1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/IR/Argument.h" 21 #include "llvm/IR/BasicBlock.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalIFunc.h" 29 #include "llvm/IR/GlobalObject.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include <cassert> 42 #include <limits> 43 #include <memory> 44 #include <utility> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "value-mapper" 49 50 // Out of line method to get vtable etc for class. 51 void ValueMapTypeRemapper::anchor() {} 52 void ValueMaterializer::anchor() {} 53 54 namespace { 55 56 /// A basic block used in a BlockAddress whose function body is not yet 57 /// materialized. 58 struct DelayedBasicBlock { 59 BasicBlock *OldBB; 60 std::unique_ptr<BasicBlock> TempBB; 61 62 DelayedBasicBlock(const BlockAddress &Old) 63 : OldBB(Old.getBasicBlock()), 64 TempBB(BasicBlock::Create(Old.getContext())) {} 65 }; 66 67 struct WorklistEntry { 68 enum EntryKind { 69 MapGlobalInit, 70 MapAppendingVar, 71 MapAliasOrIFunc, 72 RemapFunction 73 }; 74 struct GVInitTy { 75 GlobalVariable *GV; 76 Constant *Init; 77 }; 78 struct AppendingGVTy { 79 GlobalVariable *GV; 80 Constant *InitPrefix; 81 }; 82 struct AliasOrIFuncTy { 83 GlobalValue *GV; 84 Constant *Target; 85 }; 86 87 unsigned Kind : 2; 88 unsigned MCID : 29; 89 unsigned AppendingGVIsOldCtorDtor : 1; 90 unsigned AppendingGVNumNewMembers; 91 union { 92 GVInitTy GVInit; 93 AppendingGVTy AppendingGV; 94 AliasOrIFuncTy AliasOrIFunc; 95 Function *RemapF; 96 } Data; 97 }; 98 99 struct MappingContext { 100 ValueToValueMapTy *VM; 101 ValueMaterializer *Materializer = nullptr; 102 103 /// Construct a MappingContext with a value map and materializer. 104 explicit MappingContext(ValueToValueMapTy &VM, 105 ValueMaterializer *Materializer = nullptr) 106 : VM(&VM), Materializer(Materializer) {} 107 }; 108 109 class Mapper { 110 friend class MDNodeMapper; 111 112 #ifndef NDEBUG 113 DenseSet<GlobalValue *> AlreadyScheduled; 114 #endif 115 116 RemapFlags Flags; 117 ValueMapTypeRemapper *TypeMapper; 118 unsigned CurrentMCID = 0; 119 SmallVector<MappingContext, 2> MCs; 120 SmallVector<WorklistEntry, 4> Worklist; 121 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 122 SmallVector<Constant *, 16> AppendingInits; 123 124 public: 125 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 126 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 127 : Flags(Flags), TypeMapper(TypeMapper), 128 MCs(1, MappingContext(VM, Materializer)) {} 129 130 /// ValueMapper should explicitly call \a flush() before destruction. 131 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 132 133 bool hasWorkToDo() const { return !Worklist.empty(); } 134 135 unsigned 136 registerAlternateMappingContext(ValueToValueMapTy &VM, 137 ValueMaterializer *Materializer = nullptr) { 138 MCs.push_back(MappingContext(VM, Materializer)); 139 return MCs.size() - 1; 140 } 141 142 void addFlags(RemapFlags Flags); 143 144 void remapGlobalObjectMetadata(GlobalObject &GO); 145 146 Value *mapValue(const Value *V); 147 void remapInstruction(Instruction *I); 148 void remapFunction(Function &F); 149 void remapDbgRecord(DbgRecord &DVR); 150 151 Constant *mapConstant(const Constant *C) { 152 return cast_or_null<Constant>(mapValue(C)); 153 } 154 155 /// Map metadata. 156 /// 157 /// Find the mapping for MD. Guarantees that the return will be resolved 158 /// (not an MDNode, or MDNode::isResolved() returns true). 159 Metadata *mapMetadata(const Metadata *MD); 160 161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 162 unsigned MCID); 163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 164 bool IsOldCtorDtor, 165 ArrayRef<Constant *> NewMembers, 166 unsigned MCID); 167 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 168 unsigned MCID); 169 void scheduleRemapFunction(Function &F, unsigned MCID); 170 171 void flush(); 172 173 private: 174 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 175 bool IsOldCtorDtor, 176 ArrayRef<Constant *> NewMembers); 177 178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 180 181 Value *mapBlockAddress(const BlockAddress &BA); 182 183 /// Map metadata that doesn't require visiting operands. 184 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 185 186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 187 Metadata *mapToSelf(const Metadata *MD); 188 }; 189 190 class MDNodeMapper { 191 Mapper &M; 192 193 /// Data about a node in \a UniquedGraph. 194 struct Data { 195 bool HasChanged = false; 196 unsigned ID = std::numeric_limits<unsigned>::max(); 197 TempMDNode Placeholder; 198 }; 199 200 /// A graph of uniqued nodes. 201 struct UniquedGraph { 202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 203 SmallVector<MDNode *, 16> POT; // Post-order traversal. 204 205 /// Propagate changed operands through the post-order traversal. 206 /// 207 /// Iteratively update \a Data::HasChanged for each node based on \a 208 /// Data::HasChanged of its operands, until fixed point. 209 void propagateChanges(); 210 211 /// Get a forward reference to a node to use as an operand. 