1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/PriorityWorklist.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/DomTreeUpdater.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/InstSimplifyFolder.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/ProfDataUtils.h" 42 #include "llvm/IR/ValueHandle.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 49 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "loop-utils" 54 55 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 56 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 57 58 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 59 MemorySSAUpdater *MSSAU, 60 bool PreserveLCSSA) { 61 bool Changed = false; 62 63 // We re-use a vector for the in-loop predecesosrs. 64 SmallVector<BasicBlock *, 4> InLoopPredecessors; 65 66 auto RewriteExit = [&](BasicBlock *BB) { 67 assert(InLoopPredecessors.empty() && 68 "Must start with an empty predecessors list!"); 69 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 70 71 // See if there are any non-loop predecessors of this exit block and 72 // keep track of the in-loop predecessors. 73 bool IsDedicatedExit = true; 74 for (auto *PredBB : predecessors(BB)) 75 if (L->contains(PredBB)) { 76 if (isa<IndirectBrInst>(PredBB->getTerminator())) 77 // We cannot rewrite exiting edges from an indirectbr. 78 return false; 79 80 InLoopPredecessors.push_back(PredBB); 81 } else { 82 IsDedicatedExit = false; 83 } 84 85 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 86 87 // Nothing to do if this is already a dedicated exit. 88 if (IsDedicatedExit) 89 return false; 90 91 auto *NewExitBB = SplitBlockPredecessors( 92 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 93 94 if (!NewExitBB) 95 LLVM_DEBUG( 96 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 97 << *L << "\n"); 98 else 99 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 100 << NewExitBB->getName() << "\n"); 101 return true; 102 }; 103 104 // Walk the exit blocks directly rather than building up a data structure for 105 // them, but only visit each one once. 106 SmallPtrSet<BasicBlock *, 4> Visited; 107 for (auto *BB : L->blocks()) 108 for (auto *SuccBB : successors(BB)) { 109 // We're looking for exit blocks so skip in-loop successors. 110 if (L->contains(SuccBB)) 111 continue; 112 113 // Visit each exit block exactly once. 114 if (!Visited.insert(SuccBB).second) 115 continue; 116 117 Changed |= RewriteExit(SuccBB); 118 } 119 120 return Changed; 121 } 122 123 /// Returns the instructions that use values defined in the loop. 124 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 125 SmallVector<Instruction *, 8> UsedOutside; 126 127 for (auto *Block : L->getBlocks()) 128 // FIXME: I believe that this could use copy_if if the Inst reference could 129 // be adapted into a pointer. 130 for (auto &Inst : *Block) { 131 auto Users = Inst.users(); 132 if (any_of(Users, [&](User *U) { 133 auto *Use = cast<Instruction>(U); 134 return !L->contains(Use->getParent()); 135 })) 136 UsedOutside.push_back(&Inst); 137 } 138 139 return UsedOutside; 140 } 141 142 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 143 // By definition, all loop passes need the LoopInfo analysis and the 144 // Dominator tree it depends on. Because they all participate in the loop 145 // pass manager, they must also preserve these. 146 AU.addRequired<DominatorTreeWrapperPass>(); 147 AU.addPreserved<DominatorTreeWrapperPass>(); 148 AU.addRequired<LoopInfoWrapperPass>(); 149 AU.addPreserved<LoopInfoWrapperPass>(); 150 151 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 152 // here because users shouldn't directly get them from this header. 153 extern char &LoopSimplifyID; 154 extern char &LCSSAID; 155 AU.addRequiredID(LoopSimplifyID); 156 AU.addPreservedID(LoopSimplifyID); 157 AU.addRequiredID(LCSSAID); 158 AU.addPreservedID(LCSSAID); 159 // This is used in the LPPassManager to perform LCSSA verification on passes 160 // which preserve lcssa form 161 AU.addRequired<LCSSAVerificationPass>(); 162 AU.addPreserved<LCSSAVerificationPass>(); 163 164 // Loop passes are designed to run inside of a loop pass manager which means 165 // that any function analyses they require must be required by the first loop 166 // pass in the manager (so that it is computed before the loop pass manager 167 // runs) and preserved by all loop pasess in the manager. To make this 168 // reasonably robust, the set needed for most loop passes is maintained here. 169 // If your loop pass requires an analysis not listed here, you will need to 170 // carefully audit the loop pass manager nesting structure that results. 171 AU.addRequired<AAResultsWrapperPass>(); 172 AU.addPreserved<AAResultsWrapperPass>(); 173 AU.addPreserved<BasicAAWrapperPass>(); 174 AU.addPreserved<GlobalsAAWrapperPass>(); 175 AU.addPreserved<SCEVAAWrapperPass>(); 176 AU.addRequired<ScalarEvolutionWrapperPass>(); 177 AU.addPreserved<ScalarEvolutionWrapperPass>(); 178 // FIXME: When all loop passes preserve MemorySSA, it can be required and 179 // preserved here instead of the individual handling in each pass. 180 } 181 182 /// Manually defined generic "LoopPass" dependency initialization. This is used 183 /// to initialize the exact set of passes from above in \c 184 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 185 /// with: 186 /// 187 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 188 /// 189 /// As-if "LoopPass" were a pass. 190 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 191 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 192 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 193 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 194 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 196 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 198 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 200 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 201 } 202 203 /// Create MDNode for input string. 204 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 205 LLVMContext &Context = TheLoop->getHeader()->getContext(); 206 Metadata *MDs[] = { 207 MDString::get(Context, Name), 208 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 209 return MDNode::get(Context, MDs); 210 } 211 212 /// Set input string into loop metadata by keeping other values intact. 213 /// If the string is already in loop metadata update value if it is 214 /// different. 215 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 216 unsigned V) { 217 SmallVector<Metadata *, 4> MDs(1); 218 // If the loop already has metadata, retain it. 219 MDNode *LoopID = TheLoop->getLoopID(); 220 if (LoopID) { 221 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 222 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 223 // If it is of form key = value, try to parse it. 224 if (Node->getNumOperands() == 2) { 225 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 226 if (S && S->getString() == StringMD) { 227 ConstantInt *IntMD = 228 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 229 if (IntMD && IntMD->getSExtValue() == V) 230 // It is already in place. Do nothing. 231 return; 232 // We need to update the value, so just skip it here and it will 233 // be added after copying other existed nodes. 234 continue; 235 } 236 } 237 MDs.push_back(Node); 238 } 239 } 240 // Add new metadata. 241 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 242 // Replace current metadata node with new one. 243 LLVMContext &Context = TheLoop->getHeader()->getContext(); 244 MDNode *NewLoopID = MDNode::get(Context, MDs); 245 // Set operand 0 to refer to the loop id itself. 246 NewLoopID->replaceOperandWith(0, NewLoopID); 247 TheLoop->setLoopID(NewLoopID); 248 } 249 250 std::optional<ElementCount> 251 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 252 std::optional<int> Width = 253 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 254 255 if (Width) { 256 std::optional<int> IsScalable = getOptionalIntLoopAttribute( 257 TheLoop, "llvm.loop.vectorize.scalable.enable"); 258 return ElementCount::get(*Width, IsScalable.value_or(false)); 259 } 260 261 return std::nullopt; 262 } 263 264 std::optional<MDNode *> llvm::makeFollowupLoopID( 265 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 266 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 267 if (!OrigLoopID) { 268 if (AlwaysNew) 269 return nullptr; 270 return std::nullopt; 271 } 272 273 assert(OrigLoopID->getOperand(0) == OrigLoopID); 274 275 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 276 bool InheritSomeAttrs = 277 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 278 SmallVector<Metadata *, 8> MDs; 279 MDs.push_back(nullptr); 280 281 bool Changed = false; 282 if (InheritAllAttrs || InheritSomeAttrs) { 283 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 284 MDNode *Op = cast<MDNode>(Existing.get()); 285 286 auto InheritThisAttribute = [InheritSomeAttrs, 287 InheritOptionsExceptPrefix](MDNode *Op) { 288 if (!InheritSomeAttrs) 289 return false; 290 291 // Skip malformatted attribute metadata nodes. 292 if (Op->getNumOperands() == 0) 293 return true; 294 Metadata *NameMD = Op->getOperand(0).get(); 295 if (!isa<MDString>(NameMD)) 296 return true; 297 StringRef AttrName = cast<MDString>(NameMD)->getString(); 298 299 // Do not inherit excluded attributes. 300 return !AttrName.starts_with(InheritOptionsExceptPrefix); 301 }; 302 303 if (InheritThisAttribute(Op)) 304 MDs.push_back(Op); 305 else 306 Changed = true; 307 } 308 } else { 309 // Modified if we dropped at least one attribute. 310 Changed = OrigLoopID->getNumOperands() > 1; 311 } 312 313 bool HasAnyFollowup = false; 314 for (StringRef OptionName : FollowupOptions) { 315 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 316 if (!FollowupNode) 317 continue; 318 319 HasAnyFollowup = true; 320 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 321 MDs.push_back(Option.get()); 322 Changed = true; 323 } 324 } 325 326 // Attributes of the followup loop not specified explicity, so signal to the 327 // transformation pass to add suitable attributes. 