1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/IR/Argument.h" 21 #include "llvm/IR/BasicBlock.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalIFunc.h" 29 #include "llvm/IR/GlobalObject.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Debug.h" 40 #include <cassert> 41 #include <limits> 42 #include <memory> 43 #include <utility> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "value-mapper" 48 49 // Out of line method to get vtable etc for class. 50 void ValueMapTypeRemapper::anchor() {} 51 void ValueMaterializer::anchor() {} 52 53 namespace { 54 55 /// A basic block used in a BlockAddress whose function body is not yet 56 /// materialized. 57 struct DelayedBasicBlock { 58 BasicBlock *OldBB; 59 std::unique_ptr<BasicBlock> TempBB; 60 61 DelayedBasicBlock(const BlockAddress &Old) 62 : OldBB(Old.getBasicBlock()), 63 TempBB(BasicBlock::Create(Old.getContext())) {} 64 }; 65 66 struct WorklistEntry { 67 enum EntryKind { 68 MapGlobalInit, 69 MapAppendingVar, 70 MapAliasOrIFunc, 71 RemapFunction 72 }; 73 struct GVInitTy { 74 GlobalVariable *GV; 75 Constant *Init; 76 }; 77 struct AppendingGVTy { 78 GlobalVariable *GV; 79 Constant *InitPrefix; 80 }; 81 struct AliasOrIFuncTy { 82 GlobalValue *GV; 83 Constant *Target; 84 }; 85 86 unsigned Kind : 2; 87 unsigned MCID : 29; 88 unsigned AppendingGVIsOldCtorDtor : 1; 89 unsigned AppendingGVNumNewMembers; 90 union { 91 GVInitTy GVInit; 92 AppendingGVTy AppendingGV; 93 AliasOrIFuncTy AliasOrIFunc; 94 Function *RemapF; 95 } Data; 96 }; 97 98 struct MappingContext { 99 ValueToValueMapTy *VM; 100 ValueMaterializer *Materializer = nullptr; 101 102 /// Construct a MappingContext with a value map and materializer. 103 explicit MappingContext(ValueToValueMapTy &VM, 104 ValueMaterializer *Materializer = nullptr) 105 : VM(&VM), Materializer(Materializer) {} 106 }; 107 108 class Mapper { 109 friend class MDNodeMapper; 110 111 #ifndef NDEBUG 112 DenseSet<GlobalValue *> AlreadyScheduled; 113 #endif 114 115 RemapFlags Flags; 116 ValueMapTypeRemapper *TypeMapper; 117 unsigned CurrentMCID = 0; 118 SmallVector<MappingContext, 2> MCs; 119 SmallVector<WorklistEntry, 4> Worklist; 120 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 121 SmallVector<Constant *, 16> AppendingInits; 122 123 public: 124 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 125 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 126 : Flags(Flags), TypeMapper(TypeMapper), 127 MCs(1, MappingContext(VM, Materializer)) {} 128 129 /// ValueMapper should explicitly call \a flush() before destruction. 130 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 131 132 bool hasWorkToDo() const { return !Worklist.empty(); } 133 134 unsigned 135 registerAlternateMappingContext(ValueToValueMapTy &VM, 136 ValueMaterializer *Materializer = nullptr) { 137 MCs.push_back(MappingContext(VM, Materializer)); 138 return MCs.size() - 1; 139 } 140 141 void addFlags(RemapFlags Flags); 142 143 void remapGlobalObjectMetadata(GlobalObject &GO); 144 145 Value *mapValue(const Value *V); 146 void remapInstruction(Instruction *I); 147 void remapFunction(Function &F); 148 149 Constant *mapConstant(const Constant *C) { 150 return cast_or_null<Constant>(mapValue(C)); 151 } 152 153 /// Map metadata. 154 /// 155 /// Find the mapping for MD. Guarantees that the return will be resolved 156 /// (not an MDNode, or MDNode::isResolved() returns true). 157 Metadata *mapMetadata(const Metadata *MD); 158 159 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 160 unsigned MCID); 161 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 162 bool IsOldCtorDtor, 163 ArrayRef<Constant *> NewMembers, 164 unsigned MCID); 165 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 166 unsigned MCID); 167 void scheduleRemapFunction(Function &F, unsigned MCID); 168 169 void flush(); 170 171 private: 172 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 173 bool IsOldCtorDtor, 174 ArrayRef<Constant *> NewMembers); 175 176 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 177 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 178 179 Value *mapBlockAddress(const BlockAddress &BA); 180 181 /// Map metadata that doesn't require visiting operands. 182 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 183 184 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 185 Metadata *mapToSelf(const Metadata *MD); 186 }; 187 188 class MDNodeMapper { 189 Mapper &M; 190 191 /// Data about a node in \a UniquedGraph. 192 struct Data { 193 bool HasChanged = false; 194 unsigned ID = std::numeric_limits<unsigned>::max(); 195 TempMDNode Placeholder; 196 }; 197 198 /// A graph of uniqued nodes. 199 struct UniquedGraph { 200 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 201 SmallVector<MDNode *, 16> POT; // Post-order traversal. 202 203 /// Propagate changed operands through the post-order traversal. 