212 Metadata &getFwdReference(MDNode &Op); 213 }; 214 215 /// Worklist of distinct nodes whose operands need to be remapped. 216 SmallVector<MDNode *, 16> DistinctWorklist; 217 218 // Storage for a UniquedGraph. 219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 220 SmallVector<MDNode *, 16> POTStorage; 221 222 public: 223 MDNodeMapper(Mapper &M) : M(M) {} 224 225 /// Map a metadata node (and its transitive operands). 226 /// 227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 228 /// algorithm handles distinct nodes and uniqued node subgraphs using 229 /// different strategies. 230 /// 231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 232 /// using \a mapDistinctNode(). Their mapping can always be computed 233 /// immediately without visiting operands, even if their operands change. 234 /// 235 /// The mapping for uniqued nodes depends on whether their operands change. 236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 238 /// added to \a DistinctWorklist with \a mapDistinctNode(). 239 /// 240 /// After mapping \c N itself, this function remaps the operands of the 241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 242 /// N has been mapped. 243 Metadata *map(const MDNode &N); 244 245 private: 246 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 247 /// 248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 251 /// operands uses the identity mapping. 252 /// 253 /// The algorithm works as follows: 254 /// 255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 256 /// save the post-order traversal in the given \a UniquedGraph, tracking 257 /// nodes' operands change. 258 /// 259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 260 /// through the \a UniquedGraph until fixed point, following the rule 261 /// that if a node changes, any node that references must also change. 262 /// 263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 264 /// (referencing new operands) where necessary. 265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 266 267 /// Try to map the operand of an \a MDNode. 268 /// 269 /// If \c Op is already mapped, return the mapping. If it's not an \a 270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 271 /// return the result of \a mapDistinctNode(). 272 /// 273 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode. 274 /// \post getMappedOp(Op) only returns std::nullopt if this returns 275 /// std::nullopt. 276 std::optional<Metadata *> tryToMapOperand(const Metadata *Op); 277 278 /// Map a distinct node. 279 /// 280 /// Return the mapping for the distinct node \c N, saving the result in \a 281 /// DistinctWorklist for later remapping. 282 /// 283 /// \pre \c N is not yet mapped. 284 /// \pre \c N.isDistinct(). 285 MDNode *mapDistinctNode(const MDNode &N); 286 287 /// Get a previously mapped node. 288 std::optional<Metadata *> getMappedOp(const Metadata *Op) const; 289 290 /// Create a post-order traversal of an unmapped uniqued node subgraph. 291 /// 292 /// This traverses the metadata graph deeply enough to map \c FirstN. It 293 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 294 /// metadata that has already been mapped will not be part of the POT. 295 /// 296 /// Each node that has a changed operand from outside the graph (e.g., a 297 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 298 /// is marked with \a Data::HasChanged. 299 /// 300 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 301 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 302 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 303 /// to change because of operands outside the graph. 304 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 305 306 /// Visit the operands of a uniqued node in the POT. 307 /// 308 /// Visit the operands in the range from \c I to \c E, returning the first 309 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 310 /// where to continue the loop through the operands. 311 /// 312 /// This sets \c HasChanged if any of the visited operands change. 313 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 314 MDNode::op_iterator E, bool &HasChanged); 315 316 /// Map all the nodes in the given uniqued graph. 317 /// 318 /// This visits all the nodes in \c G in post-order, using the identity 319 /// mapping or creating a new node depending on \a Data::HasChanged. 320 /// 321 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for 322 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true 323 /// for a node in \c G iff any of its operands have changed. \post \a 324 /// getMappedOp() returns the mapped node for every node in \c G. 325 void mapNodesInPOT(UniquedGraph &G); 326 327 /// Remap a node's operands using the given functor. 328 /// 329 /// Iterate through the operands of \c N and update them in place using \c 330 /// mapOperand. 331 /// 332 /// \pre N.isDistinct() or N.isTemporary(). 