328 if (!AlwaysNew && !HasAnyFollowup) 329 return std::nullopt; 330 331 // If no attributes were added or remove, the previous loop Id can be reused. 332 if (!AlwaysNew && !Changed) 333 return OrigLoopID; 334 335 // No attributes is equivalent to having no !llvm.loop metadata at all. 336 if (MDs.size() == 1) 337 return nullptr; 338 339 // Build the new loop ID. 340 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 341 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 342 return FollowupLoopID; 343 } 344 345 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 346 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 347 } 348 349 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 350 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 351 } 352 353 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 354 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 355 return TM_SuppressedByUser; 356 357 std::optional<int> Count = 358 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 359 if (Count) 360 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 361 362 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 363 return TM_ForcedByUser; 364 365 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 366 return TM_ForcedByUser; 367 368 if (hasDisableAllTransformsHint(L)) 369 return TM_Disable; 370 371 return TM_Unspecified; 372 } 373 374 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 375 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 376 return TM_SuppressedByUser; 377 378 std::optional<int> Count = 379 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 380 if (Count) 381 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 382 383 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 384 return TM_ForcedByUser; 385 386 if (hasDisableAllTransformsHint(L)) 387 return TM_Disable; 388 389 return TM_Unspecified; 390 } 391 392 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 393 std::optional<bool> Enable = 394 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 395 396 if (Enable == false) 397 return TM_SuppressedByUser; 398 399 std::optional<ElementCount> VectorizeWidth = 400 getOptionalElementCountLoopAttribute(L); 401 std::optional<int> InterleaveCount = 402 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 403 404 // 'Forcing' vector width and interleave count to one effectively disables 405 // this tranformation. 406 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 407 InterleaveCount == 1) 408 return TM_SuppressedByUser; 409 410 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 411 return TM_Disable; 412 413 if (Enable == true) 414 return TM_ForcedByUser; 415 416 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 417 return TM_Disable; 418 419 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 420 return TM_Enable; 421 422 if (hasDisableAllTransformsHint(L)) 423 return TM_Disable; 424 425 return TM_Unspecified; 426 } 427 428 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 429 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 430 return TM_ForcedByUser; 431 432 if (hasDisableAllTransformsHint(L)) 433 return TM_Disable; 434 435 return TM_Unspecified; 436 } 437 438 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 439 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 440 return TM_SuppressedByUser; 441 442 if (hasDisableAllTransformsHint(L)) 443 return TM_Disable; 444 445 return TM_Unspecified; 446 } 447 448 /// Does a BFS from a given node to all of its children inside a given loop. 449 /// The returned vector of nodes includes the starting point. 450 SmallVector<DomTreeNode *, 16> 451 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 452 SmallVector<DomTreeNode *, 16> Worklist; 453 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 454 // Only include subregions in the top level loop. 455 BasicBlock *BB = DTN->getBlock(); 456 if (CurLoop->contains(BB)) 457 Worklist.push_back(DTN); 458 }; 459 460 AddRegionToWorklist(N); 461 462 for (size_t I = 0; I < Worklist.size(); I++) { 463 for (DomTreeNode *Child : Worklist[I]->children()) 464 AddRegionToWorklist(Child); 465 } 466 467 return Worklist; 468 } 469 470 bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) { 471 int LatchIdx = PN->getBasicBlockIndex(LatchBlock); 472 assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode"); 473 Value *IncV = PN->getIncomingValue(LatchIdx); 474 475 for (User *U : PN->users()) 476 if (U != Cond && U != IncV) return false; 477 478 for (User *U : IncV->users()) 479 if (U != Cond && U != PN) return false; 480 return true; 481 } 482 483 484 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 485 LoopInfo *LI, MemorySSA *MSSA) { 486 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 487 auto *Preheader = L->getLoopPreheader(); 488 assert(Preheader && "Preheader should exist!"); 489 490 std::unique_ptr<MemorySSAUpdater> MSSAU; 491 if (MSSA) 492 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 493 494 // Now that we know the removal is safe, remove the loop by changing the 495 // branch from the preheader to go to the single exit block. 496 // 497 // Because we're deleting a large chunk of code at once, the sequence in which 498 // we remove things is very important to avoid invalidation issues. 499 500 // Tell ScalarEvolution that the loop is deleted. Do this before 501 // deleting the loop so that ScalarEvolution can look at the loop 502 // to determine what it needs to clean up. 503 if (SE) { 504 SE->forgetLoop(L); 505 SE->forgetBlockAndLoopDispositions(); 506 } 507 508 Instruction *OldTerm = Preheader->getTerminator(); 509 assert(!OldTerm->mayHaveSideEffects() && 510 "Preheader must end with a side-effect-free terminator"); 511 assert(OldTerm->getNumSuccessors() == 1 && 512 "Preheader must have a single successor"); 513 // Connect the preheader to the exit block. Keep the old edge to the header 514 // around to perform the dominator tree update in two separate steps 515 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 516 // preheader -> header. 517 // 518 // 519 // 0. Preheader 1. Preheader 2. Preheader 520 // | | | | 521 // V | V | 522 // Header <--\ | Header <--\ | Header <--\ 523 // | | | | | | | | | | | 524 // | V | | | V | | | V | 525 // | Body --/ | | Body --/ | | Body --/ 526 // V V V V V 527 // Exit Exit Exit 528 // 529 // By doing this is two separate steps we can perform the dominator tree 530 // update without using the batch update API. 531 // 532 // Even when the loop is never executed, we cannot remove the edge from the 533 // source block to the exit block. Consider the case where the unexecuted loop 534 // branches back to an outer loop. If we deleted the loop and removed the edge 535 // coming to this inner loop, this will break the outer loop structure (by 536 // deleting the backedge of the outer loop). If the outer loop is indeed a 537 // non-loop, it will be deleted in a future iteration of loop deletion pass. 538 IRBuilder<> Builder(OldTerm); 539 540 auto *ExitBlock = L->getUniqueExitBlock(); 541 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 542 if (ExitBlock) { 543 assert(ExitBlock && "Should have a unique exit block!"); 544 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 545 546 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 547 // Remove the old branch. The conditional branch becomes a new terminator. 548 OldTerm->eraseFromParent(); 549 550 // Rewrite phis in the exit block to get their inputs from the Preheader 551 // instead of the exiting block. 552 for (PHINode &P : ExitBlock->phis()) { 553 // Set the zero'th element of Phi to be from the preheader and remove all 554 // other incoming values. Given the loop has dedicated exits, all other 555 // incoming values must be from the exiting blocks. 556 int PredIndex = 0; 557 P.setIncomingBlock(PredIndex, Preheader); 558 // Removes all incoming values from all other exiting blocks (including 559 // duplicate values from an exiting block). 560 // Nuke all entries except the zero'th entry which is the preheader entry. 561 P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; }, 562 /* DeletePHIIfEmpty */ false); 563 564 assert((P.getNumIncomingValues() == 1 && 565 P.getIncomingBlock(PredIndex) == Preheader) && 566 "Should have exactly one value and that's from the preheader!"); 567 } 568 569 if (DT) { 570 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 571 if (MSSA) { 572 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 573 *DT); 574 if (VerifyMemorySSA) 575 MSSA->verifyMemorySSA(); 576 } 577 } 578 579 // Disconnect the loop body by branching directly to its exit. 580 Builder.SetInsertPoint(Preheader->getTerminator()); 581 Builder.CreateBr(ExitBlock); 582 // Remove the old branch. 583 Preheader->getTerminator()->eraseFromParent(); 584 } else { 585 assert(L->hasNoExitBlocks() && 586 "Loop should have either zero or one exit blocks."); 587 588 Builder.SetInsertPoint(OldTerm); 589 Builder.CreateUnreachable(); 590 Preheader->getTerminator()->eraseFromParent(); 591 } 592 593 if (DT) { 594 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 595 if (MSSA) { 596 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 597 *DT); 598 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 599 L->block_end()); 600 MSSAU->removeBlocks(DeadBlockSet); 601 if (VerifyMemorySSA) 602 MSSA->verifyMemorySSA(); 603 } 604 } 605 606 // Use a map to unique and a vector to guarantee deterministic ordering. 