xref: /llvm-project/llvm/lib/Transforms/Utils/ValueMapper.cpp (revision 97088b2ab2184ad4bd64f59fba0b92b70468b10d)
1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MapValue function, which is shared by various parts of
10 // the lib/Transforms/Utils library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/ValueMapper.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/IR/Argument.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DebugInfoMetadata.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalAlias.h"
28 #include "llvm/IR/GlobalIFunc.h"
29 #include "llvm/IR/GlobalObject.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include <cassert>
42 #include <limits>
43 #include <memory>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "value-mapper"
49 
50 // Out of line method to get vtable etc for class.
51 void ValueMapTypeRemapper::anchor() {}
52 void ValueMaterializer::anchor() {}
53 
54 namespace {
55 
56 /// A basic block used in a BlockAddress whose function body is not yet
57 /// materialized.
58 struct DelayedBasicBlock {
59   BasicBlock *OldBB;
60   std::unique_ptr<BasicBlock> TempBB;
61 
62   DelayedBasicBlock(const BlockAddress &Old)
63       : OldBB(Old.getBasicBlock()),
64         TempBB(BasicBlock::Create(Old.getContext())) {}
65 };
66 
67 struct WorklistEntry {
68   enum EntryKind {
69     MapGlobalInit,
70     MapAppendingVar,
71     MapAliasOrIFunc,
72     RemapFunction
73   };
74   struct GVInitTy {
75     GlobalVariable *GV;
76     Constant *Init;
77   };
78   struct AppendingGVTy {
79     GlobalVariable *GV;
80     Constant *InitPrefix;
81   };
82   struct AliasOrIFuncTy {
83     GlobalValue *GV;
84     Constant *Target;
85   };
86 
87   unsigned Kind : 2;
88   unsigned MCID : 29;
89   unsigned AppendingGVIsOldCtorDtor : 1;
90   unsigned AppendingGVNumNewMembers;
91   union {
92     GVInitTy GVInit;
93     AppendingGVTy AppendingGV;
94     AliasOrIFuncTy AliasOrIFunc;
95     Function *RemapF;
96   } Data;
97 };
98 
99 struct MappingContext {
100   ValueToValueMapTy *VM;
101   ValueMaterializer *Materializer = nullptr;
102 
103   /// Construct a MappingContext with a value map and materializer.
104   explicit MappingContext(ValueToValueMapTy &VM,
105                           ValueMaterializer *Materializer = nullptr)
106       : VM(&VM), Materializer(Materializer) {}
107 };
108 
109 class Mapper {
110   friend class MDNodeMapper;
111 
112 #ifndef NDEBUG
113   DenseSet<GlobalValue *> AlreadyScheduled;
114 #endif
115 
116   RemapFlags Flags;
117   ValueMapTypeRemapper *TypeMapper;
118   unsigned CurrentMCID = 0;
119   SmallVector<MappingContext, 2> MCs;
120   SmallVector<WorklistEntry, 4> Worklist;
121   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
122   SmallVector<Constant *, 16> AppendingInits;
123 
124 public:
125   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
126          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
127       : Flags(Flags), TypeMapper(TypeMapper),
128         MCs(1, MappingContext(VM, Materializer)) {}
129 
130   /// ValueMapper should explicitly call \a flush() before destruction.
131   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
132 
133   bool hasWorkToDo() const { return !Worklist.empty(); }
134 
135   unsigned
136   registerAlternateMappingContext(ValueToValueMapTy &VM,
137                                   ValueMaterializer *Materializer = nullptr) {
138     MCs.push_back(MappingContext(VM, Materializer));
139     return MCs.size() - 1;
140   }
141 
142   void addFlags(RemapFlags Flags);
143 
144   void remapGlobalObjectMetadata(GlobalObject &GO);
145 
146   Value *mapValue(const Value *V);
147   void remapInstruction(Instruction *I);
148   void remapFunction(Function &F);
149   void remapDPValue(DPValue &DPV);
150 
151   Constant *mapConstant(const Constant *C) {
152     return cast_or_null<Constant>(mapValue(C));
153   }
154 
155   /// Map metadata.
156   ///
157   /// Find the mapping for MD.  Guarantees that the return will be resolved
158   /// (not an MDNode, or MDNode::isResolved() returns true).
159   Metadata *mapMetadata(const Metadata *MD);
160 
161   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
162                                     unsigned MCID);
163   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
164                                     bool IsOldCtorDtor,
165                                     ArrayRef<Constant *> NewMembers,
166                                     unsigned MCID);
167   void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
168                                unsigned MCID);
169   void scheduleRemapFunction(Function &F, unsigned MCID);
170 
171   void flush();
172 
173 private:
174   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
175                             bool IsOldCtorDtor,
176                             ArrayRef<Constant *> NewMembers);
177 
178   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
179   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
180 
181   Value *mapBlockAddress(const BlockAddress &BA);
182 
183   /// Map metadata that doesn't require visiting operands.
184   std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
185 
186   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
187   Metadata *mapToSelf(const Metadata *MD);
188 };
189 
190 class MDNodeMapper {
191   Mapper &M;
192 
193   /// Data about a node in \a UniquedGraph.
