xref: /llvm-project/llvm/lib/Transforms/Utils/SSAUpdater.cpp (revision 6942c64e8128e4ccd891b813d0240f574f80f59e)
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SSAUpdater class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Use.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
33 #include <cassert>
34 #include <utility>
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "ssaupdater"
39 
40 using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
41 
42 static AvailableValsTy &getAvailableVals(void *AV) {
43   return *static_cast<AvailableValsTy*>(AV);
44 }
45 
46 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
47   : InsertedPHIs(NewPHI) {}
48 
49 SSAUpdater::~SSAUpdater() {
50   delete static_cast<AvailableValsTy*>(AV);
51 }
52 
53 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
54   if (!AV)
55     AV = new AvailableValsTy();
56   else
57     getAvailableVals(AV).clear();
58   ProtoType = Ty;
59   ProtoName = std::string(Name);
60 }
61 
62 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
63   return getAvailableVals(AV).count(BB);
64 }
65 
66 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
67   return getAvailableVals(AV).lookup(BB);
68 }
69 
70 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
71   assert(ProtoType && "Need to initialize SSAUpdater");
72   assert(ProtoType == V->getType() &&
73          "All rewritten values must have the same type");
74   getAvailableVals(AV)[BB] = V;
75 }
76 
77 static bool IsEquivalentPHI(PHINode *PHI,
78                         SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
79   unsigned PHINumValues = PHI->getNumIncomingValues();
80   if (PHINumValues != ValueMapping.size())
81     return false;
82 
83   // Scan the phi to see if it matches.
84   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
85     if (ValueMapping[PHI->getIncomingBlock(i)] !=
86         PHI->getIncomingValue(i)) {
87       return false;
88     }
89 
90   return true;
91 }
92 
93 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
94   Value *Res = GetValueAtEndOfBlockInternal(BB);
95   return Res;
96 }
97 
98 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
99   // If there is no definition of the renamed variable in this block, just use
100   // GetValueAtEndOfBlock to do our work.
101   if (!HasValueForBlock(BB))
102     return GetValueAtEndOfBlock(BB);
103 
104   // Otherwise, we have the hard case.  Get the live-in values for each
105   // predecessor.
106   SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
107   Value *SingularValue = nullptr;
108 
109   // We can get our predecessor info by walking the pred_iterator list, but it
110   // is relatively slow.  If we already have PHI nodes in this block, walk one
111   // of them to get the predecessor list instead.
112   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
113     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
114       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
115       Value *PredVal = GetValueAtEndOfBlock(PredBB);
116       PredValues.push_back(std::make_pair(PredBB, PredVal));
117 
118       // Compute SingularValue.
119       if (i == 0)
120         SingularValue = PredVal;
121       else if (PredVal != SingularValue)
122         SingularValue = nullptr;
123     }
124   } else {
125     bool isFirstPred = true;
126     for (BasicBlock *PredBB : predecessors(BB)) {
127       Value *PredVal = GetValueAtEndOfBlock(PredBB);
128       PredValues.push_back(std::make_pair(PredBB, PredVal));
129 
130       // Compute SingularValue.
131       if (isFirstPred) {
132         SingularValue = PredVal;
133         isFirstPred = false;
134       } else if (PredVal != SingularValue)
135         SingularValue = nullptr;
136     }
137   }
138 
139   // If there are no predecessors, just return undef.
140   if (PredValues.empty())
141     return UndefValue::get(ProtoType);
142 
143   // Otherwise, if all the merged values are the same, just use it.
144   if (SingularValue)
145     return SingularValue;
146 
147   // Otherwise, we do need a PHI: check to see if we already have one available
148   // in this block that produces the right value.
149   if (isa<PHINode>(BB->begin())) {
150     SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
151                                                          PredValues.end());
152     for (PHINode &SomePHI : BB->phis()) {
153       if (IsEquivalentPHI(&SomePHI, ValueMapping))
154         return &SomePHI;
155     }
156   }
157 
158   // Ok, we have no way out, insert a new one now.
