1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SSAUpdater class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/SSAUpdater.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/TinyPtrVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/DebugLoc.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Use.h" 27 #include "llvm/IR/Value.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 32 #include <cassert> 33 #include <utility> 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "ssaupdater" 38 39 using AvailableValsTy = DenseMap<BasicBlock *, Value *>; 40 41 static AvailableValsTy &getAvailableVals(void *AV) { 42 return *static_cast<AvailableValsTy*>(AV); 43 } 44 45 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) 46 : InsertedPHIs(NewPHI) {} 47 48 SSAUpdater::~SSAUpdater() { 49 delete static_cast<AvailableValsTy*>(AV); 50 } 51 52 void SSAUpdater::Initialize(Type *Ty, StringRef Name) { 53 if (!AV) 54 AV = new AvailableValsTy(); 55 else 56 getAvailableVals(AV).clear(); 57 ProtoType = Ty; 58 ProtoName = std::string(Name); 59 } 60 61 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { 62 return getAvailableVals(AV).count(BB); 63 } 64 65 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const { 66 return getAvailableVals(AV).lookup(BB); 67 } 68 69 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { 70 assert(ProtoType && "Need to initialize SSAUpdater"); 71 assert(ProtoType == V->getType() && 72 "All rewritten values must have the same type"); 73 getAvailableVals(AV)[BB] = V; 74 } 75 76 static bool IsEquivalentPHI(PHINode *PHI, 77 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { 78 unsigned PHINumValues = PHI->getNumIncomingValues(); 79 if (PHINumValues != ValueMapping.size()) 80 return false; 81 82 // Scan the phi to see if it matches. 83 for (unsigned i = 0, e = PHINumValues; i != e; ++i) 84 if (ValueMapping[PHI->getIncomingBlock(i)] != 85 PHI->getIncomingValue(i)) { 86 return false; 87 } 88 89 return true; 90 } 91 92 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { 93 Value *Res = GetValueAtEndOfBlockInternal(BB); 94 return Res; 95 } 96 97 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { 98 // If there is no definition of the renamed variable in this block, just use 99 // GetValueAtEndOfBlock to do our work. 100 if (!HasValueForBlock(BB)) 101 return GetValueAtEndOfBlock(BB); 102 103 // Otherwise, we have the hard case. Get the live-in values for each 104 // predecessor. 105 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; 106 Value *SingularValue = nullptr; 107 108 // We can get our predecessor info by walking the pred_iterator list, but it 109 // is relatively slow. If we already have PHI nodes in this block, walk one 110 // of them to get the predecessor list instead. 111 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 112 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { 113 BasicBlock *PredBB = SomePhi->getIncomingBlock(i); 114 Value *PredVal = GetValueAtEndOfBlock(PredBB); 115 PredValues.push_back(std::make_pair(PredBB, PredVal)); 116 117 // Compute SingularValue. 118 if (i == 0) 119 SingularValue = PredVal; 120 else if (PredVal != SingularValue) 121 SingularValue = nullptr; 122 } 123 } else { 124 bool isFirstPred = true; 125 for (BasicBlock *PredBB : predecessors(BB)) { 126 Value *PredVal = GetValueAtEndOfBlock(PredBB); 127 PredValues.push_back(std::make_pair(PredBB, PredVal)); 128 129 // Compute SingularValue. 130 if (isFirstPred) { 131 SingularValue = PredVal; 132 isFirstPred = false; 133 } else if (PredVal != SingularValue) 134 SingularValue = nullptr; 135 } 136 } 137 138 // If there are no predecessors, just return poison. 139 if (PredValues.empty()) 140 return PoisonValue::get(ProtoType); 141 142 // Otherwise, if all the merged values are the same, just use it. 143 if (SingularValue) 144 return SingularValue; 145 146 // Otherwise, we do need a PHI: check to see if we already have one available 147 // in this block that produces the right value. 