204 /// 205 /// Iteratively update \a Data::HasChanged for each node based on \a 206 /// Data::HasChanged of its operands, until fixed point. 207 void propagateChanges(); 208 209 /// Get a forward reference to a node to use as an operand. 210 Metadata &getFwdReference(MDNode &Op); 211 }; 212 213 /// Worklist of distinct nodes whose operands need to be remapped. 214 SmallVector<MDNode *, 16> DistinctWorklist; 215 216 // Storage for a UniquedGraph. 217 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 218 SmallVector<MDNode *, 16> POTStorage; 219 220 public: 221 MDNodeMapper(Mapper &M) : M(M) {} 222 223 /// Map a metadata node (and its transitive operands). 224 /// 225 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 226 /// algorithm handles distinct nodes and uniqued node subgraphs using 227 /// different strategies. 228 /// 229 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 230 /// using \a mapDistinctNode(). Their mapping can always be computed 231 /// immediately without visiting operands, even if their operands change. 232 /// 233 /// The mapping for uniqued nodes depends on whether their operands change. 234 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 235 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 236 /// added to \a DistinctWorklist with \a mapDistinctNode(). 237 /// 238 /// After mapping \c N itself, this function remaps the operands of the 239 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 240 /// N has been mapped. 241 Metadata *map(const MDNode &N); 242 243 private: 244 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 245 /// 246 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 247 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 248 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 249 /// operands uses the identity mapping. 250 /// 251 /// The algorithm works as follows: 252 /// 253 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 254 /// save the post-order traversal in the given \a UniquedGraph, tracking 255 /// nodes' operands change. 256 /// 257 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 258 /// through the \a UniquedGraph until fixed point, following the rule 259 /// that if a node changes, any node that references must also change. 260 /// 261 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 262 /// (referencing new operands) where necessary. 263 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 264 265 /// Try to map the operand of an \a MDNode. 266 /// 267 /// If \c Op is already mapped, return the mapping. If it's not an \a 268 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 269 /// return the result of \a mapDistinctNode(). 270 /// 271 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode. 272 /// \post getMappedOp(Op) only returns std::nullopt if this returns 273 /// std::nullopt. 274 std::optional<Metadata *> tryToMapOperand(const Metadata *Op); 275 276 /// Map a distinct node. 277 /// 278 /// Return the mapping for the distinct node \c N, saving the result in \a 279 /// DistinctWorklist for later remapping. 280 /// 281 /// \pre \c N is not yet mapped. 282 /// \pre \c N.isDistinct(). 283 MDNode *mapDistinctNode(const MDNode &N); 284 285 /// Get a previously mapped node. 286 std::optional<Metadata *> getMappedOp(const Metadata *Op) const; 287 288 /// Create a post-order traversal of an unmapped uniqued node subgraph. 289 /// 290 /// This traverses the metadata graph deeply enough to map \c FirstN. It 291 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 292 /// metadata that has already been mapped will not be part of the POT. 293 /// 294 /// Each node that has a changed operand from outside the graph (e.g., a 295 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 296 /// is marked with \a Data::HasChanged. 297 /// 298 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 299 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 300 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 301 /// to change because of operands outside the graph. 302 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 303 304 /// Visit the operands of a uniqued node in the POT. 305 /// 306 /// Visit the operands in the range from \c I to \c E, returning the first 307 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 308 /// where to continue the loop through the operands. 309 /// 310 /// This sets \c HasChanged if any of the visited operands change. 311 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 312 MDNode::op_iterator E, bool &HasChanged); 313 314 /// Map all the nodes in the given uniqued graph. 315 /// 316 /// This visits all the nodes in \c G in post-order, using the identity 317 /// mapping or creating a new node depending on \a Data::HasChanged. 