333 template <class OperandMapper> 334 void remapOperands(MDNode &N, OperandMapper mapOperand); 335 }; 336 337 } // end anonymous namespace 338 339 Value *Mapper::mapValue(const Value *V) { 340 ValueToValueMapTy::iterator I = getVM().find(V); 341 342 // If the value already exists in the map, use it. 343 if (I != getVM().end()) { 344 assert(I->second && "Unexpected null mapping"); 345 return I->second; 346 } 347 348 // If we have a materializer and it can materialize a value, use that. 349 if (auto *Materializer = getMaterializer()) { 350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 351 getVM()[V] = NewV; 352 return NewV; 353 } 354 } 355 356 // Global values do not need to be seeded into the VM if they 357 // are using the identity mapping. 358 if (isa<GlobalValue>(V)) { 359 if (Flags & RF_NullMapMissingGlobalValues) 360 return nullptr; 361 return getVM()[V] = const_cast<Value *>(V); 362 } 363 364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 365 // Inline asm may need *type* remapping. 366 FunctionType *NewTy = IA->getFunctionType(); 367 if (TypeMapper) { 368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 369 370 if (NewTy != IA->getFunctionType()) 371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 372 IA->hasSideEffects(), IA->isAlignStack(), 373 IA->getDialect(), IA->canThrow()); 374 } 375 376 return getVM()[V] = const_cast<Value *>(V); 377 } 378 379 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 380 const Metadata *MD = MDV->getMetadata(); 381 382 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 383 // Look through to grab the local value. 384 if (Value *LV = mapValue(LAM->getValue())) { 385 if (V == LAM->getValue()) 386 return const_cast<Value *>(V); 387 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 388 } 389 390 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 391 // ensures metadata operands only reference defined SSA values. 392 return (Flags & RF_IgnoreMissingLocals) 393 ? nullptr 394 : MetadataAsValue::get(V->getContext(), 395 MDTuple::get(V->getContext(), {})); 396 } 397 if (auto *AL = dyn_cast<DIArgList>(MD)) { 398 SmallVector<ValueAsMetadata *, 4> MappedArgs; 399 for (auto *VAM : AL->getArgs()) { 400 // Map both Local and Constant VAMs here; they will both ultimately 401 // be mapped via mapValue. The exceptions are constants when we have no 402 // module level changes and locals when they have no existing mapped 403 // value and RF_IgnoreMissingLocals is set; these have identity 404 // mappings. 405 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) { 406 MappedArgs.push_back(VAM); 407 } else if (Value *LV = mapValue(VAM->getValue())) { 408 MappedArgs.push_back( 409 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); 410 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) { 411 MappedArgs.push_back(VAM); 412 } else { 413 // If we cannot map the value, set the argument as undef. 414 MappedArgs.push_back(ValueAsMetadata::get( 415 UndefValue::get(VAM->getValue()->getType()))); 416 } 417 } 418 return MetadataAsValue::get(V->getContext(), 419 DIArgList::get(V->getContext(), MappedArgs)); 420 } 421 422 // If this is a module-level metadata and we know that nothing at the module 423 // level is changing, then use an identity mapping. 424 if (Flags & RF_NoModuleLevelChanges) 425 return getVM()[V] = const_cast<Value *>(V); 426 427 // Map the metadata and turn it into a value. 428 auto *MappedMD = mapMetadata(MD); 429 if (MD == MappedMD) 430 return getVM()[V] = const_cast<Value *>(V); 431 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 432 } 433 434 // Okay, this either must be a constant (which may or may not be mappable) or 435 // is something that is not in the mapping table. 436 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 437 if (!C) 438 return nullptr; 439 440 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 441 return mapBlockAddress(*BA); 442 443 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) { 444 auto *Val = mapValue(E->getGlobalValue()); 445 GlobalValue *GV = dyn_cast<GlobalValue>(Val); 446 if (GV) 447 return getVM()[E] = DSOLocalEquivalent::get(GV); 448 449 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases()); 450 Type *NewTy = E->getType(); 451 if (TypeMapper) 452 NewTy = TypeMapper->remapType(NewTy); 453 return getVM()[E] = llvm::ConstantExpr::getBitCast( 454 DSOLocalEquivalent::get(Func), NewTy); 455 } 456 457 if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 458 auto *Val = mapValue(NC->getGlobalValue()); 459 GlobalValue *GV = cast<GlobalValue>(Val); 460 return getVM()[NC] = NoCFIValue::get(GV); 461 } 462 463 auto mapValueOrNull = [this](Value *V) { 464 auto Mapped = mapValue(V); 465 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 466 "Unexpected null mapping for constant operand without " 467 "NullMapMissingGlobalValues flag"); 468 return Mapped; 469 }; 470 471 // Otherwise, we have some other constant to remap. Start by checking to see 472 // if all operands have an identity remapping. 473 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 474 Value *Mapped = nullptr; 475 for (; OpNo != NumOperands; ++OpNo) { 476 Value *Op = C->getOperand(OpNo); 477 Mapped = mapValueOrNull(Op); 478 if (!Mapped) 479 return nullptr; 480 if (Mapped != Op) 481 break; 482 } 483 484 // See if the type mapper wants to remap the type as well. 485 Type *NewTy = C->getType(); 486 if (TypeMapper) 487 NewTy = TypeMapper->remapType(NewTy); 488 489 // If the result type and all operands match up, then just insert an identity 490 // mapping. 