148 if (isa<PHINode>(BB->begin())) { 149 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), 150 PredValues.end()); 151 for (PHINode &SomePHI : BB->phis()) { 152 if (IsEquivalentPHI(&SomePHI, ValueMapping)) 153 return &SomePHI; 154 } 155 } 156 157 // Ok, we have no way out, insert a new one now. 158 PHINode *InsertedPHI = 159 PHINode::Create(ProtoType, PredValues.size(), ProtoName); 160 InsertedPHI->insertBefore(BB->begin()); 161 162 // Fill in all the predecessors of the PHI. 163 for (const auto &PredValue : PredValues) 164 InsertedPHI->addIncoming(PredValue.second, PredValue.first); 165 166 // See if the PHI node can be merged to a single value. This can happen in 167 // loop cases when we get a PHI of itself and one other value. 168 if (Value *V = 169 simplifyInstruction(InsertedPHI, BB->getDataLayout())) { 170 InsertedPHI->eraseFromParent(); 171 return V; 172 } 173 174 // Set the DebugLoc of the inserted PHI, if available. 175 DebugLoc DL; 176 if (const Instruction *I = BB->getFirstNonPHI()) 177 DL = I->getDebugLoc(); 178 InsertedPHI->setDebugLoc(DL); 179 180 // If the client wants to know about all new instructions, tell it. 181 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 182 183 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); 184 return InsertedPHI; 185 } 186 187 void SSAUpdater::RewriteUse(Use &U) { 188 Instruction *User = cast<Instruction>(U.getUser()); 189 190 Value *V; 191 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 192 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 193 else 194 V = GetValueInMiddleOfBlock(User->getParent()); 195 196 U.set(V); 197 } 198 199 void SSAUpdater::UpdateDebugValues(Instruction *I) { 200 SmallVector<DbgValueInst *, 4> DbgValues; 201 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords; 202 llvm::findDbgValues(DbgValues, I, &DbgVariableRecords); 203 for (auto &DbgValue : DbgValues) { 204 if (DbgValue->getParent() == I->getParent()) 205 continue; 206 UpdateDebugValue(I, DbgValue); 207 } 208 for (auto &DVR : DbgVariableRecords) { 209 if (DVR->getParent() == I->getParent()) 210 continue; 211 UpdateDebugValue(I, DVR); 212 } 213 } 214 215 void SSAUpdater::UpdateDebugValues(Instruction *I, 216 SmallVectorImpl<DbgValueInst *> &DbgValues) { 217 for (auto &DbgValue : DbgValues) { 218 UpdateDebugValue(I, DbgValue); 219 } 220 } 221 222 void SSAUpdater::UpdateDebugValues( 223 Instruction *I, SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) { 224 for (auto &DVR : DbgVariableRecords) { 225 UpdateDebugValue(I, DVR); 226 } 227 } 228 229 void SSAUpdater::UpdateDebugValue(Instruction *I, DbgValueInst *DbgValue) { 230 BasicBlock *UserBB = DbgValue->getParent(); 231 if (HasValueForBlock(UserBB)) { 232 Value *NewVal = GetValueAtEndOfBlock(UserBB); 233 DbgValue->replaceVariableLocationOp(I, NewVal); 234 } else 235 DbgValue->setKillLocation(); 236 } 237 238 void SSAUpdater::UpdateDebugValue(Instruction *I, DbgVariableRecord *DVR) { 239 BasicBlock *UserBB = DVR->getParent(); 240 if (HasValueForBlock(UserBB)) { 241 Value *NewVal = GetValueAtEndOfBlock(UserBB); 242 DVR->replaceVariableLocationOp(I, NewVal); 243 } else 244 DVR->setKillLocation(); 245 } 246 247 void SSAUpdater::RewriteUseAfterInsertions(Use &U) { 248 Instruction *User = cast<Instruction>(U.getUser()); 249 250 Value *V; 251 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 252 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 253 else 254 V = GetValueAtEndOfBlock(User->getParent()); 255 256 U.set(V); 257 } 258 259 namespace llvm { 260 261 template<> 262 class SSAUpdaterTraits<SSAUpdater> { 263 public: 264 using BlkT = BasicBlock; 265 using ValT = Value *; 266 using PhiT = PHINode; 267 using BlkSucc_iterator = succ_iterator; 268 269 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } 270 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } 271 272 class PHI_iterator { 273 private: 274 PHINode *PHI; 275 unsigned idx; 276 277 public: 278 explicit PHI_iterator(PHINode *P) // begin iterator 279 : PHI(P), idx(0) {} 280 PHI_iterator(PHINode *P, bool) // end iterator 281 : PHI(P), idx(PHI->getNumIncomingValues()) {} 282 283 PHI_iterator &operator++() { ++idx; return *this; } 284 bool operator==(const PHI_iterator& x) const { return idx == x.idx; } 285 bool operator!=(const PHI_iterator& x) const { return !operator==(x); } 286 287 Value *getIncomingValue() { return PHI->getIncomingValue(idx); } 288 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } 289 }; 290 291 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 292 static PHI_iterator PHI_end(PhiT *PHI) { 293 return PHI_iterator(PHI, true); 294 } 295 296 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds 297 /// vector, set Info->NumPreds, and allocate space in Info->Preds. 