xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp (revision 3c5738f3ec185fbf56da2c18929f5b33126cd98b)
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/PriorityWorklist.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/InstSimplifyFolder.h"
25 #include "llvm/Analysis/LoopAccessAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ProfDataUtils.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
48 
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
51 
52 #define DEBUG_TYPE "loop-utils"
53 
54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
56 
57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
58                                    MemorySSAUpdater *MSSAU,
59                                    bool PreserveLCSSA) {
60   bool Changed = false;
61 
62   // We re-use a vector for the in-loop predecesosrs.
63   SmallVector<BasicBlock *, 4> InLoopPredecessors;
64 
65   auto RewriteExit = [&](BasicBlock *BB) {
66     assert(InLoopPredecessors.empty() &&
67            "Must start with an empty predecessors list!");
68     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
69 
70     // See if there are any non-loop predecessors of this exit block and
71     // keep track of the in-loop predecessors.
72     bool IsDedicatedExit = true;
73     for (auto *PredBB : predecessors(BB))
74       if (L->contains(PredBB)) {
75         if (isa<IndirectBrInst>(PredBB->getTerminator()))
76           // We cannot rewrite exiting edges from an indirectbr.
77           return false;
78 
79         InLoopPredecessors.push_back(PredBB);
80       } else {
81         IsDedicatedExit = false;
82       }
83 
84     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
85 
86     // Nothing to do if this is already a dedicated exit.
87     if (IsDedicatedExit)
88       return false;
89 
90     auto *NewExitBB = SplitBlockPredecessors(
91         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
92 
93     if (!NewExitBB)
94       LLVM_DEBUG(
95           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
96                  << *L << "\n");
97     else
98       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
99                         << NewExitBB->getName() << "\n");
100     return true;
101   };
102 
103   // Walk the exit blocks directly rather than building up a data structure for
104   // them, but only visit each one once.
105   SmallPtrSet<BasicBlock *, 4> Visited;
106   for (auto *BB : L->blocks())
107     for (auto *SuccBB : successors(BB)) {
108       // We're looking for exit blocks so skip in-loop successors.
109       if (L->contains(SuccBB))
110         continue;
111 
112       // Visit each exit block exactly once.
113       if (!Visited.insert(SuccBB).second)
114         continue;
115 
116       Changed |= RewriteExit(SuccBB);
117     }
118 
119   return Changed;
120 }
121 
122 /// Returns the instructions that use values defined in the loop.
123 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
124   SmallVector<Instruction *, 8> UsedOutside;
125 
126   for (auto *Block : L->getBlocks())
127     // FIXME: I believe that this could use copy_if if the Inst reference could
128     // be adapted into a pointer.
129     for (auto &Inst : *Block) {
130       auto Users = Inst.users();
131       if (any_of(Users, [&](User *U) {
132             auto *Use = cast<Instruction>(U);
133             return !L->contains(Use->getParent());
134           }))
135         UsedOutside.push_back(&Inst);
136     }
137 
138   return UsedOutside;
139 }
140 
141 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
142   // By definition, all loop passes need the LoopInfo analysis and the
143   // Dominator tree it depends on. Because they all participate in the loop
144   // pass manager, they must also preserve these.
145   AU.addRequired<DominatorTreeWrapperPass>();
146   AU.addPreserved<DominatorTreeWrapperPass>();
147   AU.addRequired<LoopInfoWrapperPass>();
148   AU.addPreserved<LoopInfoWrapperPass>();
149 
150   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
151   // here because users shouldn't directly get them from this header.
152   extern char &LoopSimplifyID;
153   extern char &LCSSAID;
154   AU.addRequiredID(LoopSimplifyID);
155   AU.addPreservedID(LoopSimplifyID);
156   AU.addRequiredID(LCSSAID);
157   AU.addPreservedID(LCSSAID);
158   // This is used in the LPPassManager to perform LCSSA verification on passes
159   // which preserve lcssa form
160   AU.addRequired<LCSSAVerificationPass>();
161   AU.addPreserved<LCSSAVerificationPass>();
162 
163   // Loop passes are designed to run inside of a loop pass manager which means
164   // that any function analyses they require must be required by the first loop
165   // pass in the manager (so that it is computed before the loop pass manager
166   // runs) and preserved by all loop pasess in the manager. To make this
167   // reasonably robust, the set needed for most loop passes is maintained here.