194   struct Data {
195     bool HasChanged = false;
196     unsigned ID = std::numeric_limits<unsigned>::max();
197     TempMDNode Placeholder;
198   };
199 
200   /// A graph of uniqued nodes.
201   struct UniquedGraph {
202     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
203     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
204 
205     /// Propagate changed operands through the post-order traversal.
206     ///
207     /// Iteratively update \a Data::HasChanged for each node based on \a
208     /// Data::HasChanged of its operands, until fixed point.
209     void propagateChanges();
210 
211     /// Get a forward reference to a node to use as an operand.
212     Metadata &getFwdReference(MDNode &Op);
213   };
214 
215   /// Worklist of distinct nodes whose operands need to be remapped.
216   SmallVector<MDNode *, 16> DistinctWorklist;
217 
218   // Storage for a UniquedGraph.
219   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
220   SmallVector<MDNode *, 16> POTStorage;
221 
222 public:
223   MDNodeMapper(Mapper &M) : M(M) {}
224 
225   /// Map a metadata node (and its transitive operands).
226   ///
227   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
228   /// algorithm handles distinct nodes and uniqued node subgraphs using
229   /// different strategies.
230   ///
231   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
232   /// using \a mapDistinctNode().  Their mapping can always be computed
233   /// immediately without visiting operands, even if their operands change.
234   ///
235   /// The mapping for uniqued nodes depends on whether their operands change.
236   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
237   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
238   /// added to \a DistinctWorklist with \a mapDistinctNode().
239   ///
240   /// After mapping \c N itself, this function remaps the operands of the
241   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
242   /// N has been mapped.
243   Metadata *map(const MDNode &N);
244 
245 private:
246   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
247   ///
248   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
249   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
250   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
251   /// operands uses the identity mapping.
252   ///
253   /// The algorithm works as follows:
254   ///
255   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
256   ///     save the post-order traversal in the given \a UniquedGraph, tracking
257   ///     nodes' operands change.
258   ///
259   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
260   ///     through the \a UniquedGraph until fixed point, following the rule
261   ///     that if a node changes, any node that references must also change.
262   ///
263   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
264   ///     (referencing new operands) where necessary.
265   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
266 
267   /// Try to map the operand of an \a MDNode.
268   ///
269   /// If \c Op is already mapped, return the mapping.  If it's not an \a
270   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
271   /// return the result of \a mapDistinctNode().
272   ///
273   /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode.
274   /// \post getMappedOp(Op) only returns std::nullopt if this returns
275   /// std::nullopt.
276   std::optional<Metadata *> tryToMapOperand(const Metadata *Op);
277 
278   /// Map a distinct node.
279   ///
280   /// Return the mapping for the distinct node \c N, saving the result in \a
281   /// DistinctWorklist for later remapping.
282   ///
283   /// \pre \c N is not yet mapped.
284   /// \pre \c N.isDistinct().
285   MDNode *mapDistinctNode(const MDNode &N);
286 
287   /// Get a previously mapped node.
288   std::optional<Metadata *> getMappedOp(const Metadata *Op) const;
289 
290   /// Create a post-order traversal of an unmapped uniqued node subgraph.
291   ///
292   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
293   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
294   /// metadata that has already been mapped will not be part of the POT.
295   ///
296   /// Each node that has a changed operand from outside the graph (e.g., a
297   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
298   /// is marked with \a Data::HasChanged.
299   ///
300   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
301   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
302   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
303   /// to change because of operands outside the graph.
304   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
305 
306   /// Visit the operands of a uniqued node in the POT.
307   ///
308   /// Visit the operands in the range from \c I to \c E, returning the first
309   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
310   /// where to continue the loop through the operands.
311   ///
312   /// This sets \c HasChanged if any of the visited operands change.
313   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
314                         MDNode::op_iterator E, bool &HasChanged);
315 
316   /// Map all the nodes in the given uniqued graph.
317   ///
318   /// This visits all the nodes in \c G in post-order, using the identity
319   /// mapping or creating a new node depending on \a Data::HasChanged.
320   ///
321   /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for
322   /// any of their operands outside of \c G. \pre \a Data::HasChanged is true
323   /// for a node in \c G iff any of its operands have changed. \post \a
324   /// getMappedOp() returns the mapped node for every node in \c G.
325   void mapNodesInPOT(UniquedGraph &G);
326 
327   /// Remap a node's operands using the given functor.
328   ///
329   /// Iterate through the operands of \c N and update them in place using \c
330   /// mapOperand.
331   ///
332   /// \pre N.isDistinct() or N.isTemporary().
333   template <class OperandMapper>
334   void remapOperands(MDNode &N, OperandMapper mapOperand);
335 };
336 
337 } // end anonymous namespace
338 
339 Value *Mapper::mapValue(const Value *V) {
340   ValueToValueMapTy::iterator I = getVM().find(V);
341 
342   // If the value already exists in the map, use it.