607 llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet; 608 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 609 llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords; 610 611 if (ExitBlock) { 612 if (ExitBlock->phis().empty()) { 613 // As the loop is deleted, replace the debug users with the preserved 614 // induction variable final value recorded by the 'indvar' pass. 615 Value *FinalValue = L->getDebugInductionVariableFinalValue(); 616 SmallVector<WeakVH> &DbgUsers = L->getDebugInductionVariableDebugUsers(); 617 for (WeakVH &DebugUser : DbgUsers) 618 if (DebugUser) 619 cast<DbgVariableIntrinsic>(DebugUser)->replaceVariableLocationOp( 620 0u, FinalValue); 621 } 622 623 // Given LCSSA form is satisfied, we should not have users of instructions 624 // within the dead loop outside of the loop. However, LCSSA doesn't take 625 // unreachable uses into account. We handle them here. 626 // We could do it after drop all references (in this case all users in the 627 // loop will be already eliminated and we have less work to do but according 628 // to API doc of User::dropAllReferences only valid operation after dropping 629 // references, is deletion. So let's substitute all usages of 630 // instruction from the loop with poison value of corresponding type first. 631 for (auto *Block : L->blocks()) 632 for (Instruction &I : *Block) { 633 auto *Poison = PoisonValue::get(I.getType()); 634 for (Use &U : llvm::make_early_inc_range(I.uses())) { 635 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 636 if (L->contains(Usr->getParent())) 637 continue; 638 // If we have a DT then we can check that uses outside a loop only in 639 // unreachable block. 640 if (DT) 641 assert(!DT->isReachableFromEntry(U) && 642 "Unexpected user in reachable block"); 643 U.set(Poison); 644 } 645 646 // RemoveDIs: do the same as below for DbgVariableRecords. 647 if (Block->IsNewDbgInfoFormat) { 648 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 649 filterDbgVars(I.getDbgRecordRange()))) { 650 DebugVariable Key(DVR.getVariable(), DVR.getExpression(), 651 DVR.getDebugLoc().get()); 652 if (!DeadDebugSet.insert(Key).second) 653 continue; 654 // Unlinks the DVR from it's container, for later insertion. 655 DVR.removeFromParent(); 656 DeadDbgVariableRecords.push_back(&DVR); 657 } 658 } 659 660 // For one of each variable encountered, preserve a debug intrinsic (set 661 // to Poison) and transfer it to the loop exit. This terminates any 662 // variable locations that were set during the loop. 663 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 664 if (!DVI) 665 continue; 666 if (!DeadDebugSet.insert(DebugVariable(DVI)).second) 667 continue; 668 DeadDebugInst.push_back(DVI); 669 } 670 671 // After the loop has been deleted all the values defined and modified 672 // inside the loop are going to be unavailable. Values computed in the 673 // loop will have been deleted, automatically causing their debug uses 674 // be be replaced with undef. Loop invariant values will still be available. 675 // Move dbg.values out the loop so that earlier location ranges are still 676 // terminated and loop invariant assignments are preserved. 677 DIBuilder DIB(*ExitBlock->getModule()); 678 BasicBlock::iterator InsertDbgValueBefore = 679 ExitBlock->getFirstInsertionPt(); 680 assert(InsertDbgValueBefore != ExitBlock->end() && 681 "There should be a non-PHI instruction in exit block, else these " 682 "instructions will have no parent."); 683 684 for (auto *DVI : DeadDebugInst) 685 DVI->moveBefore(*ExitBlock, InsertDbgValueBefore); 686 687 // Due to the "head" bit in BasicBlock::iterator, we're going to insert 688 // each DbgVariableRecord right at the start of the block, wheras dbg.values 689 // would be repeatedly inserted before the first instruction. To replicate 690 // this behaviour, do it backwards. 691 for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords)) 692 ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore); 693 } 694 695 // Remove the block from the reference counting scheme, so that we can 696 // delete it freely later. 697 for (auto *Block : L->blocks()) 698 Block->dropAllReferences(); 699 700 if (MSSA && VerifyMemorySSA) 701 MSSA->verifyMemorySSA(); 702 703 if (LI) { 704 // Erase the instructions and the blocks without having to worry 705 // about ordering because we already dropped the references. 706 // NOTE: This iteration is safe because erasing the block does not remove 707 // its entry from the loop's block list. We do that in the next section. 708 for (BasicBlock *BB : L->blocks()) 709 BB->eraseFromParent(); 710 711 // Finally, the blocks from loopinfo. This has to happen late because 712 // otherwise our loop iterators won't work. 713 714 SmallPtrSet<BasicBlock *, 8> blocks; 715 blocks.insert(L->block_begin(), L->block_end()); 716 for (BasicBlock *BB : blocks) 717 LI->removeBlock(BB); 718 719 // The last step is to update LoopInfo now that we've eliminated this loop. 720 // Note: LoopInfo::erase remove the given loop and relink its subloops with 721 // its parent. While removeLoop/removeChildLoop remove the given loop but 722 // not relink its subloops, which is what we want. 723 if (Loop *ParentLoop = L->getParentLoop()) { 724 Loop::iterator I = find(*ParentLoop, L); 725 assert(I != ParentLoop->end() && "Couldn't find loop"); 726 ParentLoop->removeChildLoop(I); 727 } else { 728 Loop::iterator I = find(*LI, L); 729 assert(I != LI->end() && "Couldn't find loop"); 730 LI->removeLoop(I); 731 } 732 LI->destroy(L); 733 } 734 } 735 736 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 737 LoopInfo &LI, MemorySSA *MSSA) { 738 auto *Latch = L->getLoopLatch(); 739 assert(Latch && "multiple latches not yet supported"); 740 auto *Header = L->getHeader(); 741 Loop *OutermostLoop = L->getOutermostLoop(); 742 743 SE.forgetLoop(L); 744 SE.forgetBlockAndLoopDispositions(); 745 746 std::unique_ptr<MemorySSAUpdater> MSSAU; 747 if (MSSA) 748 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 749 750 // Update the CFG and domtree. We chose to special case a couple of 751 // of common cases for code quality and test readability reasons. 752 [&]() -> void { 753 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) { 754 if (!BI->isConditional()) { 755 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 756 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU, 757 MSSAU.get()); 758 return; 759 } 760 761 // Conditional latch/exit - note that latch can be shared by inner 762 // and outer loop so the other target doesn't need to an exit 763 if (L->isLoopExiting(Latch)) { 764 // TODO: Generalize ConstantFoldTerminator so that it can be used 765 // here without invalidating LCSSA or MemorySSA. (Tricky case for 766 // LCSSA: header is an exit block of a preceeding sibling loop w/o 767 // dedicated exits.) 768 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0; 769 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx); 770 771 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 772 Header->removePredecessor(Latch, true); 773 774 IRBuilder<> Builder(BI); 775 auto *NewBI = Builder.CreateBr(ExitBB); 776 // Transfer the metadata to the new branch instruction (minus the 777 // loop info since this is no longer a loop) 778 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg, 779 LLVMContext::MD_annotation}); 780 781 BI->eraseFromParent(); 782 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}}); 783 if (MSSA) 784 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT); 785 return; 786 } 787 } 788 789 // General case. By splitting the backedge, and then explicitly making it 790 // unreachable we gracefully handle corner cases such as switch and invoke 791 // termiantors. 792 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 793 794 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 795 (void)changeToUnreachable(BackedgeBB->getTerminator(), 796 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 797 }(); 798 799 // Erase (and destroy) this loop instance. Handles relinking sub-loops 800 // and blocks within the loop as needed. 801 LI.erase(L); 802 803 // If the loop we broke had a parent, then changeToUnreachable might have 804 // caused a block to be removed from the parent loop (see loop_nest_lcssa 805 // test case in zero-btc.ll for an example), thus changing the parent's 806 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 807 // loop which might have a had a block removed. 808 if (OutermostLoop != L) 809 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 810 } 811 812 813 /// Checks if \p L has an exiting latch branch. There may also be other 814 /// exiting blocks. Returns branch instruction terminating the loop 815 /// latch if above check is successful, nullptr otherwise. 816 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 817 BasicBlock *Latch = L->getLoopLatch(); 818 if (!Latch) 819 return nullptr; 820 821 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 822 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 823 return nullptr; 824 825 assert((LatchBR->getSuccessor(0) == L->getHeader() || 826 LatchBR->getSuccessor(1) == L->getHeader()) && 827 "At least one edge out of the latch must go to the header"); 828 829 return LatchBR; 830 } 831 832 /// Return the estimated trip count for any exiting branch which dominates 833 /// the loop latch. 834 static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch, 835 Loop *L, 836 uint64_t &OrigExitWeight) { 837 // To estimate the number of times the loop body was executed, we want to 838 // know the number of times the backedge was taken, vs. the number of times 839 // we exited the loop. 840 uint64_t LoopWeight, ExitWeight; 841 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight)) 842 return std::nullopt; 843 844 if (L->contains(ExitingBranch->getSuccessor(1))) 845 std::swap(LoopWeight, ExitWeight); 846 847 if (!ExitWeight) 848 // Don't have a way to return predicated infinite 849 return std::nullopt; 850 851 OrigExitWeight = ExitWeight; 852 853 // Estimated exit count is a ratio of the loop weight by the weight of the 854 // edge exiting the loop, rounded to nearest. 