168   // If your loop pass requires an analysis not listed here, you will need to
169   // carefully audit the loop pass manager nesting structure that results.
170   AU.addRequired<AAResultsWrapperPass>();
171   AU.addPreserved<AAResultsWrapperPass>();
172   AU.addPreserved<BasicAAWrapperPass>();
173   AU.addPreserved<GlobalsAAWrapperPass>();
174   AU.addPreserved<SCEVAAWrapperPass>();
175   AU.addRequired<ScalarEvolutionWrapperPass>();
176   AU.addPreserved<ScalarEvolutionWrapperPass>();
177   // FIXME: When all loop passes preserve MemorySSA, it can be required and
178   // preserved here instead of the individual handling in each pass.
179 }
180 
181 /// Manually defined generic "LoopPass" dependency initialization. This is used
182 /// to initialize the exact set of passes from above in \c
183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
184 /// with:
185 ///
186 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
187 ///
188 /// As-if "LoopPass" were a pass.
189 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
190   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
191   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
192   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
193   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
194   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
195   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
196   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
197   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
198   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
199   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
200 }
201 
202 /// Create MDNode for input string.
203 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
204   LLVMContext &Context = TheLoop->getHeader()->getContext();
205   Metadata *MDs[] = {
206       MDString::get(Context, Name),
207       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
208   return MDNode::get(Context, MDs);
209 }
210 
211 /// Set input string into loop metadata by keeping other values intact.
212 /// If the string is already in loop metadata update value if it is
213 /// different.
214 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
215                                    unsigned V) {
216   SmallVector<Metadata *, 4> MDs(1);
217   // If the loop already has metadata, retain it.
218   MDNode *LoopID = TheLoop->getLoopID();
219   if (LoopID) {
220     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
221       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
222       // If it is of form key = value, try to parse it.
223       if (Node->getNumOperands() == 2) {
224         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
225         if (S && S->getString() == StringMD) {
226           ConstantInt *IntMD =
227               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
228           if (IntMD && IntMD->getSExtValue() == V)
229             // It is already in place. Do nothing.
230             return;
231           // We need to update the value, so just skip it here and it will
232           // be added after copying other existed nodes.
233           continue;
234         }
235       }
236       MDs.push_back(Node);
237     }
238   }
239   // Add new metadata.
240   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
241   // Replace current metadata node with new one.
242   LLVMContext &Context = TheLoop->getHeader()->getContext();
243   MDNode *NewLoopID = MDNode::get(Context, MDs);
244   // Set operand 0 to refer to the loop id itself.
245   NewLoopID->replaceOperandWith(0, NewLoopID);
246   TheLoop->setLoopID(NewLoopID);
247 }
248 
249 std::optional<ElementCount>
250 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
251   std::optional<int> Width =
252       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
253 
254   if (Width) {
255     std::optional<int> IsScalable = getOptionalIntLoopAttribute(
256         TheLoop, "llvm.loop.vectorize.scalable.enable");
257     return ElementCount::get(*Width, IsScalable.value_or(false));
258   }
259 
260   return std::nullopt;
261 }
262 
263 std::optional<MDNode *> llvm::makeFollowupLoopID(
264     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
265     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
266   if (!OrigLoopID) {
267     if (AlwaysNew)
268       return nullptr;
269     return std::nullopt;
270   }
271 
272   assert(OrigLoopID->getOperand(0) == OrigLoopID);
273 
274   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
275   bool InheritSomeAttrs =
276       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
277   SmallVector<Metadata *, 8> MDs;
278   MDs.push_back(nullptr);
279 
280   bool Changed = false;
281   if (InheritAllAttrs || InheritSomeAttrs) {
282     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
283       MDNode *Op = cast<MDNode>(Existing.get());
284 
285       auto InheritThisAttribute = [InheritSomeAttrs,
286                                    InheritOptionsExceptPrefix](MDNode *Op) {
287         if (!InheritSomeAttrs)
288           return false;
289 
290         // Skip malformatted attribute metadata nodes.