343   if (I != getVM().end()) {
344     assert(I->second && "Unexpected null mapping");
345     return I->second;
346   }
347 
348   // If we have a materializer and it can materialize a value, use that.
349   if (auto *Materializer = getMaterializer()) {
350     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
351       getVM()[V] = NewV;
352       return NewV;
353     }
354   }
355 
356   // Global values do not need to be seeded into the VM if they
357   // are using the identity mapping.
358   if (isa<GlobalValue>(V)) {
359     if (Flags & RF_NullMapMissingGlobalValues)
360       return nullptr;
361     return getVM()[V] = const_cast<Value *>(V);
362   }
363 
364   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
365     // Inline asm may need *type* remapping.
366     FunctionType *NewTy = IA->getFunctionType();
367     if (TypeMapper) {
368       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
369 
370       if (NewTy != IA->getFunctionType())
371         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
372                            IA->hasSideEffects(), IA->isAlignStack(),
373                            IA->getDialect(), IA->canThrow());
374     }
375 
376     return getVM()[V] = const_cast<Value *>(V);
377   }
378 
379   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
380     const Metadata *MD = MDV->getMetadata();
381 
382     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
383       // Look through to grab the local value.
384       if (Value *LV = mapValue(LAM->getValue())) {
385         if (V == LAM->getValue())
386           return const_cast<Value *>(V);
387         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
388       }
389 
390       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
391       // ensures metadata operands only reference defined SSA values.
392       return (Flags & RF_IgnoreMissingLocals)
393                  ? nullptr
394                  : MetadataAsValue::get(
395                        V->getContext(),
396                        MDTuple::get(V->getContext(), std::nullopt));
397     }
398     if (auto *AL = dyn_cast<DIArgList>(MD)) {
399       SmallVector<ValueAsMetadata *, 4> MappedArgs;
400       for (auto *VAM : AL->getArgs()) {
401         // Map both Local and Constant VAMs here; they will both ultimately
402         // be mapped via mapValue. The exceptions are constants when we have no
403         // module level changes and locals when they have no existing mapped
404         // value and RF_IgnoreMissingLocals is set; these have identity
405         // mappings.
406         if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) {
407           MappedArgs.push_back(VAM);
408         } else if (Value *LV = mapValue(VAM->getValue())) {
409           MappedArgs.push_back(
410               LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV));
411         } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) {
412             MappedArgs.push_back(VAM);
413         } else {
414           // If we cannot map the value, set the argument as undef.
415           MappedArgs.push_back(ValueAsMetadata::get(
416               UndefValue::get(VAM->getValue()->getType())));
417         }
418       }
419       return MetadataAsValue::get(V->getContext(),
420                                   DIArgList::get(V->getContext(), MappedArgs));
421     }
422 
423     // If this is a module-level metadata and we know that nothing at the module
424     // level is changing, then use an identity mapping.
425     if (Flags & RF_NoModuleLevelChanges)
426       return getVM()[V] = const_cast<Value *>(V);
427 
428     // Map the metadata and turn it into a value.
429     auto *MappedMD = mapMetadata(MD);
430     if (MD == MappedMD)
431       return getVM()[V] = const_cast<Value *>(V);
432     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
433   }
434 
435   // Okay, this either must be a constant (which may or may not be mappable) or
436   // is something that is not in the mapping table.
437   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
438   if (!C)
439     return nullptr;
440 
441   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
442     return mapBlockAddress(*BA);
443 
444   if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) {
445     auto *Val = mapValue(E->getGlobalValue());
446     GlobalValue *GV = dyn_cast<GlobalValue>(Val);
447     if (GV)
448       return getVM()[E] = DSOLocalEquivalent::get(GV);
449 
450     auto *Func = cast<Function>(Val->stripPointerCastsAndAliases());
451     Type *NewTy = E->getType();
452     if (TypeMapper)
453       NewTy = TypeMapper->remapType(NewTy);
454     return getVM()[E] = llvm::ConstantExpr::getBitCast(
455                DSOLocalEquivalent::get(Func), NewTy);
456   }
457 
458   if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
459     auto *Val = mapValue(NC->getGlobalValue());
460     GlobalValue *GV = cast<GlobalValue>(Val);
461     return getVM()[NC] = NoCFIValue::get(GV);
462   }
463 
464   auto mapValueOrNull = [this](Value *V) {
465     auto Mapped = mapValue(V);
466     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
467            "Unexpected null mapping for constant operand without "
468            "NullMapMissingGlobalValues flag");
469     return Mapped;
470   };
471 
472   // Otherwise, we have some other constant to remap.  Start by checking to see
473   // if all operands have an identity remapping.
474   unsigned OpNo = 0, NumOperands = C->getNumOperands();
475   Value *Mapped = nullptr;
476   for (; OpNo != NumOperands; ++OpNo) {
477     Value *Op = C->getOperand(OpNo);
478     Mapped = mapValueOrNull(Op);
479     if (!Mapped)
480       return nullptr;
481     if (Mapped != Op)
482       break;
483   }
484 
485   // See if the type mapper wants to remap the type as well.