491 if (OpNo == NumOperands && NewTy == C->getType()) 492 return getVM()[V] = C; 493 494 // Okay, we need to create a new constant. We've already processed some or 495 // all of the operands, set them all up now. 496 SmallVector<Constant*, 8> Ops; 497 Ops.reserve(NumOperands); 498 for (unsigned j = 0; j != OpNo; ++j) 499 Ops.push_back(cast<Constant>(C->getOperand(j))); 500 501 // If one of the operands mismatch, push it and the other mapped operands. 502 if (OpNo != NumOperands) { 503 Ops.push_back(cast<Constant>(Mapped)); 504 505 // Map the rest of the operands that aren't processed yet. 506 for (++OpNo; OpNo != NumOperands; ++OpNo) { 507 Mapped = mapValueOrNull(C->getOperand(OpNo)); 508 if (!Mapped) 509 return nullptr; 510 Ops.push_back(cast<Constant>(Mapped)); 511 } 512 } 513 Type *NewSrcTy = nullptr; 514 if (TypeMapper) 515 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 516 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 517 518 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 519 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 520 if (isa<ConstantArray>(C)) 521 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 522 if (isa<ConstantStruct>(C)) 523 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 524 if (isa<ConstantVector>(C)) 525 return getVM()[V] = ConstantVector::get(Ops); 526 // If this is a no-operand constant, it must be because the type was remapped. 527 if (isa<PoisonValue>(C)) 528 return getVM()[V] = PoisonValue::get(NewTy); 529 if (isa<UndefValue>(C)) 530 return getVM()[V] = UndefValue::get(NewTy); 531 if (isa<ConstantAggregateZero>(C)) 532 return getVM()[V] = ConstantAggregateZero::get(NewTy); 533 if (isa<ConstantTargetNone>(C)) 534 return getVM()[V] = Constant::getNullValue(NewTy); 535 assert(isa<ConstantPointerNull>(C)); 536 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 537 } 538 539 void Mapper::remapDbgRecord(DbgRecord &DR) { 540 // Remap DILocations. 541 auto *MappedDILoc = mapMetadata(DR.getDebugLoc()); 542 DR.setDebugLoc(DebugLoc(cast<DILocation>(MappedDILoc))); 543 544 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 545 // Remap labels. 546 DLR->setLabel(cast<DILabel>(mapMetadata(DLR->getLabel()))); 547 return; 548 } 549 550 DbgVariableRecord &V = cast<DbgVariableRecord>(DR); 551 // Remap variables. 552 auto *MappedVar = mapMetadata(V.getVariable()); 553 V.setVariable(cast<DILocalVariable>(MappedVar)); 554 555 bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals; 556 557 if (V.isDbgAssign()) { 558 auto *NewAddr = mapValue(V.getAddress()); 559 if (!IgnoreMissingLocals && !NewAddr) 560 V.setKillAddress(); 561 else if (NewAddr) 562 V.setAddress(NewAddr); 563 V.setAssignId(cast<DIAssignID>(mapMetadata(V.getAssignID()))); 564 } 565 566 // Find Value operands and remap those. 567 SmallVector<Value *, 4> Vals(V.location_ops()); 568 SmallVector<Value *, 4> NewVals; 569 for (Value *Val : Vals) 570 NewVals.push_back(mapValue(Val)); 571 572 // If there are no changes to the Value operands, finished. 573 if (Vals == NewVals) 574 return; 575 576 // Otherwise, do some replacement. 577 if (!IgnoreMissingLocals && llvm::is_contained(NewVals, nullptr)) { 578 V.setKillLocation(); 579 } else { 580 // Either we have all non-empty NewVals, or we're permitted to ignore 581 // missing locals. 582 for (unsigned int I = 0; I < Vals.size(); ++I) 583 if (NewVals[I]) 584 V.replaceVariableLocationOp(I, NewVals[I]); 585 } 586 } 587 588 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 589 Function *F = cast<Function>(mapValue(BA.getFunction())); 590 591 // F may not have materialized its initializer. In that case, create a 592 // dummy basic block for now, and replace it once we've materialized all 593 // the initializers. 594 BasicBlock *BB; 595 if (F->empty()) { 596 DelayedBBs.push_back(DelayedBasicBlock(BA)); 597 BB = DelayedBBs.back().TempBB.get(); 598 } else { 599 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 600 } 601 602 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 603 } 604 605 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 606 getVM().MD()[Key].reset(Val); 607 return Val; 608 } 609 610 Metadata *Mapper::mapToSelf(const Metadata *MD) { 611 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 612 } 613 614 std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 615 if (!Op) 616 return nullptr; 617 618 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 619 #ifndef NDEBUG 620 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 621 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 622 M.getVM().getMappedMD(Op)) && 623 "Expected Value to be memoized"); 624 else 625 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 626 "Expected result to be memoized"); 627 #endif 628 return *MappedOp; 629 } 630 631 const MDNode &N = *cast<MDNode>(Op); 632 if (N.isDistinct()) 633 return mapDistinctNode(N); 634 return std::nullopt; 635 } 636 637 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 