xref: /llvm-project/llvm/lib/Transforms/Utils/LoopVersioning.cpp (revision fbf6c8ac1589a4be68ee549257f1d528937ac582)
1 //===- LoopVersioning.cpp - Utility to version a loop ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a utility class to perform loop versioning.  The versioned
10 // loop speculates that otherwise may-aliasing memory accesses don't overlap and
11 // emits checks to prove this.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/LoopVersioning.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/LoopAccessAnalysis.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Cloning.h"
29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
30 
31 using namespace llvm;
32 
33 #define LVER_OPTION "loop-versioning"
34 #define DEBUG_TYPE LVER_OPTION
35 
36 static cl::opt<bool>
37     AnnotateNoAlias("loop-version-annotate-no-alias", cl::init(true),
38                     cl::Hidden,
39                     cl::desc("Add no-alias annotation for instructions that "
40                              "are disambiguated by memchecks"));
41 
42 LoopVersioning::LoopVersioning(const LoopAccessInfo &LAI,
43                                ArrayRef<RuntimePointerCheck> Checks, Loop *L,
44                                LoopInfo *LI, DominatorTree *DT,
45                                ScalarEvolution *SE)
46     : VersionedLoop(L), NonVersionedLoop(nullptr),
47       AliasChecks(Checks.begin(), Checks.end()),
48       Preds(LAI.getPSE().getUnionPredicate()), LAI(LAI), LI(LI), DT(DT),
49       SE(SE) {
50 }
51 
52 void LoopVersioning::versionLoop(
53     const SmallVectorImpl<Instruction *> &DefsUsedOutside) {
54   assert(VersionedLoop->getUniqueExitBlock() && "No single exit block");
55   assert(VersionedLoop->isLoopSimplifyForm() &&
56          "Loop is not in loop-simplify form");
57 
58   Value *MemRuntimeCheck;
59   Value *SCEVRuntimeCheck;
60   Value *RuntimeCheck = nullptr;
61 
62   // Add the memcheck in the original preheader (this is empty initially).
63   BasicBlock *RuntimeCheckBB = VersionedLoop->getLoopPreheader();
64   const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
65 
66   SCEVExpander Exp2(*RtPtrChecking.getSE(),
67                     VersionedLoop->getHeader()->getModule()->getDataLayout(),
68                     "induction");
69   MemRuntimeCheck = addRuntimeChecks(RuntimeCheckBB->getTerminator(),
70                                      VersionedLoop, AliasChecks, Exp2);
71 
72   SCEVExpander Exp(*SE, RuntimeCheckBB->getModule()->getDataLayout(),
73                    "scev.check");
74   SCEVRuntimeCheck =
75       Exp.expandCodeForPredicate(&Preds, RuntimeCheckBB->getTerminator());
76   auto *CI = dyn_cast<ConstantInt>(SCEVRuntimeCheck);
77 
78   // Discard the SCEV runtime check if it is always true.
79   if (CI && CI->isZero())
80     SCEVRuntimeCheck = nullptr;
81 
82   if (MemRuntimeCheck && SCEVRuntimeCheck) {
83     RuntimeCheck = BinaryOperator::Create(Instruction::Or, MemRuntimeCheck,
84                                           SCEVRuntimeCheck, "lver.safe");
85     if (auto *I = dyn_cast<Instruction>(RuntimeCheck))
86       I->insertBefore(RuntimeCheckBB->getTerminator());
87   } else
88     RuntimeCheck = MemRuntimeCheck ? MemRuntimeCheck : SCEVRuntimeCheck;
89 
90   if (!RuntimeCheck) {
91     LLVM_DEBUG(dbgs() << DEBUG_TYPE " No MemRuntimeCheck or SCEVRuntimeCheck found"
92                       << ", set RuntimeCheck to False\n");
93     RuntimeCheck = ConstantInt::getFalse(RuntimeCheckBB->getContext());
94   }
95 
96   // Rename the block to make the IR more readable.
97   RuntimeCheckBB->setName(VersionedLoop->getHeader()->getName() +
98                           ".lver.check");
99 
100   // Create empty preheader for the loop (and after cloning for the
101   // non-versioned loop).