486   Type *NewTy = C->getType();
487   if (TypeMapper)
488     NewTy = TypeMapper->remapType(NewTy);
489 
490   // If the result type and all operands match up, then just insert an identity
491   // mapping.
492   if (OpNo == NumOperands && NewTy == C->getType())
493     return getVM()[V] = C;
494 
495   // Okay, we need to create a new constant.  We've already processed some or
496   // all of the operands, set them all up now.
497   SmallVector<Constant*, 8> Ops;
498   Ops.reserve(NumOperands);
499   for (unsigned j = 0; j != OpNo; ++j)
500     Ops.push_back(cast<Constant>(C->getOperand(j)));
501 
502   // If one of the operands mismatch, push it and the other mapped operands.
503   if (OpNo != NumOperands) {
504     Ops.push_back(cast<Constant>(Mapped));
505 
506     // Map the rest of the operands that aren't processed yet.
507     for (++OpNo; OpNo != NumOperands; ++OpNo) {
508       Mapped = mapValueOrNull(C->getOperand(OpNo));
509       if (!Mapped)
510         return nullptr;
511       Ops.push_back(cast<Constant>(Mapped));
512     }
513   }
514   Type *NewSrcTy = nullptr;
515   if (TypeMapper)
516     if (auto *GEPO = dyn_cast<GEPOperator>(C))
517       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
518 
519   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
520     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
521   if (isa<ConstantArray>(C))
522     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
523   if (isa<ConstantStruct>(C))
524     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
525   if (isa<ConstantVector>(C))
526     return getVM()[V] = ConstantVector::get(Ops);
527   // If this is a no-operand constant, it must be because the type was remapped.
528   if (isa<PoisonValue>(C))
529     return getVM()[V] = PoisonValue::get(NewTy);
530   if (isa<UndefValue>(C))
531     return getVM()[V] = UndefValue::get(NewTy);
532   if (isa<ConstantAggregateZero>(C))
533     return getVM()[V] = ConstantAggregateZero::get(NewTy);
534   if (isa<ConstantTargetNone>(C))
535     return getVM()[V] = Constant::getNullValue(NewTy);
536   assert(isa<ConstantPointerNull>(C));
537   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
538 }
539 
540 void Mapper::remapDPValue(DPValue &V) {
541   // Remap variables and DILocations.
542   auto *MappedVar = mapMetadata(V.getVariable());
543   auto *MappedDILoc = mapMetadata(V.getDebugLoc());
544   V.setVariable(cast<DILocalVariable>(MappedVar));
545   V.setDebugLoc(DebugLoc(cast<DILocation>(MappedDILoc)));
546 
547   bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals;
548 
549   if (V.isDbgAssign()) {
550     auto *NewAddr = mapValue(V.getAddress());
551     if (!IgnoreMissingLocals && !NewAddr)
552       V.setKillAddress();
553     else if (NewAddr)
554       V.setAddress(NewAddr);
555     V.setAssignId(cast<DIAssignID>(mapMetadata(V.getAssignID())));
556   }
557 
558   // Find Value operands and remap those.
559   SmallVector<Value *, 4> Vals, NewVals;
560   for (Value *Val : V.location_ops())
561     Vals.push_back(Val);
562   for (Value *Val : Vals)
563     NewVals.push_back(mapValue(Val));
564 
565   // If there are no changes to the Value operands, finished.
566   if (Vals == NewVals)
567     return;
568 
569   // Otherwise, do some replacement.
570   if (!IgnoreMissingLocals &&
571       llvm::any_of(NewVals, [&](Value *V) { return V == nullptr; })) {
572     V.setKillLocation();
573   } else {
574     // Either we have all non-empty NewVals, or we're permitted to ignore
575     // missing locals.
576     for (unsigned int I = 0; I < Vals.size(); ++I)
577       if (NewVals[I])
578         V.replaceVariableLocationOp(I, NewVals[I]);
579   }
580 }
581 
582 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
583   Function *F = cast<Function>(mapValue(BA.getFunction()));
584 
585   // F may not have materialized its initializer.  In that case, create a
586   // dummy basic block for now, and replace it once we've materialized all
587   // the initializers.
