xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp (revision ffd08c7759000f55332f1657a1fab64a7adc03fd)
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/PriorityWorklist.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/InstSimplifyFolder.h"
25 #include "llvm/Analysis/LoopAccessAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ProfDataUtils.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
48 
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
51 
52 #define DEBUG_TYPE "loop-utils"
53 
54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
56 
57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
58                                    MemorySSAUpdater *MSSAU,
59                                    bool PreserveLCSSA) {
60   bool Changed = false;
61 
62   // We re-use a vector for the in-loop predecesosrs.
63   SmallVector<BasicBlock *, 4> InLoopPredecessors;
64 
65   auto RewriteExit = [&](BasicBlock *BB) {
66     assert(InLoopPredecessors.empty() &&
67            "Must start with an empty predecessors list!");
68     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
69 
70     // See if there are any non-loop predecessors of this exit block and
71     // keep track of the in-loop predecessors.
72     bool IsDedicatedExit = true;
73     for (auto *PredBB : predecessors(BB))
74       if (L->contains(PredBB)) {
75         if (isa<IndirectBrInst>(PredBB->getTerminator()))
76           // We cannot rewrite exiting edges from an indirectbr.
77           return false;
78 
79         InLoopPredecessors.push_back(PredBB);
80       } else {
81         IsDedicatedExit = false;
82       }
83 
84     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
85 
86     // Nothing to do if this is already a dedicated exit.
87     if (IsDedicatedExit)
88       return false;
89 
90     auto *NewExitBB = SplitBlockPredecessors(
91         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
92 
93     if (!NewExitBB)
94       LLVM_DEBUG(
95           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
96                  << *L << "\n");
97     else
98       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
99                         << NewExitBB->getName() << "\n");
100     return true;
101   };
102 
103   // Walk the exit blocks directly rather than building up a data structure for
104   // them, but only visit each one once.
105   SmallPtrSet<BasicBlock *, 4> Visited;
106   for (auto *BB : L->blocks())
107     for (auto *SuccBB : successors(BB)) {
108       // We're looking for exit blocks so skip in-loop successors.
109       if (L->contains(SuccBB))
110         continue;
111 
112       // Visit each exit block exactly once.
113       if (!Visited.insert(SuccBB).second)
114         continue;
115 
116       Changed |= RewriteExit(SuccBB);
117     }
118 
119   return Changed;
120 }
121 
122 /// Returns the instructions that use values defined in the loop.
123 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
124   SmallVector<Instruction *, 8> UsedOutside;
125 
126   for (auto *Block : L->getBlocks())
127     // FIXME: I believe that this could use copy_if if the Inst reference could
128     // be adapted into a pointer.
129     for (auto &Inst : *Block) {
130       auto Users = Inst.users();
131       if (any_of(Users, [&](User *U) {
132             auto *Use = cast<Instruction>(U);
133             return !L->contains(Use->getParent());
134           }))
135         UsedOutside.push_back(&Inst);
136     }
137 
138   return UsedOutside;
139 }
140 
141 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
142   // By definition, all loop passes need the LoopInfo analysis and the
143   // Dominator tree it depends on. Because they all participate in the loop
144   // pass manager, they must also preserve these.
145   AU.addRequired<DominatorTreeWrapperPass>();
146   AU.addPreserved<DominatorTreeWrapperPass>();
147   AU.addRequired<LoopInfoWrapperPass>();
148   AU.addPreserved<LoopInfoWrapperPass>();
149 
150   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
151   // here because users shouldn't directly get them from this header.
152   extern char &LoopSimplifyID;
153   extern char &LCSSAID;
154   AU.addRequiredID(LoopSimplifyID);
155   AU.addPreservedID(LoopSimplifyID);
156   AU.addRequiredID(LCSSAID);
157   AU.addPreservedID(LCSSAID);
158   // This is used in the LPPassManager to perform LCSSA verification on passes
159   // which preserve lcssa form
160   AU.addRequired<LCSSAVerificationPass>();
161   AU.addPreserved<LCSSAVerificationPass>();
162 
163   // Loop passes are designed to run inside of a loop pass manager which means
164   // that any function analyses they require must be required by the first loop
165   // pass in the manager (so that it is computed before the loop pass manager
166   // runs) and preserved by all loop pasess in the manager. To make this
167   // reasonably robust, the set needed for most loop passes is maintained here.
168   // If your loop pass requires an analysis not listed here, you will need to
169   // carefully audit the loop pass manager nesting structure that results.
170   AU.addRequired<AAResultsWrapperPass>();
171   AU.addPreserved<AAResultsWrapperPass>();
172   AU.addPreserved<BasicAAWrapperPass>();
173   AU.addPreserved<GlobalsAAWrapperPass>();
174   AU.addPreserved<SCEVAAWrapperPass>();
175   AU.addRequired<ScalarEvolutionWrapperPass>();
176   AU.addPreserved<ScalarEvolutionWrapperPass>();
177   // FIXME: When all loop passes preserve MemorySSA, it can be required and
178   // preserved here instead of the individual handling in each pass.
179 }
180 
181 /// Manually defined generic "LoopPass" dependency initialization. This is used
182 /// to initialize the exact set of passes from above in \c
183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
184 /// with:
185 ///
186 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
187 ///
188 /// As-if "LoopPass" were a pass.
189 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
190   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
191   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
192   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
193   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
194   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
195   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
196   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
197   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
198   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
199   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
200 }
201 
202 /// Create MDNode for input string.
203 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
204   LLVMContext &Context = TheLoop->getHeader()->getContext();
205   Metadata *MDs[] = {
206       MDString::get(Context, Name),
207       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
208   return MDNode::get(Context, MDs);
209 }
210 
211 /// Set input string into loop metadata by keeping other values intact.
212 /// If the string is already in loop metadata update value if it is
213 /// different.
214 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
215                                    unsigned V) {
216   SmallVector<Metadata *, 4> MDs(1);
217   // If the loop already has metadata, retain it.
218   MDNode *LoopID = TheLoop->getLoopID();
219   if (LoopID) {
220     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
221       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
222       // If it is of form key = value, try to parse it.
223       if (Node->getNumOperands() == 2) {
224         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
225         if (S && S->getString().equals(StringMD)) {
226           ConstantInt *IntMD =
227               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
228           if (IntMD && IntMD->getSExtValue() == V)
229             // It is already in place. Do nothing.
230             return;
231           // We need to update the value, so just skip it here and it will
232           // be added after copying other existed nodes.
233           continue;
234         }
235       }
236       MDs.push_back(Node);
237     }
238   }
239   // Add new metadata.
240   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
241   // Replace current metadata node with new one.
242   LLVMContext &Context = TheLoop->getHeader()->getContext();
243   MDNode *NewLoopID = MDNode::get(Context, MDs);
244   // Set operand 0 to refer to the loop id itself.
245   NewLoopID->replaceOperandWith(0, NewLoopID);
246   TheLoop->setLoopID(NewLoopID);
247 }
248 
249 std::optional<ElementCount>
250 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
251   std::optional<int> Width =
252       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
253 
254   if (Width) {
255     std::optional<int> IsScalable = getOptionalIntLoopAttribute(
256         TheLoop, "llvm.loop.vectorize.scalable.enable");
257     return ElementCount::get(*Width, IsScalable.value_or(false));
258   }
259 
260   return std::nullopt;
261 }
262 
263 std::optional<MDNode *> llvm::makeFollowupLoopID(
264     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
265     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
266   if (!OrigLoopID) {
267     if (AlwaysNew)
268       return nullptr;
269     return std::nullopt;
270   }
271 
272   assert(OrigLoopID->getOperand(0) == OrigLoopID);
273 
274   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
275   bool InheritSomeAttrs =
276       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
277   SmallVector<Metadata *, 8> MDs;
278   MDs.push_back(nullptr);
279 
280   bool Changed = false;
281   if (InheritAllAttrs || InheritSomeAttrs) {
282     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
283       MDNode *Op = cast<MDNode>(Existing.get());
284 
285       auto InheritThisAttribute = [InheritSomeAttrs,
286                                    InheritOptionsExceptPrefix](MDNode *Op) {
287         if (!InheritSomeAttrs)
288           return false;
289 
290         // Skip malformatted attribute metadata nodes.
291         if (Op->getNumOperands() == 0)
292           return true;
293         Metadata *NameMD = Op->getOperand(0).get();
294         if (!isa<MDString>(NameMD))
295           return true;
296         StringRef AttrName = cast<MDString>(NameMD)->getString();
297 
298         // Do not inherit excluded attributes.
299         return !AttrName.starts_with(InheritOptionsExceptPrefix);
300       };
301 
302       if (InheritThisAttribute(Op))
303         MDs.push_back(Op);
304       else
305         Changed = true;
306     }
307   } else {
308     // Modified if we dropped at least one attribute.
