1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/IR/Argument.h" 21 #include "llvm/IR/BasicBlock.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalIFunc.h" 29 #include "llvm/IR/GlobalObject.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include <cassert> 42 #include <limits> 43 #include <memory> 44 #include <utility> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "value-mapper" 49 50 // Out of line method to get vtable etc for class. 51 void ValueMapTypeRemapper::anchor() {} 52 void ValueMaterializer::anchor() {} 53 54 namespace { 55 56 /// A basic block used in a BlockAddress whose function body is not yet 57 /// materialized. 58 struct DelayedBasicBlock { 59 BasicBlock *OldBB; 60 std::unique_ptr<BasicBlock> TempBB; 61 62 DelayedBasicBlock(const BlockAddress &Old) 63 : OldBB(Old.getBasicBlock()), 64 TempBB(BasicBlock::Create(Old.getContext())) {} 65 }; 66 67 struct WorklistEntry { 68 enum EntryKind { 69 MapGlobalInit, 70 MapAppendingVar, 71 MapAliasOrIFunc, 72 RemapFunction 73 }; 74 struct GVInitTy { 75 GlobalVariable *GV; 76 Constant *Init; 77 }; 78 struct AppendingGVTy { 79 GlobalVariable *GV; 80 Constant *InitPrefix; 81 }; 82 struct AliasOrIFuncTy { 83 GlobalValue *GV; 84 Constant *Target; 85 }; 86 87 unsigned Kind : 2; 88 unsigned MCID : 29; 89 unsigned AppendingGVIsOldCtorDtor : 1; 90 unsigned AppendingGVNumNewMembers; 91 union { 92 GVInitTy GVInit; 93 AppendingGVTy AppendingGV; 94 AliasOrIFuncTy AliasOrIFunc; 95 Function *RemapF; 96 } Data; 97 }; 98 99 struct MappingContext { 100 ValueToValueMapTy *VM; 101 ValueMaterializer *Materializer = nullptr; 102 103 /// Construct a MappingContext with a value map and materializer. 104 explicit MappingContext(ValueToValueMapTy &VM, 105 ValueMaterializer *Materializer = nullptr) 106 : VM(&VM), Materializer(Materializer) {} 107 }; 108 109 class Mapper { 110 friend class MDNodeMapper; 111 112 #ifndef NDEBUG 113 DenseSet<GlobalValue *> AlreadyScheduled; 114 #endif 115 116 RemapFlags Flags; 117 ValueMapTypeRemapper *TypeMapper; 118 unsigned CurrentMCID = 0; 119 SmallVector<MappingContext, 2> MCs; 120 SmallVector<WorklistEntry, 4> Worklist; 121 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 122 SmallVector<Constant *, 16> AppendingInits; 123 124 public: 125 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 126 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 127 : Flags(Flags), TypeMapper(TypeMapper), 128 MCs(1, MappingContext(VM, Materializer)) {} 129 130 /// ValueMapper should explicitly call \a flush() before destruction. 131 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 132 133 bool hasWorkToDo() const { return !Worklist.empty(); } 134 135 unsigned 136 registerAlternateMappingContext(ValueToValueMapTy &VM, 137 ValueMaterializer *Materializer = nullptr) { 138 MCs.push_back(MappingContext(VM, Materializer)); 139 return MCs.size() - 1; 140 } 141 142 void addFlags(RemapFlags Flags); 143 144 void remapGlobalObjectMetadata(GlobalObject &GO); 145 146 Value *mapValue(const Value *V); 147 void remapInstruction(Instruction *I); 148 void remapFunction(Function &F); 149 void remapDPValue(DbgRecord &DPV); 150 151 Constant *mapConstant(const Constant *C) { 152 return cast_or_null<Constant>(mapValue(C)); 153 } 154 155 /// Map metadata. 156 /// 157 /// Find the mapping for MD. Guarantees that the return will be resolved 158 /// (not an MDNode, or MDNode::isResolved() returns true). 159 Metadata *mapMetadata(const Metadata *MD); 160 161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 162 unsigned MCID); 163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 164 bool IsOldCtorDtor, 165 ArrayRef<Constant *> NewMembers, 166 unsigned MCID); 167 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 168 unsigned MCID); 169 void scheduleRemapFunction(Function &F, unsigned MCID); 170 171 void flush(); 172 173 private: 174 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 175 bool IsOldCtorDtor, 176 ArrayRef<Constant *> NewMembers); 177 178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 180 181 Value *mapBlockAddress(const BlockAddress &BA); 182 183 /// Map metadata that doesn't require visiting operands. 184 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 185 186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 187 Metadata *mapToSelf(const Metadata *MD); 188 }; 189 190 class MDNodeMapper { 191 Mapper &M; 192 193 /// Data about a node in \a UniquedGraph. 194 struct Data { 195 bool HasChanged = false; 196 unsigned ID = std::numeric_limits<unsigned>::max(); 197 TempMDNode Placeholder; 198 }; 199 200 /// A graph of uniqued nodes. 201 struct UniquedGraph { 202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 203 SmallVector<MDNode *, 16> POT; // Post-order traversal. 204 205 /// Propagate changed operands through the post-order traversal. 206 /// 207 /// Iteratively update \a Data::HasChanged for each node based on \a 208 /// Data::HasChanged of its operands, until fixed point. 209 void propagateChanges(); 210 211 /// Get a forward reference to a node to use as an operand. 