1 //===- SampleProfileInference.cpp - Adjust sample profiles in the IR ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a profile inference algorithm. Given an incomplete and 10 // possibly imprecise block counts, the algorithm reconstructs realistic block 11 // and edge counts that satisfy flow conservation rules, while minimally modify 12 // input block counts. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/SampleProfileInference.h" 17 #include "llvm/Support/Debug.h" 18 #include <queue> 19 #include <set> 20 21 using namespace llvm; 22 #define DEBUG_TYPE "sample-profile-inference" 23 24 namespace { 25 26 /// A value indicating an infinite flow/capacity/weight of a block/edge. 27 /// Not using numeric_limits<int64_t>::max(), as the values can be summed up 28 /// during the execution. 29 static constexpr int64_t INF = ((int64_t)1) << 50; 30 31 /// The minimum-cost maximum flow algorithm. 32 /// 33 /// The algorithm finds the maximum flow of minimum cost on a given (directed) 34 /// network using a modified version of the classical Moore-Bellman-Ford 35 /// approach. The algorithm applies a number of augmentation iterations in which 36 /// flow is sent along paths of positive capacity from the source to the sink. 37 /// The worst-case time complexity of the implementation is O(v(f)*m*n), where 38 /// where m is the number of edges, n is the number of vertices, and v(f) is the 39 /// value of the maximum flow. However, the observed running time on typical 40 /// instances is sub-quadratic, that is, o(n^2). 41 /// 42 /// The input is a set of edges with specified costs and capacities, and a pair 43 /// of nodes (source and sink). The output is the flow along each edge of the 44 /// minimum total cost respecting the given edge capacities. 45 class MinCostMaxFlow { 46 public: 47 // Initialize algorithm's data structures for a network of a given size. 48 void initialize(uint64_t NodeCount, uint64_t SourceNode, uint64_t SinkNode) { 49 Source = SourceNode; 50 Target = SinkNode; 51 52 Nodes = std::vector<Node>(NodeCount); 53 Edges = std::vector<std::vector<Edge>>(NodeCount, std::vector<Edge>()); 54 } 55 56 // Run the algorithm. 57 int64_t run() { 58 // Find an augmenting path and update the flow along the path 59 size_t AugmentationIters = 0; 60 while (findAugmentingPath()) { 61 augmentFlowAlongPath(); 62 AugmentationIters++; 63 } 64 65 // Compute the total flow and its cost 66 int64_t TotalCost = 0; 67 int64_t TotalFlow = 0; 68 for (uint64_t Src = 0; Src < Nodes.size(); Src++) { 69 for (auto &Edge : Edges[Src]) { 70 if (Edge.Flow > 0) { 71 TotalCost += Edge.Cost * Edge.Flow; 72 if (Src == Source) 73 TotalFlow += Edge.Flow; 74 } 75 } 76 } 77 LLVM_DEBUG(dbgs() << "Completed profi after " << AugmentationIters 78 << " iterations with " << TotalFlow << " total flow" 79 << " of " << TotalCost << " cost\n"); 80 (void)TotalFlow; 81 return TotalCost; 82 } 83 84 /// Adding an edge to the network with a specified capacity and a cost. 85 /// Multiple edges between a pair of nodes are allowed but self-edges 86 /// are not supported. 