318 /// 319 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for 320 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true 321 /// for a node in \c G iff any of its operands have changed. \post \a 322 /// getMappedOp() returns the mapped node for every node in \c G. 323 void mapNodesInPOT(UniquedGraph &G); 324 325 /// Remap a node's operands using the given functor. 326 /// 327 /// Iterate through the operands of \c N and update them in place using \c 328 /// mapOperand. 329 /// 330 /// \pre N.isDistinct() or N.isTemporary(). 331 template <class OperandMapper> 332 void remapOperands(MDNode &N, OperandMapper mapOperand); 333 }; 334 335 } // end anonymous namespace 336 337 Value *Mapper::mapValue(const Value *V) { 338 ValueToValueMapTy::iterator I = getVM().find(V); 339 340 // If the value already exists in the map, use it. 341 if (I != getVM().end()) { 342 assert(I->second && "Unexpected null mapping"); 343 return I->second; 344 } 345 346 // If we have a materializer and it can materialize a value, use that. 347 if (auto *Materializer = getMaterializer()) { 348 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 349 getVM()[V] = NewV; 350 return NewV; 351 } 352 } 353 354 // Global values do not need to be seeded into the VM if they 355 // are using the identity mapping. 356 if (isa<GlobalValue>(V)) { 357 if (Flags & RF_NullMapMissingGlobalValues) 358 return nullptr; 359 return getVM()[V] = const_cast<Value *>(V); 360 } 361 362 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 363 // Inline asm may need *type* remapping. 364 FunctionType *NewTy = IA->getFunctionType(); 365 if (TypeMapper) { 366 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 367 368 if (NewTy != IA->getFunctionType()) 369 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 370 IA->hasSideEffects(), IA->isAlignStack(), 371 IA->getDialect(), IA->canThrow()); 372 } 373 374 return getVM()[V] = const_cast<Value *>(V); 375 } 376 377 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 378 const Metadata *MD = MDV->getMetadata(); 379 380 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 381 // Look through to grab the local value. 382 if (Value *LV = mapValue(LAM->getValue())) { 383 if (V == LAM->getValue()) 384 return const_cast<Value *>(V); 385 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 386 } 387 388 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 389 // ensures metadata operands only reference defined SSA values. 390 return (Flags & RF_IgnoreMissingLocals) 391 ? nullptr 392 : MetadataAsValue::get( 393 V->getContext(), 394 MDTuple::get(V->getContext(), std::nullopt)); 395 } 396 if (auto *AL = dyn_cast<DIArgList>(MD)) { 397 SmallVector<ValueAsMetadata *, 4> MappedArgs; 398 for (auto *VAM : AL->getArgs()) { 399 // Map both Local and Constant VAMs here; they will both ultimately 400 // be mapped via mapValue. The exceptions are constants when we have no 401 // module level changes and locals when they have no existing mapped 402 // value and RF_IgnoreMissingLocals is set; these have identity 403 // mappings. 404 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) { 405 MappedArgs.push_back(VAM); 406 } else if (Value *LV = mapValue(VAM->getValue())) { 407 MappedArgs.push_back( 408 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); 409 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) { 410 MappedArgs.push_back(VAM); 411 } else { 412 // If we cannot map the value, set the argument as undef. 413 MappedArgs.push_back(ValueAsMetadata::get( 414 UndefValue::get(VAM->getValue()->getType()))); 415 } 416 } 417 return MetadataAsValue::get(V->getContext(), 418 DIArgList::get(V->getContext(), MappedArgs)); 419 } 420 421 // If this is a module-level metadata and we know that nothing at the module 422 // level is changing, then use an identity mapping. 423 if (Flags & RF_NoModuleLevelChanges) 424 return getVM()[V] = const_cast<Value *>(V); 425 426 // Map the metadata and turn it into a value. 427 auto *MappedMD = mapMetadata(MD); 428 if (MD == MappedMD) 429 return getVM()[V] = const_cast<Value *>(V); 430 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 431 } 432 433 // Okay, this either must be a constant (which may or may not be mappable) or 434 // is something that is not in the mapping table. 435 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 436 if (!C) 437 return nullptr; 438 439 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 440 return mapBlockAddress(*BA); 441 442 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) { 443 auto *Val = mapValue(E->getGlobalValue()); 444 GlobalValue *GV = dyn_cast<GlobalValue>(Val); 445 if (GV) 446 return getVM()[E] = DSOLocalEquivalent::get(GV); 447 448 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases()); 449 Type *NewTy = E->getType(); 450 if (TypeMapper) 451 NewTy = TypeMapper->remapType(NewTy); 452 return getVM()[E] = llvm::ConstantExpr::getBitCast( 453 DSOLocalEquivalent::get(Func), NewTy); 454 } 455 456 if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 457 auto *Val = mapValue(NC->getGlobalValue()); 458 GlobalValue *GV = cast<GlobalValue>(Val); 459 return getVM()[NC] = NoCFIValue::get(GV); 460 } 461 462 auto mapValueOrNull = [this](Value *V) { 463 auto Mapped = mapValue(V); 464 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 465 "Unexpected null mapping for constant operand without " 466 "NullMapMissingGlobalValues flag"); 467 return Mapped; 468 }; 469 470 // Otherwise, we have some other constant to remap. Start by checking to see 471 // if all operands have an identity remapping. 