102   BasicBlock *PH =
103       SplitBlock(RuntimeCheckBB, RuntimeCheckBB->getTerminator(), DT, LI,
104                  nullptr, VersionedLoop->getHeader()->getName() + ".ph");
105 
106   // Clone the loop including the preheader.
107   //
108   // FIXME: This does not currently preserve SimplifyLoop because the exit
109   // block is a join between the two loops.
110   SmallVector<BasicBlock *, 8> NonVersionedLoopBlocks;
111   NonVersionedLoop =
112       cloneLoopWithPreheader(PH, RuntimeCheckBB, VersionedLoop, VMap,
113                              ".lver.orig", LI, DT, NonVersionedLoopBlocks);
114   remapInstructionsInBlocks(NonVersionedLoopBlocks, VMap);
115 
116   // Insert the conditional branch based on the result of the memchecks.
117   Instruction *OrigTerm = RuntimeCheckBB->getTerminator();
118   RuntimeCheckBI = BranchInst::Create(NonVersionedLoop->getLoopPreheader(),
119                            VersionedLoop->getLoopPreheader(), RuntimeCheck, OrigTerm);
120   OrigTerm->eraseFromParent();
121 
122   // The loops merge in the original exit block.  This is now dominated by the
123   // memchecking block.
124   DT->changeImmediateDominator(VersionedLoop->getExitBlock(), RuntimeCheckBB);
125 
126   // Adds the necessary PHI nodes for the versioned loops based on the
127   // loop-defined values used outside of the loop.
128   addPHINodes(DefsUsedOutside);
129   formDedicatedExitBlocks(NonVersionedLoop, DT, LI, nullptr, true);
130   formDedicatedExitBlocks(VersionedLoop, DT, LI, nullptr, true);
131   assert(NonVersionedLoop->isLoopSimplifyForm() &&
132          VersionedLoop->isLoopSimplifyForm() &&
133          "The versioned loops should be in simplify form.");
134 
135   // RuntimeCheckBB and RuntimeCheckBI is recorded
136   assert(RuntimeCheckBB && RuntimeCheckBI);
137 }
138 
139 void LoopVersioning::addPHINodes(
140     const SmallVectorImpl<Instruction *> &DefsUsedOutside) {
141   BasicBlock *PHIBlock = VersionedLoop->getExitBlock();
142   assert(PHIBlock && "No single successor to loop exit block");
143   PHINode *PN;
144 
145   // First add a single-operand PHI for each DefsUsedOutside if one does not
146   // exists yet.
147   for (auto *Inst : DefsUsedOutside) {
148     // See if we have a single-operand PHI with the value defined by the
149     // original loop.
150     for (auto I = PHIBlock->begin(); (PN = dyn_cast<PHINode>(I)); ++I) {
151       if (PN->getIncomingValue(0) == Inst)
152         break;
153     }
154     // If not create it.
155     if (!PN) {
156       PN = PHINode::Create(Inst->getType(), 2, Inst->getName() + ".lver",
157                            &PHIBlock->front());
158       SmallVector<User*, 8> UsersToUpdate;
159       for (User *U : Inst->users())
160         if (!VersionedLoop->contains(cast<Instruction>(U)->getParent()))
161           UsersToUpdate.push_back(U);
162       for (User *U : UsersToUpdate)
163         U->replaceUsesOfWith(Inst, PN);
164       PN->addIncoming(Inst, VersionedLoop->getExitingBlock());
165     }
166   }
167 
168   // Then for each PHI add the operand for the edge from the cloned loop.
169   for (auto I = PHIBlock->begin(); (PN = dyn_cast<PHINode>(I)); ++I) {
170     assert(PN->getNumOperands() == 1 &&
171            "Exit block should only have on predecessor");
172 
173     // If the definition was cloned used that otherwise use the same value.