291         if (Op->getNumOperands() == 0)
292           return true;
293         Metadata *NameMD = Op->getOperand(0).get();
294         if (!isa<MDString>(NameMD))
295           return true;
296         StringRef AttrName = cast<MDString>(NameMD)->getString();
297 
298         // Do not inherit excluded attributes.
299         return !AttrName.starts_with(InheritOptionsExceptPrefix);
300       };
301 
302       if (InheritThisAttribute(Op))
303         MDs.push_back(Op);
304       else
305         Changed = true;
306     }
307   } else {
308     // Modified if we dropped at least one attribute.
309     Changed = OrigLoopID->getNumOperands() > 1;
310   }
311 
312   bool HasAnyFollowup = false;
313   for (StringRef OptionName : FollowupOptions) {
314     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
315     if (!FollowupNode)
316       continue;
317 
318     HasAnyFollowup = true;
319     for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
320       MDs.push_back(Option.get());
321       Changed = true;
322     }
323   }
324 
325   // Attributes of the followup loop not specified explicity, so signal to the
326   // transformation pass to add suitable attributes.
327   if (!AlwaysNew && !HasAnyFollowup)
328     return std::nullopt;
329 
330   // If no attributes were added or remove, the previous loop Id can be reused.
331   if (!AlwaysNew && !Changed)
332     return OrigLoopID;
333 
334   // No attributes is equivalent to having no !llvm.loop metadata at all.
335   if (MDs.size() == 1)
336     return nullptr;
337 
338   // Build the new loop ID.
339   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
340   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
341   return FollowupLoopID;
342 }
343 
344 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
345   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
346 }
347 
348 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
349   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
350 }
351 
352 TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
353   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
354     return TM_SuppressedByUser;
355 
356   std::optional<int> Count =
357       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
358   if (Count)
359     return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
360 
361   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
362     return TM_ForcedByUser;
363 
364   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
365     return TM_ForcedByUser;
366 
367   if (hasDisableAllTransformsHint(L))
368     return TM_Disable;
369 
370   return TM_Unspecified;
371 }
372 
373 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
374   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
375     return TM_SuppressedByUser;
376 
377   std::optional<int> Count =
378       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
379   if (Count)
380     return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
381 
382   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
383     return TM_ForcedByUser;
384 
385   if (hasDisableAllTransformsHint(L))
386     return TM_Disable;
387 
388   return TM_Unspecified;
389 }
390 
391 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
392   std::optional<bool> Enable =
393       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
394 
395   if (Enable == false)
396     return TM_SuppressedByUser;
397 
398   std::optional<ElementCount> VectorizeWidth =
399       getOptionalElementCountLoopAttribute(L);
400   std::optional<int> InterleaveCount =
401       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
402 
403   // 'Forcing' vector width and interleave count to one effectively disables
404   // this tranformation.
405   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
406       InterleaveCount == 1)
407     return TM_SuppressedByUser;
408 
409   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
410     return TM_Disable;
411 
412   if (Enable == true)
413     return TM_ForcedByUser;
414 
415   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
416     return TM_Disable;
417 
418   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
419     return TM_Enable;
420 
421   if (hasDisableAllTransformsHint(L))
422     return TM_Disable;
423 
424   return TM_Unspecified;
425 }
426 
427 TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
428   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
429     return TM_ForcedByUser;
430 
431   if (hasDisableAllTransformsHint(L))
432     return TM_Disable;
433 
434   return TM_Unspecified;
435 }
436 
437 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
438   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
439     return TM_SuppressedByUser;
440 
441   if (hasDisableAllTransformsHint(L))
442     return TM_Disable;
443 
444   return TM_Unspecified;
445 }
446 
447 /// Does a BFS from a given node to all of its children inside a given loop.
448 /// The returned vector of nodes includes the starting point.
449 SmallVector<DomTreeNode *, 16>
450 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
451   SmallVector<DomTreeNode *, 16> Worklist;
452   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
453     // Only include subregions in the top level loop.