588   BasicBlock *BB;
589   if (F->empty()) {
590     DelayedBBs.push_back(DelayedBasicBlock(BA));
591     BB = DelayedBBs.back().TempBB.get();
592   } else {
593     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
594   }
595 
596   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
597 }
598 
599 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
600   getVM().MD()[Key].reset(Val);
601   return Val;
602 }
603 
604 Metadata *Mapper::mapToSelf(const Metadata *MD) {
605   return mapToMetadata(MD, const_cast<Metadata *>(MD));
606 }
607 
608 std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
609   if (!Op)
610     return nullptr;
611 
612   if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
613 #ifndef NDEBUG
614     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
615       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
616               M.getVM().getMappedMD(Op)) &&
617              "Expected Value to be memoized");
618     else
619       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
620              "Expected result to be memoized");
621 #endif
622     return *MappedOp;
623   }
624 
625   const MDNode &N = *cast<MDNode>(Op);
626   if (N.isDistinct())
627     return mapDistinctNode(N);
628   return std::nullopt;
629 }
630 
631 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
632   assert(N.isDistinct() && "Expected a distinct node");
633   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
634   Metadata *NewM = nullptr;
635 
636   if (M.Flags & RF_ReuseAndMutateDistinctMDs) {
637     NewM = M.mapToSelf(&N);
638   } else {
639     NewM = MDNode::replaceWithDistinct(N.clone());
640     LLVM_DEBUG(dbgs() << "\nMap " << N << "\n"
641                       << "To  " << *NewM << "\n\n");
642     M.mapToMetadata(&N, NewM);
643   }
644   DistinctWorklist.push_back(cast<MDNode>(NewM));
645 
646   return DistinctWorklist.back();
647 }
648 
649 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
650                                                   Value *MappedV) {
651   if (CMD.getValue() == MappedV)
652     return const_cast<ConstantAsMetadata *>(&CMD);
653   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
654 }
655 
656 std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
657   if (!Op)
658     return nullptr;
659 
660   if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
661     return *MappedOp;
662 
663   if (isa<MDString>(Op))
664     return const_cast<Metadata *>(Op);
665 
666   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
667     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
668 
669   return std::nullopt;
670 }
671 
672 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
673   auto Where = Info.find(&Op);
674   assert(Where != Info.end() && "Expected a valid reference");
675 
676   auto &OpD = Where->second;
677   if (!OpD.HasChanged)
678     return Op;
679 
680   // Lazily construct a temporary node.
681   if (!OpD.Placeholder)
682     OpD.Placeholder = Op.clone();
683 
684   return *OpD.Placeholder;
685 }
686 
687 template <class OperandMapper>
688 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
689   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
690   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
691     Metadata *Old = N.getOperand(I);
692     Metadata *New = mapOperand(Old);
693     if (Old != New)
694       LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in "
695                         << N << "\n");
696 
697     if (Old != New)
698       N.replaceOperandWith(I, New);
699   }
700 }
701 
702 namespace {
703 
704 /// An entry in the worklist for the post-order traversal.
705 struct POTWorklistEntry {
706   MDNode *N;              ///< Current node.
707   MDNode::op_iterator Op; ///< Current operand of \c N.
708 
709   /// Keep a flag of whether operands have changed in the worklist to avoid
710   /// hitting the map in \a UniquedGraph.
711   bool HasChanged = false;
712 
713   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
714 };
715 
716 } // end anonymous namespace
717 
718 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
719   assert(G.Info.empty() && "Expected a fresh traversal");
720   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
721 
722   // Construct a post-order traversal of the uniqued subgraph under FirstN.
723   bool AnyChanges = false;
724   SmallVector<POTWorklistEntry, 16> Worklist;
725   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
726   (void)G.Info[&FirstN];
727   while (!Worklist.empty()) {
728     // Start or continue the traversal through the this node's operands.
729     auto &WE = Worklist.back();
730     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
731       // Push a new node to traverse first.
732       Worklist.push_back(POTWorklistEntry(*N));
733       continue;
734     }
735 
736     // Push the node onto the POT.
737     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
738     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
739     auto &D = G.Info[WE.N];
740     AnyChanges |= D.HasChanged = WE.HasChanged;
741     D.ID = G.POT.size();
742     G.POT.push_back(WE.N);
743 
744     // Pop the node off the worklist.
745     Worklist.pop_back();
746   }
747   return AnyChanges;
748 }
749 
750 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
751                                     MDNode::op_iterator E, bool &HasChanged) {
752   while (I != E) {
753     Metadata *Op = *I++; // Increment even on early return.
754     if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
755       // Check if the operand changes.
756       HasChanged |= Op != *MappedOp;
757       continue;
758     }
759 
760     // A uniqued metadata node.
761     MDNode &OpN = *cast<MDNode>(Op);
762     assert(OpN.isUniqued() &&
763            "Only uniqued operands cannot be mapped immediately");
764     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
765       return &OpN; // This is a new one.  Return it.
766   }
767   return nullptr;
768 }
769 
770 void MDNodeMapper::UniquedGraph::propagateChanges() {
771   bool AnyChanges;
772   do {
773     AnyChanges = false;
774     for (MDNode *N : POT) {
775       auto &D = Info[N];
776       if (D.HasChanged)
777         continue;
778 
779       if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
780             auto Where = Info.find(Op);
781             return Where != Info.end() && Where->second.HasChanged;
782           }))
783         continue;
784 
785       AnyChanges = D.HasChanged = true;
786     }
787   } while (AnyChanges);
788 }
789 
790 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
791   // Construct uniqued nodes, building forward references as necessary.
792   SmallVector<MDNode *, 16> CyclicNodes;
793   for (auto *N : G.POT) {
794     auto &D = G.Info[N];
795     if (!D.HasChanged) {
796       // The node hasn't changed.
797       M.mapToSelf(N);
798       continue;
799     }
800 
801     // Remember whether this node had a placeholder.
802     bool HadPlaceholder(D.Placeholder);
803 
804     // Clone the uniqued node and remap the operands.