855 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight); 856 // Estimated trip count is one plus estimated exit count. 857 return ExitCount + 1; 858 } 859 860 std::optional<unsigned> 861 llvm::getLoopEstimatedTripCount(Loop *L, 862 unsigned *EstimatedLoopInvocationWeight) { 863 // Currently we take the estimate exit count only from the loop latch, 864 // ignoring other exiting blocks. This can overestimate the trip count 865 // if we exit through another exit, but can never underestimate it. 866 // TODO: incorporate information from other exits 867 if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) { 868 uint64_t ExitWeight; 869 if (std::optional<uint64_t> EstTripCount = 870 getEstimatedTripCount(LatchBranch, L, ExitWeight)) { 871 if (EstimatedLoopInvocationWeight) 872 *EstimatedLoopInvocationWeight = ExitWeight; 873 return *EstTripCount; 874 } 875 } 876 return std::nullopt; 877 } 878 879 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 880 unsigned EstimatedloopInvocationWeight) { 881 // At the moment, we currently support changing the estimate trip count of 882 // the latch branch only. We could extend this API to manipulate estimated 883 // trip counts for any exit. 884 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 885 if (!LatchBranch) 886 return false; 887 888 // Calculate taken and exit weights. 889 unsigned LatchExitWeight = 0; 890 unsigned BackedgeTakenWeight = 0; 891 892 if (EstimatedTripCount > 0) { 893 LatchExitWeight = EstimatedloopInvocationWeight; 894 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 895 } 896 897 // Make a swap if back edge is taken when condition is "false". 898 if (LatchBranch->getSuccessor(0) != L->getHeader()) 899 std::swap(BackedgeTakenWeight, LatchExitWeight); 900 901 MDBuilder MDB(LatchBranch->getContext()); 902 903 // Set/Update profile metadata. 904 LatchBranch->setMetadata( 905 LLVMContext::MD_prof, 906 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 907 908 return true; 909 } 910 911 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 912 ScalarEvolution &SE) { 913 Loop *OuterL = InnerLoop->getParentLoop(); 914 if (!OuterL) 915 return true; 916 917 // Get the backedge taken count for the inner loop 918 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 919 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 920 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 921 !InnerLoopBECountSC->getType()->isIntegerTy()) 922 return false; 923 924 // Get whether count is invariant to the outer loop 925 ScalarEvolution::LoopDisposition LD = 926 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 927 if (LD != ScalarEvolution::LoopInvariant) 928 return false; 929 930 return true; 931 } 932 933 unsigned llvm::getArithmeticReductionInstruction(Intrinsic::ID RdxID) { 934 switch (RdxID) { 935 case Intrinsic::vector_reduce_fadd: 936 return Instruction::FAdd; 937 case Intrinsic::vector_reduce_fmul: 938 return Instruction::FMul; 939 case Intrinsic::vector_reduce_add: 940 return Instruction::Add; 941 case Intrinsic::vector_reduce_mul: 942 return Instruction::Mul; 943 case Intrinsic::vector_reduce_and: 944 return Instruction::And; 945 case Intrinsic::vector_reduce_or: 946 return Instruction::Or; 947 case Intrinsic::vector_reduce_xor: 948 return Instruction::Xor; 949 case Intrinsic::vector_reduce_smax: 950 case Intrinsic::vector_reduce_smin: 951 case Intrinsic::vector_reduce_umax: 952 case Intrinsic::vector_reduce_umin: 953 return Instruction::ICmp; 954 case Intrinsic::vector_reduce_fmax: 955 case Intrinsic::vector_reduce_fmin: 956 return Instruction::FCmp; 957 default: 958 llvm_unreachable("Unexpected ID"); 959 } 960 } 961 962 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID) { 963 switch (RdxID) { 964 default: 965 llvm_unreachable("Unknown min/max recurrence kind"); 966 case Intrinsic::vector_reduce_umin: 967 return Intrinsic::umin; 968 case Intrinsic::vector_reduce_umax: 969 return Intrinsic::umax; 970 case Intrinsic::vector_reduce_smin: 971 return Intrinsic::smin; 972 case Intrinsic::vector_reduce_smax: 973 return Intrinsic::smax; 974 case Intrinsic::vector_reduce_fmin: 975 return Intrinsic::minnum; 976 case Intrinsic::vector_reduce_fmax: 977 return Intrinsic::maxnum; 978 case Intrinsic::vector_reduce_fminimum: 979 return Intrinsic::minimum; 980 case Intrinsic::vector_reduce_fmaximum: 981 return Intrinsic::maximum; 982 } 983 } 984 985 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) { 986 switch (RK) { 987 default: 988 llvm_unreachable("Unknown min/max recurrence kind"); 989 case RecurKind::UMin: 990 return Intrinsic::umin; 991 case RecurKind::UMax: 992 return Intrinsic::umax; 993 case RecurKind::SMin: 994 return Intrinsic::smin; 995 case RecurKind::SMax: 996 return Intrinsic::smax; 997 case RecurKind::FMin: 998 return Intrinsic::minnum; 999 case RecurKind::FMax: 1000 return Intrinsic::maxnum; 1001 case RecurKind::FMinimum: 1002 return Intrinsic::minimum; 1003 case RecurKind::FMaximum: 1004 return Intrinsic::maximum; 1005 } 1006 } 1007 1008 RecurKind llvm::getMinMaxReductionRecurKind(Intrinsic::ID RdxID) { 1009 switch (RdxID) { 1010 case Intrinsic::vector_reduce_smax: 1011 return RecurKind::SMax; 1012 case Intrinsic::vector_reduce_smin: 1013 return RecurKind::SMin; 1014 case Intrinsic::vector_reduce_umax: 1015 return RecurKind::UMax; 1016 case Intrinsic::vector_reduce_umin: 1017 return RecurKind::UMin; 1018 case Intrinsic::vector_reduce_fmax: 1019 return RecurKind::FMax; 1020 case Intrinsic::vector_reduce_fmin: 1021 return RecurKind::FMin; 1022 default: 1023 return RecurKind::None; 1024 } 1025 } 1026 1027 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) { 1028 switch (RK) { 1029 default: 1030 llvm_unreachable("Unknown min/max recurrence kind"); 1031 case RecurKind::UMin: 1032 return CmpInst::ICMP_ULT; 1033 case RecurKind::UMax: 1034 return CmpInst::ICMP_UGT; 1035 case RecurKind::SMin: 1036 return CmpInst::ICMP_SLT; 1037 case RecurKind::SMax: 1038 return CmpInst::ICMP_SGT; 1039 case RecurKind::FMin: 1040 return CmpInst::FCMP_OLT; 1041 case RecurKind::FMax: 1042 return CmpInst::FCMP_OGT; 1043 // We do not add FMinimum/FMaximum recurrence kind here since there is no 1044 // equivalent predicate which compares signed zeroes according to the 1045 // semantics of the intrinsics (llvm.minimum/maximum). 1046 } 1047 } 1048 1049 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 1050 Value *Right) { 1051 Type *Ty = Left->getType(); 1052 if (Ty->isIntOrIntVectorTy() || 1053 (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) { 1054 // TODO: Add float minnum/maxnum support when FMF nnan is set. 1055 Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK); 1056 return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr, 1057 "rdx.minmax"); 1058 } 1059 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK); 1060 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 1061 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 1062 return Select; 1063 } 1064 1065 // Helper to generate an ordered reduction. 1066 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 1067 unsigned Op, RecurKind RdxKind) { 1068 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 1069 1070 // Extract and apply reduction ops in ascending order: 1071 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 1072 Value *Result = Acc; 1073 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 1074 Value *Ext = 1075 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 1076 1077 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1078 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 1079 "bin.rdx"); 1080 } else { 1081 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1082 "Invalid min/max"); 1083 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 1084 } 1085 } 1086 1087 return Result; 1088 } 1089 1090 // Helper to generate a log2 shuffle reduction. 1091 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 1092 unsigned Op, RecurKind RdxKind) { 1093 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 1094 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 1095 // and vector ops, reducing the set of values being computed by half each 1096 // round. 1097 assert(isPowerOf2_32(VF) && 1098 "Reduction emission only supported for pow2 vectors!"); 1099 // Note: fast-math-flags flags are controlled by the builder configuration 1100 // and are assumed to apply to all generated arithmetic instructions. Other 1101 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part 1102 // of the builder configuration, and since they're not passed explicitly, 1103 // will never be relevant here. Note that it would be generally unsound to 1104 // propagate these from an intrinsic call to the expansion anyways as we/ 1105 // change the order of operations. 1106 Value *TmpVec = Src; 1107 SmallVector<int, 32> ShuffleMask(VF); 1108 for (unsigned i = VF; i != 1; i >>= 1) { 1109 // Move the upper half of the vector to the lower half. 1110 for (unsigned j = 0; j != i / 2; ++j) 1111 ShuffleMask[j] = i / 2 + j; 1112 1113 // Fill the rest of the mask with undef. 1114 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 1115 1116 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 1117 1118 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1119 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 1120 "bin.rdx"); 1121 } else { 1122 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1123 "Invalid min/max"); 1124 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 1125 } 1126 } 1127 // The result is in the first element of the vector. 