212 Metadata &getFwdReference(MDNode &Op); 213 }; 214 215 /// Worklist of distinct nodes whose operands need to be remapped. 216 SmallVector<MDNode *, 16> DistinctWorklist; 217 218 // Storage for a UniquedGraph. 219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 220 SmallVector<MDNode *, 16> POTStorage; 221 222 public: 223 MDNodeMapper(Mapper &M) : M(M) {} 224 225 /// Map a metadata node (and its transitive operands). 226 /// 227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 228 /// algorithm handles distinct nodes and uniqued node subgraphs using 229 /// different strategies. 230 /// 231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 232 /// using \a mapDistinctNode(). Their mapping can always be computed 233 /// immediately without visiting operands, even if their operands change. 234 /// 235 /// The mapping for uniqued nodes depends on whether their operands change. 236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 238 /// added to \a DistinctWorklist with \a mapDistinctNode(). 239 /// 240 /// After mapping \c N itself, this function remaps the operands of the 241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 242 /// N has been mapped. 243 Metadata *map(const MDNode &N); 244 245 private: 246 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 247 /// 248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 251 /// operands uses the identity mapping. 252 /// 253 /// The algorithm works as follows: 254 /// 255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 256 /// save the post-order traversal in the given \a UniquedGraph, tracking 257 /// nodes' operands change. 258 /// 259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 260 /// through the \a UniquedGraph until fixed point, following the rule 261 /// that if a node changes, any node that references must also change. 262 /// 263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 264 /// (referencing new operands) where necessary. 265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 266 267 /// Try to map the operand of an \a MDNode. 268 /// 269 /// If \c Op is already mapped, return the mapping. If it's not an \a 270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 271 /// return the result of \a mapDistinctNode(). 272 /// 273 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode. 274 /// \post getMappedOp(Op) only returns std::nullopt if this returns 275 /// std::nullopt. 276 std::optional<Metadata *> tryToMapOperand(const Metadata *Op); 277 278 /// Map a distinct node. 279 /// 280 /// Return the mapping for the distinct node \c N, saving the result in \a 281 /// DistinctWorklist for later remapping. 282 /// 283 /// \pre \c N is not yet mapped. 284 /// \pre \c N.isDistinct(). 285 MDNode *mapDistinctNode(const MDNode &N); 286 287 /// Get a previously mapped node. 288 std::optional<Metadata *> getMappedOp(const Metadata *Op) const; 289 290 /// Create a post-order traversal of an unmapped uniqued node subgraph. 291 /// 292 /// This traverses the metadata graph deeply enough to map \c FirstN. It 293 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 294 /// metadata that has already been mapped will not be part of the POT. 295 /// 296 /// Each node that has a changed operand from outside the graph (e.g., a 297 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 298 /// is marked with \a Data::HasChanged. 299 /// 300 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 301 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 302 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 303 /// to change because of operands outside the graph. 304 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 305 306 /// Visit the operands of a uniqued node in the POT. 307 /// 308 /// Visit the operands in the range from \c I to \c E, returning the first 309 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 310 /// where to continue the loop through the operands. 311 /// 312 /// This sets \c HasChanged if any of the visited operands change. 313 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 314 MDNode::op_iterator E, bool &HasChanged); 315 316 /// Map all the nodes in the given uniqued graph. 317 /// 318 /// This visits all the nodes in \c G in post-order, using the identity 319 /// mapping or creating a new node depending on \a Data::HasChanged. 320 /// 321 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for 322 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true 323 /// for a node in \c G iff any of its operands have changed. \post \a 324 /// getMappedOp() returns the mapped node for every node in \c G. 325 void mapNodesInPOT(UniquedGraph &G); 326 327 /// Remap a node's operands using the given functor. 328 /// 329 /// Iterate through the operands of \c N and update them in place using \c 330 /// mapOperand. 331 /// 332 /// \pre N.isDistinct() or N.isTemporary(). 