638 assert(N.isDistinct() && "Expected a distinct node"); 639 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 640 Metadata *NewM = nullptr; 641 642 if (M.Flags & RF_ReuseAndMutateDistinctMDs) { 643 NewM = M.mapToSelf(&N); 644 } else { 645 NewM = MDNode::replaceWithDistinct(N.clone()); 646 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" 647 << "To " << *NewM << "\n\n"); 648 M.mapToMetadata(&N, NewM); 649 } 650 DistinctWorklist.push_back(cast<MDNode>(NewM)); 651 652 return DistinctWorklist.back(); 653 } 654 655 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 656 Value *MappedV) { 657 if (CMD.getValue() == MappedV) 658 return const_cast<ConstantAsMetadata *>(&CMD); 659 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 660 } 661 662 std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 663 if (!Op) 664 return nullptr; 665 666 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 667 return *MappedOp; 668 669 if (isa<MDString>(Op)) 670 return const_cast<Metadata *>(Op); 671 672 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 673 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 674 675 return std::nullopt; 676 } 677 678 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 679 auto Where = Info.find(&Op); 680 assert(Where != Info.end() && "Expected a valid reference"); 681 682 auto &OpD = Where->second; 683 if (!OpD.HasChanged) 684 return Op; 685 686 // Lazily construct a temporary node. 687 if (!OpD.Placeholder) 688 OpD.Placeholder = Op.clone(); 689 690 return *OpD.Placeholder; 691 } 692 693 template <class OperandMapper> 694 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 695 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 696 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 697 Metadata *Old = N.getOperand(I); 698 Metadata *New = mapOperand(Old); 699 if (Old != New) 700 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " 701 << N << "\n"); 702 703 if (Old != New) 704 N.replaceOperandWith(I, New); 705 } 706 } 707 708 namespace { 709 710 /// An entry in the worklist for the post-order traversal. 711 struct POTWorklistEntry { 712 MDNode *N; ///< Current node. 713 MDNode::op_iterator Op; ///< Current operand of \c N. 714 715 /// Keep a flag of whether operands have changed in the worklist to avoid 716 /// hitting the map in \a UniquedGraph. 717 bool HasChanged = false; 718 719 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 720 }; 721 722 } // end anonymous namespace 723 724 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 725 assert(G.Info.empty() && "Expected a fresh traversal"); 726 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 727 728 // Construct a post-order traversal of the uniqued subgraph under FirstN. 729 bool AnyChanges = false; 730 SmallVector<POTWorklistEntry, 16> Worklist; 731 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 732 (void)G.Info[&FirstN]; 733 while (!Worklist.empty()) { 734 // Start or continue the traversal through the this node's operands. 735 auto &WE = Worklist.back(); 736 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 737 // Push a new node to traverse first. 738 Worklist.push_back(POTWorklistEntry(*N)); 739 continue; 740 } 741 742 // Push the node onto the POT. 743 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 744 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 745 auto &D = G.Info[WE.N]; 746 AnyChanges |= D.HasChanged = WE.HasChanged; 747 D.ID = G.POT.size(); 748 G.POT.push_back(WE.N); 749 750 // Pop the node off the worklist. 751 Worklist.pop_back(); 752 } 753 return AnyChanges; 754 } 755 756 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 757 MDNode::op_iterator E, bool &HasChanged) { 758 while (I != E) { 759 Metadata *Op = *I++; // Increment even on early return. 760 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 761 // Check if the operand changes. 762 HasChanged |= Op != *MappedOp; 763 continue; 764 } 765 766 // A uniqued metadata node. 767 MDNode &OpN = *cast<MDNode>(Op); 768 assert(OpN.isUniqued() && 769 "Only uniqued operands cannot be mapped immediately"); 770 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 771 return &OpN; // This is a new one. Return it. 772 } 773 return nullptr; 774 } 775 776 void MDNodeMapper::UniquedGraph::propagateChanges() { 777 bool AnyChanges; 778 do { 779 AnyChanges = false; 780 for (MDNode *N : POT) { 781 auto &D = Info[N]; 782 if (D.HasChanged) 783 continue; 784 785 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 786 auto Where = Info.find(Op); 787 return Where != Info.end() && Where->second.HasChanged; 788 })) 789 continue; 790 791 AnyChanges = D.HasChanged = true; 792 } 793 } while (AnyChanges); 794 } 795 796 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 797 // Construct uniqued nodes, building forward references as necessary. 798 SmallVector<MDNode *, 16> CyclicNodes; 799 for (auto *N : G.POT) { 800 auto &D = G.Info[N]; 801 if (!D.HasChanged) { 802 // The node hasn't changed. 803 M.mapToSelf(N); 804 continue; 805 } 806 807 // Remember whether this node had a placeholder. 