309     Changed = OrigLoopID->getNumOperands() > 1;
310   }
311 
312   bool HasAnyFollowup = false;
313   for (StringRef OptionName : FollowupOptions) {
314     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
315     if (!FollowupNode)
316       continue;
317 
318     HasAnyFollowup = true;
319     for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
320       MDs.push_back(Option.get());
321       Changed = true;
322     }
323   }
324 
325   // Attributes of the followup loop not specified explicity, so signal to the
326   // transformation pass to add suitable attributes.
327   if (!AlwaysNew && !HasAnyFollowup)
328     return std::nullopt;
329 
330   // If no attributes were added or remove, the previous loop Id can be reused.
331   if (!AlwaysNew && !Changed)
332     return OrigLoopID;
333 
334   // No attributes is equivalent to having no !llvm.loop metadata at all.
335   if (MDs.size() == 1)
336     return nullptr;
337 
338   // Build the new loop ID.
339   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
340   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
341   return FollowupLoopID;
342 }
343 
344 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
345   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
346 }
347 
348 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
349   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
350 }
351 
352 TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
353   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
354     return TM_SuppressedByUser;
355 
356   std::optional<int> Count =
357       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
358   if (Count)
359     return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
360 
361   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
362     return TM_ForcedByUser;
363 
364   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
365     return TM_ForcedByUser;
366 
367   if (hasDisableAllTransformsHint(L))
368     return TM_Disable;
369 
370   return TM_Unspecified;
371 }
372 
373 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
374   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
375     return TM_SuppressedByUser;
376 
377   std::optional<int> Count =
378       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
379   if (Count)
380     return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
381 
382   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
383     return TM_ForcedByUser;
384 
385   if (hasDisableAllTransformsHint(L))
386     return TM_Disable;
387 
388   return TM_Unspecified;
389 }
390 
391 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
392   std::optional<bool> Enable =
393       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
394 
395   if (Enable == false)
396     return TM_SuppressedByUser;
397 
398   std::optional<ElementCount> VectorizeWidth =
399       getOptionalElementCountLoopAttribute(L);
400   std::optional<int> InterleaveCount =
401       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
402 
403   // 'Forcing' vector width and interleave count to one effectively disables
404   // this tranformation.
405   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
406       InterleaveCount == 1)
407     return TM_SuppressedByUser;
408 
409   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
410     return TM_Disable;
411 
412   if (Enable == true)
413     return TM_ForcedByUser;
414 
415   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
416     return TM_Disable;
417 
418   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
419     return TM_Enable;
420 
421   if (hasDisableAllTransformsHint(L))
422     return TM_Disable;
423 
424   return TM_Unspecified;
425 }
426 
427 TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
428   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
429     return TM_ForcedByUser;
430 
431   if (hasDisableAllTransformsHint(L))
432     return TM_Disable;
433 
434   return TM_Unspecified;
435 }
436 
437 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
438   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
439     return TM_SuppressedByUser;
440 
441   if (hasDisableAllTransformsHint(L))
442     return TM_Disable;
443 
444   return TM_Unspecified;
445 }
446 
447 /// Does a BFS from a given node to all of its children inside a given loop.
448 /// The returned vector of nodes includes the starting point.
449 SmallVector<DomTreeNode *, 16>
450 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
451   SmallVector<DomTreeNode *, 16> Worklist;
452   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
453     // Only include subregions in the top level loop.
454     BasicBlock *BB = DTN->getBlock();
455     if (CurLoop->contains(BB))
456       Worklist.push_back(DTN);
457   };
458 
459   AddRegionToWorklist(N);
460 
461   for (size_t I = 0; I < Worklist.size(); I++) {
462     for (DomTreeNode *Child : Worklist[I]->children())
463       AddRegionToWorklist(Child);
464   }
465 
466   return Worklist;
467 }
468 
469 bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) {
470   int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
471   assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode");
472   Value *IncV = PN->getIncomingValue(LatchIdx);
473 
474   for (User *U : PN->users())
475     if (U != Cond && U != IncV) return false;
476 
477   for (User *U : IncV->users())
478     if (U != Cond && U != PN) return false;
479   return true;
480 }
481 
482 
483 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
484                           LoopInfo *LI, MemorySSA *MSSA) {
485   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
486   auto *Preheader = L->getLoopPreheader();
487   assert(Preheader && "Preheader should exist!");
488 
489   std::unique_ptr<MemorySSAUpdater> MSSAU;
490   if (MSSA)
491     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
492 
493   // Now that we know the removal is safe, remove the loop by changing the
494   // branch from the preheader to go to the single exit block.
495   //
496   // Because we're deleting a large chunk of code at once, the sequence in which
497   // we remove things is very important to avoid invalidation issues.
498 
499   // Tell ScalarEvolution that the loop is deleted. Do this before
500   // deleting the loop so that ScalarEvolution can look at the loop
501   // to determine what it needs to clean up.
502   if (SE) {
503     SE->forgetLoop(L);
504     SE->forgetBlockAndLoopDispositions();
505   }
506 
507   Instruction *OldTerm = Preheader->getTerminator();
508   assert(!OldTerm->mayHaveSideEffects() &&
509          "Preheader must end with a side-effect-free terminator");
510   assert(OldTerm->getNumSuccessors() == 1 &&
511          "Preheader must have a single successor");
512   // Connect the preheader to the exit block. Keep the old edge to the header
513   // around to perform the dominator tree update in two separate steps
514   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
515   // preheader -> header.
516   //
517   //
518   // 0.  Preheader          1.  Preheader           2.  Preheader
519   //        |                    |   |                   |
520   //        V                    |   V                   |
521   //      Header <--\            | Header <--\           | Header <--\
522   //       |  |     |            |  |  |     |           |  |  |     |
523   //       |  V     |            |  |  V     |           |  |  V     |
524   //       | Body --/            |  | Body --/           |  | Body --/
525   //       V                     V  V                    V  V
526   //      Exit                   Exit                    Exit
527   //
528   // By doing this is two separate steps we can perform the dominator tree
529   // update without using the batch update API.
530   //
531   // Even when the loop is never executed, we cannot remove the edge from the
532   // source block to the exit block. Consider the case where the unexecuted loop
533   // branches back to an outer loop. If we deleted the loop and removed the edge
534   // coming to this inner loop, this will break the outer loop structure (by
535   // deleting the backedge of the outer loop). If the outer loop is indeed a
536   // non-loop, it will be deleted in a future iteration of loop deletion pass.
537   IRBuilder<> Builder(OldTerm);
538 
539   auto *ExitBlock = L->getUniqueExitBlock();
540   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
541   if (ExitBlock) {
542     assert(ExitBlock && "Should have a unique exit block!");
543     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
544 
545     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
546     // Remove the old branch. The conditional branch becomes a new terminator.
547     OldTerm->eraseFromParent();
548 
549     // Rewrite phis in the exit block to get their inputs from the Preheader
550     // instead of the exiting block.
551     for (PHINode &P : ExitBlock->phis()) {
552       // Set the zero'th element of Phi to be from the preheader and remove all
553       // other incoming values. Given the loop has dedicated exits, all other
554       // incoming values must be from the exiting blocks.
555       int PredIndex = 0;
556       P.setIncomingBlock(PredIndex, Preheader);
557       // Removes all incoming values from all other exiting blocks (including
558       // duplicate values from an exiting block).
559       // Nuke all entries except the zero'th entry which is the preheader entry.
560       P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
561                               /* DeletePHIIfEmpty */ false);
562 
563       assert((P.getNumIncomingValues() == 1 &&
564               P.getIncomingBlock(PredIndex) == Preheader) &&
565              "Should have exactly one value and that's from the preheader!");
566     }
567 
568     if (DT) {
569       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
570       if (MSSA) {
571         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
572                             *DT);
573         if (VerifyMemorySSA)
574           MSSA->verifyMemorySSA();
575       }
576     }
577 
578     // Disconnect the loop body by branching directly to its exit.
579     Builder.SetInsertPoint(Preheader->getTerminator());
580     Builder.CreateBr(ExitBlock);
581     // Remove the old branch.
582     Preheader->getTerminator()->eraseFromParent();
583   } else {
584     assert(L->hasNoExitBlocks() &&
585            "Loop should have either zero or one exit blocks.");
586 
587     Builder.SetInsertPoint(OldTerm);
588     Builder.CreateUnreachable();
589     Preheader->getTerminator()->eraseFromParent();
590   }
591 
592   if (DT) {
593     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
594     if (MSSA) {
595       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
596                           *DT);
597       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
598                                                    L->block_end());
599       MSSAU->removeBlocks(DeadBlockSet);
600       if (VerifyMemorySSA)
601         MSSA->verifyMemorySSA();
602     }
603   }
604 
605   // Use a map to unique and a vector to guarantee deterministic ordering.