298 static void FindPredecessorBlocks(BasicBlock *BB, 299 SmallVectorImpl<BasicBlock *> *Preds) { 300 // We can get our predecessor info by walking the pred_iterator list, 301 // but it is relatively slow. If we already have PHI nodes in this 302 // block, walk one of them to get the predecessor list instead. 303 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) 304 append_range(*Preds, SomePhi->blocks()); 305 else 306 append_range(*Preds, predecessors(BB)); 307 } 308 309 /// GetPoisonVal - Get a poison value of the same type as the value 310 /// being handled. 311 static Value *GetPoisonVal(BasicBlock *BB, SSAUpdater *Updater) { 312 return PoisonValue::get(Updater->ProtoType); 313 } 314 315 /// CreateEmptyPHI - Create a new PHI instruction in the specified block. 316 /// Reserve space for the operands but do not fill them in yet. 317 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, 318 SSAUpdater *Updater) { 319 PHINode *PHI = 320 PHINode::Create(Updater->ProtoType, NumPreds, Updater->ProtoName); 321 PHI->insertBefore(BB->begin()); 322 return PHI; 323 } 324 325 /// AddPHIOperand - Add the specified value as an operand of the PHI for 326 /// the specified predecessor block. 327 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { 328 PHI->addIncoming(Val, Pred); 329 } 330 331 /// ValueIsPHI - Check if a value is a PHI. 332 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { 333 return dyn_cast<PHINode>(Val); 334 } 335 336 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 337 /// operands, i.e., it was just added. 338 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { 339 PHINode *PHI = ValueIsPHI(Val, Updater); 340 if (PHI && PHI->getNumIncomingValues() == 0) 341 return PHI; 342 return nullptr; 343 } 344 345 /// GetPHIValue - For the specified PHI instruction, return the value 346 /// that it defines. 347 static Value *GetPHIValue(PHINode *PHI) { 348 return PHI; 349 } 350 }; 351 352 } // end namespace llvm 353 354 /// Check to see if AvailableVals has an entry for the specified BB and if so, 355 /// return it. If not, construct SSA form by first calculating the required 356 /// placement of PHIs and then inserting new PHIs where needed. 357 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { 358 AvailableValsTy &AvailableVals = getAvailableVals(AV); 359 if (Value *V = AvailableVals[BB]) 360 return V; 361 362 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); 363 return Impl.GetValue(BB); 364 } 365 366 //===----------------------------------------------------------------------===// 367 // LoadAndStorePromoter Implementation 368 //===----------------------------------------------------------------------===// 369 370 LoadAndStorePromoter:: 371 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, 372 SSAUpdater &S, StringRef BaseName) : SSA(S) { 373 if (Insts.empty()) return; 374 375 const Value *SomeVal; 376 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) 377 SomeVal = LI; 378 else 379 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); 380 381 if (BaseName.empty()) 382 BaseName = SomeVal->getName(); 383 SSA.Initialize(SomeVal->getType(), BaseName); 384 } 385 386 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) { 387 // First step: bucket up uses of the alloca by the block they occur in. 388 // This is important because we have to handle multiple defs/uses in a block 389 // ourselves: SSAUpdater is purely for cross-block references. 390 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; 391 392 for (Instruction *User : Insts) 393 UsesByBlock[User->getParent()].push_back(User); 394 395 // Okay, now we can iterate over all the blocks in the function with uses, 396 // processing them. Keep track of which loads are loading a live-in value. 397 // Walk the uses in the use-list order to be determinstic. 398 SmallVector<LoadInst *, 32> LiveInLoads; 399 DenseMap<Value *, Value *> ReplacedLoads; 400 401 for (Instruction *User : Insts) { 402 BasicBlock *BB = User->getParent(); 403 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; 404 405 // If this block has already been processed, ignore this repeat use. 406 if (BlockUses.empty()) continue; 407 408 // Okay, this is the first use in the block. If this block just has a 409 // single user in it, we can rewrite it trivially. 