1128 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1129 } 1130 1131 Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src, 1132 const RecurrenceDescriptor &Desc, 1133 PHINode *OrigPhi) { 1134 assert( 1135 RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) && 1136 "Unexpected reduction kind"); 1137 Value *InitVal = Desc.getRecurrenceStartValue(); 1138 Value *NewVal = nullptr; 1139 1140 // First use the original phi to determine the new value we're trying to 1141 // select from in the loop. 1142 SelectInst *SI = nullptr; 1143 for (auto *U : OrigPhi->users()) { 1144 if ((SI = dyn_cast<SelectInst>(U))) 1145 break; 1146 } 1147 assert(SI && "One user of the original phi should be a select"); 1148 1149 if (SI->getTrueValue() == OrigPhi) 1150 NewVal = SI->getFalseValue(); 1151 else { 1152 assert(SI->getFalseValue() == OrigPhi && 1153 "At least one input to the select should be the original Phi"); 1154 NewVal = SI->getTrueValue(); 1155 } 1156 1157 // If any predicate is true it means that we want to select the new value. 1158 Value *AnyOf = 1159 Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src; 1160 // The compares in the loop may yield poison, which propagates through the 1161 // bitwise ORs. Freeze it here before the condition is used. 1162 AnyOf = Builder.CreateFreeze(AnyOf); 1163 return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select"); 1164 } 1165 1166 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src, 1167 RecurKind RdxKind) { 1168 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1169 switch (RdxKind) { 1170 case RecurKind::Add: 1171 return Builder.CreateAddReduce(Src); 1172 case RecurKind::Mul: 1173 return Builder.CreateMulReduce(Src); 1174 case RecurKind::And: 1175 return Builder.CreateAndReduce(Src); 1176 case RecurKind::Or: 1177 return Builder.CreateOrReduce(Src); 1178 case RecurKind::Xor: 1179 return Builder.CreateXorReduce(Src); 1180 case RecurKind::FMulAdd: 1181 case RecurKind::FAdd: 1182 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1183 Src); 1184 case RecurKind::FMul: 1185 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1186 case RecurKind::SMax: 1187 return Builder.CreateIntMaxReduce(Src, true); 1188 case RecurKind::SMin: 1189 return Builder.CreateIntMinReduce(Src, true); 1190 case RecurKind::UMax: 1191 return Builder.CreateIntMaxReduce(Src, false); 1192 case RecurKind::UMin: 1193 return Builder.CreateIntMinReduce(Src, false); 1194 case RecurKind::FMax: 1195 return Builder.CreateFPMaxReduce(Src); 1196 case RecurKind::FMin: 1197 return Builder.CreateFPMinReduce(Src); 1198 case RecurKind::FMinimum: 1199 return Builder.CreateFPMinimumReduce(Src); 1200 case RecurKind::FMaximum: 1201 return Builder.CreateFPMaximumReduce(Src); 1202 default: 1203 llvm_unreachable("Unhandled opcode"); 1204 } 1205 } 1206 1207 Value *llvm::createTargetReduction(IRBuilderBase &B, 1208 const RecurrenceDescriptor &Desc, Value *Src, 1209 PHINode *OrigPhi) { 1210 // TODO: Support in-order reductions based on the recurrence descriptor. 1211 // All ops in the reduction inherit fast-math-flags from the recurrence 1212 // descriptor. 1213 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1214 B.setFastMathFlags(Desc.getFastMathFlags()); 1215 1216 RecurKind RK = Desc.getRecurrenceKind(); 1217 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) 1218 return createAnyOfTargetReduction(B, Src, Desc, OrigPhi); 1219 1220 return createSimpleTargetReduction(B, Src, RK); 1221 } 1222 1223 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1224 const RecurrenceDescriptor &Desc, 1225 Value *Src, Value *Start) { 1226 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1227 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1228 "Unexpected reduction kind"); 1229 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1230 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1231 1232 return B.CreateFAddReduce(Start, Src); 1233 } 1234 1235 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue, 1236 bool IncludeWrapFlags) { 1237 auto *VecOp = dyn_cast<Instruction>(I); 1238 if (!VecOp) 1239 return; 1240 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1241 : dyn_cast<Instruction>(OpValue); 1242 if (!Intersection) 1243 return; 1244 const unsigned Opcode = Intersection->getOpcode(); 1245 VecOp->copyIRFlags(Intersection, IncludeWrapFlags); 1246 for (auto *V : VL) { 1247 auto *Instr = dyn_cast<Instruction>(V); 1248 if (!Instr) 1249 continue; 1250 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1251 VecOp->andIRFlags(V); 1252 } 1253 } 1254 1255 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1256 ScalarEvolution &SE) { 1257 const SCEV *Zero = SE.getZero(S->getType()); 1258 return SE.isAvailableAtLoopEntry(S, L) && 1259 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1260 } 1261 1262 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1263 ScalarEvolution &SE) { 1264 const SCEV *Zero = SE.getZero(S->getType()); 1265 return SE.isAvailableAtLoopEntry(S, L) && 1266 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1267 } 1268 1269 bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L, 1270 ScalarEvolution &SE) { 1271 const SCEV *Zero = SE.getZero(S->getType()); 1272 return SE.isAvailableAtLoopEntry(S, L) && 1273 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero); 1274 } 1275 1276 bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, 1277 ScalarEvolution &SE) { 1278 const SCEV *Zero = SE.getZero(S->getType()); 1279 return SE.isAvailableAtLoopEntry(S, L) && 1280 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero); 1281 } 1282 1283 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1284 bool Signed) { 1285 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1286 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1287 APInt::getMinValue(BitWidth); 1288 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1289 return SE.isAvailableAtLoopEntry(S, L) && 1290 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1291 SE.getConstant(Min)); 1292 } 1293 1294 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1295 bool Signed) { 1296 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1297 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1298 APInt::getMaxValue(BitWidth); 1299 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1300 return SE.isAvailableAtLoopEntry(S, L) && 1301 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1302 SE.getConstant(Max)); 1303 } 1304 1305 //===----------------------------------------------------------------------===// 1306 // rewriteLoopExitValues - Optimize IV users outside the loop. 1307 // As a side effect, reduces the amount of IV processing within the loop. 1308 //===----------------------------------------------------------------------===// 1309 1310 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1311 SmallPtrSet<const Instruction *, 8> Visited; 1312 SmallVector<const Instruction *, 8> WorkList; 1313 Visited.insert(I); 1314 WorkList.push_back(I); 1315 while (!WorkList.empty()) { 1316 const Instruction *Curr = WorkList.pop_back_val(); 1317 // This use is outside the loop, nothing to do. 1318 if (!L->contains(Curr)) 1319 continue; 1320 // Do we assume it is a "hard" use which will not be eliminated easily? 1321 if (Curr->mayHaveSideEffects()) 1322 return true; 1323 // Otherwise, add all its users to worklist. 1324 for (const auto *U : Curr->users()) { 1325 auto *UI = cast<Instruction>(U); 1326 if (Visited.insert(UI).second) 1327 WorkList.push_back(UI); 1328 } 1329 } 1330 return false; 1331 } 1332 1333 // Collect information about PHI nodes which can be transformed in 1334 // rewriteLoopExitValues. 1335 struct RewritePhi { 1336 PHINode *PN; // For which PHI node is this replacement? 1337 unsigned Ith; // For which incoming value? 1338 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1339 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1340 bool HighCost; // Is this expansion a high-cost? 1341 1342 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1343 bool H) 1344 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1345 HighCost(H) {} 1346 }; 1347 1348 // Check whether it is possible to delete the loop after rewriting exit 1349 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1350 // aggressively. 1351 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1352 BasicBlock *Preheader = L->getLoopPreheader(); 1353 // If there is no preheader, the loop will not be deleted. 1354 if (!Preheader) 1355 return false; 1356 1357 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1358 // We obviate multiple ExitingBlocks case for simplicity. 1359 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1360 // after exit value rewriting, we can enhance the logic here. 1361 SmallVector<BasicBlock *, 4> ExitingBlocks; 1362 L->getExitingBlocks(ExitingBlocks); 1363 SmallVector<BasicBlock *, 8> ExitBlocks; 1364 L->getUniqueExitBlocks(ExitBlocks); 1365 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1366 return false; 1367 1368 BasicBlock *ExitBlock = ExitBlocks[0]; 1369 BasicBlock::iterator BI = ExitBlock->begin(); 1370 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1371 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1372 1373 // If the Incoming value of P is found in RewritePhiSet, we know it 1374 // could be rewritten to use a loop invariant value in transformation 1375 // phase later. Skip it in the loop invariant check below. 