333 template <class OperandMapper> 334 void remapOperands(MDNode &N, OperandMapper mapOperand); 335 }; 336 337 } // end anonymous namespace 338 339 Value *Mapper::mapValue(const Value *V) { 340 ValueToValueMapTy::iterator I = getVM().find(V); 341 342 // If the value already exists in the map, use it. 343 if (I != getVM().end()) { 344 assert(I->second && "Unexpected null mapping"); 345 return I->second; 346 } 347 348 // If we have a materializer and it can materialize a value, use that. 349 if (auto *Materializer = getMaterializer()) { 350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 351 getVM()[V] = NewV; 352 return NewV; 353 } 354 } 355 356 // Global values do not need to be seeded into the VM if they 357 // are using the identity mapping. 358 if (isa<GlobalValue>(V)) { 359 if (Flags & RF_NullMapMissingGlobalValues) 360 return nullptr; 361 return getVM()[V] = const_cast<Value *>(V); 362 } 363 364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 365 // Inline asm may need *type* remapping. 366 FunctionType *NewTy = IA->getFunctionType(); 367 if (TypeMapper) { 368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 369 370 if (NewTy != IA->getFunctionType()) 371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 372 IA->hasSideEffects(), IA->isAlignStack(), 373 IA->getDialect(), IA->canThrow()); 374 } 375 376 return getVM()[V] = const_cast<Value *>(V); 377 } 378 379 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 380 const Metadata *MD = MDV->getMetadata(); 381 382 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 383 // Look through to grab the local value. 384 if (Value *LV = mapValue(LAM->getValue())) { 385 if (V == LAM->getValue()) 386 return const_cast<Value *>(V); 387 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 388 } 389 390 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 391 // ensures metadata operands only reference defined SSA values. 392 return (Flags & RF_IgnoreMissingLocals) 393 ? nullptr 394 : MetadataAsValue::get( 395 V->getContext(), 396 MDTuple::get(V->getContext(), std::nullopt)); 397 } 398 if (auto *AL = dyn_cast<DIArgList>(MD)) { 399 SmallVector<ValueAsMetadata *, 4> MappedArgs; 400 for (auto *VAM : AL->getArgs()) { 401 // Map both Local and Constant VAMs here; they will both ultimately 402 // be mapped via mapValue. The exceptions are constants when we have no 403 // module level changes and locals when they have no existing mapped 404 // value and RF_IgnoreMissingLocals is set; these have identity 405 // mappings. 406 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) { 407 MappedArgs.push_back(VAM); 408 } else if (Value *LV = mapValue(VAM->getValue())) { 409 MappedArgs.push_back( 410 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); 411 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) { 412 MappedArgs.push_back(VAM); 413 } else { 414 // If we cannot map the value, set the argument as undef. 415 MappedArgs.push_back(ValueAsMetadata::get( 416 UndefValue::get(VAM->getValue()->getType()))); 417 } 418 } 419 return MetadataAsValue::get(V->getContext(), 420 DIArgList::get(V->getContext(), MappedArgs)); 421 } 422 423 // If this is a module-level metadata and we know that nothing at the module 424 // level is changing, then use an identity mapping. 425 if (Flags & RF_NoModuleLevelChanges) 426 return getVM()[V] = const_cast<Value *>(V); 427 428 // Map the metadata and turn it into a value. 429 auto *MappedMD = mapMetadata(MD); 430 if (MD == MappedMD) 431 return getVM()[V] = const_cast<Value *>(V); 432 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 433 } 434 435 // Okay, this either must be a constant (which may or may not be mappable) or 436 // is something that is not in the mapping table. 437 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 438 if (!C) 439 return nullptr; 440 441 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 442 return mapBlockAddress(*BA); 443 444 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) { 445 auto *Val = mapValue(E->getGlobalValue()); 446 GlobalValue *GV = dyn_cast<GlobalValue>(Val); 447 if (GV) 448 return getVM()[E] = DSOLocalEquivalent::get(GV); 449 450 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases()); 451 Type *NewTy = E->getType(); 452 if (TypeMapper) 453 NewTy = TypeMapper->remapType(NewTy); 454 return getVM()[E] = llvm::ConstantExpr::getBitCast( 455 DSOLocalEquivalent::get(Func), NewTy); 456 } 457 458 if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 459 auto *Val = mapValue(NC->getGlobalValue()); 460 GlobalValue *GV = cast<GlobalValue>(Val); 461 return getVM()[NC] = NoCFIValue::get(GV); 462 } 463 464 auto mapValueOrNull = [this](Value *V) { 465 auto Mapped = mapValue(V); 466 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 467 "Unexpected null mapping for constant operand without " 468 "NullMapMissingGlobalValues flag"); 469 return Mapped; 470 }; 471 472 // Otherwise, we have some other constant to remap. Start by checking to see 473 // if all operands have an identity remapping. 474 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 475 Value *Mapped = nullptr; 476 for (; OpNo != NumOperands; ++OpNo) { 477 Value *Op = C->getOperand(OpNo); 478 Mapped = mapValueOrNull(Op); 479 if (!Mapped) 480 return nullptr; 481 if (Mapped != Op) 482 break; 483 } 484 485 // See if the type mapper wants to remap the type as well. 486 Type *NewTy = C->getType(); 487 if (TypeMapper) 488 NewTy = TypeMapper->remapType(NewTy); 489 490 // If the result type and all operands match up, then just insert an identity 491 // mapping. 