410 if (BlockUses.size() == 1) { 411 // If it is a store, it is a trivial def of the value in the block. 412 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 413 updateDebugInfo(SI); 414 SSA.AddAvailableValue(BB, SI->getOperand(0)); 415 } else 416 // Otherwise it is a load, queue it to rewrite as a live-in load. 417 LiveInLoads.push_back(cast<LoadInst>(User)); 418 BlockUses.clear(); 419 continue; 420 } 421 422 // Otherwise, check to see if this block is all loads. 423 bool HasStore = false; 424 for (Instruction *I : BlockUses) { 425 if (isa<StoreInst>(I)) { 426 HasStore = true; 427 break; 428 } 429 } 430 431 // If so, we can queue them all as live in loads. We don't have an 432 // efficient way to tell which on is first in the block and don't want to 433 // scan large blocks, so just add all loads as live ins. 434 if (!HasStore) { 435 for (Instruction *I : BlockUses) 436 LiveInLoads.push_back(cast<LoadInst>(I)); 437 BlockUses.clear(); 438 continue; 439 } 440 441 // Otherwise, we have mixed loads and stores (or just a bunch of stores). 442 // Since SSAUpdater is purely for cross-block values, we need to determine 443 // the order of these instructions in the block. If the first use in the 444 // block is a load, then it uses the live in value. The last store defines 445 // the live out value. We handle this by doing a linear scan of the block. 446 Value *StoredValue = nullptr; 447 for (Instruction &I : *BB) { 448 if (LoadInst *L = dyn_cast<LoadInst>(&I)) { 449 // If this is a load from an unrelated pointer, ignore it. 450 if (!isInstInList(L, Insts)) continue; 451 452 // If we haven't seen a store yet, this is a live in use, otherwise 453 // use the stored value. 454 if (StoredValue) { 455 replaceLoadWithValue(L, StoredValue); 456 L->replaceAllUsesWith(StoredValue); 457 ReplacedLoads[L] = StoredValue; 458 } else { 459 LiveInLoads.push_back(L); 460 } 461 continue; 462 } 463 464 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 465 // If this is a store to an unrelated pointer, ignore it. 466 if (!isInstInList(SI, Insts)) continue; 467 updateDebugInfo(SI); 468 469 // Remember that this is the active value in the block. 470 StoredValue = SI->getOperand(0); 471 } 472 } 473 474 // The last stored value that happened is the live-out for the block. 475 assert(StoredValue && "Already checked that there is a store in block"); 476 SSA.AddAvailableValue(BB, StoredValue); 477 BlockUses.clear(); 478 } 479 480 // Okay, now we rewrite all loads that use live-in values in the loop, 481 // inserting PHI nodes as necessary. 482 for (LoadInst *ALoad : LiveInLoads) { 483 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); 484 replaceLoadWithValue(ALoad, NewVal); 485 486 // Avoid assertions in unreachable code. 487 if (NewVal == ALoad) NewVal = PoisonValue::get(NewVal->getType()); 488 ALoad->replaceAllUsesWith(NewVal); 489 ReplacedLoads[ALoad] = NewVal; 490 } 491 492 // Allow the client to do stuff before we start nuking things. 493 doExtraRewritesBeforeFinalDeletion(); 494 495 // Now that everything is rewritten, delete the old instructions from the 496 // function. They should all be dead now. 497 for (Instruction *User : Insts) { 498 if (!shouldDelete(User)) 499 continue; 500 501 // If this is a load that still has uses, then the load must have been added 502 // as a live value in the SSAUpdate data structure for a block (e.g. because 503 // the loaded value was stored later). In this case, we need to recursively 504 // propagate the updates until we get to the real value. 505 if (!User->use_empty()) { 506 Value *NewVal = ReplacedLoads[User]; 507 assert(NewVal && "not a replaced load?"); 508 509 // Propagate down to the ultimate replacee. The intermediately loads 510 // could theoretically already have been deleted, so we don't want to 511 // dereference the Value*'s. 512 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); 513 while (RLI != ReplacedLoads.end()) { 514 NewVal = RLI->second; 515 RLI = ReplacedLoads.find(NewVal); 516 } 517 518 replaceLoadWithValue(cast<LoadInst>(User), NewVal); 519 User->replaceAllUsesWith(NewVal); 520 } 521 522 instructionDeleted(User); 523 User->eraseFromParent(); 524 } 525 } 526 527 bool 528 LoadAndStorePromoter::isInstInList(Instruction *I, 529 const SmallVectorImpl<Instruction *> &Insts) 530 const { 531 return is_contained(Insts, I); 532 } 533