1376 bool found = false; 1377 for (const RewritePhi &Phi : RewritePhiSet) { 1378 unsigned i = Phi.Ith; 1379 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1380 found = true; 1381 break; 1382 } 1383 } 1384 1385 Instruction *I; 1386 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1387 if (!L->hasLoopInvariantOperands(I)) 1388 return false; 1389 1390 ++BI; 1391 } 1392 1393 for (auto *BB : L->blocks()) 1394 if (llvm::any_of(*BB, [](Instruction &I) { 1395 return I.mayHaveSideEffects(); 1396 })) 1397 return false; 1398 1399 return true; 1400 } 1401 1402 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi, 1403 /// and returns true if this Phi is an induction phi in the loop. When 1404 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI. 1405 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, 1406 InductionDescriptor &ID) { 1407 if (!Phi) 1408 return false; 1409 if (!L->getLoopPreheader()) 1410 return false; 1411 if (Phi->getParent() != L->getHeader()) 1412 return false; 1413 return InductionDescriptor::isInductionPHI(Phi, L, SE, ID); 1414 } 1415 1416 void llvm::addDebugValuesToIncomingValue(BasicBlock *Successor, Value *IndVar, 1417 PHINode *PN) { 1418 SmallVector<DbgVariableIntrinsic *> DbgUsers; 1419 findDbgUsers(DbgUsers, IndVar); 1420 for (auto *DebugUser : DbgUsers) { 1421 // Skip debug-users with variadic variable locations; they will not, 1422 // get updated, which is fine as that is the existing behaviour. 1423 if (DebugUser->hasArgList()) 1424 continue; 1425 auto *Cloned = cast<DbgVariableIntrinsic>(DebugUser->clone()); 1426 Cloned->replaceVariableLocationOp(0u, PN); 1427 Cloned->insertBefore(*Successor, Successor->getFirstNonPHIIt()); 1428 } 1429 } 1430 1431 void llvm::addDebugValuesToLoopVariable(BasicBlock *Successor, Value *ExitValue, 1432 PHINode *PN) { 1433 SmallVector<DbgVariableIntrinsic *> DbgUsers; 1434 findDbgUsers(DbgUsers, PN); 1435 for (auto *DebugUser : DbgUsers) { 1436 // Skip debug-users with variadic variable locations; they will not, 1437 // get updated, which is fine as that is the existing behaviour. 1438 if (DebugUser->hasArgList()) 1439 continue; 1440 auto *Cloned = cast<DbgVariableIntrinsic>(DebugUser->clone()); 1441 Cloned->replaceVariableLocationOp(0u, ExitValue); 1442 Cloned->insertBefore(*Successor, Successor->getFirstNonPHIIt()); 1443 } 1444 } 1445 1446 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1447 ScalarEvolution *SE, 1448 const TargetTransformInfo *TTI, 1449 SCEVExpander &Rewriter, DominatorTree *DT, 1450 ReplaceExitVal ReplaceExitValue, 1451 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1452 // Check a pre-condition. 1453 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1454 "Indvars did not preserve LCSSA!"); 1455 1456 SmallVector<BasicBlock*, 8> ExitBlocks; 1457 L->getUniqueExitBlocks(ExitBlocks); 1458 1459 SmallVector<RewritePhi, 8> RewritePhiSet; 1460 // Find all values that are computed inside the loop, but used outside of it. 1461 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1462 // the exit blocks of the loop to find them. 1463 for (BasicBlock *ExitBB : ExitBlocks) { 1464 // If there are no PHI nodes in this exit block, then no values defined 1465 // inside the loop are used on this path, skip it. 1466 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1467 if (!PN) continue; 1468 1469 unsigned NumPreds = PN->getNumIncomingValues(); 1470 1471 // Iterate over all of the PHI nodes. 1472 BasicBlock::iterator BBI = ExitBB->begin(); 1473 while ((PN = dyn_cast<PHINode>(BBI++))) { 1474 if (PN->use_empty()) 1475 continue; // dead use, don't replace it 1476 1477 if (!SE->isSCEVable(PN->getType())) 1478 continue; 1479 1480 // Iterate over all of the values in all the PHI nodes. 1481 for (unsigned i = 0; i != NumPreds; ++i) { 1482 // If the value being merged in is not integer or is not defined 1483 // in the loop, skip it. 1484 Value *InVal = PN->getIncomingValue(i); 1485 if (!isa<Instruction>(InVal)) 1486 continue; 1487 1488 // If this pred is for a subloop, not L itself, skip it. 1489 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1490 continue; // The Block is in a subloop, skip it. 1491 1492 // Check that InVal is defined in the loop. 1493 Instruction *Inst = cast<Instruction>(InVal); 1494 if (!L->contains(Inst)) 1495 continue; 1496 1497 // Find exit values which are induction variables in the loop, and are 1498 // unused in the loop, with the only use being the exit block PhiNode, 1499 // and the induction variable update binary operator. 1500 // The exit value can be replaced with the final value when it is cheap 1501 // to do so. 1502 if (ReplaceExitValue == UnusedIndVarInLoop) { 1503 InductionDescriptor ID; 1504 PHINode *IndPhi = dyn_cast<PHINode>(Inst); 1505 if (IndPhi) { 1506 if (!checkIsIndPhi(IndPhi, L, SE, ID)) 1507 continue; 1508 // This is an induction PHI. Check that the only users are PHI 1509 // nodes, and induction variable update binary operators. 1510 if (llvm::any_of(Inst->users(), [&](User *U) { 1511 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U)) 1512 return true; 1513 BinaryOperator *B = dyn_cast<BinaryOperator>(U); 1514 if (B && B != ID.getInductionBinOp()) 1515 return true; 1516 return false; 1517 })) 1518 continue; 1519 } else { 1520 // If it is not an induction phi, it must be an induction update 1521 // binary operator with an induction phi user. 1522 BinaryOperator *B = dyn_cast<BinaryOperator>(Inst); 1523 if (!B) 1524 continue; 1525 if (llvm::any_of(Inst->users(), [&](User *U) { 1526 PHINode *Phi = dyn_cast<PHINode>(U); 1527 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID)) 1528 return true; 1529 return false; 1530 })) 1531 continue; 1532 if (B != ID.getInductionBinOp()) 1533 continue; 1534 } 1535 } 1536 1537 // Okay, this instruction has a user outside of the current loop 1538 // and varies predictably *inside* the loop. Evaluate the value it 1539 // contains when the loop exits, if possible. We prefer to start with 1540 // expressions which are true for all exits (so as to maximize 1541 // expression reuse by the SCEVExpander), but resort to per-exit 1542 // evaluation if that fails. 1543 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1544 if (isa<SCEVCouldNotCompute>(ExitValue) || 1545 !SE->isLoopInvariant(ExitValue, L) || 1546 !Rewriter.isSafeToExpand(ExitValue)) { 1547 // TODO: This should probably be sunk into SCEV in some way; maybe a 1548 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1549 // most SCEV expressions and other recurrence types (e.g. shift 1550 // recurrences). Is there existing code we can reuse? 1551 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1552 if (isa<SCEVCouldNotCompute>(ExitCount)) 1553 continue; 1554 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1555 if (AddRec->getLoop() == L) 1556 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1557 if (isa<SCEVCouldNotCompute>(ExitValue) || 1558 !SE->isLoopInvariant(ExitValue, L) || 1559 !Rewriter.isSafeToExpand(ExitValue)) 1560 continue; 1561 } 1562 1563 // Computing the value outside of the loop brings no benefit if it is 1564 // definitely used inside the loop in a way which can not be optimized 1565 // away. Avoid doing so unless we know we have a value which computes 1566 // the ExitValue already. TODO: This should be merged into SCEV 1567 // expander to leverage its knowledge of existing expressions. 1568 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1569 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1570 continue; 1571 1572 // Check if expansions of this SCEV would count as being high cost. 1573 bool HighCost = Rewriter.isHighCostExpansion( 1574 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1575 1576 // Note that we must not perform expansions until after 1577 // we query *all* the costs, because if we perform temporary expansion 1578 // inbetween, one that we might not intend to keep, said expansion 1579 // *may* affect cost calculation of the next SCEV's we'll query, 1580 // and next SCEV may errneously get smaller cost. 1581 1582 // Collect all the candidate PHINodes to be rewritten. 1583 Instruction *InsertPt = 1584 (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ? 1585 &*Inst->getParent()->getFirstInsertionPt() : Inst; 1586 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost); 1587 1588 // Add debug values for the candidate PHINode incoming value. 1589 if (BasicBlock *Successor = ExitBB->getSingleSuccessor()) 1590 addDebugValuesToIncomingValue(Successor, PN->getIncomingValue(i), PN); 1591 } 1592 } 1593 } 1594 1595 // TODO: evaluate whether it is beneficial to change how we calculate 1596 // high-cost: if we have SCEV 'A' which we know we will expand, should we 1597 // calculate the cost of other SCEV's after expanding SCEV 'A', thus 1598 // potentially giving cost bonus to those other SCEV's? 1599 1600 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1601 int NumReplaced = 0; 1602 1603 // Transformation. 1604 for (const RewritePhi &Phi : RewritePhiSet) { 1605 PHINode *PN = Phi.PN; 1606 1607 // Only do the rewrite when the ExitValue can be expanded cheaply. 1608 // If LoopCanBeDel is true, rewrite exit value aggressively. 1609 if ((ReplaceExitValue == OnlyCheapRepl || 1610 ReplaceExitValue == UnusedIndVarInLoop) && 1611 !LoopCanBeDel && Phi.HighCost) 1612 continue; 1613 1614 Value *ExitVal = Rewriter.expandCodeFor( 1615 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint); 1616 1617 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal 1618 << '\n' 1619 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1620 1621 #ifndef NDEBUG 1622 // If we reuse an instruction from a loop which is neither L nor one of 1623 // its containing loops, we end up breaking LCSSA form for this loop by 1624 // creating a new use of its instruction. 1625 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1626 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1627 if (EVL != L) 1628 assert(EVL->contains(L) && "LCSSA breach detected!"); 1629 #endif 1630 1631 NumReplaced++; 1632 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1633 PN->setIncomingValue(Phi.Ith, ExitVal); 1634 // It's necessary to tell ScalarEvolution about this explicitly so that 1635 // it can walk the def-use list and forget all SCEVs, as it may not be 1636 // watching the PHI itself. Once the new exit value is in place, there 1637 // may not be a def-use connection between the loop and every instruction 1638 // which got a SCEVAddRecExpr for that loop. 1639 SE->forgetValue(PN); 1640 1641 // If this instruction is dead now, delete it. Don't do it now to avoid 1642 // invalidating iterators. 