174     Value *ClonedValue = PN->getIncomingValue(0);
175     auto Mapped = VMap.find(ClonedValue);
176     if (Mapped != VMap.end())
177       ClonedValue = Mapped->second;
178 
179     PN->addIncoming(ClonedValue, NonVersionedLoop->getExitingBlock());
180   }
181 }
182 
183 void LoopVersioning::prepareNoAliasMetadata() {
184   // We need to turn the no-alias relation between pointer checking groups into
185   // no-aliasing annotations between instructions.
186   //
187   // We accomplish this by mapping each pointer checking group (a set of
188   // pointers memchecked together) to an alias scope and then also mapping each
189   // group to the list of scopes it can't alias.
190 
191   const RuntimePointerChecking *RtPtrChecking = LAI.getRuntimePointerChecking();
192   LLVMContext &Context = VersionedLoop->getHeader()->getContext();
193 
194   // First allocate an aliasing scope for each pointer checking group.
195   //
196   // While traversing through the checking groups in the loop, also create a
197   // reverse map from pointers to the pointer checking group they were assigned
198   // to.
199   MDBuilder MDB(Context);
200   MDNode *Domain = MDB.createAnonymousAliasScopeDomain("LVerDomain");
201 
202   for (const auto &Group : RtPtrChecking->CheckingGroups) {
203     GroupToScope[&Group] = MDB.createAnonymousAliasScope(Domain);
204 
205     for (unsigned PtrIdx : Group.Members)
206       PtrToGroup[RtPtrChecking->getPointerInfo(PtrIdx).PointerValue] = &Group;
207   }
208 
209   // Go through the checks and for each pointer group, collect the scopes for
210   // each non-aliasing pointer group.
211   DenseMap<const RuntimeCheckingPtrGroup *, SmallVector<Metadata *, 4>>
212       GroupToNonAliasingScopes;
213 
214   for (const auto &Check : AliasChecks)
215     GroupToNonAliasingScopes[Check.first].push_back(GroupToScope[Check.second]);
216 
217   // Finally, transform the above to actually map to scope list which is what
218   // the metadata uses.
219 
220   for (auto Pair : GroupToNonAliasingScopes)
221     GroupToNonAliasingScopeList[Pair.first] = MDNode::get(Context, Pair.second);
222 }
223 
224 void LoopVersioning::annotateLoopWithNoAlias() {
225   if (!AnnotateNoAlias)
226     return;
227 
228   // First prepare the maps.
229   prepareNoAliasMetadata();
230 
231   // Add the scope and no-alias metadata to the instructions.
232   for (Instruction *I : LAI.getDepChecker().getMemoryInstructions()) {
233     annotateInstWithNoAlias(I);
234   }
235 }
236 
237 void LoopVersioning::annotateInstWithNoAlias(Instruction *VersionedInst,
238                                              const Instruction *OrigInst) {
239   if (!AnnotateNoAlias)
240     return;
241 
242   LLVMContext &Context = VersionedLoop->getHeader()->getContext();
243   const Value *Ptr = isa<LoadInst>(OrigInst)
244                          ? cast<LoadInst>(OrigInst)->getPointerOperand()
245                          : cast<StoreInst>(OrigInst)->getPointerOperand();
246 
247   // Find the group for the pointer and then add the scope metadata.
248   auto Group = PtrToGroup.find(Ptr);
249   if (Group != PtrToGroup.end()) {
250     VersionedInst->setMetadata(
251         LLVMContext::MD_alias_scope,
252         MDNode::concatenate(
253             VersionedInst->getMetadata(LLVMContext::MD_alias_scope),
254             MDNode::get(Context, GroupToScope[Group->second])));
255 
256     // Add the no-alias metadata.
257     auto NonAliasingScopeList = GroupToNonAliasingScopeList.find(Group->second);
258     if (NonAliasingScopeList != GroupToNonAliasingScopeList.end())
259       VersionedInst->setMetadata(
260           LLVMContext::MD_noalias,
261           MDNode::concatenate(
262               VersionedInst->getMetadata(LLVMContext::MD_noalias),
263               NonAliasingScopeList->second));
264   }
265 }
266 
267 namespace {
268 bool runImpl(LoopInfo *LI, function_ref<const LoopAccessInfo &(Loop &)> GetLAA,
269              DominatorTree *DT, ScalarEvolution *SE) {
270   // Build up a worklist of inner-loops to version. This is necessary as the
271   // act of versioning a loop creates new loops and can invalidate iterators
272   // across the loops.