606   llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet;
607   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
608   llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords;
609 
610   if (ExitBlock) {
611     // Given LCSSA form is satisfied, we should not have users of instructions
612     // within the dead loop outside of the loop. However, LCSSA doesn't take
613     // unreachable uses into account. We handle them here.
614     // We could do it after drop all references (in this case all users in the
615     // loop will be already eliminated and we have less work to do but according
616     // to API doc of User::dropAllReferences only valid operation after dropping
617     // references, is deletion. So let's substitute all usages of
618     // instruction from the loop with poison value of corresponding type first.
619     for (auto *Block : L->blocks())
620       for (Instruction &I : *Block) {
621         auto *Poison = PoisonValue::get(I.getType());
622         for (Use &U : llvm::make_early_inc_range(I.uses())) {
623           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
624             if (L->contains(Usr->getParent()))
625               continue;
626           // If we have a DT then we can check that uses outside a loop only in
627           // unreachable block.
628           if (DT)
629             assert(!DT->isReachableFromEntry(U) &&
630                    "Unexpected user in reachable block");
631           U.set(Poison);
632         }
633 
634         // RemoveDIs: do the same as below for DbgVariableRecords.
635         if (Block->IsNewDbgInfoFormat) {
636           for (DbgVariableRecord &DVR : llvm::make_early_inc_range(
637                    filterDbgVars(I.getDbgRecordRange()))) {
638             DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
639                               DVR.getDebugLoc().get());
640             if (!DeadDebugSet.insert(Key).second)
641               continue;
642             // Unlinks the DVR from it's container, for later insertion.
643             DVR.removeFromParent();
644             DeadDbgVariableRecords.push_back(&DVR);
645           }
646         }
647 
648         // For one of each variable encountered, preserve a debug intrinsic (set
649         // to Poison) and transfer it to the loop exit. This terminates any
650         // variable locations that were set during the loop.
651         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
652         if (!DVI)
653           continue;
654         if (!DeadDebugSet.insert(DebugVariable(DVI)).second)
655           continue;
656         DeadDebugInst.push_back(DVI);
657       }
658 
659     // After the loop has been deleted all the values defined and modified
660     // inside the loop are going to be unavailable. Values computed in the
661     // loop will have been deleted, automatically causing their debug uses
662     // be be replaced with undef. Loop invariant values will still be available.
663     // Move dbg.values out the loop so that earlier location ranges are still
664     // terminated and loop invariant assignments are preserved.
665     DIBuilder DIB(*ExitBlock->getModule());
666     BasicBlock::iterator InsertDbgValueBefore =
667         ExitBlock->getFirstInsertionPt();
668     assert(InsertDbgValueBefore != ExitBlock->end() &&
669            "There should be a non-PHI instruction in exit block, else these "
670            "instructions will have no parent.");
671 
672     for (auto *DVI : DeadDebugInst)
673       DVI->moveBefore(*ExitBlock, InsertDbgValueBefore);
674 
675     // Due to the "head" bit in BasicBlock::iterator, we're going to insert
676     // each DbgVariableRecord right at the start of the block, wheras dbg.values
677     // would be repeatedly inserted before the first instruction. To replicate
678     // this behaviour, do it backwards.
679     for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords))
680       ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore);
681   }
682 
683   // Remove the block from the reference counting scheme, so that we can
684   // delete it freely later.
685   for (auto *Block : L->blocks())
686     Block->dropAllReferences();
687 
688   if (MSSA && VerifyMemorySSA)
689     MSSA->verifyMemorySSA();
690 
691   if (LI) {
692     // Erase the instructions and the blocks without having to worry
693     // about ordering because we already dropped the references.
694     // NOTE: This iteration is safe because erasing the block does not remove
695     // its entry from the loop's block list.  We do that in the next section.
696     for (BasicBlock *BB : L->blocks())
697       BB->eraseFromParent();
698 
699     // Finally, the blocks from loopinfo.  This has to happen late because
700     // otherwise our loop iterators won't work.
701 
702     SmallPtrSet<BasicBlock *, 8> blocks;
703     blocks.insert(L->block_begin(), L->block_end());
704     for (BasicBlock *BB : blocks)
705       LI->removeBlock(BB);
706 
707     // The last step is to update LoopInfo now that we've eliminated this loop.
708     // Note: LoopInfo::erase remove the given loop and relink its subloops with
709     // its parent. While removeLoop/removeChildLoop remove the given loop but
710     // not relink its subloops, which is what we want.
711     if (Loop *ParentLoop = L->getParentLoop()) {
712       Loop::iterator I = find(*ParentLoop, L);
713       assert(I != ParentLoop->end() && "Couldn't find loop");
714       ParentLoop->removeChildLoop(I);
715     } else {
716       Loop::iterator I = find(*LI, L);
717       assert(I != LI->end() && "Couldn't find loop");
718       LI->removeLoop(I);
719     }
720     LI->destroy(L);
721   }
722 }
723 
724 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
725                              LoopInfo &LI, MemorySSA *MSSA) {
726   auto *Latch = L->getLoopLatch();
727   assert(Latch && "multiple latches not yet supported");
728   auto *Header = L->getHeader();
729   Loop *OutermostLoop = L->getOutermostLoop();
730 
731   SE.forgetLoop(L);
732   SE.forgetBlockAndLoopDispositions();
733 
734   std::unique_ptr<MemorySSAUpdater> MSSAU;
735   if (MSSA)
736     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
737 
738   // Update the CFG and domtree.  We chose to special case a couple of
739   // of common cases for code quality and test readability reasons.
740   [&]() -> void {
741     if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
742       if (!BI->isConditional()) {
743         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
744         (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
745                                   MSSAU.get());
746         return;
747       }
748 
749       // Conditional latch/exit - note that latch can be shared by inner
750       // and outer loop so the other target doesn't need to an exit
751       if (L->isLoopExiting(Latch)) {
752         // TODO: Generalize ConstantFoldTerminator so that it can be used
753         // here without invalidating LCSSA or MemorySSA.  (Tricky case for
754         // LCSSA: header is an exit block of a preceeding sibling loop w/o
755         // dedicated exits.)
756         const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
757         BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
758 
759         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
760         Header->removePredecessor(Latch, true);
761 
762         IRBuilder<> Builder(BI);
763         auto *NewBI = Builder.CreateBr(ExitBB);
764         // Transfer the metadata to the new branch instruction (minus the
765         // loop info since this is no longer a loop)
766         NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
767                                   LLVMContext::MD_annotation});
768 
769         BI->eraseFromParent();
770         DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
771         if (MSSA)
772           MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
773         return;
774       }
775     }
776 
777     // General case.  By splitting the backedge, and then explicitly making it
778     // unreachable we gracefully handle corner cases such as switch and invoke
779     // termiantors.
780     auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
781 
782     DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
783     (void)changeToUnreachable(BackedgeBB->getTerminator(),
784                               /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
785   }();
786 
787   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
788   // and blocks within the loop as needed.
789   LI.erase(L);
790 
791   // If the loop we broke had a parent, then changeToUnreachable might have
792   // caused a block to be removed from the parent loop (see loop_nest_lcssa
793   // test case in zero-btc.ll for an example), thus changing the parent's
794   // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
795   // loop which might have a had a block removed.
796   if (OutermostLoop != L)
797     formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
798 }
799 
800 
801 /// Checks if \p L has an exiting latch branch.  There may also be other
802 /// exiting blocks.  Returns branch instruction terminating the loop
803 /// latch if above check is successful, nullptr otherwise.
804 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
805   BasicBlock *Latch = L->getLoopLatch();
806   if (!Latch)
807     return nullptr;
808 
809   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
810   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
811     return nullptr;
812 
813   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
814           LatchBR->getSuccessor(1) == L->getHeader()) &&
815          "At least one edge out of the latch must go to the header");
816 
817   return LatchBR;
818 }
819 
820 /// Return the estimated trip count for any exiting branch which dominates
821 /// the loop latch.
822 static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch,
823                                                      Loop *L,
824                                                      uint64_t &OrigExitWeight) {
825   // To estimate the number of times the loop body was executed, we want to
826   // know the number of times the backedge was taken, vs. the number of times
827   // we exited the loop.
828   uint64_t LoopWeight, ExitWeight;
829   if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
830     return std::nullopt;
831 
832   if (L->contains(ExitingBranch->getSuccessor(1)))
833     std::swap(LoopWeight, ExitWeight);
834 
835   if (!ExitWeight)
836     // Don't have a way to return predicated infinite
837     return std::nullopt;
838 
839   OrigExitWeight = ExitWeight;
840 
841   // Estimated exit count is a ratio of the loop weight by the weight of the
842   // edge exiting the loop, rounded to nearest.
843   uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
844   // Estimated trip count is one plus estimated exit count.