805     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
806     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
807       if (std::optional<Metadata *> MappedOp = getMappedOp(Old))
808         return *MappedOp;
809       (void)D;
810       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
811       return &G.getFwdReference(*cast<MDNode>(Old));
812     });
813 
814     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
815     if (N && NewN && N != NewN) {
816       LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n"
817                         << "To  " << *NewN << "\n\n");
818     }
819 
820     M.mapToMetadata(N, NewN);
821 
822     // Nodes that were referenced out of order in the POT are involved in a
823     // uniquing cycle.
824     if (HadPlaceholder)
825       CyclicNodes.push_back(NewN);
826   }
827 
828   // Resolve cycles.
829   for (auto *N : CyclicNodes)
830     if (!N->isResolved())
831       N->resolveCycles();
832 }
833 
834 Metadata *MDNodeMapper::map(const MDNode &N) {
835   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
836   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
837          "MDNodeMapper::map assumes module-level changes");
838 
839   // Require resolved nodes whenever metadata might be remapped.
840   assert(N.isResolved() && "Unexpected unresolved node");
841 
842   Metadata *MappedN =
843       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
844   while (!DistinctWorklist.empty())
845     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
846       if (std::optional<Metadata *> MappedOp = tryToMapOperand(Old))
847         return *MappedOp;
848       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
849     });
850   return MappedN;
851 }
852 
853 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
854   assert(FirstN.isUniqued() && "Expected uniqued node");
855 
856   // Create a post-order traversal of uniqued nodes under FirstN.
857   UniquedGraph G;
858   if (!createPOT(G, FirstN)) {
859     // Return early if no nodes have changed.
860     for (const MDNode *N : G.POT)
861       M.mapToSelf(N);
862     return &const_cast<MDNode &>(FirstN);
863   }
864 
865   // Update graph with all nodes that have changed.
866   G.propagateChanges();
867 
868   // Map all the nodes in the graph.
869   mapNodesInPOT(G);
870 
871   // Return the original node, remapped.
872   return *getMappedOp(&FirstN);
873 }
874 
875 std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
876   // If the value already exists in the map, use it.
877   if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD))
878     return *NewMD;
879 
880   if (isa<MDString>(MD))
881     return const_cast<Metadata *>(MD);
882 
883   // This is a module-level metadata.  If nothing at the module level is
884   // changing, use an identity mapping.
885   if ((Flags & RF_NoModuleLevelChanges))
886     return const_cast<Metadata *>(MD);
887 
888   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
889     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
890     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
891     // reference is destructed.  These aren't super common, so the extra
892     // indirection isn't that expensive.
893     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
894   }
895 
896   assert(isa<MDNode>(MD) && "Expected a metadata node");
897 
898   return std::nullopt;
899 }
900 
901 Metadata *Mapper::mapMetadata(const Metadata *MD) {
902   assert(MD && "Expected valid metadata");
903   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
904 
905   if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD))
906     return *NewMD;
907 
908   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
909 }
910 
911 void Mapper::flush() {
912   // Flush out the worklist of global values.
913   while (!Worklist.empty()) {
914     WorklistEntry E = Worklist.pop_back_val();
915     CurrentMCID = E.MCID;
916     switch (E.Kind) {
917     case WorklistEntry::MapGlobalInit:
918       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
919       remapGlobalObjectMetadata(*E.Data.GVInit.GV);
920       break;
921     case WorklistEntry::MapAppendingVar: {
922       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
923       // mapAppendingVariable call can change AppendingInits if initalizer for
924       // the variable depends on another appending global, because of that inits
925       // need to be extracted and updated before the call.
926       SmallVector<Constant *, 8> NewInits(
927           drop_begin(AppendingInits, PrefixSize));
928       AppendingInits.resize(PrefixSize);
929       mapAppendingVariable(*E.Data.AppendingGV.GV,
930                            E.Data.AppendingGV.InitPrefix,
931                            E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits));
932       break;
933     }
934     case WorklistEntry::MapAliasOrIFunc: {
935       GlobalValue *GV = E.Data.AliasOrIFunc.GV;
936       Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target);
937       if (auto *GA = dyn_cast<GlobalAlias>(GV))
938         GA->setAliasee(Target);
939       else if (auto *GI = dyn_cast<GlobalIFunc>(GV))
940         GI->setResolver(Target);
941       else
942         llvm_unreachable("Not alias or ifunc");
943       break;
944     }
945     case WorklistEntry::RemapFunction:
946       remapFunction(*E.Data.RemapF);
947       break;
948     }
949   }
950   CurrentMCID = 0;
951 
952   // Finish logic for block addresses now that all global values have been
953   // handled.
954   while (!DelayedBBs.empty()) {
955     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
956     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
957     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
958   }
959 }
960 
961 void Mapper::remapInstruction(Instruction *I) {
962   // Remap operands.
963   for (Use &Op : I->operands()) {
964     Value *V = mapValue(Op);
965     // If we aren't ignoring missing entries, assert that something happened.