159   PHINode *InsertedPHI =
160       PHINode::Create(ProtoType, PredValues.size(), ProtoName);
161   InsertedPHI->insertBefore(BB->begin());
162 
163   // Fill in all the predecessors of the PHI.
164   for (const auto &PredValue : PredValues)
165     InsertedPHI->addIncoming(PredValue.second, PredValue.first);
166 
167   // See if the PHI node can be merged to a single value.  This can happen in
168   // loop cases when we get a PHI of itself and one other value.
169   if (Value *V =
170           simplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
171     InsertedPHI->eraseFromParent();
172     return V;
173   }
174 
175   // Set the DebugLoc of the inserted PHI, if available.
176   DebugLoc DL;
177   if (const Instruction *I = BB->getFirstNonPHI())
178       DL = I->getDebugLoc();
179   InsertedPHI->setDebugLoc(DL);
180 
181   // If the client wants to know about all new instructions, tell it.
182   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
183 
184   LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
185   return InsertedPHI;
186 }
187 
188 void SSAUpdater::RewriteUse(Use &U) {
189   Instruction *User = cast<Instruction>(U.getUser());
190 
191   Value *V;
192   if (PHINode *UserPN = dyn_cast<PHINode>(User))
193     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
194   else
195     V = GetValueInMiddleOfBlock(User->getParent());
196 
197   U.set(V);
198 }
199 
200 void SSAUpdater::UpdateDebugValues(Instruction *I) {
201   SmallVector<DbgValueInst *, 4> DbgValues;
202   llvm::findDbgValues(DbgValues, I);
203   for (auto &DbgValue : DbgValues) {
204     if (DbgValue->getParent() == I->getParent())
205       continue;
206     UpdateDebugValue(I, DbgValue);
207   }
208 }
209 
210 void SSAUpdater::UpdateDebugValues(Instruction *I,
211                                    SmallVectorImpl<DbgValueInst *> &DbgValues) {
212   for (auto &DbgValue : DbgValues) {
213     UpdateDebugValue(I, DbgValue);
214   }
215 }
216 
217 void SSAUpdater::UpdateDebugValue(Instruction *I, DbgValueInst *DbgValue) {
218   BasicBlock *UserBB = DbgValue->getParent();
219   if (HasValueForBlock(UserBB)) {
220     Value *NewVal = GetValueAtEndOfBlock(UserBB);
221     DbgValue->replaceVariableLocationOp(I, NewVal);
222   }
223   else
224     DbgValue->setKillLocation();
225 }
226 
227 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
228   Instruction *User = cast<Instruction>(U.getUser());
229 
230   Value *V;
231   if (PHINode *UserPN = dyn_cast<PHINode>(User))
232     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
233   else
234     V = GetValueAtEndOfBlock(User->getParent());
235 
236   U.set(V);
237 }
238 
239 namespace llvm {
240 
241 template<>
242 class SSAUpdaterTraits<SSAUpdater> {
243 public:
244   using BlkT = BasicBlock;
245   using ValT = Value *;
246   using PhiT = PHINode;
247   using BlkSucc_iterator = succ_iterator;
248 
249   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
250   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
251 
252   class PHI_iterator {
253   private:
254     PHINode *PHI;
255     unsigned idx;
256 
257   public:
258     explicit PHI_iterator(PHINode *P) // begin iterator
259       : PHI(P), idx(0) {}
260     PHI_iterator(PHINode *P, bool) // end iterator
261       : PHI(P), idx(PHI->getNumIncomingValues()) {}
262 
263     PHI_iterator &operator++() { ++idx; return *this; }
264     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
265     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
266 
267     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
268     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
269   };
270 
271   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
272   static PHI_iterator PHI_end(PhiT *PHI) {
273     return PHI_iterator(PHI, true);
274   }
275 
276   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
277   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
278   static void FindPredecessorBlocks(BasicBlock *BB,
279                                     SmallVectorImpl<BasicBlock *> *Preds) {
280     // We can get our predecessor info by walking the pred_iterator list,
281     // but it is relatively slow.  If we already have PHI nodes in this
282     // block, walk one of them to get the predecessor list instead.