845   return ExitCount + 1;
846 }
847 
848 std::optional<unsigned>
849 llvm::getLoopEstimatedTripCount(Loop *L,
850                                 unsigned *EstimatedLoopInvocationWeight) {
851   // Currently we take the estimate exit count only from the loop latch,
852   // ignoring other exiting blocks.  This can overestimate the trip count
853   // if we exit through another exit, but can never underestimate it.
854   // TODO: incorporate information from other exits
855   if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
856     uint64_t ExitWeight;
857     if (std::optional<uint64_t> EstTripCount =
858             getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
859       if (EstimatedLoopInvocationWeight)
860         *EstimatedLoopInvocationWeight = ExitWeight;
861       return *EstTripCount;
862     }
863   }
864   return std::nullopt;
865 }
866 
867 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
868                                      unsigned EstimatedloopInvocationWeight) {
869   // At the moment, we currently support changing the estimate trip count of
870   // the latch branch only.  We could extend this API to manipulate estimated
871   // trip counts for any exit.
872   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
873   if (!LatchBranch)
874     return false;
875 
876   // Calculate taken and exit weights.
877   unsigned LatchExitWeight = 0;
878   unsigned BackedgeTakenWeight = 0;
879 
880   if (EstimatedTripCount > 0) {
881     LatchExitWeight = EstimatedloopInvocationWeight;
882     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
883   }
884 
885   // Make a swap if back edge is taken when condition is "false".
886   if (LatchBranch->getSuccessor(0) != L->getHeader())
887     std::swap(BackedgeTakenWeight, LatchExitWeight);
888 
889   MDBuilder MDB(LatchBranch->getContext());
890 
891   // Set/Update profile metadata.
892   LatchBranch->setMetadata(
893       LLVMContext::MD_prof,
894       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
895 
896   return true;
897 }
898 
899 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
900                                               ScalarEvolution &SE) {
901   Loop *OuterL = InnerLoop->getParentLoop();
902   if (!OuterL)
903     return true;
904 
905   // Get the backedge taken count for the inner loop
906   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
907   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
908   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
909       !InnerLoopBECountSC->getType()->isIntegerTy())
910     return false;
911 
912   // Get whether count is invariant to the outer loop
913   ScalarEvolution::LoopDisposition LD =
914       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
915   if (LD != ScalarEvolution::LoopInvariant)
916     return false;
917 
918   return true;
919 }
920 
921 unsigned llvm::getArithmeticReductionInstruction(Intrinsic::ID RdxID) {
922   switch (RdxID) {
923   case Intrinsic::vector_reduce_fadd:
924     return Instruction::FAdd;
925   case Intrinsic::vector_reduce_fmul:
926     return Instruction::FMul;
927   case Intrinsic::vector_reduce_add:
928     return Instruction::Add;
929   case Intrinsic::vector_reduce_mul:
930     return Instruction::Mul;
931   case Intrinsic::vector_reduce_and:
932     return Instruction::And;
933   case Intrinsic::vector_reduce_or:
934     return Instruction::Or;
935   case Intrinsic::vector_reduce_xor:
936     return Instruction::Xor;
937   case Intrinsic::vector_reduce_smax:
938   case Intrinsic::vector_reduce_smin:
939   case Intrinsic::vector_reduce_umax:
940   case Intrinsic::vector_reduce_umin:
941     return Instruction::ICmp;
942   case Intrinsic::vector_reduce_fmax:
943   case Intrinsic::vector_reduce_fmin:
944     return Instruction::FCmp;
945   default:
946     llvm_unreachable("Unexpected ID");
947   }
948 }
949 
950 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID) {
951   switch (RdxID) {
952   default:
953     llvm_unreachable("Unknown min/max recurrence kind");
954   case Intrinsic::vector_reduce_umin:
955     return Intrinsic::umin;
956   case Intrinsic::vector_reduce_umax:
957     return Intrinsic::umax;
958   case Intrinsic::vector_reduce_smin:
959     return Intrinsic::smin;
960   case Intrinsic::vector_reduce_smax:
961     return Intrinsic::smax;
962   case Intrinsic::vector_reduce_fmin:
963     return Intrinsic::minnum;
964   case Intrinsic::vector_reduce_fmax:
965     return Intrinsic::maxnum;
966   case Intrinsic::vector_reduce_fminimum:
967     return Intrinsic::minimum;
968   case Intrinsic::vector_reduce_fmaximum:
969     return Intrinsic::maximum;
970   }
971 }
972 
973 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) {
974   switch (RK) {
975   default:
976     llvm_unreachable("Unknown min/max recurrence kind");
977   case RecurKind::UMin:
978     return Intrinsic::umin;
979   case RecurKind::UMax:
980     return Intrinsic::umax;
981   case RecurKind::SMin:
982     return Intrinsic::smin;
983   case RecurKind::SMax:
984     return Intrinsic::smax;
985   case RecurKind::FMin:
986     return Intrinsic::minnum;
987   case RecurKind::FMax:
988     return Intrinsic::maxnum;
989   case RecurKind::FMinimum:
990     return Intrinsic::minimum;
991   case RecurKind::FMaximum:
992     return Intrinsic::maximum;
993   }
994 }
995 
996 RecurKind llvm::getMinMaxReductionRecurKind(Intrinsic::ID RdxID) {
997   switch (RdxID) {
998   case Intrinsic::vector_reduce_smax:
999     return RecurKind::SMax;
1000   case Intrinsic::vector_reduce_smin:
1001     return RecurKind::SMin;
1002   case Intrinsic::vector_reduce_umax:
1003     return RecurKind::UMax;
1004   case Intrinsic::vector_reduce_umin:
1005     return RecurKind::UMin;
1006   case Intrinsic::vector_reduce_fmax:
1007     return RecurKind::FMax;
1008   case Intrinsic::vector_reduce_fmin:
1009     return RecurKind::FMin;
1010   default:
1011     return RecurKind::None;
1012   }
1013 }
1014 
1015 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
1016   switch (RK) {
1017   default:
1018     llvm_unreachable("Unknown min/max recurrence kind");
1019   case RecurKind::UMin:
1020     return CmpInst::ICMP_ULT;
1021   case RecurKind::UMax:
1022     return CmpInst::ICMP_UGT;
1023   case RecurKind::SMin:
1024     return CmpInst::ICMP_SLT;
1025   case RecurKind::SMax:
1026     return CmpInst::ICMP_SGT;
1027   case RecurKind::FMin:
1028     return CmpInst::FCMP_OLT;
1029   case RecurKind::FMax:
1030     return CmpInst::FCMP_OGT;
1031   // We do not add FMinimum/FMaximum recurrence kind here since there is no
1032   // equivalent predicate which compares signed zeroes according to the
1033   // semantics of the intrinsics (llvm.minimum/maximum).
1034   }
1035 }
1036 
1037 Value *llvm::createAnyOfOp(IRBuilderBase &Builder, Value *StartVal,
1038                            RecurKind RK, Value *Left, Value *Right) {
1039   if (auto VTy = dyn_cast<VectorType>(Left->getType()))
1040     StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal);
1041   Value *Cmp =
1042       Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp");
1043   return Builder.CreateSelect(Cmp, Left, Right, "rdx.select");
1044 }
1045 
1046 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
1047                             Value *Right) {
1048   Type *Ty = Left->getType();
1049   if (Ty->isIntOrIntVectorTy() ||
1050       (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) {
1051     // TODO: Add float minnum/maxnum support when FMF nnan is set.
1052     Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK);
1053     return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
1054                                    "rdx.minmax");
1055   }
1056   CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
1057   Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
1058   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1059   return Select;
1060 }
1061 
1062 // Helper to generate an ordered reduction.
1063 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
1064                                  unsigned Op, RecurKind RdxKind) {
1065   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1066 
1067   // Extract and apply reduction ops in ascending order:
1068   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1069   Value *Result = Acc;
1070   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1071     Value *Ext =
1072         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1073 
1074     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1075       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1076                                    "bin.rdx");
1077     } else {
1078       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1079              "Invalid min/max");
1080       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
1081     }
1082   }
1083 
1084   return Result;
1085 }
1086 
1087 // Helper to generate a log2 shuffle reduction.
1088 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
1089                                  unsigned Op, RecurKind RdxKind) {
1090   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1091   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1092   // and vector ops, reducing the set of values being computed by half each
1093   // round.
1094   assert(isPowerOf2_32(VF) &&
1095          "Reduction emission only supported for pow2 vectors!");
1096   // Note: fast-math-flags flags are controlled by the builder configuration
1097   // and are assumed to apply to all generated arithmetic instructions.  Other
1098   // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1099   // of the builder configuration, and since they're not passed explicitly,
1100   // will never be relevant here.  Note that it would be generally unsound to
1101   // propagate these from an intrinsic call to the expansion anyways as we/
1102   // change the order of operations.