87 void addEdge(uint64_t Src, uint64_t Dst, int64_t Capacity, int64_t Cost) { 88 assert(Capacity > 0 && "adding an edge of zero capacity"); 89 assert(Src != Dst && "loop edge are not supported"); 90 91 Edge SrcEdge; 92 SrcEdge.Dst = Dst; 93 SrcEdge.Cost = Cost; 94 SrcEdge.Capacity = Capacity; 95 SrcEdge.Flow = 0; 96 SrcEdge.RevEdgeIndex = Edges[Dst].size(); 97 98 Edge DstEdge; 99 DstEdge.Dst = Src; 100 DstEdge.Cost = -Cost; 101 DstEdge.Capacity = 0; 102 DstEdge.Flow = 0; 103 DstEdge.RevEdgeIndex = Edges[Src].size(); 104 105 Edges[Src].push_back(SrcEdge); 106 Edges[Dst].push_back(DstEdge); 107 } 108 109 /// Adding an edge to the network of infinite capacity and a given cost. 110 void addEdge(uint64_t Src, uint64_t Dst, int64_t Cost) { 111 addEdge(Src, Dst, INF, Cost); 112 } 113 114 /// Get the total flow from a given source node. 115 /// Returns a list of pairs (target node, amount of flow to the target). 116 const std::vector<std::pair<uint64_t, int64_t>> getFlow(uint64_t Src) const { 117 std::vector<std::pair<uint64_t, int64_t>> Flow; 118 for (auto &Edge : Edges[Src]) { 119 if (Edge.Flow > 0) 120 Flow.push_back(std::make_pair(Edge.Dst, Edge.Flow)); 121 } 122 return Flow; 123 } 124 125 /// Get the total flow between a pair of nodes. 126 int64_t getFlow(uint64_t Src, uint64_t Dst) const { 127 int64_t Flow = 0; 128 for (auto &Edge : Edges[Src]) { 129 if (Edge.Dst == Dst) { 130 Flow += Edge.Flow; 131 } 132 } 133 return Flow; 134 } 135 136 /// A cost of increasing a block's count by one. 137 static constexpr int64_t AuxCostInc = 10; 138 /// A cost of decreasing a block's count by one. 139 static constexpr int64_t AuxCostDec = 20; 140 /// A cost of increasing a count of zero-weight block by one. 141 static constexpr int64_t AuxCostIncZero = 11; 142 /// A cost of increasing the entry block's count by one. 143 static constexpr int64_t AuxCostIncEntry = 40; 144 /// A cost of decreasing the entry block's count by one. 145 static constexpr int64_t AuxCostDecEntry = 10; 146 /// A cost of taking an unlikely jump. 147 static constexpr int64_t AuxCostUnlikely = ((int64_t)1) << 20; 148 149 private: 150 /// Check for existence of an augmenting path with a positive capacity. 151 bool findAugmentingPath() { 152 // Initialize data structures 153 for (auto &Node : Nodes) { 154 Node.Distance = INF; 155 Node.ParentNode = uint64_t(-1); 156 Node.ParentEdgeIndex = uint64_t(-1); 157 Node.Taken = false; 158 } 159 160 std::queue<uint64_t> Queue; 161 Queue.push(Source); 162 Nodes[Source].Distance = 0; 163 Nodes[Source].Taken = true; 164 while (!Queue.empty()) { 165 uint64_t Src = Queue.front(); 166 Queue.pop(); 167 Nodes[Src].Taken = false; 168 // Although the residual network contains edges with negative costs 169 // (in particular, backward edges), it can be shown that there are no 170 // negative-weight cycles and the following two invariants are maintained: 171 // (i) Dist[Source, V] >= 0 and (ii) Dist[V, Target] >= 0 for all nodes V, 172 // where Dist is the length of the shortest path between two nodes. This 173 // allows to prune the search-space of the path-finding algorithm using 174 // the following early-stop criteria: 175 // -- If we find a path with zero-distance from Source to Target, stop the 176 // search, as the path is the shortest since Dist[Source, Target] >= 0; 177 // -- If we have Dist[Source, V] > Dist[Source, Target], then do not 178 // process node V, as it is guaranteed _not_ to be on a shortest path 179 // from Source to Target; it follows from inequalities 180 // Dist[Source, Target] >= Dist[Source, V] + Dist[V, Target] 