472 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 473 Value *Mapped = nullptr; 474 for (; OpNo != NumOperands; ++OpNo) { 475 Value *Op = C->getOperand(OpNo); 476 Mapped = mapValueOrNull(Op); 477 if (!Mapped) 478 return nullptr; 479 if (Mapped != Op) 480 break; 481 } 482 483 // See if the type mapper wants to remap the type as well. 484 Type *NewTy = C->getType(); 485 if (TypeMapper) 486 NewTy = TypeMapper->remapType(NewTy); 487 488 // If the result type and all operands match up, then just insert an identity 489 // mapping. 490 if (OpNo == NumOperands && NewTy == C->getType()) 491 return getVM()[V] = C; 492 493 // Okay, we need to create a new constant. We've already processed some or 494 // all of the operands, set them all up now. 495 SmallVector<Constant*, 8> Ops; 496 Ops.reserve(NumOperands); 497 for (unsigned j = 0; j != OpNo; ++j) 498 Ops.push_back(cast<Constant>(C->getOperand(j))); 499 500 // If one of the operands mismatch, push it and the other mapped operands. 501 if (OpNo != NumOperands) { 502 Ops.push_back(cast<Constant>(Mapped)); 503 504 // Map the rest of the operands that aren't processed yet. 505 for (++OpNo; OpNo != NumOperands; ++OpNo) { 506 Mapped = mapValueOrNull(C->getOperand(OpNo)); 507 if (!Mapped) 508 return nullptr; 509 Ops.push_back(cast<Constant>(Mapped)); 510 } 511 } 512 Type *NewSrcTy = nullptr; 513 if (TypeMapper) 514 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 515 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 516 517 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 518 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 519 if (isa<ConstantArray>(C)) 520 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 521 if (isa<ConstantStruct>(C)) 522 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 523 if (isa<ConstantVector>(C)) 524 return getVM()[V] = ConstantVector::get(Ops); 525 // If this is a no-operand constant, it must be because the type was remapped. 526 if (isa<PoisonValue>(C)) 527 return getVM()[V] = PoisonValue::get(NewTy); 528 if (isa<UndefValue>(C)) 529 return getVM()[V] = UndefValue::get(NewTy); 530 if (isa<ConstantAggregateZero>(C)) 531 return getVM()[V] = ConstantAggregateZero::get(NewTy); 532 assert(isa<ConstantPointerNull>(C)); 533 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 534 } 535 536 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 537 Function *F = cast<Function>(mapValue(BA.getFunction())); 538 539 // F may not have materialized its initializer. In that case, create a 540 // dummy basic block for now, and replace it once we've materialized all 541 // the initializers. 542 BasicBlock *BB; 543 if (F->empty()) { 544 DelayedBBs.push_back(DelayedBasicBlock(BA)); 545 BB = DelayedBBs.back().TempBB.get(); 546 } else { 547 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 548 } 549 550 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 551 } 552 553 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 554 getVM().MD()[Key].reset(Val); 555 return Val; 556 } 557 558 Metadata *Mapper::mapToSelf(const Metadata *MD) { 559 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 560 } 561 562 std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 563 if (!Op) 564 return nullptr; 565 566 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 567 #ifndef NDEBUG 568 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 569 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 570 M.getVM().getMappedMD(Op)) && 571 "Expected Value to be memoized"); 572 else 573 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 574 "Expected result to be memoized"); 575 #endif 576 return *MappedOp; 577 } 578 579 const MDNode &N = *cast<MDNode>(Op); 580 if (N.isDistinct()) 581 return mapDistinctNode(N); 582 return std::nullopt; 583 } 584 585 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 586 assert(N.isDistinct() && "Expected a distinct node"); 587 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 588 Metadata *NewM = nullptr; 589 590 if (M.Flags & RF_ReuseAndMutateDistinctMDs) { 591 NewM = M.mapToSelf(&N); 592 } else { 593 NewM = MDNode::replaceWithDistinct(N.clone()); 594 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" 595 << "To " << *NewM << "\n\n"); 596 M.mapToMetadata(&N, NewM); 597 } 598 DistinctWorklist.push_back(cast<MDNode>(NewM)); 599 600 