808 bool HadPlaceholder(D.Placeholder); 809 810 // Clone the uniqued node and remap the operands. 811 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 812 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 813 if (std::optional<Metadata *> MappedOp = getMappedOp(Old)) 814 return *MappedOp; 815 (void)D; 816 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 817 return &G.getFwdReference(*cast<MDNode>(Old)); 818 }); 819 820 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 821 if (N && NewN && N != NewN) { 822 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" 823 << "To " << *NewN << "\n\n"); 824 } 825 826 M.mapToMetadata(N, NewN); 827 828 // Nodes that were referenced out of order in the POT are involved in a 829 // uniquing cycle. 830 if (HadPlaceholder) 831 CyclicNodes.push_back(NewN); 832 } 833 834 // Resolve cycles. 835 for (auto *N : CyclicNodes) 836 if (!N->isResolved()) 837 N->resolveCycles(); 838 } 839 840 Metadata *MDNodeMapper::map(const MDNode &N) { 841 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 842 assert(!(M.Flags & RF_NoModuleLevelChanges) && 843 "MDNodeMapper::map assumes module-level changes"); 844 845 // Require resolved nodes whenever metadata might be remapped. 846 assert(N.isResolved() && "Unexpected unresolved node"); 847 848 Metadata *MappedN = 849 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 850 while (!DistinctWorklist.empty()) 851 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 852 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Old)) 853 return *MappedOp; 854 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 855 }); 856 return MappedN; 857 } 858 859 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 860 assert(FirstN.isUniqued() && "Expected uniqued node"); 861 862 // Create a post-order traversal of uniqued nodes under FirstN. 863 UniquedGraph G; 864 if (!createPOT(G, FirstN)) { 865 // Return early if no nodes have changed. 866 for (const MDNode *N : G.POT) 867 M.mapToSelf(N); 868 return &const_cast<MDNode &>(FirstN); 869 } 870 871 // Update graph with all nodes that have changed. 872 G.propagateChanges(); 873 874 // Map all the nodes in the graph. 875 mapNodesInPOT(G); 876 877 // Return the original node, remapped. 878 return *getMappedOp(&FirstN); 879 } 880 881 std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 882 // If the value already exists in the map, use it. 883 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 884 return *NewMD; 885 886 if (isa<MDString>(MD)) 887 return const_cast<Metadata *>(MD); 888 889 // This is a module-level metadata. If nothing at the module level is 890 // changing, use an identity mapping. 891 if ((Flags & RF_NoModuleLevelChanges)) 892 return const_cast<Metadata *>(MD); 893 894 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 895 // Don't memoize ConstantAsMetadata. Instead of lasting until the 896 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 897 // reference is destructed. These aren't super common, so the extra 898 // indirection isn't that expensive. 899 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 900 } 901 902 assert(isa<MDNode>(MD) && "Expected a metadata node"); 903 904 return std::nullopt; 905 } 906 907 Metadata *Mapper::mapMetadata(const Metadata *MD) { 908 assert(MD && "Expected valid metadata"); 909 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 910 911 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 912 return *NewMD; 913 914 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 915 } 916 917 void Mapper::flush() { 918 // Flush out the worklist of global values. 919 while (!Worklist.empty()) { 920 WorklistEntry E = Worklist.pop_back_val(); 921 CurrentMCID = E.MCID; 922 switch (E.Kind) { 923 case WorklistEntry::MapGlobalInit: 924 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 925 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 926 break; 927 case WorklistEntry::MapAppendingVar: { 928 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 929 // mapAppendingVariable call can change AppendingInits if initalizer for 930 // the variable depends on another appending global, because of that inits 931 // need to be extracted and updated before the call. 932 SmallVector<Constant *, 8> NewInits( 933 drop_begin(AppendingInits, PrefixSize)); 934 AppendingInits.resize(PrefixSize); 935 mapAppendingVariable(*E.Data.AppendingGV.GV, 936 E.Data.AppendingGV.InitPrefix, 937 E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits)); 938 break; 939 } 940 case WorklistEntry::MapAliasOrIFunc: { 941 GlobalValue *GV = E.Data.AliasOrIFunc.GV; 942 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target); 943 if (auto *GA = dyn_cast<GlobalAlias>(GV)) 944 GA->setAliasee(Target); 945 else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) 946 GI->setResolver(Target); 947 else 948 llvm_unreachable("Not alias or ifunc"); 949 break; 950 } 951 case WorklistEntry::RemapFunction: 952 remapFunction(*E.Data.RemapF); 953 break; 954 } 955 } 956 CurrentMCID = 0; 957 958 // Finish logic for block addresses now that all global values have been 959 // handled. 