492 if (OpNo == NumOperands && NewTy == C->getType()) 493 return getVM()[V] = C; 494 495 // Okay, we need to create a new constant. We've already processed some or 496 // all of the operands, set them all up now. 497 SmallVector<Constant*, 8> Ops; 498 Ops.reserve(NumOperands); 499 for (unsigned j = 0; j != OpNo; ++j) 500 Ops.push_back(cast<Constant>(C->getOperand(j))); 501 502 // If one of the operands mismatch, push it and the other mapped operands. 503 if (OpNo != NumOperands) { 504 Ops.push_back(cast<Constant>(Mapped)); 505 506 // Map the rest of the operands that aren't processed yet. 507 for (++OpNo; OpNo != NumOperands; ++OpNo) { 508 Mapped = mapValueOrNull(C->getOperand(OpNo)); 509 if (!Mapped) 510 return nullptr; 511 Ops.push_back(cast<Constant>(Mapped)); 512 } 513 } 514 Type *NewSrcTy = nullptr; 515 if (TypeMapper) 516 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 517 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 518 519 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 520 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 521 if (isa<ConstantArray>(C)) 522 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 523 if (isa<ConstantStruct>(C)) 524 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 525 if (isa<ConstantVector>(C)) 526 return getVM()[V] = ConstantVector::get(Ops); 527 // If this is a no-operand constant, it must be because the type was remapped. 528 if (isa<PoisonValue>(C)) 529 return getVM()[V] = PoisonValue::get(NewTy); 530 if (isa<UndefValue>(C)) 531 return getVM()[V] = UndefValue::get(NewTy); 532 if (isa<ConstantAggregateZero>(C)) 533 return getVM()[V] = ConstantAggregateZero::get(NewTy); 534 if (isa<ConstantTargetNone>(C)) 535 return getVM()[V] = Constant::getNullValue(NewTy); 536 assert(isa<ConstantPointerNull>(C)); 537 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 538 } 539 540 void Mapper::remapDPValue(DbgRecord &DR) { 541 DPValue &V = cast<DPValue>(DR); 542 // Remap variables and DILocations. 543 auto *MappedVar = mapMetadata(V.getVariable()); 544 auto *MappedDILoc = mapMetadata(V.getDebugLoc()); 545 V.setVariable(cast<DILocalVariable>(MappedVar)); 546 V.setDebugLoc(DebugLoc(cast<DILocation>(MappedDILoc))); 547 548 bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals; 549 550 if (V.isDbgAssign()) { 551 auto *NewAddr = mapValue(V.getAddress()); 552 if (!IgnoreMissingLocals && !NewAddr) 553 V.setKillAddress(); 554 else if (NewAddr) 555 V.setAddress(NewAddr); 556 V.setAssignId(cast<DIAssignID>(mapMetadata(V.getAssignID()))); 557 } 558 559 // Find Value operands and remap those. 560 SmallVector<Value *, 4> Vals, NewVals; 561 for (Value *Val : V.location_ops()) 562 Vals.push_back(Val); 563 for (Value *Val : Vals) 564 NewVals.push_back(mapValue(Val)); 565 566 // If there are no changes to the Value operands, finished. 567 if (Vals == NewVals) 568 return; 569 570 // Otherwise, do some replacement. 571 if (!IgnoreMissingLocals && 572 llvm::any_of(NewVals, [&](Value *V) { return V == nullptr; })) { 573 V.setKillLocation(); 574 } else { 575 // Either we have all non-empty NewVals, or we're permitted to ignore 576 // missing locals. 577 for (unsigned int I = 0; I < Vals.size(); ++I) 578 if (NewVals[I]) 579 V.replaceVariableLocationOp(I, NewVals[I]); 580 } 581 } 582 583 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 584 Function *F = cast<Function>(mapValue(BA.getFunction())); 585 586 // F may not have materialized its initializer. In that case, create a 587 // dummy basic block for now, and replace it once we've materialized all 588 // the initializers. 589 BasicBlock *BB; 590 if (F->empty()) { 591 DelayedBBs.push_back(DelayedBasicBlock(BA)); 592 BB = DelayedBBs.back().TempBB.get(); 593 } else { 594 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 595 } 596 597 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 598 } 599 600 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 601 getVM().MD()[Key].reset(Val); 602 return Val; 603 } 604 605 Metadata *Mapper::mapToSelf(const Metadata *MD) { 606 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 607 } 608 609 std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 610 if (!Op) 611 return nullptr; 612 613 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 614 #ifndef NDEBUG 615 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 616 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 617 M.getVM().getMappedMD(Op)) && 618 "Expected Value to be memoized"); 619 else 620 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 621 "Expected result to be memoized"); 622 #endif 623 return *MappedOp; 624 } 625 626 const MDNode &N = *cast<MDNode>(Op); 627 if (N.isDistinct()) 628 return mapDistinctNode(N); 629 return std::nullopt; 630 } 631 632 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 633 assert(N.isDistinct() && "Expected a distinct node"); 634 