return DistinctWorklist.back(); 601 } 602 603 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 604 Value *MappedV) { 605 if (CMD.getValue() == MappedV) 606 return const_cast<ConstantAsMetadata *>(&CMD); 607 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 608 } 609 610 std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 611 if (!Op) 612 return nullptr; 613 614 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 615 return *MappedOp; 616 617 if (isa<MDString>(Op)) 618 return const_cast<Metadata *>(Op); 619 620 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 621 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 622 623 return std::nullopt; 624 } 625 626 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 627 auto Where = Info.find(&Op); 628 assert(Where != Info.end() && "Expected a valid reference"); 629 630 auto &OpD = Where->second; 631 if (!OpD.HasChanged) 632 return Op; 633 634 // Lazily construct a temporary node. 635 if (!OpD.Placeholder) 636 OpD.Placeholder = Op.clone(); 637 638 return *OpD.Placeholder; 639 } 640 641 template <class OperandMapper> 642 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 643 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 644 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 645 Metadata *Old = N.getOperand(I); 646 Metadata *New = mapOperand(Old); 647 if (Old != New) 648 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " 649 << N << "\n"); 650 651 if (Old != New) 652 N.replaceOperandWith(I, New); 653 } 654 } 655 656 namespace { 657 658 /// An entry in the worklist for the post-order traversal. 659 struct POTWorklistEntry { 660 MDNode *N; ///< Current node. 661 MDNode::op_iterator Op; ///< Current operand of \c N. 662 663 /// Keep a flag of whether operands have changed in the worklist to avoid 664 /// hitting the map in \a UniquedGraph. 665 bool HasChanged = false; 666 667 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 668 }; 669 670 } // end anonymous namespace 671 672 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 673 assert(G.Info.empty() && "Expected a fresh traversal"); 674 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 675 676 // Construct a post-order traversal of the uniqued subgraph under FirstN. 677 bool AnyChanges = false; 678 SmallVector<POTWorklistEntry, 16> Worklist; 679 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 680 (void)G.Info[&FirstN]; 681 while (!Worklist.empty()) { 682 // Start or continue the traversal through the this node's operands. 683 auto &WE = Worklist.back(); 684 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 685 // Push a new node to traverse first. 686 Worklist.push_back(POTWorklistEntry(*N)); 687 continue; 688 } 689 690 // Push the node onto the POT. 691 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 692 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 693 auto &D = G.Info[WE.N]; 694 AnyChanges |= D.HasChanged = WE.HasChanged; 695 D.ID = G.POT.size(); 696 G.POT.push_back(WE.N); 697 698 // Pop the node off the worklist. 699 Worklist.pop_back(); 700 } 701 return AnyChanges; 702 } 703 704 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 705 MDNode::op_iterator E, bool &HasChanged) { 706 while (I != E) { 707 Metadata *Op = *I++; // Increment even on early return. 708 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 709 // Check if the operand changes. 710 HasChanged |= Op != *MappedOp; 711 continue; 712 } 713 714 // A uniqued metadata node. 715 MDNode &OpN = *cast<MDNode>(Op); 716 assert(OpN.isUniqued() && 717 "Only uniqued operands cannot be mapped immediately"); 718 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 719 return &OpN; // This is a new one. Return it. 720 } 721 return nullptr; 722 } 723 724 void MDNodeMapper::UniquedGraph::propagateChanges() { 725 bool AnyChanges; 726 do { 727 AnyChanges = false; 728 for (MDNode *N : POT) { 729 auto &D = Info[N]; 730 if (D.HasChanged) 731 continue; 732 733 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 734 auto Where = Info.find(Op); 735 return Where != Info.end() && Where->second.HasChanged; 736 })) 737 continue; 738 739 AnyChanges = D.HasChanged = true; 740 } 741 } while (AnyChanges); 742 } 743 744 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 745 // Construct uniqued nodes, building forward references as necessary. 746 SmallVector<MDNode *, 16> CyclicNodes; 747 for (auto *N : G.POT) { 748 auto &D = G.Info[N]; 749 if (!D.HasChanged) { 750 // The node hasn't changed. 751 M.mapToSelf(N); 752 continue; 753 } 754 755 // Remember whether this node had a placeholder. 756 bool HadPlaceholder(D.Placeholder); 757 758 // Clone the uniqued node and remap the operands. 