1103   Value *TmpVec = Src;
1104   SmallVector<int, 32> ShuffleMask(VF);
1105   for (unsigned i = VF; i != 1; i >>= 1) {
1106     // Move the upper half of the vector to the lower half.
1107     for (unsigned j = 0; j != i / 2; ++j)
1108       ShuffleMask[j] = i / 2 + j;
1109 
1110     // Fill the rest of the mask with undef.
1111     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1112 
1113     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1114 
1115     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1116       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1117                                    "bin.rdx");
1118     } else {
1119       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1120              "Invalid min/max");
1121       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1122     }
1123   }
1124   // The result is in the first element of the vector.
1125   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1126 }
1127 
1128 Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src,
1129                                         const RecurrenceDescriptor &Desc,
1130                                         PHINode *OrigPhi) {
1131   assert(
1132       RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) &&
1133       "Unexpected reduction kind");
1134   Value *InitVal = Desc.getRecurrenceStartValue();
1135   Value *NewVal = nullptr;
1136 
1137   // First use the original phi to determine the new value we're trying to
1138   // select from in the loop.
1139   SelectInst *SI = nullptr;
1140   for (auto *U : OrigPhi->users()) {
1141     if ((SI = dyn_cast<SelectInst>(U)))
1142       break;
1143   }
1144   assert(SI && "One user of the original phi should be a select");
1145 
1146   if (SI->getTrueValue() == OrigPhi)
1147     NewVal = SI->getFalseValue();
1148   else {
1149     assert(SI->getFalseValue() == OrigPhi &&
1150            "At least one input to the select should be the original Phi");
1151     NewVal = SI->getTrueValue();
1152   }
1153 
1154   // Create a splat vector with the new value and compare this to the vector
1155   // we want to reduce.
1156   ElementCount EC = cast<VectorType>(Src->getType())->getElementCount();
1157   Value *Right = Builder.CreateVectorSplat(EC, InitVal);
1158   Value *Cmp =
1159       Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp");
1160 
1161   // If any predicate is true it means that we want to select the new value.
1162   Cmp = Builder.CreateOrReduce(Cmp);
1163   return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select");
1164 }
1165 
1166 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src,
1167                                          RecurKind RdxKind) {
1168   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1169   switch (RdxKind) {
1170   case RecurKind::Add:
1171     return Builder.CreateAddReduce(Src);
1172   case RecurKind::Mul:
1173     return Builder.CreateMulReduce(Src);
1174   case RecurKind::And:
1175     return Builder.CreateAndReduce(Src);
1176   case RecurKind::Or:
1177     return Builder.CreateOrReduce(Src);
1178   case RecurKind::Xor:
1179     return Builder.CreateXorReduce(Src);
1180   case RecurKind::FMulAdd:
1181   case RecurKind::FAdd:
1182     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1183                                     Src);
1184   case RecurKind::FMul:
1185     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1186   case RecurKind::SMax:
1187     return Builder.CreateIntMaxReduce(Src, true);
1188   case RecurKind::SMin:
1189     return Builder.CreateIntMinReduce(Src, true);
1190   case RecurKind::UMax:
1191     return Builder.CreateIntMaxReduce(Src, false);
1192   case RecurKind::UMin:
1193     return Builder.CreateIntMinReduce(Src, false);
1194   case RecurKind::FMax:
1195     return Builder.CreateFPMaxReduce(Src);
1196   case RecurKind::FMin:
1197     return Builder.CreateFPMinReduce(Src);
1198   case RecurKind::FMinimum:
1199     return Builder.CreateFPMinimumReduce(Src);
1200   case RecurKind::FMaximum:
1201     return Builder.CreateFPMaximumReduce(Src);
1202   default:
1203     llvm_unreachable("Unhandled opcode");
1204   }
1205 }
1206 
1207 Value *llvm::createTargetReduction(IRBuilderBase &B,
1208                                    const RecurrenceDescriptor &Desc, Value *Src,
1209                                    PHINode *OrigPhi) {
1210   // TODO: Support in-order reductions based on the recurrence descriptor.
1211   // All ops in the reduction inherit fast-math-flags from the recurrence
1212   // descriptor.
1213   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1214   B.setFastMathFlags(Desc.getFastMathFlags());
1215 
1216   RecurKind RK = Desc.getRecurrenceKind();
1217   if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
1218     return createAnyOfTargetReduction(B, Src, Desc, OrigPhi);
1219 
1220   return createSimpleTargetReduction(B, Src, RK);
1221 }
1222 
1223 Value *llvm::createOrderedReduction(IRBuilderBase &B,
1224                                     const RecurrenceDescriptor &Desc,
1225                                     Value *Src, Value *Start) {
1226   assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
1227           Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
1228          "Unexpected reduction kind");
1229   assert(Src->getType()->isVectorTy() && "Expected a vector type");
1230   assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1231 
1232   return B.CreateFAddReduce(Start, Src);
1233 }
1234 
1235 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue,
1236                             bool IncludeWrapFlags) {
1237   auto *VecOp = dyn_cast<Instruction>(I);
1238   if (!VecOp)
1239     return;
1240   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1241                                             : dyn_cast<Instruction>(OpValue);
1242   if (!Intersection)
1243     return;
1244   const unsigned Opcode = Intersection->getOpcode();
1245   VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1246   for (auto *V : VL) {
1247     auto *Instr = dyn_cast<Instruction>(V);
1248     if (!Instr)
1249       continue;
1250     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1251       VecOp->andIRFlags(V);
1252   }
1253 }
1254 
1255 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1256                                  ScalarEvolution &SE) {
1257   const SCEV *Zero = SE.getZero(S->getType());
1258   return SE.isAvailableAtLoopEntry(S, L) &&
1259          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1260 }
1261 
1262 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1263                                     ScalarEvolution &SE) {
1264   const SCEV *Zero = SE.getZero(S->getType());
1265   return SE.isAvailableAtLoopEntry(S, L) &&
1266          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1267 }
1268 
1269 bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
1270                                  ScalarEvolution &SE) {
1271   const SCEV *Zero = SE.getZero(S->getType());
1272   return SE.isAvailableAtLoopEntry(S, L) &&
1273          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero);
1274 }
1275 
1276 bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L,
1277                                     ScalarEvolution &SE) {
1278   const SCEV *Zero = SE.getZero(S->getType());
1279   return SE.isAvailableAtLoopEntry(S, L) &&
1280          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero);
1281 }
1282 
1283 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1284                              bool Signed) {
1285   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1286   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1287     APInt::getMinValue(BitWidth);
1288   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1289   return SE.isAvailableAtLoopEntry(S, L) &&
1290          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1291                                      SE.getConstant(Min));
1292 }
1293 
1294 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1295                              bool Signed) {
1296   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1297   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1298     APInt::getMaxValue(BitWidth);
1299   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1300   return SE.isAvailableAtLoopEntry(S, L) &&
1301          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1302                                      SE.getConstant(Max));
1303 }
1304 
1305 //===----------------------------------------------------------------------===//
1306 // rewriteLoopExitValues - Optimize IV users outside the loop.
1307 // As a side effect, reduces the amount of IV processing within the loop.
1308 //===----------------------------------------------------------------------===//
1309 
1310 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1311   SmallPtrSet<const Instruction *, 8> Visited;
1312   SmallVector<const Instruction *, 8> WorkList;
1313   Visited.insert(I);
1314   WorkList.push_back(I);
1315   while (!WorkList.empty()) {
1316     const Instruction *Curr = WorkList.pop_back_val();
1317     // This use is outside the loop, nothing to do.
1318     if (!L->contains(Curr))
1319       continue;
1320     // Do we assume it is a "hard" use which will not be eliminated easily?
1321     if (Curr->mayHaveSideEffects())
1322       return true;
1323     // Otherwise, add all its users to worklist.
1324     for (const auto *U : Curr->users()) {
1325       auto *UI = cast<Instruction>(U);
1326       if (Visited.insert(UI).second)
1327         WorkList.push_back(UI);
1328     }
1329   }
1330   return false;
1331 }
1332 
1333 // Collect information about PHI nodes which can be transformed in
1334 // rewriteLoopExitValues.
1335 struct RewritePhi {
1336   PHINode *PN;               // For which PHI node is this replacement?
1337   unsigned Ith;              // For which incoming value?
1338   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1339   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1340   bool HighCost;               // Is this expansion a high-cost?
1341 
1342   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1343              bool H)
1344       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1345         HighCost(H) {}
1346 };
1347 
1348 // Check whether it is possible to delete the loop after rewriting exit
1349 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1350 // aggressively.
1351 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1352   BasicBlock *Preheader = L->getLoopPreheader();
1353   // If there is no preheader, the loop will not be deleted.
1354   if (!Preheader)
1355     return false;
1356 
1357   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1358   // We obviate multiple ExitingBlocks case for simplicity.