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 635 Metadata *NewM = nullptr; 636 637 if (M.Flags & RF_ReuseAndMutateDistinctMDs) { 638 NewM = M.mapToSelf(&N); 639 } else { 640 NewM = MDNode::replaceWithDistinct(N.clone()); 641 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" 642 << "To " << *NewM << "\n\n"); 643 M.mapToMetadata(&N, NewM); 644 } 645 DistinctWorklist.push_back(cast<MDNode>(NewM)); 646 647 return DistinctWorklist.back(); 648 } 649 650 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 651 Value *MappedV) { 652 if (CMD.getValue() == MappedV) 653 return const_cast<ConstantAsMetadata *>(&CMD); 654 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 655 } 656 657 std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 658 if (!Op) 659 return nullptr; 660 661 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 662 return *MappedOp; 663 664 if (isa<MDString>(Op)) 665 return const_cast<Metadata *>(Op); 666 667 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 668 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 669 670 return std::nullopt; 671 } 672 673 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 674 auto Where = Info.find(&Op); 675 assert(Where != Info.end() && "Expected a valid reference"); 676 677 auto &OpD = Where->second; 678 if (!OpD.HasChanged) 679 return Op; 680 681 // Lazily construct a temporary node. 682 if (!OpD.Placeholder) 683 OpD.Placeholder = Op.clone(); 684 685 return *OpD.Placeholder; 686 } 687 688 template <class OperandMapper> 689 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 690 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 691 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 692 Metadata *Old = N.getOperand(I); 693 Metadata *New = mapOperand(Old); 694 if (Old != New) 695 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " 696 << N << "\n"); 697 698 if (Old != New) 699 N.replaceOperandWith(I, New); 700 } 701 } 702 703 namespace { 704 705 /// An entry in the worklist for the post-order traversal. 706 struct POTWorklistEntry { 707 MDNode *N; ///< Current node. 708 MDNode::op_iterator Op; ///< Current operand of \c N. 709 710 /// Keep a flag of whether operands have changed in the worklist to avoid 711 /// hitting the map in \a UniquedGraph. 712 bool HasChanged = false; 713 714 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 715 }; 716 717 } // end anonymous namespace 718 719 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 720 assert(G.Info.empty() && "Expected a fresh traversal"); 721 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 722 723 // Construct a post-order traversal of the uniqued subgraph under FirstN. 724 bool AnyChanges = false; 725 SmallVector<POTWorklistEntry, 16> Worklist; 726 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 727 (void)G.Info[&FirstN]; 728 while (!Worklist.empty()) { 729 // Start or continue the traversal through the this node's operands. 730 auto &WE = Worklist.back(); 731 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 732 // Push a new node to traverse first. 733 Worklist.push_back(POTWorklistEntry(*N)); 734 continue; 735 } 736 737 // Push the node onto the POT. 738 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 739 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 740 auto &D = G.Info[WE.N]; 741 AnyChanges |= D.HasChanged = WE.HasChanged; 742 D.ID = G.POT.size(); 743 G.POT.push_back(WE.N); 744 745 // Pop the node off the worklist. 746 Worklist.pop_back(); 747 } 748 return AnyChanges; 749 } 750 751 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 752 MDNode::op_iterator E, bool &HasChanged) { 753 while (I != E) { 754 Metadata *Op = *I++; // Increment even on early return. 755 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 756 // Check if the operand changes. 757 HasChanged |= Op != *MappedOp; 758 continue; 759 } 760 761 // A uniqued metadata node. 762 MDNode &OpN = *cast<MDNode>(Op); 763 assert(OpN.isUniqued() && 764 "Only uniqued operands cannot be mapped immediately"); 765 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 766 return &OpN; // This is a new one. Return it. 767 } 768 return nullptr; 769 } 770 771 void MDNodeMapper::UniquedGraph::propagateChanges() { 772 bool AnyChanges; 773 do { 774 AnyChanges = false; 775 for (MDNode *N : POT) { 776 auto &D = Info[N]; 777 if (D.HasChanged) 778 continue; 779 780 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 781 auto Where = Info.find(Op); 782 return Where != Info.end() && Where->second.HasChanged; 783 })) 784 continue; 785 786 AnyChanges = D.HasChanged = true; 787 } 788 } while (AnyChanges); 789 } 790 791 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 792 // Construct uniqued nodes, building forward references as necessary. 793 SmallVector<MDNode *, 16> CyclicNodes; 794 for (auto *N : G.POT) { 795 auto &D = G.Info[N]; 796 if (!D.HasChanged) { 797 // The node hasn't changed. 798 M.mapToSelf(N); 799 continue; 800 } 801 802 // Remember whether this node had a placeholder. 803 bool HadPlaceholder(D.Placeholder); 804 805 // Clone the uniqued node and remap the operands. 