759 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 760 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 761 if (std::optional<Metadata *> MappedOp = getMappedOp(Old)) 762 return *MappedOp; 763 (void)D; 764 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 765 return &G.getFwdReference(*cast<MDNode>(Old)); 766 }); 767 768 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 769 if (N && NewN && N != NewN) { 770 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" 771 << "To " << *NewN << "\n\n"); 772 } 773 774 M.mapToMetadata(N, NewN); 775 776 // Nodes that were referenced out of order in the POT are involved in a 777 // uniquing cycle. 778 if (HadPlaceholder) 779 CyclicNodes.push_back(NewN); 780 } 781 782 // Resolve cycles. 783 for (auto *N : CyclicNodes) 784 if (!N->isResolved()) 785 N->resolveCycles(); 786 } 787 788 Metadata *MDNodeMapper::map(const MDNode &N) { 789 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 790 assert(!(M.Flags & RF_NoModuleLevelChanges) && 791 "MDNodeMapper::map assumes module-level changes"); 792 793 // Require resolved nodes whenever metadata might be remapped. 794 assert(N.isResolved() && "Unexpected unresolved node"); 795 796 Metadata *MappedN = 797 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 798 while (!DistinctWorklist.empty()) 799 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 800 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Old)) 801 return *MappedOp; 802 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 803 }); 804 return MappedN; 805 } 806 807 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 808 assert(FirstN.isUniqued() && "Expected uniqued node"); 809 810 // Create a post-order traversal of uniqued nodes under FirstN. 811 UniquedGraph G; 812 if (!createPOT(G, FirstN)) { 813 // Return early if no nodes have changed. 814 for (const MDNode *N : G.POT) 815 M.mapToSelf(N); 816 return &const_cast<MDNode &>(FirstN); 817 } 818 819 // Update graph with all nodes that have changed. 820 G.propagateChanges(); 821 822 // Map all the nodes in the graph. 823 mapNodesInPOT(G); 824 825 // Return the original node, remapped. 826 return *getMappedOp(&FirstN); 827 } 828 829 std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 830 // If the value already exists in the map, use it. 831 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 832 return *NewMD; 833 834 if (isa<MDString>(MD)) 835 return const_cast<Metadata *>(MD); 836 837 // This is a module-level metadata. If nothing at the module level is 838 // changing, use an identity mapping. 839 if ((Flags & RF_NoModuleLevelChanges)) 840 return const_cast<Metadata *>(MD); 841 842 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 843 // Don't memoize ConstantAsMetadata. Instead of lasting until the 844 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 845 // reference is destructed. These aren't super common, so the extra 846 // indirection isn't that expensive. 847 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 848 } 849 850 assert(isa<MDNode>(MD) && "Expected a metadata node"); 851 852 return std::nullopt; 853 } 854 855 Metadata *Mapper::mapMetadata(const Metadata *MD) { 856 assert(MD && "Expected valid metadata"); 857 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 858 859 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 860 return *NewMD; 861 862 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 863 } 864 865 void Mapper::flush() { 866 // Flush out the worklist of global values. 867 while (!Worklist.empty()) { 868 WorklistEntry E = Worklist.pop_back_val(); 869 CurrentMCID = E.MCID; 870 switch (E.Kind) { 871 case WorklistEntry::MapGlobalInit: 872 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 873 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 874 break; 875 case WorklistEntry::MapAppendingVar: { 876 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 877 // mapAppendingVariable call can change AppendingInits if initalizer for 878 // the variable depends on another appending global, because of that inits 879 // need to be extracted and updated before the call. 880 SmallVector<Constant *, 8> NewInits( 881 drop_begin(AppendingInits, PrefixSize)); 882 AppendingInits.resize(PrefixSize); 883 mapAppendingVariable(*E.Data.AppendingGV.GV, 884 E.Data.AppendingGV.InitPrefix, 885 E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits)); 886 break; 887 } 888 case WorklistEntry::MapAliasOrIFunc: { 889 GlobalValue *GV = E.Data.AliasOrIFunc.GV; 890 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target); 891 if (auto *GA = dyn_cast<GlobalAlias>(GV)) 892 GA->setAliasee(Target); 893 else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) 894 GI->setResolver(Target); 895 else 896 llvm_unreachable("Not alias or ifunc"); 897 break; 898 } 899 case WorklistEntry::RemapFunction: 900 remapFunction(*E.Data.RemapF); 901 break; 902 } 903 } 904 CurrentMCID = 0; 905 906 // Finish logic for block addresses now that all global values have been 907 // handled. 