454     BasicBlock *BB = DTN->getBlock();
455     if (CurLoop->contains(BB))
456       Worklist.push_back(DTN);
457   };
458 
459   AddRegionToWorklist(N);
460 
461   for (size_t I = 0; I < Worklist.size(); I++) {
462     for (DomTreeNode *Child : Worklist[I]->children())
463       AddRegionToWorklist(Child);
464   }
465 
466   return Worklist;
467 }
468 
469 bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) {
470   int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
471   assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode");
472   Value *IncV = PN->getIncomingValue(LatchIdx);
473 
474   for (User *U : PN->users())
475     if (U != Cond && U != IncV) return false;
476 
477   for (User *U : IncV->users())
478     if (U != Cond && U != PN) return false;
479   return true;
480 }
481 
482 
483 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
484                           LoopInfo *LI, MemorySSA *MSSA) {
485   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
486   auto *Preheader = L->getLoopPreheader();
487   assert(Preheader && "Preheader should exist!");
488 
489   std::unique_ptr<MemorySSAUpdater> MSSAU;
490   if (MSSA)
491     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
492 
493   // Now that we know the removal is safe, remove the loop by changing the
494   // branch from the preheader to go to the single exit block.
495   //
496   // Because we're deleting a large chunk of code at once, the sequence in which
497   // we remove things is very important to avoid invalidation issues.
498 
499   // Tell ScalarEvolution that the loop is deleted. Do this before
500   // deleting the loop so that ScalarEvolution can look at the loop
501   // to determine what it needs to clean up.
502   if (SE) {
503     SE->forgetLoop(L);
504     SE->forgetBlockAndLoopDispositions();
505   }
506 
507   Instruction *OldTerm = Preheader->getTerminator();
508   assert(!OldTerm->mayHaveSideEffects() &&
509          "Preheader must end with a side-effect-free terminator");
510   assert(OldTerm->getNumSuccessors() == 1 &&
511          "Preheader must have a single successor");
512   // Connect the preheader to the exit block. Keep the old edge to the header
513   // around to perform the dominator tree update in two separate steps
514   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
515   // preheader -> header.
516   //
517   //
518   // 0.  Preheader          1.  Preheader           2.  Preheader
519   //        |                    |   |                   |
520   //        V                    |   V                   |
521   //      Header <--\            | Header <--\           | Header <--\
522   //       |  |     |            |  |  |     |           |  |  |     |
523   //       |  V     |            |  |  V     |           |  |  V     |
524   //       | Body --/            |  | Body --/           |  | Body --/
525   //       V                     V  V                    V  V
526   //      Exit                   Exit                    Exit
527   //
528   // By doing this is two separate steps we can perform the dominator tree
529   // update without using the batch update API.
530   //
531   // Even when the loop is never executed, we cannot remove the edge from the
532   // source block to the exit block. Consider the case where the unexecuted loop
533   // branches back to an outer loop. If we deleted the loop and removed the edge
534   // coming to this inner loop, this will break the outer loop structure (by
535   // deleting the backedge of the outer loop). If the outer loop is indeed a
536   // non-loop, it will be deleted in a future iteration of loop deletion pass.
537   IRBuilder<> Builder(OldTerm);
538 
539   auto *ExitBlock = L->getUniqueExitBlock();
540   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
541   if (ExitBlock) {
542     assert(ExitBlock && "Should have a unique exit block!");
543     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
544 
545     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
546     // Remove the old branch. The conditional branch becomes a new terminator.
547     OldTerm->eraseFromParent();
548 
549     // Rewrite phis in the exit block to get their inputs from the Preheader
550     // instead of the exiting block.
551     for (PHINode &P : ExitBlock->phis()) {
552       // Set the zero'th element of Phi to be from the preheader and remove all
553       // other incoming values. Given the loop has dedicated exits, all other
554       // incoming values must be from the exiting blocks.
555       int PredIndex = 0;
556       P.setIncomingBlock(PredIndex, Preheader);
557       // Removes all incoming values from all other exiting blocks (including
558       // duplicate values from an exiting block).
559       // Nuke all entries except the zero'th entry which is the preheader entry.
560       P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
561                               /* DeletePHIIfEmpty */ false);
562 
563       assert((P.getNumIncomingValues() == 1 &&
564               P.getIncomingBlock(PredIndex) == Preheader) &&
565              "Should have exactly one value and that's from the preheader!");
566     }
567 
568     if (DT) {
569       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
570       if (MSSA) {
571         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
572                             *DT);
573         if (VerifyMemorySSA)
574           MSSA->verifyMemorySSA();
575       }
576     }
577 
578     // Disconnect the loop body by branching directly to its exit.