1643 if (isInstructionTriviallyDead(Inst, TLI)) 1644 DeadInsts.push_back(Inst); 1645 1646 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1647 if (PN->getNumIncomingValues() == 1 && 1648 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1649 addDebugValuesToLoopVariable(PN->getParent(), ExitVal, PN); 1650 PN->replaceAllUsesWith(ExitVal); 1651 PN->eraseFromParent(); 1652 } 1653 } 1654 1655 // If the loop can be deleted and there are no PHIs to be rewritten (there 1656 // are no loop live-out values), record debug variables corresponding to the 1657 // induction variable with their constant exit-values. Those values will be 1658 // inserted by the 'deletion loop' logic. 1659 if (LoopCanBeDel && RewritePhiSet.empty()) { 1660 if (auto *IndVar = L->getInductionVariable(*SE)) { 1661 const SCEV *PNSCEV = SE->getSCEVAtScope(IndVar, L->getParentLoop()); 1662 if (auto *Const = dyn_cast<SCEVConstant>(PNSCEV)) { 1663 Value *FinalIVValue = Const->getValue(); 1664 if (L->getUniqueExitBlock()) { 1665 SmallVector<DbgVariableIntrinsic *> DbgUsers; 1666 findDbgUsers(DbgUsers, IndVar); 1667 L->preserveDebugInductionVariableInfo(FinalIVValue, DbgUsers); 1668 } 1669 } 1670 } 1671 } 1672 1673 // The insertion point instruction may have been deleted; clear it out 1674 // so that the rewriter doesn't trip over it later. 1675 Rewriter.clearInsertPoint(); 1676 return NumReplaced; 1677 } 1678 1679 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1680 /// \p OrigLoop. 1681 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1682 Loop *RemainderLoop, uint64_t UF) { 1683 assert(UF > 0 && "Zero unrolled factor is not supported"); 1684 assert(UnrolledLoop != RemainderLoop && 1685 "Unrolled and Remainder loops are expected to distinct"); 1686 1687 // Get number of iterations in the original scalar loop. 1688 unsigned OrigLoopInvocationWeight = 0; 1689 std::optional<unsigned> OrigAverageTripCount = 1690 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1691 if (!OrigAverageTripCount) 1692 return; 1693 1694 // Calculate number of iterations in unrolled loop. 1695 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1696 // Calculate number of iterations for remainder loop. 1697 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1698 1699 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1700 OrigLoopInvocationWeight); 1701 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1702 OrigLoopInvocationWeight); 1703 } 1704 1705 /// Utility that implements appending of loops onto a worklist. 1706 /// Loops are added in preorder (analogous for reverse postorder for trees), 1707 /// and the worklist is processed LIFO. 1708 template <typename RangeT> 1709 void llvm::appendReversedLoopsToWorklist( 1710 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1711 // We use an internal worklist to build up the preorder traversal without 1712 // recursion. 1713 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1714 1715 // We walk the initial sequence of loops in reverse because we generally want 1716 // to visit defs before uses and the worklist is LIFO. 1717 for (Loop *RootL : Loops) { 1718 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1719 assert(PreOrderWorklist.empty() && 1720 "Must start with an empty preorder walk worklist."); 1721 PreOrderWorklist.push_back(RootL); 1722 do { 1723 Loop *L = PreOrderWorklist.pop_back_val(); 1724 PreOrderWorklist.append(L->begin(), L->end()); 1725 PreOrderLoops.push_back(L); 1726 } while (!PreOrderWorklist.empty()); 1727 1728 Worklist.insert(std::move(PreOrderLoops)); 1729 PreOrderLoops.clear(); 1730 } 1731 } 1732 1733 template <typename RangeT> 1734 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1735 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1736 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1737 } 1738 1739 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1740 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1741 1742 template void 1743 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1744 SmallPriorityWorklist<Loop *, 4> &Worklist); 1745 1746 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1747 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1748 appendReversedLoopsToWorklist(LI, Worklist); 1749 } 1750 1751 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1752 LoopInfo *LI, LPPassManager *LPM) { 1753 Loop &New = *LI->AllocateLoop(); 1754 if (PL) 1755 PL->addChildLoop(&New); 1756 else 1757 LI->addTopLevelLoop(&New); 1758 1759 if (LPM) 1760 LPM->addLoop(New); 1761 1762 // Add all of the blocks in L to the new loop. 1763 for (BasicBlock *BB : L->blocks()) 1764 if (LI->getLoopFor(BB) == L) 1765 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI); 1766 1767 // Add all of the subloops to the new loop. 1768 for (Loop *I : *L) 1769 cloneLoop(I, &New, VM, LI, LPM); 1770 1771 return &New; 1772 } 1773 1774 /// IR Values for the lower and upper bounds of a pointer evolution. We 1775 /// need to use value-handles because SCEV expansion can invalidate previously 1776 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1777 /// a previous one. 1778 struct PointerBounds { 1779 TrackingVH<Value> Start; 1780 TrackingVH<Value> End; 1781 Value *StrideToCheck; 1782 }; 1783 1784 /// Expand code for the lower and upper bound of the pointer group \p CG 1785 /// in \p TheLoop. \return the values for the bounds. 1786 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1787 Loop *TheLoop, Instruction *Loc, 1788 SCEVExpander &Exp, bool HoistRuntimeChecks) { 1789 LLVMContext &Ctx = Loc->getContext(); 1790 Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace); 1791 1792 Value *Start = nullptr, *End = nullptr; 1793 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1794 const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr; 1795 1796 // If the Low and High values are themselves loop-variant, then we may want 1797 // to expand the range to include those covered by the outer loop as well. 1798 // There is a trade-off here with the advantage being that creating checks 1799 // using the expanded range permits the runtime memory checks to be hoisted 1800 // out of the outer loop. This reduces the cost of entering the inner loop, 1801 // which can be significant for low trip counts. The disadvantage is that 1802 // there is a chance we may now never enter the vectorized inner loop, 1803 // whereas using a restricted range check could have allowed us to enter at 1804 // least once. This is why the behaviour is not currently the default and is 1805 // controlled by the parameter 'HoistRuntimeChecks'. 1806 if (HoistRuntimeChecks && TheLoop->getParentLoop() && 1807 isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) { 1808 auto *HighAR = cast<SCEVAddRecExpr>(High); 1809 auto *LowAR = cast<SCEVAddRecExpr>(Low); 1810 const Loop *OuterLoop = TheLoop->getParentLoop(); 1811 const SCEV *Recur = LowAR->getStepRecurrence(*Exp.getSE()); 1812 if (Recur == HighAR->getStepRecurrence(*Exp.getSE()) && 1813 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) { 1814 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1815 const SCEV *OuterExitCount = 1816 Exp.getSE()->getExitCount(OuterLoop, OuterLoopLatch); 1817 if (!isa<SCEVCouldNotCompute>(OuterExitCount) && 1818 OuterExitCount->getType()->isIntegerTy()) { 1819 const SCEV *NewHigh = cast<SCEVAddRecExpr>(High)->evaluateAtIteration( 1820 OuterExitCount, *Exp.getSE()); 1821 if (!isa<SCEVCouldNotCompute>(NewHigh)) { 1822 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include " 1823 "outer loop in order to permit hoisting\n"); 1824 High = NewHigh; 1825 Low = cast<SCEVAddRecExpr>(Low)->getStart(); 1826 // If there is a possibility that the stride is negative then we have 1827 // to generate extra checks to ensure the stride is positive. 1828 if (!Exp.getSE()->isKnownNonNegative(Recur)) { 1829 Stride = Recur; 1830 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is " 1831 "positive: " 1832 << *Stride << '\n'); 1833 } 1834 } 1835 } 1836 } 1837 } 1838 1839 Start = Exp.expandCodeFor(Low, PtrArithTy, Loc); 1840 End = Exp.expandCodeFor(High, PtrArithTy, Loc); 1841 if (CG->NeedsFreeze) { 1842 IRBuilder<> Builder(Loc); 1843 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr"); 1844 End = Builder.CreateFreeze(End, End->getName() + ".fr"); 1845 } 1846 Value *StrideVal = 1847 Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr; 1848 LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n"); 1849 return {Start, End, StrideVal}; 1850 } 1851 1852 /// Turns a collection of checks into a collection of expanded upper and 1853 /// lower bounds for both pointers in the check. 1854 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1855 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1856 Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) { 1857 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1858 1859 // Here we're relying on the SCEV Expander's cache to only emit code for the 1860 // same bounds once. 1861 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1862 [&](const RuntimePointerCheck &Check) { 1863 PointerBounds First = expandBounds(Check.first, L, Loc, Exp, 1864 HoistRuntimeChecks), 1865 Second = expandBounds(Check.second, L, Loc, Exp, 1866 HoistRuntimeChecks); 1867 return std::make_pair(First, Second); 1868 }); 1869 1870 return ChecksWithBounds; 1871 } 1872 1873 Value *llvm::addRuntimeChecks( 1874 Instruction *Loc, Loop *TheLoop, 1875 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1876 SCEVExpander &Exp, bool HoistRuntimeChecks) { 1877 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1878 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1879 auto ExpandedChecks = 1880 expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks); 1881 1882 LLVMContext &Ctx = Loc->getContext(); 1883 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1884 Loc->getModule()->getDataLayout()); 1885 ChkBuilder.SetInsertPoint(Loc); 1886 // Our instructions might fold to a constant. 