908 while (!DelayedBBs.empty()) { 909 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 910 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 911 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 912 } 913 } 914 915 void Mapper::remapInstruction(Instruction *I) { 916 // Remap operands. 917 for (Use &Op : I->operands()) { 918 Value *V = mapValue(Op); 919 // If we aren't ignoring missing entries, assert that something happened. 920 if (V) 921 Op = V; 922 else 923 assert((Flags & RF_IgnoreMissingLocals) && 924 "Referenced value not in value map!"); 925 } 926 927 // Remap phi nodes' incoming blocks. 928 if (PHINode *PN = dyn_cast<PHINode>(I)) { 929 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 930 Value *V = mapValue(PN->getIncomingBlock(i)); 931 // If we aren't ignoring missing entries, assert that something happened. 932 if (V) 933 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 934 else 935 assert((Flags & RF_IgnoreMissingLocals) && 936 "Referenced block not in value map!"); 937 } 938 } 939 940 // Remap attached metadata. 941 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 942 I->getAllMetadata(MDs); 943 for (const auto &MI : MDs) { 944 MDNode *Old = MI.second; 945 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 946 if (New != Old) 947 I->setMetadata(MI.first, New); 948 } 949 950 if (!TypeMapper) 951 return; 952 953 // If the instruction's type is being remapped, do so now. 954 if (auto *CB = dyn_cast<CallBase>(I)) { 955 SmallVector<Type *, 3> Tys; 956 FunctionType *FTy = CB->getFunctionType(); 957 Tys.reserve(FTy->getNumParams()); 958 for (Type *Ty : FTy->params()) 959 Tys.push_back(TypeMapper->remapType(Ty)); 960 CB->mutateFunctionType(FunctionType::get( 961 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 962 963 LLVMContext &C = CB->getContext(); 964 AttributeList Attrs = CB->getAttributes(); 965 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 966 for (int AttrIdx = Attribute::FirstTypeAttr; 967 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 968 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 969 if (Type *Ty = 970 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 971 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 972 TypeMapper->remapType(Ty)); 973 break; 974 } 975 } 976 } 977 CB->setAttributes(Attrs); 978 return; 979 } 980 if (auto *AI = dyn_cast<AllocaInst>(I)) 981 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 982 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 983 GEP->setSourceElementType( 984 TypeMapper->remapType(GEP->getSourceElementType())); 985 GEP->setResultElementType( 986 TypeMapper->remapType(GEP->getResultElementType())); 987 } 988 I->mutateType(TypeMapper->remapType(I->getType())); 989 } 990 991 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 992 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 993 GO.getAllMetadata(MDs); 994 GO.clearMetadata(); 995 for (const auto &I : MDs) 996 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 997 } 998 999 void Mapper::remapFunction(Function &F) { 1000 // Remap the operands. 1001 for (Use &Op : F.operands()) 1002 if (Op) 1003 Op = mapValue(Op); 1004 1005 // Remap the metadata attachments. 1006 remapGlobalObjectMetadata(F); 1007 1008 // Remap the argument types. 1009 if (TypeMapper) 1010 for (Argument &A : F.args()) 1011 A.mutateType(TypeMapper->remapType(A.getType())); 1012 1013 // Remap the instructions. 1014 for (BasicBlock &BB : F) 1015 for (Instruction &I : BB) 1016 remapInstruction(&I); 1017 } 1018 1019 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 1020 bool IsOldCtorDtor, 1021 ArrayRef<Constant *> NewMembers) { 1022 SmallVector<Constant *, 16> Elements; 1023 if (InitPrefix) { 1024 unsigned NumElements = 1025 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 1026 for (unsigned I = 0; I != NumElements; ++I) 1027 Elements.push_back(InitPrefix->getAggregateElement(I)); 1028 } 1029 1030 PointerType *VoidPtrTy; 1031 Type *EltTy; 1032 if (IsOldCtorDtor) { 1033 // FIXME: This upgrade is done during linking to support the C API. See 1034 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 1035 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 1036 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 1037 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 1038 EltTy = StructType::get(GV.getContext(), Tys, false); 1039 } 1040 1041 for (auto *V : NewMembers) { 1042 Constant *NewV; 1043 if (IsOldCtorDtor) { 1044 auto *S = cast<ConstantStruct>(V); 1045 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 1046 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 1047 Constant *Null = Constant::getNullValue(VoidPtrTy); 1048 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 1049 } else { 1050 NewV = cast_or_null<Constant>(mapValue(V)); 1051 } 1052 Elements.push_back(NewV); 1053 } 1054 1055 GV.setInitializer( 1056 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements)); 