579     Builder.SetInsertPoint(Preheader->getTerminator());
580     Builder.CreateBr(ExitBlock);
581     // Remove the old branch.
582     Preheader->getTerminator()->eraseFromParent();
583   } else {
584     assert(L->hasNoExitBlocks() &&
585            "Loop should have either zero or one exit blocks.");
586 
587     Builder.SetInsertPoint(OldTerm);
588     Builder.CreateUnreachable();
589     Preheader->getTerminator()->eraseFromParent();
590   }
591 
592   if (DT) {
593     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
594     if (MSSA) {
595       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
596                           *DT);
597       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
598                                                    L->block_end());
599       MSSAU->removeBlocks(DeadBlockSet);
600       if (VerifyMemorySSA)
601         MSSA->verifyMemorySSA();
602     }
603   }
604 
605   // Use a map to unique and a vector to guarantee deterministic ordering.
606   llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet;
607   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
608   llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords;
609 
610   if (ExitBlock) {
611     // Given LCSSA form is satisfied, we should not have users of instructions
612     // within the dead loop outside of the loop. However, LCSSA doesn't take
613     // unreachable uses into account. We handle them here.
614     // We could do it after drop all references (in this case all users in the
615     // loop will be already eliminated and we have less work to do but according
616     // to API doc of User::dropAllReferences only valid operation after dropping
617     // references, is deletion. So let's substitute all usages of
618     // instruction from the loop with poison value of corresponding type first.
619     for (auto *Block : L->blocks())
620       for (Instruction &I : *Block) {
621         auto *Poison = PoisonValue::get(I.getType());
622         for (Use &U : llvm::make_early_inc_range(I.uses())) {
623           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
624             if (L->contains(Usr->getParent()))
625               continue;
626           // If we have a DT then we can check that uses outside a loop only in
627           // unreachable block.
628           if (DT)
629             assert(!DT->isReachableFromEntry(U) &&
630                    "Unexpected user in reachable block");
631           U.set(Poison);
632         }
633 
634         // RemoveDIs: do the same as below for DbgVariableRecords.
635         if (Block->IsNewDbgInfoFormat) {
636           for (DbgVariableRecord &DVR : llvm::make_early_inc_range(
637                    filterDbgVars(I.getDbgRecordRange()))) {
638             DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
639                               DVR.getDebugLoc().get());
640             if (!DeadDebugSet.insert(Key).second)
641               continue;
642             // Unlinks the DVR from it's container, for later insertion.
643             DVR.removeFromParent();
644             DeadDbgVariableRecords.push_back(&DVR);
645           }
646         }
647 
648         // For one of each variable encountered, preserve a debug intrinsic (set
649         // to Poison) and transfer it to the loop exit. This terminates any
650         // variable locations that were set during the loop.
651         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
652         if (!DVI)
653           continue;
654         if (!DeadDebugSet.insert(DebugVariable(DVI)).second)
655           continue;
656         DeadDebugInst.push_back(DVI);
657       }
658 
659     // After the loop has been deleted all the values defined and modified
660     // inside the loop are going to be unavailable. Values computed in the
661     // loop will have been deleted, automatically causing their debug uses
662     // be be replaced with undef. Loop invariant values will still be available.
663     // Move dbg.values out the loop so that earlier location ranges are still
664     // terminated and loop invariant assignments are preserved.
665     DIBuilder DIB(*ExitBlock->getModule());
666     BasicBlock::iterator InsertDbgValueBefore =
667         ExitBlock->getFirstInsertionPt();
668     assert(InsertDbgValueBefore != ExitBlock->end() &&
669            "There should be a non-PHI instruction in exit block, else these "
670            "instructions will have no parent.");
671 
672     for (auto *DVI : DeadDebugInst)
673       DVI->moveBefore(*ExitBlock, InsertDbgValueBefore);
674 
675     // Due to the "head" bit in BasicBlock::iterator, we're going to insert
676     // each DbgVariableRecord right at the start of the block, wheras dbg.values
677     // would be repeatedly inserted before the first instruction. To replicate
678     // this behaviour, do it backwards.