1887 Value *MemoryRuntimeCheck = nullptr; 1888 1889 for (const auto &Check : ExpandedChecks) { 1890 const PointerBounds &A = Check.first, &B = Check.second; 1891 // Check if two pointers (A and B) conflict where conflict is computed as: 1892 // start(A) <= end(B) && start(B) <= end(A) 1893 1894 assert((A.Start->getType()->getPointerAddressSpace() == 1895 B.End->getType()->getPointerAddressSpace()) && 1896 (B.Start->getType()->getPointerAddressSpace() == 1897 A.End->getType()->getPointerAddressSpace()) && 1898 "Trying to bounds check pointers with different address spaces"); 1899 1900 // [A|B].Start points to the first accessed byte under base [A|B]. 1901 // [A|B].End points to the last accessed byte, plus one. 1902 // There is no conflict when the intervals are disjoint: 1903 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1904 // 1905 // bound0 = (B.Start < A.End) 1906 // bound1 = (A.Start < B.End) 1907 // IsConflict = bound0 & bound1 1908 Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0"); 1909 Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1"); 1910 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1911 if (A.StrideToCheck) { 1912 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT( 1913 A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0), 1914 "stride.check"); 1915 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride); 1916 } 1917 if (B.StrideToCheck) { 1918 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT( 1919 B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0), 1920 "stride.check"); 1921 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride); 1922 } 1923 if (MemoryRuntimeCheck) { 1924 IsConflict = 1925 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1926 } 1927 MemoryRuntimeCheck = IsConflict; 1928 } 1929 1930 return MemoryRuntimeCheck; 1931 } 1932 1933 Value *llvm::addDiffRuntimeChecks( 1934 Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander, 1935 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) { 1936 1937 LLVMContext &Ctx = Loc->getContext(); 1938 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1939 Loc->getModule()->getDataLayout()); 1940 ChkBuilder.SetInsertPoint(Loc); 1941 // Our instructions might fold to a constant. 1942 Value *MemoryRuntimeCheck = nullptr; 1943 1944 auto &SE = *Expander.getSE(); 1945 // Map to keep track of created compares, The key is the pair of operands for 1946 // the compare, to allow detecting and re-using redundant compares. 1947 DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares; 1948 for (const auto &C : Checks) { 1949 Type *Ty = C.SinkStart->getType(); 1950 // Compute VF * IC * AccessSize. 1951 auto *VFTimesUFTimesSize = 1952 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()), 1953 ConstantInt::get(Ty, IC * C.AccessSize)); 1954 Value *Diff = Expander.expandCodeFor( 1955 SE.getMinusSCEV(C.SinkStart, C.SrcStart), Ty, Loc); 1956 1957 // Check if the same compare has already been created earlier. In that case, 1958 // there is no need to check it again. 1959 Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize}); 1960 if (IsConflict) 1961 continue; 1962 1963 IsConflict = 1964 ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check"); 1965 SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict}); 1966 if (C.NeedsFreeze) 1967 IsConflict = 1968 ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr"); 1969 if (MemoryRuntimeCheck) { 1970 IsConflict = 1971 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1972 } 1973 MemoryRuntimeCheck = IsConflict; 1974 } 1975 1976 return MemoryRuntimeCheck; 1977 } 1978 1979 std::optional<IVConditionInfo> 1980 llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, 1981 const MemorySSA &MSSA, AAResults &AA) { 1982 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1983 if (!TI || !TI->isConditional()) 1984 return {}; 1985 1986 auto *CondI = dyn_cast<Instruction>(TI->getCondition()); 1987 // The case with the condition outside the loop should already be handled 1988 // earlier. 1989 // Allow CmpInst and TruncInsts as they may be users of load instructions 1990 // and have potential for partial unswitching 1991 if (!CondI || !isa<CmpInst, TruncInst>(CondI) || !L.contains(CondI)) 1992 return {}; 1993 1994 SmallVector<Instruction *> InstToDuplicate; 1995 InstToDuplicate.push_back(CondI); 1996 1997 SmallVector<Value *, 4> WorkList; 1998 WorkList.append(CondI->op_begin(), CondI->op_end()); 1999 2000 SmallVector<MemoryAccess *, 4> AccessesToCheck; 2001 SmallVector<MemoryLocation, 4> AccessedLocs; 2002 while (!WorkList.empty()) { 2003 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 2004 if (!I || !L.contains(I)) 2005 continue; 2006 2007 // TODO: support additional instructions. 2008 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 2009 return {}; 2010 2011 // Do not duplicate volatile and atomic loads. 2012 if (auto *LI = dyn_cast<LoadInst>(I)) 2013 if (LI->isVolatile() || LI->isAtomic()) 2014 return {}; 2015 2016 InstToDuplicate.push_back(I); 2017 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 2018 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 2019 // Queue the defining access to check for alias checks. 2020 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 2021 AccessedLocs.push_back(MemoryLocation::get(I)); 2022 } else { 2023 // MemoryDefs may clobber the location or may be atomic memory 2024 // operations. Bail out. 2025 return {}; 2026 } 2027 } 2028 WorkList.append(I->op_begin(), I->op_end()); 2029 } 2030 2031 if (InstToDuplicate.empty()) 2032 return {}; 2033 2034 SmallVector<BasicBlock *, 4> ExitingBlocks; 2035 L.getExitingBlocks(ExitingBlocks); 2036 auto HasNoClobbersOnPath = 2037 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 2038 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 2039 SmallVector<MemoryAccess *, 4> AccessesToCheck) 2040 -> std::optional<IVConditionInfo> { 2041 IVConditionInfo Info; 2042 // First, collect all blocks in the loop that are on a patch from Succ 2043 // to the header. 2044 SmallVector<BasicBlock *, 4> WorkList; 2045 WorkList.push_back(Succ); 2046 WorkList.push_back(Header); 2047 SmallPtrSet<BasicBlock *, 4> Seen; 2048 Seen.insert(Header); 2049 Info.PathIsNoop &= 2050 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 2051 2052 while (!WorkList.empty()) { 2053 BasicBlock *Current = WorkList.pop_back_val(); 2054 if (!L.contains(Current)) 2055 continue; 2056 const auto &SeenIns = Seen.insert(Current); 2057 if (!SeenIns.second) 2058 continue; 2059 2060 Info.PathIsNoop &= all_of( 2061 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 2062 WorkList.append(succ_begin(Current), succ_end(Current)); 2063 } 2064 2065 // Require at least 2 blocks on a path through the loop. This skips 2066 // paths that directly exit the loop. 2067 if (Seen.size() < 2) 2068 return {}; 2069 2070 // Next, check if there are any MemoryDefs that are on the path through 2071 // the loop (in the Seen set) and they may-alias any of the locations in 2072 // AccessedLocs. If that is the case, they may modify the condition and 2073 // partial unswitching is not possible. 2074 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 2075 while (!AccessesToCheck.empty()) { 2076 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 2077 auto SeenI = SeenAccesses.insert(Current); 2078 if (!SeenI.second || !Seen.contains(Current->getBlock())) 2079 continue; 2080 2081 // Bail out if exceeded the threshold. 2082 if (SeenAccesses.size() >= MSSAThreshold) 2083 return {}; 2084 2085 // MemoryUse are read-only accesses. 2086 if (isa<MemoryUse>(Current)) 2087 continue; 2088 2089 // For a MemoryDef, check if is aliases any of the location feeding 2090 // the original condition. 2091 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 2092 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 2093 return isModSet( 2094 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 2095 })) 2096 return {}; 2097 } 2098 2099 for (Use &U : Current->uses()) 2100 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 2101 } 2102 2103 // We could also allow loops with known trip counts without mustprogress, 2104 // but ScalarEvolution may not be available. 2105 Info.PathIsNoop &= isMustProgress(&L); 2106 2107 // If the path is considered a no-op so far, check if it reaches a 2108 // single exit block without any phis. This ensures no values from the 2109 // loop are used outside of the loop. 2110 if (Info.PathIsNoop) { 2111 for (auto *Exiting : ExitingBlocks) { 2112 if (!Seen.contains(Exiting)) 2113 continue; 2114 for (auto *Succ : successors(Exiting)) { 2115 if (L.contains(Succ)) 2116 continue; 2117 2118 Info.PathIsNoop &= Succ->phis().empty() && 2119 (!Info.ExitForPath || Info.ExitForPath == Succ); 2120 if (!Info.PathIsNoop) 2121 break; 2122 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 2123 "cannot have multiple exit blocks"); 2124 Info.ExitForPath = Succ; 2125 } 2126 } 2127 } 2128 if (!Info.ExitForPath) 2129 Info.PathIsNoop = false; 2130 2131 Info.InstToDuplicate = InstToDuplicate; 2132 return Info; 2133 }; 2134 2135 // If we branch to the same successor, partial unswitching will not be 2136 // beneficial. 2137 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 2138 return {}; 2139 2140 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 2141 AccessesToCheck)) { 2142 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 2143 return Info; 2144 } 2145 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 2146 AccessesToCheck)) { 2147 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 2148 return Info; 2149 } 2150 2151 return {}; 2152 } 2153