960 while (!DelayedBBs.empty()) { 961 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 962 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 963 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 964 } 965 } 966 967 void Mapper::remapInstruction(Instruction *I) { 968 // Remap operands. 969 for (Use &Op : I->operands()) { 970 Value *V = mapValue(Op); 971 // If we aren't ignoring missing entries, assert that something happened. 972 if (V) 973 Op = V; 974 else 975 assert((Flags & RF_IgnoreMissingLocals) && 976 "Referenced value not in value map!"); 977 } 978 979 // Remap phi nodes' incoming blocks. 980 if (PHINode *PN = dyn_cast<PHINode>(I)) { 981 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 982 Value *V = mapValue(PN->getIncomingBlock(i)); 983 // If we aren't ignoring missing entries, assert that something happened. 984 if (V) 985 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 986 else 987 assert((Flags & RF_IgnoreMissingLocals) && 988 "Referenced block not in value map!"); 989 } 990 } 991 992 // Remap attached metadata. 993 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 994 I->getAllMetadata(MDs); 995 for (const auto &MI : MDs) { 996 MDNode *Old = MI.second; 997 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 998 if (New != Old) 999 I->setMetadata(MI.first, New); 1000 } 1001 1002 if (!TypeMapper) 1003 return; 1004 1005 // If the instruction's type is being remapped, do so now. 1006 if (auto *CB = dyn_cast<CallBase>(I)) { 1007 SmallVector<Type *, 3> Tys; 1008 FunctionType *FTy = CB->getFunctionType(); 1009 Tys.reserve(FTy->getNumParams()); 1010 for (Type *Ty : FTy->params()) 1011 Tys.push_back(TypeMapper->remapType(Ty)); 1012 CB->mutateFunctionType(FunctionType::get( 1013 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 1014 1015 LLVMContext &C = CB->getContext(); 1016 AttributeList Attrs = CB->getAttributes(); 1017 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 1018 for (int AttrIdx = Attribute::FirstTypeAttr; 1019 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 1020 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 1021 if (Type *Ty = 1022 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 1023 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 1024 TypeMapper->remapType(Ty)); 1025 break; 1026 } 1027 } 1028 } 1029 CB->setAttributes(Attrs); 1030 return; 1031 } 1032 if (auto *AI = dyn_cast<AllocaInst>(I)) 1033 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 1034 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 1035 GEP->setSourceElementType( 1036 TypeMapper->remapType(GEP->getSourceElementType())); 1037 GEP->setResultElementType( 1038 TypeMapper->remapType(GEP->getResultElementType())); 1039 } 1040 I->mutateType(TypeMapper->remapType(I->getType())); 1041 } 1042 1043 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1044 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1045 GO.getAllMetadata(MDs); 1046 GO.clearMetadata(); 1047 for (const auto &I : MDs) 1048 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 1049 } 1050 1051 void Mapper::remapFunction(Function &F) { 1052 // Remap the operands. 1053 for (Use &Op : F.operands()) 1054 if (Op) 1055 Op = mapValue(Op); 1056 1057 // Remap the metadata attachments. 1058 remapGlobalObjectMetadata(F); 1059 1060 // Remap the argument types. 1061 if (TypeMapper) 1062 for (Argument &A : F.args()) 1063 A.mutateType(TypeMapper->remapType(A.getType())); 1064 1065 // Remap the instructions. 1066 for (BasicBlock &BB : F) { 1067 for (Instruction &I : BB) { 1068 remapInstruction(&I); 1069 for (DbgRecord &DR : I.getDbgRecordRange()) 1070 remapDbgRecord(DR); 1071 } 1072 } 1073 } 1074 1075 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 1076 bool IsOldCtorDtor, 1077 ArrayRef<Constant *> NewMembers) { 1078 SmallVector<Constant *, 16> Elements; 1079 if (InitPrefix) { 1080 unsigned NumElements = 1081 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 1082 for (unsigned I = 0; I != NumElements; ++I) 1083 Elements.push_back(InitPrefix->getAggregateElement(I)); 1084 } 1085 1086 PointerType *VoidPtrTy; 1087 Type *EltTy; 1088 if (IsOldCtorDtor) { 1089 // FIXME: This upgrade is done during linking to support the C API. See 1090 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 1091 VoidPtrTy = PointerType::getUnqual(GV.getContext()); 1092 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 1093 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 1094 EltTy = StructType::get(GV.getContext(), Tys, false); 1095 } 1096 1097 for (auto *V : NewMembers) { 1098 Constant *NewV; 1099 if (IsOldCtorDtor) { 1100 auto *S = cast<ConstantStruct>(V); 1101 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 1102 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 1103 Constant *Null = Constant::getNullValue(VoidPtrTy); 1104 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 1105 } else { 1106 NewV = cast_or_null<Constant>(mapValue(V)); 1107 } 1108 Elements.push_back(NewV); 1109 } 1110 1111 GV.setInitializer( 1112 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements)); 1113 } 1114 1115 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1116 unsigned