966     if (V)
967       Op = V;
968     else
969       assert((Flags & RF_IgnoreMissingLocals) &&
970              "Referenced value not in value map!");
971   }
972 
973   // Remap phi nodes' incoming blocks.
974   if (PHINode *PN = dyn_cast<PHINode>(I)) {
975     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
976       Value *V = mapValue(PN->getIncomingBlock(i));
977       // If we aren't ignoring missing entries, assert that something happened.
978       if (V)
979         PN->setIncomingBlock(i, cast<BasicBlock>(V));
980       else
981         assert((Flags & RF_IgnoreMissingLocals) &&
982                "Referenced block not in value map!");
983     }
984   }
985 
986   // Remap attached metadata.
987   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
988   I->getAllMetadata(MDs);
989   for (const auto &MI : MDs) {
990     MDNode *Old = MI.second;
991     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
992     if (New != Old)
993       I->setMetadata(MI.first, New);
994   }
995 
996   if (!TypeMapper)
997     return;
998 
999   // If the instruction's type is being remapped, do so now.
1000   if (auto *CB = dyn_cast<CallBase>(I)) {
1001     SmallVector<Type *, 3> Tys;
1002     FunctionType *FTy = CB->getFunctionType();
1003     Tys.reserve(FTy->getNumParams());
1004     for (Type *Ty : FTy->params())
1005       Tys.push_back(TypeMapper->remapType(Ty));
1006     CB->mutateFunctionType(FunctionType::get(
1007         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
1008 
1009     LLVMContext &C = CB->getContext();
1010     AttributeList Attrs = CB->getAttributes();
1011     for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
1012       for (int AttrIdx = Attribute::FirstTypeAttr;
1013            AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
1014         Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
1015         if (Type *Ty =
1016                 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
1017           Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
1018                                                     TypeMapper->remapType(Ty));
1019           break;
1020         }
1021       }
1022     }
1023     CB->setAttributes(Attrs);
1024     return;
1025   }
1026   if (auto *AI = dyn_cast<AllocaInst>(I))
1027     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
1028   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
1029     GEP->setSourceElementType(
1030         TypeMapper->remapType(GEP->getSourceElementType()));
1031     GEP->setResultElementType(
1032         TypeMapper->remapType(GEP->getResultElementType()));
1033   }
1034   I->mutateType(TypeMapper->remapType(I->getType()));
1035 }
1036 
1037 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
1038   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1039   GO.getAllMetadata(MDs);
1040   GO.clearMetadata();
1041   for (const auto &I : MDs)
1042     GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
1043 }
1044 
1045 void Mapper::remapFunction(Function &F) {
1046   // Remap the operands.
1047   for (Use &Op : F.operands())
1048     if (Op)
1049       Op = mapValue(Op);
1050 
1051   // Remap the metadata attachments.
1052   remapGlobalObjectMetadata(F);
1053 
1054   // Remap the argument types.
1055   if (TypeMapper)
1056     for (Argument &A : F.args())
1057       A.mutateType(TypeMapper->remapType(A.getType()));
1058 
1059   // Remap the instructions.
1060   for (BasicBlock &BB : F) {
1061     for (Instruction &I : BB) {
1062       remapInstruction(&I);
1063       for (DPValue &DPV : I.getDbgValueRange())
1064         remapDPValue(DPV);
1065     }
1066   }
1067 }
1068 
1069 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
1070                                   bool IsOldCtorDtor,
1071                                   ArrayRef<Constant *> NewMembers) {
1072   SmallVector<Constant *, 16> Elements;
1073   if (InitPrefix) {
1074     unsigned NumElements =
1075         cast<ArrayType>(InitPrefix->getType())->getNumElements();
1076     for (unsigned I = 0; I != NumElements; ++I)
1077       Elements.push_back(InitPrefix->getAggregateElement(I));
1078   }
1079 
1080   PointerType *VoidPtrTy;
1081   Type *EltTy;
1082   if (IsOldCtorDtor) {
1083     // FIXME: This upgrade is done during linking to support the C API.  See
1084     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
1085     VoidPtrTy = PointerType::getUnqual(GV.getContext());
1086     auto &ST = *cast<StructType>(NewMembers.front()->getType());
1087     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
1088     EltTy = StructType::get(GV.getContext(), Tys, false);
1089   }
1090 
1091   for (auto *V : NewMembers) {
1092     Constant *NewV;
1093     if (IsOldCtorDtor) {
1094       auto *S = cast<ConstantStruct>(V);
1095       auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
1096       auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
1097       Constant *Null = Constant::getNullValue(VoidPtrTy);
1098       NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
1099     } else {
1100       NewV = cast_or_null<Constant>(mapValue(V));
1101     }
1102     Elements.push_back(NewV);
1103   }
1104 
1105   GV.setInitializer(
1106       ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements));
1107 }
1108 
1109 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
1110                                           unsigned MCID) {
1111   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1112   assert(MCID < MCs.size() && "Invalid mapping context");
1113 
1114   WorklistEntry WE;
1115   WE.Kind = WorklistEntry::MapGlobalInit;
1116   WE.MCID = MCID;
1117   WE.Data.GVInit.GV = &GV;