273   SmallVector<Loop *, 8> Worklist;
274 
275   for (Loop *TopLevelLoop : *LI)
276     for (Loop *L : depth_first(TopLevelLoop))
277       // We only handle inner-most loops.
278       if (L->isInnermost())
279         Worklist.push_back(L);
280 
281   // Now walk the identified inner loops.
282   bool Changed = false;
283   for (Loop *L : Worklist) {
284     if (!L->isLoopSimplifyForm() || !L->isRotatedForm() ||
285         !L->getExitingBlock())
286       continue;
287     const LoopAccessInfo &LAI = GetLAA(*L);
288     if (!LAI.hasConvergentOp() &&
289         (LAI.getNumRuntimePointerChecks() ||
290          !LAI.getPSE().getUnionPredicate().isAlwaysTrue())) {
291       LoopVersioning LVer(LAI, LAI.getRuntimePointerChecking()->getChecks(), L,
292                           LI, DT, SE);
293       LVer.versionLoop();
294       LVer.annotateLoopWithNoAlias();
295       Changed = true;
296     }
297   }
298 
299   return Changed;
300 }
301 
302 /// Also expose this is a pass.  Currently this is only used for
303 /// unit-testing.  It adds all memchecks necessary to remove all may-aliasing
304 /// array accesses from the loop.
305 class LoopVersioningLegacyPass : public FunctionPass {
306 public:
307   LoopVersioningLegacyPass() : FunctionPass(ID) {
308     initializeLoopVersioningLegacyPassPass(*PassRegistry::getPassRegistry());
309   }
310 
311   bool runOnFunction(Function &F) override {
312     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
313     auto GetLAA = [&](Loop &L) -> const LoopAccessInfo & {
314       return getAnalysis<LoopAccessLegacyAnalysis>().getInfo(&L);
315     };
316 
317     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
318     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
319 
320     return runImpl(LI, GetLAA, DT, SE);
321   }
322 
323   void getAnalysisUsage(AnalysisUsage &AU) const override {
324     AU.addRequired<LoopInfoWrapperPass>();
325     AU.addPreserved<LoopInfoWrapperPass>();
326     AU.addRequired<LoopAccessLegacyAnalysis>();
327     AU.addRequired<DominatorTreeWrapperPass>();
328     AU.addPreserved<DominatorTreeWrapperPass>();
329     AU.addRequired<ScalarEvolutionWrapperPass>();
330   }
331 
332   static char ID;
333 };
334 }
335 
336 char LoopVersioningLegacyPass::ID;
337 static const char LVer_name[] = "Loop Versioning";
338 
339 INITIALIZE_PASS_BEGIN(LoopVersioningLegacyPass, LVER_OPTION, LVer_name, false,
340                       false)
341 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
342 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
343 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
344 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
345 INITIALIZE_PASS_END(LoopVersioningLegacyPass, LVER_OPTION, LVer_name, false,
346                     false)
347 
348 namespace llvm {
349 FunctionPass *createLoopVersioningLegacyPass() {
350   return new LoopVersioningLegacyPass();
351 }
352 
353 PreservedAnalyses LoopVersioningPass::run(Function &F,
354                                           FunctionAnalysisManager &AM) {
355   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
356   auto &LI = AM.getResult<LoopAnalysis>(F);
357   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
358   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
359   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
360   auto &AA = AM.getResult<AAManager>(F);
361   auto &AC = AM.getResult<AssumptionAnalysis>(F);
362 
363   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
364   auto GetLAA = [&](Loop &L) -> const LoopAccessInfo & {
365     LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
366                                       TLI, TTI, nullptr, nullptr, nullptr};
367     return LAM.getResult<LoopAccessAnalysis>(L, AR);
368   };
369 
370   if (runImpl(&LI, GetLAA, &DT, &SE))
371     return PreservedAnalyses::none();
372   return PreservedAnalyses::all();
373 }
374 } // namespace llvm
375