181 // >= Dist[Source, V] 182 if (Nodes[Target].Distance == 0) 183 break; 184 if (Nodes[Src].Distance > Nodes[Target].Distance) 185 continue; 186 187 // Process adjacent edges 188 for (uint64_t EdgeIdx = 0; EdgeIdx < Edges[Src].size(); EdgeIdx++) { 189 auto &Edge = Edges[Src][EdgeIdx]; 190 if (Edge.Flow < Edge.Capacity) { 191 uint64_t Dst = Edge.Dst; 192 int64_t NewDistance = Nodes[Src].Distance + Edge.Cost; 193 if (Nodes[Dst].Distance > NewDistance) { 194 // Update the distance and the parent node/edge 195 Nodes[Dst].Distance = NewDistance; 196 Nodes[Dst].ParentNode = Src; 197 Nodes[Dst].ParentEdgeIndex = EdgeIdx; 198 // Add the node to the queue, if it is not there yet 199 if (!Nodes[Dst].Taken) { 200 Queue.push(Dst); 201 Nodes[Dst].Taken = true; 202 } 203 } 204 } 205 } 206 } 207 208 return Nodes[Target].Distance != INF; 209 } 210 211 /// Update the current flow along the augmenting path. 212 void augmentFlowAlongPath() { 213 // Find path capacity 214 int64_t PathCapacity = INF; 215 uint64_t Now = Target; 216 while (Now != Source) { 217 uint64_t Pred = Nodes[Now].ParentNode; 218 auto &Edge = Edges[Pred][Nodes[Now].ParentEdgeIndex]; 219 PathCapacity = std::min(PathCapacity, Edge.Capacity - Edge.Flow); 220 Now = Pred; 221 } 222 223 assert(PathCapacity > 0 && "found incorrect augmenting path"); 224 225 // Update the flow along the path 226 Now = Target; 227 while (Now != Source) { 228 uint64_t Pred = Nodes[Now].ParentNode; 229 auto &Edge = Edges[Pred][Nodes[Now].ParentEdgeIndex]; 230 auto &RevEdge = Edges[Now][Edge.RevEdgeIndex]; 231 232 Edge.Flow += PathCapacity; 233 RevEdge.Flow -= PathCapacity; 234 235 Now = Pred; 236 } 237 } 238 239 /// An node in a flow network. 240 struct Node { 241 /// The cost of the cheapest path from the source to the current node. 242 int64_t Distance; 243 /// The node preceding the current one in the path. 244 uint64_t ParentNode; 245 /// The index of the edge between ParentNode and the current node. 246 uint64_t ParentEdgeIndex; 247 /// An indicator of whether the current node is in a queue. 248 bool Taken; 249 }; 250 /// An edge in a flow network. 251 struct Edge { 252 /// The cost of the edge. 253 int64_t Cost; 254 /// The capacity of the edge. 255 int64_t Capacity; 256 /// The current flow on the edge. 257 int64_t Flow; 258 /// The destination node of the edge. 259 uint64_t Dst; 260 /// The index of the reverse edge between Dst and the current node. 261 uint64_t RevEdgeIndex; 262 }; 263 264 /// The set of network nodes. 265 std::vector<Node> Nodes; 266 /// The set of network edges. 267 std::vector<std::vector<Edge>> Edges; 268 /// Source node of the flow. 269 uint64_t Source; 270 /// Target (sink) node of the flow. 271 uint64_t Target; 272 }; 273 274 /// Post-processing adjustment of the control flow. 275 class FlowAdjuster { 276 public: 277 FlowAdjuster(FlowFunction &Func) : Func(Func) { 278 assert(Func.Blocks[Func.Entry].isEntry() && 279 "incorrect index of the entry block"); 280 } 281 282 // Run the post-processing 283 void run() { 284 /// We adjust the control flow in a function so as to remove all 285 /// "isolated" components with positive flow that are unreachable 286 /// from the entry block. For every such component, we find the shortest 287 /// path from the entry to an exit passing through the component, and 288 /// increase the flow by one unit along the path. 289 joinIsolatedComponents(); 290 } 291 292 private: 293 void joinIsolatedComponents() { 294 // Find blocks that are reachable from the source 295 auto Visited = std::vector<bool>(NumBlocks(), false); 296 findReachable(Func.Entry, Visited); 297 298 // Iterate over all non-reachable blocks and adjust their weights 299 for (uint64_t I = 0; I < NumBlocks(); I++) { 300 auto &Block = Func.Blocks[I]; 301 if (Block.Flow > 0 && !Visited[I]) { 302 // Find a path from the entry to an exit passing through the block I 303 auto Path = findShortestPath(I); 304 // Increase the flow along the path 305 assert(Path.size() > 0 && Path[0]->Source == Func.Entry && 306 "incorrectly computed path adjusting control flow"); 307 Func.Blocks[Func.Entry].Flow += 1; 308 for (auto &Jump : Path) { 309 Jump->Flow += 1; 310 Func.Blocks[Jump->Target].Flow += 1; 311 // Update reachability 312 findReachable(Jump->Target, Visited); 313 } 314 } 315 } 316 } 317 318 /// Run bfs from a given block along the jumps with a positive flow and mark 319 /// all reachable blocks. 320 void findReachable(uint64_t Src, std::vector<bool> &Visited) { 321 if (Visited[Src]) 322 return; 323 std::queue<uint64_t> Queue; 324 Queue.push(Src); 325 Visited[Src] = true; 326 while (!Queue.empty()) { 327 Src = Queue.front(); 328 Queue.pop(); 329 for (auto Jump : Func.Blocks[Src].SuccJumps) { 330 uint64_t Dst = Jump->Target; 331 if (Jump->Flow > 0 && !Visited[Dst]) { 332 Queue.push(Dst); 333 Visited[Dst] = true; 334 } 335 } 336 } 337 } 338 339 /// Find the shortest path from the entry block to an exit block passing 340 /// through a given block. 341 std::vector<FlowJump *> findShortestPath(uint64_t BlockIdx) { 342 // A path from the entry block to BlockIdx 343 auto ForwardPath = findShortestPath(Func.Entry, BlockIdx); 344 // A path from BlockIdx to an exit block 345 auto BackwardPath = findShortestPath(BlockIdx, AnyExitBlock); 346 347 // Concatenate the two paths 348 std::vector<FlowJump *> Result; 349 Result.insert(Result.end(), ForwardPath.begin(), ForwardPath.end()); 350 Result.insert(Result.end(), BackwardPath.begin(), BackwardPath.end()); 351 return Result; 352 } 353 354 /// Apply the Dijkstra algorithm to find the shortest path from a given 355 /// Source to a given Target block. 356 /// If Target == -1, then the path ends at an exit block. 357 std::vector<FlowJump *> findShortestPath(uint64_t Source, uint64_t Target) { 358 // Quit early, if possible 359 if (Source == Target) 360 return std::vector<FlowJump *>(); 361 if (Func.Blocks[Source].isExit() && Target == AnyExitBlock) 362 return std::vector<FlowJump *>(); 363 364 // Initialize data structures 365 auto Distance = std::vector<int64_t>(NumBlocks(), INF); 366 auto Parent = std::vector<FlowJump *>(NumBlocks(), nullptr); 367 Distance[Source] = 0; 368 std::set<std::pair<uint64_t, uint64_t>> Queue; 369 Queue.insert(std::make_pair(Distance[Source], Source)); 370 371 // Run the Dijkstra algorithm 372 while (!Queue.empty()) { 373 uint64_t Src = Queue.begin()->second; 374 Queue.erase(Queue.begin()); 375 // If we found a solution, quit early 376 if (Src == Target || 377 (Func.Blocks[Src].isExit() && Target == AnyExitBlock)) 378 break; 379 380 for (auto Jump : Func.Blocks[Src].SuccJumps) { 381 uint64_t Dst = Jump->Target; 382 int64_t JumpDist = jumpDistance(Jump); 383 if (Distance[Dst] > Distance[Src] + JumpDist) { 384 Queue.erase(std::make_pair(Distance[Dst], Dst)); 385 386 Distance[Dst] = Distance[Src] + JumpDist; 387 Parent[Dst] = Jump; 388 389 Queue.insert(std::make_pair(Distance[Dst], Dst)); 390 } 391 } 392 } 393 // If Target is not provided, find the closest exit block 394 if (Target == AnyExitBlock) { 395 for (uint64_t I = 0; I < NumBlocks(); I++) { 396 if (Func.Blocks[I].isExit() && Parent[I] != nullptr) { 397 if (Target == AnyExitBlock || Distance[Target] > Distance[I]) { 398 Target = I; 399 } 400 } 401 } 402 } 403 assert(Parent[Target] != nullptr && "a path does not exist"); 404 405 // Extract the constructed path 406 std::vector<FlowJump *> Result; 407 uint64_t Now = Target; 408 while (Now != Source) { 409 assert(Now == Parent[Now]->Target && "incorrect parent jump"); 410 Result.push_back(Parent[Now]); 411 Now = Parent[Now]->Source; 412 } 413 // Reverse the path, since it is extracted from Target to Source 414 std::reverse(Result.begin(), Result.end()); 415 return Result; 416 } 417 418 /// A distance of a path for a given jump. 419 /// In order to incite the path to use blocks/jumps with large positive flow, 420 /// and avoid changing branch probability of outgoing edges drastically, 421 /// set the distance as follows: 422 /// if Jump.Flow > 0, then distance = max(100 - Jump->Flow, 0) 423 /// if Block.Weight > 0, then distance = 1 424 /// otherwise distance >> 1 425 int64_t jumpDistance(FlowJump *Jump) const { 426 int64_t BaseDistance = 100; 427 if (Jump->IsUnlikely) 428 return MinCostMaxFlow::AuxCostUnlikely; 429 if (Jump->Flow > 0) 430 return std::max(BaseDistance - (int64_t)Jump->Flow, (int64_t)0); 431 if (Func.Blocks[Jump->Target].Weight > 0) 432 return BaseDistance; 433 return BaseDistance * (NumBlocks() + 1); 434 }; 435 436 uint64_t NumBlocks() const { return Func.Blocks.size(); } 437 438 /// A constant indicating an arbitrary exit block of a function. 439 static constexpr uint64_t AnyExitBlock = uint64_t(-1); 440 441 /// The function. 442 FlowFunction &Func; 443 }; 444 445 /// Initializing flow network for a given function. 446 /// 447 /// Every block is split into three nodes that are responsible for (i) an 448 /// incoming flow, (ii) an outgoing flow, and (iii) penalizing an increase or 449 /// reduction of the block weight. 450 void initializeNetwork(MinCostMaxFlow &Network, FlowFunction &Func) { 451 uint64_t NumBlocks = Func.Blocks.size(); 452 assert(NumBlocks > 1 && "Too few blocks in a function"); 453 LLVM_DEBUG(dbgs() << "Initializing profi for " << NumBlocks << " blocks\n"); 454 455 // Pre-process data: make sure the entry weight is at least 1 456 if (Func.Blocks[Func.Entry].Weight == 0) { 457 Func.Blocks[Func.Entry].Weight = 1; 458 } 459 // Introducing dummy source/sink pairs to allow flow circulation. 460 // The nodes corresponding to blocks of Func have indicies in the range 461 // [0..3 * NumBlocks); the dummy nodes are indexed by the next four values. 