806 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 807 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 808 if (std::optional<Metadata *> MappedOp = getMappedOp(Old)) 809 return *MappedOp; 810 (void)D; 811 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 812 return &G.getFwdReference(*cast<MDNode>(Old)); 813 }); 814 815 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 816 if (N && NewN && N != NewN) { 817 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" 818 << "To " << *NewN << "\n\n"); 819 } 820 821 M.mapToMetadata(N, NewN); 822 823 // Nodes that were referenced out of order in the POT are involved in a 824 // uniquing cycle. 825 if (HadPlaceholder) 826 CyclicNodes.push_back(NewN); 827 } 828 829 // Resolve cycles. 830 for (auto *N : CyclicNodes) 831 if (!N->isResolved()) 832 N->resolveCycles(); 833 } 834 835 Metadata *MDNodeMapper::map(const MDNode &N) { 836 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 837 assert(!(M.Flags & RF_NoModuleLevelChanges) && 838 "MDNodeMapper::map assumes module-level changes"); 839 840 // Require resolved nodes whenever metadata might be remapped. 841 assert(N.isResolved() && "Unexpected unresolved node"); 842 843 Metadata *MappedN = 844 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 845 while (!DistinctWorklist.empty()) 846 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 847 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Old)) 848 return *MappedOp; 849 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 850 }); 851 return MappedN; 852 } 853 854 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 855 assert(FirstN.isUniqued() && "Expected uniqued node"); 856 857 // Create a post-order traversal of uniqued nodes under FirstN. 858 UniquedGraph G; 859 if (!createPOT(G, FirstN)) { 860 // Return early if no nodes have changed. 861 for (const MDNode *N : G.POT) 862 M.mapToSelf(N); 863 return &const_cast<MDNode &>(FirstN); 864 } 865 866 // Update graph with all nodes that have changed. 867 G.propagateChanges(); 868 869 // Map all the nodes in the graph. 870 mapNodesInPOT(G); 871 872 // Return the original node, remapped. 873 return *getMappedOp(&FirstN); 874 } 875 876 std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 877 // If the value already exists in the map, use it. 878 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 879 return *NewMD; 880 881 if (isa<MDString>(MD)) 882 return const_cast<Metadata *>(MD); 883 884 // This is a module-level metadata. If nothing at the module level is 885 // changing, use an identity mapping. 886 if ((Flags & RF_NoModuleLevelChanges)) 887 return const_cast<Metadata *>(MD); 888 889 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 890 // Don't memoize ConstantAsMetadata. Instead of lasting until the 891 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 892 // reference is destructed. These aren't super common, so the extra 893 // indirection isn't that expensive. 894 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 895 } 896 897 assert(isa<MDNode>(MD) && "Expected a metadata node"); 898 899 return std::nullopt; 900 } 901 902 Metadata *Mapper::mapMetadata(const Metadata *MD) { 903 assert(MD && "Expected valid metadata"); 904 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 905 906 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 907 return *NewMD; 908 909 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 910 } 911 912 void Mapper::flush() { 913 // Flush out the worklist of global values. 914 while (!Worklist.empty()) { 915 WorklistEntry E = Worklist.pop_back_val(); 916 CurrentMCID = E.MCID; 917 switch (E.Kind) { 918 case WorklistEntry::MapGlobalInit: 919 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 920 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 921 break; 922 case WorklistEntry::MapAppendingVar: { 923 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 924 // mapAppendingVariable call can change AppendingInits if initalizer for 925 // the variable depends on another appending global, because of that inits 926 // need to be extracted and updated before the call. 927 SmallVector<Constant *, 8> NewInits( 928 drop_begin(AppendingInits, PrefixSize)); 929 AppendingInits.resize(PrefixSize); 930 mapAppendingVariable(*E.Data.AppendingGV.GV, 931 E.Data.AppendingGV.InitPrefix, 932 E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits)); 933 break; 934 } 935 case WorklistEntry::MapAliasOrIFunc: { 936 GlobalValue *GV = E.Data.AliasOrIFunc.GV; 937 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target); 938 if (auto *GA = dyn_cast<GlobalAlias>(GV)) 939 GA->setAliasee(Target); 940 else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) 941 GI->setResolver(Target); 942 else 943 llvm_unreachable("Not alias or ifunc"); 944 break; 945 } 946 case WorklistEntry::RemapFunction: 947 remapFunction(*E.Data.RemapF); 948 break; 949 } 950 } 951 CurrentMCID = 0; 952 953 // Finish logic for block addresses now that all global values have been 954 // handled. 