MCID) { 1117 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1118 assert(MCID < MCs.size() && "Invalid mapping context"); 1119 1120 WorklistEntry WE; 1121 WE.Kind = WorklistEntry::MapGlobalInit; 1122 WE.MCID = MCID; 1123 WE.Data.GVInit.GV = &GV; 1124 WE.Data.GVInit.Init = &Init; 1125 Worklist.push_back(WE); 1126 } 1127 1128 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1129 Constant *InitPrefix, 1130 bool IsOldCtorDtor, 1131 ArrayRef<Constant *> NewMembers, 1132 unsigned MCID) { 1133 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1134 assert(MCID < MCs.size() && "Invalid mapping context"); 1135 1136 WorklistEntry WE; 1137 WE.Kind = WorklistEntry::MapAppendingVar; 1138 WE.MCID = MCID; 1139 WE.Data.AppendingGV.GV = &GV; 1140 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1141 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1142 WE.AppendingGVNumNewMembers = NewMembers.size(); 1143 Worklist.push_back(WE); 1144 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1145 } 1146 1147 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 1148 unsigned MCID) { 1149 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1150 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) && 1151 "Should be alias or ifunc"); 1152 assert(MCID < MCs.size() && "Invalid mapping context"); 1153 1154 WorklistEntry WE; 1155 WE.Kind = WorklistEntry::MapAliasOrIFunc; 1156 WE.MCID = MCID; 1157 WE.Data.AliasOrIFunc.GV = &GV; 1158 WE.Data.AliasOrIFunc.Target = &Target; 1159 Worklist.push_back(WE); 1160 } 1161 1162 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1163 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1164 assert(MCID < MCs.size() && "Invalid mapping context"); 1165 1166 WorklistEntry WE; 1167 WE.Kind = WorklistEntry::RemapFunction; 1168 WE.MCID = MCID; 1169 WE.Data.RemapF = &F; 1170 Worklist.push_back(WE); 1171 } 1172 1173 void Mapper::addFlags(RemapFlags Flags) { 1174 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1175 this->Flags = this->Flags | Flags; 1176 } 1177 1178 static Mapper *getAsMapper(void *pImpl) { 1179 return reinterpret_cast<Mapper *>(pImpl); 1180 } 1181 1182 namespace { 1183 1184 class FlushingMapper { 1185 Mapper &M; 1186 1187 public: 1188 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1189 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1190 } 1191 1192 ~FlushingMapper() { M.flush(); } 1193 1194 Mapper *operator->() const { return &M; } 1195 }; 1196 1197 } // end anonymous namespace 1198 1199 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1200 ValueMapTypeRemapper *TypeMapper, 1201 ValueMaterializer *Materializer) 1202 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1203 1204 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1205 1206 unsigned 1207 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1208 ValueMaterializer *Materializer) { 1209 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1210 } 1211 1212 void ValueMapper::addFlags(RemapFlags Flags) { 1213 FlushingMapper(pImpl)->addFlags(Flags); 1214 } 1215 1216 Value *ValueMapper::mapValue(const Value &V) { 1217 return FlushingMapper(pImpl)->mapValue(&V); 1218 } 1219 1220 Constant *ValueMapper::mapConstant(const Constant &C) { 1221 return cast_or_null<Constant>(mapValue(C)); 1222 } 1223 1224 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1225 return FlushingMapper(pImpl)->mapMetadata(&MD); 1226 } 1227 1228 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1229 return cast_or_null<MDNode>(mapMetadata(N)); 1230 } 1231 1232 void ValueMapper::remapInstruction(Instruction &I) { 1233 FlushingMapper(pImpl)->remapInstruction(&I); 1234 } 1235 1236 void ValueMapper::remapDbgRecord(Module *M, DbgRecord &DR) { 1237 FlushingMapper(pImpl)->remapDbgRecord(DR); 1238 } 1239 1240 void ValueMapper::remapDbgRecordRange( 1241 Module *M, iterator_range<DbgRecord::self_iterator> Range) { 1242 for (DbgRecord &DR : Range) { 1243 remapDbgRecord(M, DR); 1244 } 1245 } 1246 1247 void ValueMapper::remapFunction(Function &F) { 1248 FlushingMapper(pImpl)->remapFunction(F); 1249 } 1250 1251 void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1252 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO); 1253 } 1254 1255 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1256 Constant &Init, 1257 unsigned MCID) { 1258 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1259 } 1260 1261 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1262 Constant *InitPrefix, 1263 bool IsOldCtorDtor, 1264 ArrayRef<Constant *> NewMembers, 1265 unsigned MCID) { 1266 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1267 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1268 } 1269 1270 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, 1271 unsigned MCID) { 1272 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID); 1273 } 1274 1275 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, 1276 unsigned MCID) { 1277 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID); 1278 } 1279 1280 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1281 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1282 } 1283