462 uint64_t S = 3 * NumBlocks; 463 uint64_t T = S + 1; 464 uint64_t S1 = S + 2; 465 uint64_t T1 = S + 3; 466 467 Network.initialize(3 * NumBlocks + 4, S1, T1); 468 469 // Create three nodes for every block of the function 470 for (uint64_t B = 0; B < NumBlocks; B++) { 471 auto &Block = Func.Blocks[B]; 472 assert((!Block.UnknownWeight || Block.Weight == 0 || Block.isEntry()) && 473 "non-zero weight of a block w/o weight except for an entry"); 474 475 // Split every block into two nodes 476 uint64_t Bin = 3 * B; 477 uint64_t Bout = 3 * B + 1; 478 uint64_t Baux = 3 * B + 2; 479 if (Block.Weight > 0) { 480 Network.addEdge(S1, Bout, Block.Weight, 0); 481 Network.addEdge(Bin, T1, Block.Weight, 0); 482 } 483 484 // Edges from S and to T 485 assert((!Block.isEntry() || !Block.isExit()) && 486 "a block cannot be an entry and an exit"); 487 if (Block.isEntry()) { 488 Network.addEdge(S, Bin, 0); 489 } else if (Block.isExit()) { 490 Network.addEdge(Bout, T, 0); 491 } 492 493 // An auxiliary node to allow increase/reduction of block counts: 494 // We assume that decreasing block counts is more expensive than increasing, 495 // and thus, setting separate costs here. In the future we may want to tune 496 // the relative costs so as to maximize the quality of generated profiles. 497 int64_t AuxCostInc = MinCostMaxFlow::AuxCostInc; 498 int64_t AuxCostDec = MinCostMaxFlow::AuxCostDec; 499 if (Block.UnknownWeight) { 500 // Do not penalize changing weights of blocks w/o known profile count 501 AuxCostInc = 0; 502 AuxCostDec = 0; 503 } else { 504 // Increasing the count for "cold" blocks with zero initial count is more 505 // expensive than for "hot" ones 506 if (Block.Weight == 0) { 507 AuxCostInc = MinCostMaxFlow::AuxCostIncZero; 508 } 509 // Modifying the count of the entry block is expensive 510 if (Block.isEntry()) { 511 AuxCostInc = MinCostMaxFlow::AuxCostIncEntry; 512 AuxCostDec = MinCostMaxFlow::AuxCostDecEntry; 513 } 514 } 515 // For blocks with self-edges, do not penalize a reduction of the count, 516 // as all of the increase can be attributed to the self-edge 517 if (Block.HasSelfEdge) { 518 AuxCostDec = 0; 519 } 520 521 Network.addEdge(Bin, Baux, AuxCostInc); 522 Network.addEdge(Baux, Bout, AuxCostInc); 523 if (Block.Weight > 0) { 524 Network.addEdge(Bout, Baux, AuxCostDec); 525 Network.addEdge(Baux, Bin, AuxCostDec); 526 } 527 } 528 529 // Creating edges for every jump 530 for (auto &Jump : Func.Jumps) { 531 uint64_t Src = Jump.Source; 532 uint64_t Dst = Jump.Target; 533 if (Src != Dst) { 534 uint64_t SrcOut = 3 * Src + 1; 535 uint64_t DstIn = 3 * Dst; 536 uint64_t Cost = Jump.IsUnlikely ? MinCostMaxFlow::AuxCostUnlikely : 0; 537 Network.addEdge(SrcOut, DstIn, Cost); 538 } 539 } 540 541 // Make sure we have a valid flow circulation 542 Network.addEdge(T, S, 0); 543 } 544 545 /// Extract resulting block and edge counts from the flow network. 546 void extractWeights(MinCostMaxFlow &Network, FlowFunction &Func) { 547 uint64_t NumBlocks = Func.Blocks.size(); 548 549 // Extract resulting block counts 550 for (uint64_t Src = 0; Src < NumBlocks; Src++) { 551 auto &Block = Func.Blocks[Src]; 552 uint64_t SrcOut = 3 * Src + 1; 553 int64_t Flow = 0; 554 for (auto &Adj : Network.getFlow(SrcOut)) { 555 uint64_t DstIn = Adj.first; 556 int64_t DstFlow = Adj.second; 557 bool IsAuxNode = (DstIn < 3 * NumBlocks && DstIn % 3 == 2); 558 if (!IsAuxNode || Block.HasSelfEdge) { 559 Flow += DstFlow; 560 } 561 } 562 Block.Flow = Flow; 563 assert(Flow >= 0 && "negative block flow"); 564 } 565 566 // Extract resulting jump counts 567 for (auto &Jump : Func.Jumps) { 568 uint64_t Src = Jump.Source; 569 uint64_t Dst = Jump.Target; 570 int64_t Flow = 0; 571 if (Src != Dst) { 572 uint64_t SrcOut = 3 * Src + 1; 573 uint64_t DstIn = 3 * Dst; 574 Flow = Network.getFlow(SrcOut, DstIn); 575 } else { 576 uint64_t SrcOut = 3 * Src + 1; 577 uint64_t SrcAux = 3 * Src + 2; 578 int64_t AuxFlow = Network.getFlow(SrcOut, SrcAux); 579 if (AuxFlow > 0) 580 Flow = AuxFlow; 581 } 582 Jump.Flow = Flow; 583 assert(Flow >= 0 && "negative jump flow"); 584 } 585 } 586 587 #ifndef NDEBUG 588 /// Verify that the computed flow values satisfy flow conservation rules 589 void verifyWeights(const FlowFunction &Func) { 590 const uint64_t NumBlocks = Func.Blocks.size(); 591 auto InFlow = std::vector<uint64_t>(NumBlocks, 0); 592 auto OutFlow = std::vector<uint64_t>(NumBlocks, 0); 593 for (auto &Jump : Func.Jumps) { 594 InFlow[Jump.Target] += Jump.Flow; 595 OutFlow[Jump.Source] += Jump.Flow; 596 } 597 598 uint64_t TotalInFlow = 0; 599 uint64_t TotalOutFlow = 0; 600 for (uint64_t I = 0; I < NumBlocks; I++) { 601 auto &Block = Func.Blocks[I]; 602 if (Block.isEntry()) { 603 TotalInFlow += Block.Flow; 604 assert(Block.Flow == OutFlow[I] && "incorrectly computed control flow"); 605 } else if (Block.isExit()) { 606 TotalOutFlow += Block.Flow; 607 assert(Block.Flow == InFlow[I] && "incorrectly computed control flow"); 608 } else { 609 assert(Block.Flow == OutFlow[I] && "incorrectly computed control flow"); 610 assert(Block.Flow == InFlow[I] && "incorrectly computed control flow"); 611 } 612 } 613 assert(TotalInFlow == TotalOutFlow && "incorrectly computed control flow"); 614 615 // Verify that there are no isolated flow components 616 // One could modify FlowFunction to hold edges indexed by the sources, which 617 // will avoid a creation of the object 618 auto PositiveFlowEdges = std::vector<std::vector<uint64_t>>(NumBlocks); 619 for (auto &Jump : Func.Jumps) { 620 if (Jump.Flow > 0) { 621 PositiveFlowEdges[Jump.Source].push_back(Jump.Target); 622 } 623 } 624 625 // Run bfs from the source along edges with positive flow 626 std::queue<uint64_t> Queue; 627 auto Visited = std::vector<bool>(NumBlocks, false); 628 Queue.push(Func.Entry); 629 Visited[Func.Entry] = true; 630 while (!Queue.empty()) { 631 uint64_t Src = Queue.front(); 632 Queue.pop(); 633 for (uint64_t Dst : PositiveFlowEdges[Src]) { 634 if (!Visited[Dst]) { 635 Queue.push(Dst); 636 Visited[Dst] = true; 637 } 638 } 639 } 640 641 // Verify that every block that has a positive flow is reached from the source 642 // along edges with a positive flow 643 for (uint64_t I = 0; I < NumBlocks; I++) { 644 auto &Block = Func.Blocks[I]; 645 assert((Visited[I] || Block.Flow == 0) && "an isolated flow component"); 646 } 647 } 648 #endif 649 650 } // end of anonymous namespace 651 652 /// Apply the profile inference algorithm for a given flow function 653 void llvm::applyFlowInference(FlowFunction &Func) { 654 // Create and apply an inference network model 655 auto InferenceNetwork = MinCostMaxFlow(); 656 initializeNetwork(InferenceNetwork, Func); 657 InferenceNetwork.run(); 658 659 // Extract flow values for every block and every edge 660 extractWeights(InferenceNetwork, Func); 661 662 // Post-processing adjustments to the flow 663 auto Adjuster = FlowAdjuster(Func); 664 Adjuster.run(); 665 666 #ifndef NDEBUG 667 // Verify the result 668 verifyWeights(Func); 669 #endif 670 } 671