1359   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1360   // after exit value rewriting, we can enhance the logic here.
1361   SmallVector<BasicBlock *, 4> ExitingBlocks;
1362   L->getExitingBlocks(ExitingBlocks);
1363   SmallVector<BasicBlock *, 8> ExitBlocks;
1364   L->getUniqueExitBlocks(ExitBlocks);
1365   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1366     return false;
1367 
1368   BasicBlock *ExitBlock = ExitBlocks[0];
1369   BasicBlock::iterator BI = ExitBlock->begin();
1370   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1371     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1372 
1373     // If the Incoming value of P is found in RewritePhiSet, we know it
1374     // could be rewritten to use a loop invariant value in transformation
1375     // phase later. Skip it in the loop invariant check below.
1376     bool found = false;
1377     for (const RewritePhi &Phi : RewritePhiSet) {
1378       unsigned i = Phi.Ith;
1379       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1380         found = true;
1381         break;
1382       }
1383     }
1384 
1385     Instruction *I;
1386     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1387       if (!L->hasLoopInvariantOperands(I))
1388         return false;
1389 
1390     ++BI;
1391   }
1392 
1393   for (auto *BB : L->blocks())
1394     if (llvm::any_of(*BB, [](Instruction &I) {
1395           return I.mayHaveSideEffects();
1396         }))
1397       return false;
1398 
1399   return true;
1400 }
1401 
1402 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1403 /// and returns true if this Phi is an induction phi in the loop. When
1404 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1405 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
1406                           InductionDescriptor &ID) {
1407   if (!Phi)
1408     return false;
1409   if (!L->getLoopPreheader())
1410     return false;
1411   if (Phi->getParent() != L->getHeader())
1412     return false;
1413   return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
1414 }
1415 
1416 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1417                                 ScalarEvolution *SE,
1418                                 const TargetTransformInfo *TTI,
1419                                 SCEVExpander &Rewriter, DominatorTree *DT,
1420                                 ReplaceExitVal ReplaceExitValue,
1421                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1422   // Check a pre-condition.
1423   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1424          "Indvars did not preserve LCSSA!");
1425 
1426   SmallVector<BasicBlock*, 8> ExitBlocks;
1427   L->getUniqueExitBlocks(ExitBlocks);
1428 
1429   SmallVector<RewritePhi, 8> RewritePhiSet;
1430   // Find all values that are computed inside the loop, but used outside of it.
1431   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1432   // the exit blocks of the loop to find them.
1433   for (BasicBlock *ExitBB : ExitBlocks) {
1434     // If there are no PHI nodes in this exit block, then no values defined
1435     // inside the loop are used on this path, skip it.
1436     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1437     if (!PN) continue;
1438 
1439     unsigned NumPreds = PN->getNumIncomingValues();
1440 
1441     // Iterate over all of the PHI nodes.
1442     BasicBlock::iterator BBI = ExitBB->begin();
1443     while ((PN = dyn_cast<PHINode>(BBI++))) {
1444       if (PN->use_empty())
1445         continue; // dead use, don't replace it
1446 
1447       if (!SE->isSCEVable(PN->getType()))
1448         continue;
1449 
1450       // Iterate over all of the values in all the PHI nodes.
1451       for (unsigned i = 0; i != NumPreds; ++i) {
1452         // If the value being merged in is not integer or is not defined
1453         // in the loop, skip it.
1454         Value *InVal = PN->getIncomingValue(i);
1455         if (!isa<Instruction>(InVal))
1456           continue;
1457 
1458         // If this pred is for a subloop, not L itself, skip it.
1459         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1460           continue; // The Block is in a subloop, skip it.
1461 
1462         // Check that InVal is defined in the loop.
1463         Instruction *Inst = cast<Instruction>(InVal);
1464         if (!L->contains(Inst))
1465           continue;
1466 
1467         // Find exit values which are induction variables in the loop, and are
1468         // unused in the loop, with the only use being the exit block PhiNode,
1469         // and the induction variable update binary operator.
1470         // The exit value can be replaced with the final value when it is cheap
1471         // to do so.
1472         if (ReplaceExitValue == UnusedIndVarInLoop) {
1473           InductionDescriptor ID;
1474           PHINode *IndPhi = dyn_cast<PHINode>(Inst);
1475           if (IndPhi) {
1476             if (!checkIsIndPhi(IndPhi, L, SE, ID))
1477               continue;
1478             // This is an induction PHI. Check that the only users are PHI
1479             // nodes, and induction variable update binary operators.
1480             if (llvm::any_of(Inst->users(), [&](User *U) {
1481                   if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1482                     return true;
1483                   BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1484                   if (B && B != ID.getInductionBinOp())
1485                     return true;
1486                   return false;
1487                 }))
1488               continue;
1489           } else {
1490             // If it is not an induction phi, it must be an induction update
1491             // binary operator with an induction phi user.
1492             BinaryOperator *B = dyn_cast<BinaryOperator>(Inst);
1493             if (!B)
1494               continue;
1495             if (llvm::any_of(Inst->users(), [&](User *U) {
1496                   PHINode *Phi = dyn_cast<PHINode>(U);
1497                   if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1498                     return true;
1499                   return false;
1500                 }))
1501               continue;
1502             if (B != ID.getInductionBinOp())
1503               continue;
1504           }
1505         }
1506 
1507         // Okay, this instruction has a user outside of the current loop
1508         // and varies predictably *inside* the loop.  Evaluate the value it
1509         // contains when the loop exits, if possible.  We prefer to start with
1510         // expressions which are true for all exits (so as to maximize
1511         // expression reuse by the SCEVExpander), but resort to per-exit
1512         // evaluation if that fails.
1513         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1514         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1515             !SE->isLoopInvariant(ExitValue, L) ||
1516             !Rewriter.isSafeToExpand(ExitValue)) {
1517           // TODO: This should probably be sunk into SCEV in some way; maybe a
1518           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1519           // most SCEV expressions and other recurrence types (e.g. shift
1520           // recurrences).  Is there existing code we can reuse?
1521           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1522           if (isa<SCEVCouldNotCompute>(ExitCount))
1523             continue;
1524           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1525             if (AddRec->getLoop() == L)
1526               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1527           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1528               !SE->isLoopInvariant(ExitValue, L) ||
1529               !Rewriter.isSafeToExpand(ExitValue))
1530             continue;
1531         }
1532 
1533         // Computing the value outside of the loop brings no benefit if it is
1534         // definitely used inside the loop in a way which can not be optimized
1535         // away. Avoid doing so unless we know we have a value which computes
1536         // the ExitValue already. TODO: This should be merged into SCEV
1537         // expander to leverage its knowledge of existing expressions.
1538         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1539             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1540           continue;
1541 
1542         // Check if expansions of this SCEV would count as being high cost.
1543         bool HighCost = Rewriter.isHighCostExpansion(
1544             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1545 
1546         // Note that we must not perform expansions until after
1547         // we query *all* the costs, because if we perform temporary expansion
1548         // inbetween, one that we might not intend to keep, said expansion
1549         // *may* affect cost calculation of the next SCEV's we'll query,
1550         // and next SCEV may errneously get smaller cost.
1551 
1552         // Collect all the candidate PHINodes to be rewritten.
1553         Instruction *InsertPt =
1554           (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
1555           &*Inst->getParent()->getFirstInsertionPt() : Inst;
1556         RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1557       }
1558     }
1559   }
1560 
1561   // TODO: evaluate whether it is beneficial to change how we calculate
1562   // high-cost: if we have SCEV 'A' which we know we will expand, should we
1563   // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1564   // potentially giving cost bonus to those other SCEV's?
1565 
1566   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1567   int NumReplaced = 0;
1568 
1569   // Transformation.
1570   for (const RewritePhi &Phi : RewritePhiSet) {
1571     PHINode *PN = Phi.PN;
1572 
1573     // Only do the rewrite when the ExitValue can be expanded cheaply.
1574     // If LoopCanBeDel is true, rewrite exit value aggressively.
1575     if ((ReplaceExitValue == OnlyCheapRepl ||
1576          ReplaceExitValue == UnusedIndVarInLoop) &&
1577         !LoopCanBeDel && Phi.HighCost)
1578       continue;
1579 
1580     Value *ExitVal = Rewriter.expandCodeFor(
1581         Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1582 
1583     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1584                       << '\n'
1585                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1586 
1587 #ifndef NDEBUG
1588     // If we reuse an instruction from a loop which is neither L nor one of
1589     // its containing loops, we end up breaking LCSSA form for this loop by
1590     // creating a new use of its instruction.