283     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin()))
284       append_range(*Preds, SomePhi->blocks());
285     else
286       append_range(*Preds, predecessors(BB));
287   }
288 
289   /// GetUndefVal - Get an undefined value of the same type as the value
290   /// being handled.
291   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
292     return UndefValue::get(Updater->ProtoType);
293   }
294 
295   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
296   /// Reserve space for the operands but do not fill them in yet.
297   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
298                                SSAUpdater *Updater) {
299     PHINode *PHI =
300         PHINode::Create(Updater->ProtoType, NumPreds, Updater->ProtoName);
301     PHI->insertBefore(BB->begin());
302     return PHI;
303   }
304 
305   /// AddPHIOperand - Add the specified value as an operand of the PHI for
306   /// the specified predecessor block.
307   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
308     PHI->addIncoming(Val, Pred);
309   }
310 
311   /// ValueIsPHI - Check if a value is a PHI.
312   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
313     return dyn_cast<PHINode>(Val);
314   }
315 
316   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
317   /// operands, i.e., it was just added.
318   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
319     PHINode *PHI = ValueIsPHI(Val, Updater);
320     if (PHI && PHI->getNumIncomingValues() == 0)
321       return PHI;
322     return nullptr;
323   }
324 
325   /// GetPHIValue - For the specified PHI instruction, return the value
326   /// that it defines.
327   static Value *GetPHIValue(PHINode *PHI) {
328     return PHI;
329   }
330 };
331 
332 } // end namespace llvm
333 
334 /// Check to see if AvailableVals has an entry for the specified BB and if so,
335 /// return it.  If not, construct SSA form by first calculating the required
336 /// placement of PHIs and then inserting new PHIs where needed.
337 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
338   AvailableValsTy &AvailableVals = getAvailableVals(AV);
339   if (Value *V = AvailableVals[BB])
340     return V;
341 
342   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
343   return Impl.GetValue(BB);
344 }
345 
346 //===----------------------------------------------------------------------===//
347 // LoadAndStorePromoter Implementation
348 //===----------------------------------------------------------------------===//
349 
350 LoadAndStorePromoter::
351 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
352                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
353   if (Insts.empty()) return;
354 
355   const Value *SomeVal;
356   if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
357     SomeVal = LI;
358   else
359     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
360 
361   if (BaseName.empty())
362     BaseName = SomeVal->getName();
363   SSA.Initialize(SomeVal->getType(), BaseName);
364 }
365 
366 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
367   // First step: bucket up uses of the alloca by the block they occur in.
368   // This is important because we have to handle multiple defs/uses in a block
369   // ourselves: SSAUpdater is purely for cross-block references.
370   DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
371 
372   for (Instruction *User : Insts)
373     UsesByBlock[User->getParent()].push_back(User);
374 
375   // Okay, now we can iterate over all the blocks in the function with uses,
376   // processing them.  Keep track of which loads are loading a live-in value.
377   // Walk the uses in the use-list order to be determinstic.
378   SmallVector<LoadInst *, 32> LiveInLoads;
379   DenseMap<Value *, Value *> ReplacedLoads;
380 
381   for (Instruction *User : Insts) {
382     BasicBlock *BB = User->getParent();
383     TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
384 
385     // If this block has already been processed, ignore this repeat use.
386     if (BlockUses.empty()) continue;
387 
388     // Okay, this is the first use in the block.  If this block just has a
389     // single user in it, we can rewrite it trivially.
390     if (BlockUses.size() == 1) {
391       // If it is a store, it is a trivial def of the value in the block.
392       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
393         updateDebugInfo(SI);
394         SSA.AddAvailableValue(BB, SI->getOperand(0));
395       } else
396         // Otherwise it is a load, queue it to rewrite as a live-in load.
397         LiveInLoads.push_back(cast<LoadInst>(User));
398       BlockUses.clear();
399       continue;
400     }
401 
402     // Otherwise, check to see if this block is all loads.