955 while (!DelayedBBs.empty()) { 956 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 957 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 958 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 959 } 960 } 961 962 void Mapper::remapInstruction(Instruction *I) { 963 // Remap operands. 964 for (Use &Op : I->operands()) { 965 Value *V = mapValue(Op); 966 // If we aren't ignoring missing entries, assert that something happened. 967 if (V) 968 Op = V; 969 else 970 assert((Flags & RF_IgnoreMissingLocals) && 971 "Referenced value not in value map!"); 972 } 973 974 // Remap phi nodes' incoming blocks. 975 if (PHINode *PN = dyn_cast<PHINode>(I)) { 976 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 977 Value *V = mapValue(PN->getIncomingBlock(i)); 978 // If we aren't ignoring missing entries, assert that something happened. 979 if (V) 980 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 981 else 982 assert((Flags & RF_IgnoreMissingLocals) && 983 "Referenced block not in value map!"); 984 } 985 } 986 987 // Remap attached metadata. 988 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 989 I->getAllMetadata(MDs); 990 for (const auto &MI : MDs) { 991 MDNode *Old = MI.second; 992 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 993 if (New != Old) 994 I->setMetadata(MI.first, New); 995 } 996 997 if (!TypeMapper) 998 return; 999 1000 // If the instruction's type is being remapped, do so now. 1001 if (auto *CB = dyn_cast<CallBase>(I)) { 1002 SmallVector<Type *, 3> Tys; 1003 FunctionType *FTy = CB->getFunctionType(); 1004 Tys.reserve(FTy->getNumParams()); 1005 for (Type *Ty : FTy->params()) 1006 Tys.push_back(TypeMapper->remapType(Ty)); 1007 CB->mutateFunctionType(FunctionType::get( 1008 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 1009 1010 LLVMContext &C = CB->getContext(); 1011 AttributeList Attrs = CB->getAttributes(); 1012 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 1013 for (int AttrIdx = Attribute::FirstTypeAttr; 1014 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 1015 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 1016 if (Type *Ty = 1017 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 1018 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 1019 TypeMapper->remapType(Ty)); 1020 break; 1021 } 1022 } 1023 } 1024 CB->setAttributes(Attrs); 1025 return; 1026 } 1027 if (auto *AI = dyn_cast<AllocaInst>(I)) 1028 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 1029 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 1030 GEP->setSourceElementType( 1031 TypeMapper->remapType(GEP->getSourceElementType())); 1032 GEP->setResultElementType( 1033 TypeMapper->remapType(GEP->getResultElementType())); 1034 } 1035 I->mutateType(TypeMapper->remapType(I->getType())); 1036 } 1037 1038 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1039 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1040 GO.getAllMetadata(MDs); 1041 GO.clearMetadata(); 1042 for (const auto &I : MDs) 1043 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 1044 } 1045 1046 void Mapper::remapFunction(Function &F) { 1047 // Remap the operands. 1048 for (Use &Op : F.operands()) 1049 if (Op) 1050 Op = mapValue(Op); 1051 1052 // Remap the metadata attachments. 1053 remapGlobalObjectMetadata(F); 1054 1055 // Remap the argument types. 1056 if (TypeMapper) 1057 for (Argument &A : F.args()) 1058 A.mutateType(TypeMapper->remapType(A.getType())); 1059 1060 // Remap the instructions. 1061 for (BasicBlock &BB : F) { 1062 for (Instruction &I : BB) { 1063 remapInstruction(&I); 1064 for (DbgRecord &DR : I.getDbgValueRange()) 1065 remapDPValue(DR); 1066 } 1067 } 1068 } 1069 1070 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 1071 bool IsOldCtorDtor, 1072 ArrayRef<Constant *> NewMembers) { 1073 SmallVector<Constant *, 16> Elements; 1074 if (InitPrefix) { 1075 unsigned NumElements = 1076 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 1077 for (unsigned I = 0; I != NumElements; ++I) 1078 Elements.push_back(InitPrefix->getAggregateElement(I)); 1079 } 1080 1081 PointerType *VoidPtrTy; 1082 Type *EltTy; 1083 if (IsOldCtorDtor) { 1084 // FIXME: This upgrade is done during linking to support the C API. See 1085 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 1086 VoidPtrTy = PointerType::getUnqual(GV.getContext()); 1087 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 1088 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 1089 EltTy = StructType::get(GV.getContext(), Tys, false); 1090 } 1091 1092 for (auto *V : NewMembers) { 1093 Constant *NewV; 1094 if (IsOldCtorDtor) { 1095 auto *S = cast<ConstantStruct>(V); 1096 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 1097 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 1098 Constant *Null = Constant::getNullValue(VoidPtrTy); 1099 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 1100 } else { 1101 NewV = cast_or_null<Constant>(mapValue(V)); 1102 } 1103 Elements.push_back(NewV); 1104 } 1105 1106 GV.setInitializer( 1107 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements)); 1108 } 1109 1110 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1111 unsigned MCID) { 1112 