1591     if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1592       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1593         if (EVL != L)
1594           assert(EVL->contains(L) && "LCSSA breach detected!");
1595 #endif
1596 
1597     NumReplaced++;
1598     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1599     PN->setIncomingValue(Phi.Ith, ExitVal);
1600     // It's necessary to tell ScalarEvolution about this explicitly so that
1601     // it can walk the def-use list and forget all SCEVs, as it may not be
1602     // watching the PHI itself. Once the new exit value is in place, there
1603     // may not be a def-use connection between the loop and every instruction
1604     // which got a SCEVAddRecExpr for that loop.
1605     SE->forgetValue(PN);
1606 
1607     // If this instruction is dead now, delete it. Don't do it now to avoid
1608     // invalidating iterators.
1609     if (isInstructionTriviallyDead(Inst, TLI))
1610       DeadInsts.push_back(Inst);
1611 
1612     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1613     if (PN->getNumIncomingValues() == 1 &&
1614         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1615       PN->replaceAllUsesWith(ExitVal);
1616       PN->eraseFromParent();
1617     }
1618   }
1619 
1620   // The insertion point instruction may have been deleted; clear it out
1621   // so that the rewriter doesn't trip over it later.
1622   Rewriter.clearInsertPoint();
1623   return NumReplaced;
1624 }
1625 
1626 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1627 /// \p OrigLoop.
1628 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1629                                         Loop *RemainderLoop, uint64_t UF) {
1630   assert(UF > 0 && "Zero unrolled factor is not supported");
1631   assert(UnrolledLoop != RemainderLoop &&
1632          "Unrolled and Remainder loops are expected to distinct");
1633 
1634   // Get number of iterations in the original scalar loop.
1635   unsigned OrigLoopInvocationWeight = 0;
1636   std::optional<unsigned> OrigAverageTripCount =
1637       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1638   if (!OrigAverageTripCount)
1639     return;
1640 
1641   // Calculate number of iterations in unrolled loop.
1642   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1643   // Calculate number of iterations for remainder loop.
1644   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1645 
1646   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1647                             OrigLoopInvocationWeight);
1648   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1649                             OrigLoopInvocationWeight);
1650 }
1651 
1652 /// Utility that implements appending of loops onto a worklist.
1653 /// Loops are added in preorder (analogous for reverse postorder for trees),
1654 /// and the worklist is processed LIFO.
1655 template <typename RangeT>
1656 void llvm::appendReversedLoopsToWorklist(
1657     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1658   // We use an internal worklist to build up the preorder traversal without
1659   // recursion.
1660   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1661 
1662   // We walk the initial sequence of loops in reverse because we generally want
1663   // to visit defs before uses and the worklist is LIFO.
1664   for (Loop *RootL : Loops) {
1665     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1666     assert(PreOrderWorklist.empty() &&
1667            "Must start with an empty preorder walk worklist.");
1668     PreOrderWorklist.push_back(RootL);
1669     do {
1670       Loop *L = PreOrderWorklist.pop_back_val();
1671       PreOrderWorklist.append(L->begin(), L->end());
1672       PreOrderLoops.push_back(L);
1673     } while (!PreOrderWorklist.empty());
1674 
1675     Worklist.insert(std::move(PreOrderLoops));
1676     PreOrderLoops.clear();
1677   }
1678 }
1679 
1680 template <typename RangeT>
1681 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1682                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1683   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1684 }
1685 
1686 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1687     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1688 
1689 template void
1690 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1691                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1692 
1693 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1694                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1695   appendReversedLoopsToWorklist(LI, Worklist);
1696 }
1697 
1698 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1699                       LoopInfo *LI, LPPassManager *LPM) {
1700   Loop &New = *LI->AllocateLoop();
1701   if (PL)
1702     PL->addChildLoop(&New);
1703   else
1704     LI->addTopLevelLoop(&New);
1705 
1706   if (LPM)
1707     LPM->addLoop(New);
1708 
1709   // Add all of the blocks in L to the new loop.
1710   for (BasicBlock *BB : L->blocks())
1711     if (LI->getLoopFor(BB) == L)
1712       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1713 
1714   // Add all of the subloops to the new loop.
1715   for (Loop *I : *L)
1716     cloneLoop(I, &New, VM, LI, LPM);
1717 
1718   return &New;
1719 }
1720 
1721 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1722 /// need to use value-handles because SCEV expansion can invalidate previously
1723 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1724 /// a previous one.
1725 struct PointerBounds {
1726   TrackingVH<Value> Start;
1727   TrackingVH<Value> End;
1728   Value *StrideToCheck;
1729 };
1730 
1731 /// Expand code for the lower and upper bound of the pointer group \p CG
1732 /// in \p TheLoop.  \return the values for the bounds.
1733 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1734                                   Loop *TheLoop, Instruction *Loc,
1735                                   SCEVExpander &Exp, bool HoistRuntimeChecks) {
1736   LLVMContext &Ctx = Loc->getContext();
1737   Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);
1738 
1739   Value *Start = nullptr, *End = nullptr;
1740   LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1741   const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;
1742 
1743   // If the Low and High values are themselves loop-variant, then we may want
1744   // to expand the range to include those covered by the outer loop as well.
1745   // There is a trade-off here with the advantage being that creating checks
1746   // using the expanded range permits the runtime memory checks to be hoisted
1747   // out of the outer loop. This reduces the cost of entering the inner loop,
1748   // which can be significant for low trip counts. The disadvantage is that
1749   // there is a chance we may now never enter the vectorized inner loop,
1750   // whereas using a restricted range check could have allowed us to enter at
1751   // least once. This is why the behaviour is not currently the default and is
1752   // controlled by the parameter 'HoistRuntimeChecks'.
1753   if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
1754       isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) {
1755     auto *HighAR = cast<SCEVAddRecExpr>(High);
1756     auto *LowAR = cast<SCEVAddRecExpr>(Low);
1757     const Loop *OuterLoop = TheLoop->getParentLoop();
1758     const SCEV *Recur = LowAR->getStepRecurrence(*Exp.getSE());
1759     if (Recur == HighAR->getStepRecurrence(*Exp.getSE()) &&
1760         HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
1761       BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1762       const SCEV *OuterExitCount =
1763           Exp.getSE()->getExitCount(OuterLoop, OuterLoopLatch);
1764       if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
1765           OuterExitCount->getType()->isIntegerTy()) {
1766         const SCEV *NewHigh = cast<SCEVAddRecExpr>(High)->evaluateAtIteration(
1767             OuterExitCount, *Exp.getSE());
1768         if (!isa<SCEVCouldNotCompute>(NewHigh)) {
1769           LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
1770                                "outer loop in order to permit hoisting\n");
1771           High = NewHigh;
1772           Low = cast<SCEVAddRecExpr>(Low)->getStart();
1773           // If there is a possibility that the stride is negative then we have
1774           // to generate extra checks to ensure the stride is positive.
1775           if (!Exp.getSE()->isKnownNonNegative(Recur)) {
1776             Stride = Recur;
1777             LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
1778                                  "positive: "
1779                               << *Stride << '\n');
1780           }
1781         }
1782       }
1783     }
1784   }
1785 
1786   Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
1787   End = Exp.expandCodeFor(High, PtrArithTy, Loc);
1788   if (CG->NeedsFreeze) {
1789     IRBuilder<> Builder(Loc);
1790     Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
1791     End = Builder.CreateFreeze(End, End->getName() + ".fr");
1792   }
1793   Value *StrideVal =
1794       Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
1795   LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
1796   return {Start, End, StrideVal};
1797 }
1798 
1799 /// Turns a collection of checks into a collection of expanded upper and
1800 /// lower bounds for both pointers in the check.
1801 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1802 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1803              Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) {
1804   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1805 
1806   // Here we're relying on the SCEV Expander's cache to only emit code for the
1807   // same bounds once.
1808   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1809             [&](const RuntimePointerCheck &Check) {
1810               PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
1811                                                  HoistRuntimeChecks),
1812                             Second = expandBounds(Check.second, L, Loc, Exp,
1813                                                   HoistRuntimeChecks);
1814               return std::make_pair(First, Second);
1815             });
1816 
1817   return ChecksWithBounds;
1818 }
1819 
1820 Value *llvm::addRuntimeChecks(
1821     Instruction *Loc, Loop *TheLoop,
1822     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1823     SCEVExpander &Exp, bool HoistRuntimeChecks) {
1824   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1825   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1826   auto ExpandedChecks =
1827       expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);
1828 
1829   LLVMContext &Ctx = Loc->getContext();
1830   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1831                                            Loc->getModule()->getDataLayout());
1832   ChkBuilder.SetInsertPoint(Loc);
1833   // Our instructions might fold to a constant.