403     bool HasStore = false;
404     for (Instruction *I : BlockUses) {
405       if (isa<StoreInst>(I)) {
406         HasStore = true;
407         break;
408       }
409     }
410 
411     // If so, we can queue them all as live in loads.  We don't have an
412     // efficient way to tell which on is first in the block and don't want to
413     // scan large blocks, so just add all loads as live ins.
414     if (!HasStore) {
415       for (Instruction *I : BlockUses)
416         LiveInLoads.push_back(cast<LoadInst>(I));
417       BlockUses.clear();
418       continue;
419     }
420 
421     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
422     // Since SSAUpdater is purely for cross-block values, we need to determine
423     // the order of these instructions in the block.  If the first use in the
424     // block is a load, then it uses the live in value.  The last store defines
425     // the live out value.  We handle this by doing a linear scan of the block.
426     Value *StoredValue = nullptr;
427     for (Instruction &I : *BB) {
428       if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
429         // If this is a load from an unrelated pointer, ignore it.
430         if (!isInstInList(L, Insts)) continue;
431 
432         // If we haven't seen a store yet, this is a live in use, otherwise
433         // use the stored value.
434         if (StoredValue) {
435           replaceLoadWithValue(L, StoredValue);
436           L->replaceAllUsesWith(StoredValue);
437           ReplacedLoads[L] = StoredValue;
438         } else {
439           LiveInLoads.push_back(L);
440         }
441         continue;
442       }
443 
444       if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
445         // If this is a store to an unrelated pointer, ignore it.
446         if (!isInstInList(SI, Insts)) continue;
447         updateDebugInfo(SI);
448 
449         // Remember that this is the active value in the block.
450         StoredValue = SI->getOperand(0);
451       }
452     }
453 
454     // The last stored value that happened is the live-out for the block.
455     assert(StoredValue && "Already checked that there is a store in block");
456     SSA.AddAvailableValue(BB, StoredValue);
457     BlockUses.clear();
458   }
459 
460   // Okay, now we rewrite all loads that use live-in values in the loop,
461   // inserting PHI nodes as necessary.
462   for (LoadInst *ALoad : LiveInLoads) {
463     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
464     replaceLoadWithValue(ALoad, NewVal);
465 
466     // Avoid assertions in unreachable code.
467     if (NewVal == ALoad) NewVal = PoisonValue::get(NewVal->getType());
468     ALoad->replaceAllUsesWith(NewVal);
469     ReplacedLoads[ALoad] = NewVal;
470   }
471 
472   // Allow the client to do stuff before we start nuking things.
473   doExtraRewritesBeforeFinalDeletion();
474 
475   // Now that everything is rewritten, delete the old instructions from the
476   // function.  They should all be dead now.
477   for (Instruction *User : Insts) {
478     if (!shouldDelete(User))
479       continue;
480 
481     // If this is a load that still has uses, then the load must have been added
482     // as a live value in the SSAUpdate data structure for a block (e.g. because
483     // the loaded value was stored later).  In this case, we need to recursively
484     // propagate the updates until we get to the real value.
485     if (!User->use_empty()) {
486       Value *NewVal = ReplacedLoads[User];
487       assert(NewVal && "not a replaced load?");
488 
489       // Propagate down to the ultimate replacee.  The intermediately loads
490       // could theoretically already have been deleted, so we don't want to
491       // dereference the Value*'s.
492       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
493       while (RLI != ReplacedLoads.end()) {
494         NewVal = RLI->second;
495         RLI = ReplacedLoads.find(NewVal);
496       }
497 
498       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
499       User->replaceAllUsesWith(NewVal);
500     }
501 
502     instructionDeleted(User);
503     User->eraseFromParent();
504   }
505 }
506 
507 bool
508 LoadAndStorePromoter::isInstInList(Instruction *I,
509                                    const SmallVectorImpl<Instruction *> &Insts)
510                                    const {
511   return is_contained(Insts, I);
512 }
513