1057 } 1058 1059 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1060 unsigned MCID) { 1061 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1062 assert(MCID < MCs.size() && "Invalid mapping context"); 1063 1064 WorklistEntry WE; 1065 WE.Kind = WorklistEntry::MapGlobalInit; 1066 WE.MCID = MCID; 1067 WE.Data.GVInit.GV = &GV; 1068 WE.Data.GVInit.Init = &Init; 1069 Worklist.push_back(WE); 1070 } 1071 1072 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1073 Constant *InitPrefix, 1074 bool IsOldCtorDtor, 1075 ArrayRef<Constant *> NewMembers, 1076 unsigned MCID) { 1077 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1078 assert(MCID < MCs.size() && "Invalid mapping context"); 1079 1080 WorklistEntry WE; 1081 WE.Kind = WorklistEntry::MapAppendingVar; 1082 WE.MCID = MCID; 1083 WE.Data.AppendingGV.GV = &GV; 1084 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1085 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1086 WE.AppendingGVNumNewMembers = NewMembers.size(); 1087 Worklist.push_back(WE); 1088 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1089 } 1090 1091 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 1092 unsigned MCID) { 1093 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1094 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) && 1095 "Should be alias or ifunc"); 1096 assert(MCID < MCs.size() && "Invalid mapping context"); 1097 1098 WorklistEntry WE; 1099 WE.Kind = WorklistEntry::MapAliasOrIFunc; 1100 WE.MCID = MCID; 1101 WE.Data.AliasOrIFunc.GV = &GV; 1102 WE.Data.AliasOrIFunc.Target = &Target; 1103 Worklist.push_back(WE); 1104 } 1105 1106 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1107 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1108 assert(MCID < MCs.size() && "Invalid mapping context"); 1109 1110 WorklistEntry WE; 1111 WE.Kind = WorklistEntry::RemapFunction; 1112 WE.MCID = MCID; 1113 WE.Data.RemapF = &F; 1114 Worklist.push_back(WE); 1115 } 1116 1117 void Mapper::addFlags(RemapFlags Flags) { 1118 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1119 this->Flags = this->Flags | Flags; 1120 } 1121 1122 static Mapper *getAsMapper(void *pImpl) { 1123 return reinterpret_cast<Mapper *>(pImpl); 1124 } 1125 1126 namespace { 1127 1128 class FlushingMapper { 1129 Mapper &M; 1130 1131 public: 1132 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1133 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1134 } 1135 1136 ~FlushingMapper() { M.flush(); } 1137 1138 Mapper *operator->() const { return &M; } 1139 }; 1140 1141 } // end anonymous namespace 1142 1143 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1144 ValueMapTypeRemapper *TypeMapper, 1145 ValueMaterializer *Materializer) 1146 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1147 1148 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1149 1150 unsigned 1151 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1152 ValueMaterializer *Materializer) { 1153 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1154 } 1155 1156 void ValueMapper::addFlags(RemapFlags Flags) { 1157 FlushingMapper(pImpl)->addFlags(Flags); 1158 } 1159 1160 Value *ValueMapper::mapValue(const Value &V) { 1161 return FlushingMapper(pImpl)->mapValue(&V); 1162 } 1163 1164 Constant *ValueMapper::mapConstant(const Constant &C) { 1165 return cast_or_null<Constant>(mapValue(C)); 1166 } 1167 1168 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1169 return FlushingMapper(pImpl)->mapMetadata(&MD); 1170 } 1171 1172 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1173 return cast_or_null<MDNode>(mapMetadata(N)); 1174 } 1175 1176 void ValueMapper::remapInstruction(Instruction &I) { 1177 FlushingMapper(pImpl)->remapInstruction(&I); 1178 } 1179 1180 void ValueMapper::remapFunction(Function &F) { 1181 FlushingMapper(pImpl)->remapFunction(F); 1182 } 1183 1184 void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1185 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO); 1186 } 1187 1188 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1189 Constant &Init, 1190 unsigned MCID) { 1191 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1192 } 1193 1194 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1195 Constant *InitPrefix, 1196 bool IsOldCtorDtor, 1197 ArrayRef<Constant *> NewMembers, 1198 unsigned MCID) { 1199 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1200 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1201 } 1202 1203 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, 1204 unsigned MCID) { 1205 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID); 1206 } 1207 1208 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, 1209 unsigned MCID) { 1210 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID); 1211 } 1212 1213 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1214 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1215 } 1216