1834   Value *MemoryRuntimeCheck = nullptr;
1835 
1836   for (const auto &Check : ExpandedChecks) {
1837     const PointerBounds &A = Check.first, &B = Check.second;
1838     // Check if two pointers (A and B) conflict where conflict is computed as:
1839     // start(A) <= end(B) && start(B) <= end(A)
1840 
1841     assert((A.Start->getType()->getPointerAddressSpace() ==
1842             B.End->getType()->getPointerAddressSpace()) &&
1843            (B.Start->getType()->getPointerAddressSpace() ==
1844             A.End->getType()->getPointerAddressSpace()) &&
1845            "Trying to bounds check pointers with different address spaces");
1846 
1847     // [A|B].Start points to the first accessed byte under base [A|B].
1848     // [A|B].End points to the last accessed byte, plus one.
1849     // There is no conflict when the intervals are disjoint:
1850     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1851     //
1852     // bound0 = (B.Start < A.End)
1853     // bound1 = (A.Start < B.End)
1854     //  IsConflict = bound0 & bound1
1855     Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
1856     Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
1857     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1858     if (A.StrideToCheck) {
1859       Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1860           A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
1861           "stride.check");
1862       IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1863     }
1864     if (B.StrideToCheck) {
1865       Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1866           B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
1867           "stride.check");
1868       IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1869     }
1870     if (MemoryRuntimeCheck) {
1871       IsConflict =
1872           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1873     }
1874     MemoryRuntimeCheck = IsConflict;
1875   }
1876 
1877   return MemoryRuntimeCheck;
1878 }
1879 
1880 Value *llvm::addDiffRuntimeChecks(
1881     Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
1882     function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
1883 
1884   LLVMContext &Ctx = Loc->getContext();
1885   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1886                                            Loc->getModule()->getDataLayout());
1887   ChkBuilder.SetInsertPoint(Loc);
1888   // Our instructions might fold to a constant.
1889   Value *MemoryRuntimeCheck = nullptr;
1890 
1891   auto &SE = *Expander.getSE();
1892   // Map to keep track of created compares, The key is the pair of operands for
1893   // the compare, to allow detecting and re-using redundant compares.
1894   DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares;
1895   for (const auto &C : Checks) {
1896     Type *Ty = C.SinkStart->getType();
1897     // Compute VF * IC * AccessSize.
1898     auto *VFTimesUFTimesSize =
1899         ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
1900                              ConstantInt::get(Ty, IC * C.AccessSize));
1901     Value *Diff = Expander.expandCodeFor(
1902         SE.getMinusSCEV(C.SinkStart, C.SrcStart), Ty, Loc);
1903 
1904     // Check if the same compare has already been created earlier. In that case,
1905     // there is no need to check it again.
1906     Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize});
1907     if (IsConflict)
1908       continue;
1909 
1910     IsConflict =
1911         ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check");
1912     SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict});
1913     if (C.NeedsFreeze)
1914       IsConflict =
1915           ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
1916     if (MemoryRuntimeCheck) {
1917       IsConflict =
1918           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1919     }
1920     MemoryRuntimeCheck = IsConflict;
1921   }
1922 
1923   return MemoryRuntimeCheck;
1924 }
1925 
1926 std::optional<IVConditionInfo>
1927 llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold,
1928                             const MemorySSA &MSSA, AAResults &AA) {
1929   auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1930   if (!TI || !TI->isConditional())
1931     return {};
1932 
1933   auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
1934   // The case with the condition outside the loop should already be handled
1935   // earlier.
1936   if (!CondI || !L.contains(CondI))
1937     return {};
1938 
1939   SmallVector<Instruction *> InstToDuplicate;
1940   InstToDuplicate.push_back(CondI);
1941 
1942   SmallVector<Value *, 4> WorkList;
1943   WorkList.append(CondI->op_begin(), CondI->op_end());
1944 
1945   SmallVector<MemoryAccess *, 4> AccessesToCheck;
1946   SmallVector<MemoryLocation, 4> AccessedLocs;
1947   while (!WorkList.empty()) {
1948     Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1949     if (!I || !L.contains(I))
1950       continue;
1951 
1952     // TODO: support additional instructions.
1953     if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1954       return {};
1955 
1956     // Do not duplicate volatile and atomic loads.
1957     if (auto *LI = dyn_cast<LoadInst>(I))
1958       if (LI->isVolatile() || LI->isAtomic())
1959         return {};
1960 
1961     InstToDuplicate.push_back(I);
1962     if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1963       if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1964         // Queue the defining access to check for alias checks.
1965         AccessesToCheck.push_back(MemUse->getDefiningAccess());
1966         AccessedLocs.push_back(MemoryLocation::get(I));
1967       } else {
1968         // MemoryDefs may clobber the location or may be atomic memory
1969         // operations. Bail out.
1970         return {};
1971       }
1972     }
1973     WorkList.append(I->op_begin(), I->op_end());
1974   }
1975 
1976   if (InstToDuplicate.empty())
1977     return {};
1978 
1979   SmallVector<BasicBlock *, 4> ExitingBlocks;
1980   L.getExitingBlocks(ExitingBlocks);
1981   auto HasNoClobbersOnPath =
1982       [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1983        MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1984                       SmallVector<MemoryAccess *, 4> AccessesToCheck)
1985       -> std::optional<IVConditionInfo> {
1986     IVConditionInfo Info;
1987     // First, collect all blocks in the loop that are on a patch from Succ
1988     // to the header.
1989     SmallVector<BasicBlock *, 4> WorkList;
1990     WorkList.push_back(Succ);
1991     WorkList.push_back(Header);
1992     SmallPtrSet<BasicBlock *, 4> Seen;
1993     Seen.insert(Header);
1994     Info.PathIsNoop &=
1995         all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1996 
1997     while (!WorkList.empty()) {
1998       BasicBlock *Current = WorkList.pop_back_val();
1999       if (!L.contains(Current))
2000         continue;
2001       const auto &SeenIns = Seen.insert(Current);
2002       if (!SeenIns.second)
2003         continue;
2004 
2005       Info.PathIsNoop &= all_of(
2006           *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
2007       WorkList.append(succ_begin(Current), succ_end(Current));
2008     }
2009 
2010     // Require at least 2 blocks on a path through the loop. This skips
2011     // paths that directly exit the loop.
2012     if (Seen.size() < 2)
2013       return {};
2014 
2015     // Next, check if there are any MemoryDefs that are on the path through
2016     // the loop (in the Seen set) and they may-alias any of the locations in
2017     // AccessedLocs. If that is the case, they may modify the condition and
2018     // partial unswitching is not possible.
2019     SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
2020     while (!AccessesToCheck.empty()) {
2021       MemoryAccess *Current = AccessesToCheck.pop_back_val();
2022       auto SeenI = SeenAccesses.insert(Current);
2023       if (!SeenI.second || !Seen.contains(Current->getBlock()))
2024         continue;
2025 
2026       // Bail out if exceeded the threshold.
2027       if (SeenAccesses.size() >= MSSAThreshold)
2028         return {};
2029 
2030       // MemoryUse are read-only accesses.
2031       if (isa<MemoryUse>(Current))
2032         continue;
2033 
2034       // For a MemoryDef, check if is aliases any of the location feeding
2035       // the original condition.
2036       if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
2037         if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
2038               return isModSet(
2039                   AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
2040             }))
2041           return {};
2042       }
2043 
2044       for (Use &U : Current->uses())
2045         AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
2046     }
2047 
2048     // We could also allow loops with known trip counts without mustprogress,
2049     // but ScalarEvolution may not be available.
2050     Info.PathIsNoop &= isMustProgress(&L);
2051 
2052     // If the path is considered a no-op so far, check if it reaches a
2053     // single exit block without any phis. This ensures no values from the
2054     // loop are used outside of the loop.
2055     if (Info.PathIsNoop) {
2056       for (auto *Exiting : ExitingBlocks) {
2057         if (!Seen.contains(Exiting))
2058           continue;
2059         for (auto *Succ : successors(Exiting)) {
2060           if (L.contains(Succ))
2061             continue;
2062 
2063           Info.PathIsNoop &= Succ->phis().empty() &&
2064                              (!Info.ExitForPath || Info.ExitForPath == Succ);
2065           if (!Info.PathIsNoop)
2066             break;
2067           assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
2068                  "cannot have multiple exit blocks");
2069           Info.ExitForPath = Succ;
2070         }
2071       }
2072     }
2073     if (!Info.ExitForPath)
2074       Info.PathIsNoop = false;
2075 
2076     Info.InstToDuplicate = InstToDuplicate;
2077     return Info;
2078   };
2079 
2080   // If we branch to the same successor, partial unswitching will not be
2081   // beneficial.
2082   if (TI->getSuccessor(0) == TI->getSuccessor(1))
2083     return {};
2084 
2085   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2086                                       AccessesToCheck)) {
2087     Info->KnownValue = ConstantInt::getTrue(TI->getContext());
2088     return Info;
2089   }
2090   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
2091                                       AccessesToCheck)) {
2092     Info->KnownValue = ConstantInt::getFalse(TI->getContext());
2093     return Info;
2094   }
2095 
2096   return {};
2097 }
2098