 0);
1456       InstrListElem *E = new (Allocator.Allocate()) InstrListElem(I);
1457       E->second.push_back(ChainElem{I, ZeroOffset});
1458       MRU.push_front(*E);
1459       Chains.insert(E);
1460     }
1461   }
1462 
1463   std::vector<Chain> Ret;
1464   Ret.reserve(Chains.size());
1465   // Iterate over MRU rather than Chains so the order is deterministic.
1466   for (auto &E : MRU)
1467     if (E.second.size() > 1)
1468       Ret.push_back(std::move(E.second));
1469   return Ret;
1470 }
1471 
1472 std::optional<APInt> Vectorizer::getConstantOffset(Value *PtrA, Value *PtrB,
1473                                                    Instruction *ContextInst,
1474                                                    unsigned Depth) {
1475   LLVM_DEBUG(dbgs() << "LSV: getConstantOffset, PtrA=" << *PtrA
1476                     << ", PtrB=" << *PtrB << ", ContextInst= " << *ContextInst
1477                     << ", Depth=" << Depth << "\n");
1478   // We'll ultimately return a value of this bit width, even if computations
1479   // happen in a different width.
1480   unsigned OrigBitWidth = DL.getIndexTypeSizeInBits(PtrA->getType());
1481   APInt OffsetA(OrigBitWidth, 0);
1482   APInt OffsetB(OrigBitWidth, 0);
1483   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1484   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1485   unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
1486   if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
1487     return std::nullopt;
1488 
1489   // If we have to shrink the pointer, stripAndAccumulateInBoundsConstantOffsets
1490   // should properly handle a possible overflow and the value should fit into
1491   // the smallest data type used in the cast/gep chain.
1492   assert(OffsetA.getSignificantBits() <= NewPtrBitWidth &&
1493          OffsetB.getSignificantBits() <= NewPtrBitWidth);
1494 
1495   OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
1496   OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
1497   if (PtrA == PtrB)
1498     return (OffsetB - OffsetA).sextOrTrunc(OrigBitWidth);
1499 
1500   // Try to compute B - A.
1501   const SCEV *DistScev = SE.getMinusSCEV(SE.getSCEV(PtrB), SE.getSCEV(PtrA));
1502   if (DistScev != SE.getCouldNotCompute()) {
1503     LLVM_DEBUG(dbgs() << "LSV: SCEV PtrB - PtrA =" << *DistScev << "\n");
1504     ConstantRange DistRange = SE.getSignedRange(DistScev);
1505     if (DistRange.isSingleElement()) {
1506       // Handle index width (the width of Dist) != pointer width (the width of
1507       // the Offset*s at this point).
1508       APInt Dist = DistRange.getSingleElement()->sextOrTrunc(NewPtrBitWidth);
1509       return (OffsetB - OffsetA + Dist).sextOrTrunc(OrigBitWidth);
1510     }
1511   }
1512   std::optional<APInt> Diff =
1513       getConstantOffsetComplexAddrs(PtrA, PtrB, ContextInst, Depth);
1514   if (Diff.has_value())
1515     return (OffsetB - OffsetA + Diff->sext(OffsetB.getBitWidth()))
1516         .sextOrTrunc(OrigBitWidth);
1517   return std::nullopt;
1518 }
1519