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1113 assert(MCID < MCs.size() && "Invalid mapping context"); 1114 1115 WorklistEntry WE; 1116 WE.Kind = WorklistEntry::MapGlobalInit; 1117 WE.MCID = MCID; 1118 WE.Data.GVInit.GV = &GV; 1119 WE.Data.GVInit.Init = &Init; 1120 Worklist.push_back(WE); 1121 } 1122 1123 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1124 Constant *InitPrefix, 1125 bool IsOldCtorDtor, 1126 ArrayRef<Constant *> NewMembers, 1127 unsigned MCID) { 1128 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1129 assert(MCID < MCs.size() && "Invalid mapping context"); 1130 1131 WorklistEntry WE; 1132 WE.Kind = WorklistEntry::MapAppendingVar; 1133 WE.MCID = MCID; 1134 WE.Data.AppendingGV.GV = &GV; 1135 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1136 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1137 WE.AppendingGVNumNewMembers = NewMembers.size(); 1138 Worklist.push_back(WE); 1139 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1140 } 1141 1142 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 1143 unsigned MCID) { 1144 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1145 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) && 1146 "Should be alias or ifunc"); 1147 assert(MCID < MCs.size() && "Invalid mapping context"); 1148 1149 WorklistEntry WE; 1150 WE.Kind = WorklistEntry::MapAliasOrIFunc; 1151 WE.MCID = MCID; 1152 WE.Data.AliasOrIFunc.GV = &GV; 1153 WE.Data.AliasOrIFunc.Target = &Target; 1154 Worklist.push_back(WE); 1155 } 1156 1157 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1158 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1159 assert(MCID < MCs.size() && "Invalid mapping context"); 1160 1161 WorklistEntry WE; 1162 WE.Kind = WorklistEntry::RemapFunction; 1163 WE.MCID = MCID; 1164 WE.Data.RemapF = &F; 1165 Worklist.push_back(WE); 1166 } 1167 1168 void Mapper::addFlags(RemapFlags Flags) { 1169 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1170 this->Flags = this->Flags | Flags; 1171 } 1172 1173 static Mapper *getAsMapper(void *pImpl) { 1174 return reinterpret_cast<Mapper *>(pImpl); 1175 } 1176 1177 namespace { 1178 1179 class FlushingMapper { 1180 Mapper &M; 1181 1182 public: 1183 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1184 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1185 } 1186 1187 ~FlushingMapper() { M.flush(); } 1188 1189 Mapper *operator->() const { return &M; } 1190 }; 1191 1192 } // end anonymous namespace 1193 1194 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1195 ValueMapTypeRemapper *TypeMapper, 1196 ValueMaterializer *Materializer) 1197 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1198 1199 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1200 1201 unsigned 1202 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1203 ValueMaterializer *Materializer) { 1204 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1205 } 1206 1207 void ValueMapper::addFlags(RemapFlags Flags) { 1208 FlushingMapper(pImpl)->addFlags(Flags); 1209 } 1210 1211 Value *ValueMapper::mapValue(const Value &V) { 1212 return FlushingMapper(pImpl)->mapValue(&V); 1213 } 1214 1215 Constant *ValueMapper::mapConstant(const Constant &C) { 1216 return cast_or_null<Constant>(mapValue(C)); 1217 } 1218 1219 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1220 return FlushingMapper(pImpl)->mapMetadata(&MD); 1221 } 1222 1223 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1224 return cast_or_null<MDNode>(mapMetadata(N)); 1225 } 1226 1227 void ValueMapper::remapInstruction(Instruction &I) { 1228 FlushingMapper(pImpl)->remapInstruction(&I); 1229 } 1230 1231 void ValueMapper::remapDPValue(Module *M, DPValue &V) { 1232 FlushingMapper(pImpl)->remapDPValue(V); 1233 } 1234 1235 void ValueMapper::remapDPValueRange( 1236 Module *M, iterator_range<DbgRecord::self_iterator> Range) { 1237 for (DPValue &DPV : DPValue::filter(Range)) { 1238 remapDPValue(M, DPV); 1239 } 1240 } 1241 1242 void ValueMapper::remapFunction(Function &F) { 1243 FlushingMapper(pImpl)->remapFunction(F); 1244 } 1245 1246 void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1247 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO); 1248 } 1249 1250 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1251 Constant &Init, 1252 unsigned MCID) { 1253 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1254 } 1255 1256 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1257 Constant *InitPrefix, 1258 bool IsOldCtorDtor, 1259 ArrayRef<Constant *> NewMembers, 1260 unsigned MCID) { 1261 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1262 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1263 } 1264 1265 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, 1266 unsigned MCID) { 1267 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID); 1268 } 1269 1270 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, 1271 unsigned MCID) { 1272 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID); 1273 } 1274 1275 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1276 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1277 } 1278