1118   WE.Data.GVInit.Init = &Init;
1119   Worklist.push_back(WE);
1120 }
1121 
1122 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1123                                           Constant *InitPrefix,
1124                                           bool IsOldCtorDtor,
1125                                           ArrayRef<Constant *> NewMembers,
1126                                           unsigned MCID) {
1127   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1128   assert(MCID < MCs.size() && "Invalid mapping context");
1129 
1130   WorklistEntry WE;
1131   WE.Kind = WorklistEntry::MapAppendingVar;
1132   WE.MCID = MCID;
1133   WE.Data.AppendingGV.GV = &GV;
1134   WE.Data.AppendingGV.InitPrefix = InitPrefix;
1135   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
1136   WE.AppendingGVNumNewMembers = NewMembers.size();
1137   Worklist.push_back(WE);
1138   AppendingInits.append(NewMembers.begin(), NewMembers.end());
1139 }
1140 
1141 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target,
1142                                      unsigned MCID) {
1143   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
1144   assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) &&
1145          "Should be alias or ifunc");
1146   assert(MCID < MCs.size() && "Invalid mapping context");
1147 
1148   WorklistEntry WE;
1149   WE.Kind = WorklistEntry::MapAliasOrIFunc;
1150   WE.MCID = MCID;
1151   WE.Data.AliasOrIFunc.GV = &GV;
1152   WE.Data.AliasOrIFunc.Target = &Target;
1153   Worklist.push_back(WE);
1154 }
1155 
1156 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1157   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
1158   assert(MCID < MCs.size() && "Invalid mapping context");
1159 
1160   WorklistEntry WE;
1161   WE.Kind = WorklistEntry::RemapFunction;
1162   WE.MCID = MCID;
1163   WE.Data.RemapF = &F;
1164   Worklist.push_back(WE);
1165 }
1166 
1167 void Mapper::addFlags(RemapFlags Flags) {
1168   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1169   this->Flags = this->Flags | Flags;
1170 }
1171 
1172 static Mapper *getAsMapper(void *pImpl) {
1173   return reinterpret_cast<Mapper *>(pImpl);
1174 }
1175 
1176 namespace {
1177 
1178 class FlushingMapper {
1179   Mapper &M;
1180 
1181 public:
1182   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
1183     assert(!M.hasWorkToDo() && "Expected to be flushed");
1184   }
1185 
1186   ~FlushingMapper() { M.flush(); }
1187 
1188   Mapper *operator->() const { return &M; }
1189 };
1190 
1191 } // end anonymous namespace
1192 
1193 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
1194                          ValueMapTypeRemapper *TypeMapper,
1195                          ValueMaterializer *Materializer)
1196     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
1197 
1198 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
1199 
1200 unsigned
1201 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
1202                                              ValueMaterializer *Materializer) {
1203   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
1204 }
1205 
1206 void ValueMapper::addFlags(RemapFlags Flags) {
1207   FlushingMapper(pImpl)->addFlags(Flags);
1208 }
1209 
1210 Value *ValueMapper::mapValue(const Value &V) {
1211   return FlushingMapper(pImpl)->mapValue(&V);
1212 }
1213 
1214 Constant *ValueMapper::mapConstant(const Constant &C) {
1215   return cast_or_null<Constant>(mapValue(C));
1216 }
1217 
1218 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
1219   return FlushingMapper(pImpl)->mapMetadata(&MD);
1220 }
1221 
1222 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
1223   return cast_or_null<MDNode>(mapMetadata(N));
1224 }
1225 
1226 void ValueMapper::remapInstruction(Instruction &I) {
1227   FlushingMapper(pImpl)->remapInstruction(&I);
1228 }
1229 
1230 void ValueMapper::remapDPValue(Module *M, DPValue &V) {
1231   FlushingMapper(pImpl)->remapDPValue(V);
1232 }
1233 
1234 void ValueMapper::remapDPValueRange(
1235     Module *M, iterator_range<DPValue::self_iterator> Range) {
1236   for (DPValue &DPV : Range) {
1237     remapDPValue(M, DPV);
1238   }
1239 }
1240 
1241 void ValueMapper::remapFunction(Function &F) {
1242   FlushingMapper(pImpl)->remapFunction(F);
1243 }
1244 
1245 void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) {
1246   FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO);
1247 }
1248 
1249 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
1250                                                Constant &Init,
1251                                                unsigned MCID) {
1252   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
1253 }
1254 
1255 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
1256                                                Constant *InitPrefix,
1257                                                bool IsOldCtorDtor,
1258                                                ArrayRef<Constant *> NewMembers,
1259                                                unsigned MCID) {
1260   getAsMapper(pImpl)->scheduleMapAppendingVariable(
1261       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
1262 }
1263 
1264 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee,
1265                                          unsigned MCID) {
1266   getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID);
1267 }
1268 
1269 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver,
1270                                          unsigned MCID) {
1271   getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID);
1272 }
1273 
1274 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
1275   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
1276 }
1277