679     for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords))
680       ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore);
681   }
682 
683   // Remove the block from the reference counting scheme, so that we can
684   // delete it freely later.
685   for (auto *Block : L->blocks())
686     Block->dropAllReferences();
687 
688   if (MSSA && VerifyMemorySSA)
689     MSSA->verifyMemorySSA();
690 
691   if (LI) {
692     // Erase the instructions and the blocks without having to worry
693     // about ordering because we already dropped the references.
694     // NOTE: This iteration is safe because erasing the block does not remove
695     // its entry from the loop's block list.  We do that in the next section.
696     for (BasicBlock *BB : L->blocks())
697       BB->eraseFromParent();
698 
699     // Finally, the blocks from loopinfo.  This has to happen late because
700     // otherwise our loop iterators won't work.
701 
702     SmallPtrSet<BasicBlock *, 8> blocks;
703     blocks.insert(L->block_begin(), L->block_end());
704     for (BasicBlock *BB : blocks)
705       LI->removeBlock(BB);
706 
707     // The last step is to update LoopInfo now that we've eliminated this loop.
708     // Note: LoopInfo::erase remove the given loop and relink its subloops with
709     // its parent. While removeLoop/removeChildLoop remove the given loop but
710     // not relink its subloops, which is what we want.
711     if (Loop *ParentLoop = L->getParentLoop()) {
712       Loop::iterator I = find(*ParentLoop, L);
713       assert(I != ParentLoop->end() && "Couldn't find loop");
714       ParentLoop->removeChildLoop(I);
715     } else {
716       Loop::iterator I = find(*LI, L);
717       assert(I != LI->end() && "Couldn't find loop");
718       LI->removeLoop(I);
719     }
720     LI->destroy(L);
721   }
722 }
723 
724 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
725                              LoopInfo &LI, MemorySSA *MSSA) {
726   auto *Latch = L->getLoopLatch();
727   assert(Latch && "multiple latches not yet supported");
728   auto *Header = L->getHeader();
729   Loop *OutermostLoop = L->getOutermostLoop();
730 
731   SE.forgetLoop(L);
732   SE.forgetBlockAndLoopDispositions();
733 
734   std::unique_ptr<MemorySSAUpdater> MSSAU;
735   if (MSSA)
736     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
737 
738   // Update the CFG and domtree.  We chose to special case a couple of
739   // of common cases for code quality and test readability reasons.
740   [&]() -> void {
741     if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
742       if (!BI->isConditional()) {
743         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
744         (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
745                                   MSSAU.get());
746         return;
747       }
748 
749       // Conditional latch/exit - note that latch can be shared by inner
750       // and outer loop so the other target doesn't need to an exit
751       if (L->isLoopExiting(Latch)) {
752         // TODO: Generalize ConstantFoldTerminator so that it can be used
753         // here without invalidating LCSSA or MemorySSA.  (Tricky case for
754         // LCSSA: header is an exit block of a preceeding sibling loop w/o
755         // dedicated exits.)
756         const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
757         BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
758 
759         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
760         Header->removePredecessor(Latch, true);
761 
762         IRBuilder<> Builder(BI);
763         auto *NewBI = Builder.CreateBr(ExitBB);
764         // Transfer the metadata to the new branch instruction (minus the
765         // loop info since this is no longer a loop)
766         NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
767                                   LLVMContext::MD_annotation});
768 
769         BI->eraseFromParent();
770         DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
771         if (MSSA)
772           MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
773         return;
774       }
775     }
776 
777     // General case.  By splitting the backedge, and then explicitly making it
778     // unreachable we gracefully handle corner cases such as switch and invoke
779     // termiantors.
780     auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
781 
782     DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
783     (void)changeToUnreachable(BackedgeBB->getTerminator(),
784                               /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
785   }();
786 
787   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
788   // and blocks within the loop as needed.
789   LI.erase(L);
790 
791   // If the loop we broke had a parent, then changeToUnreachable might have
792   // caused a block to be removed from the parent loop (see loop_nest_lcssa
793   // test case in zero-btc.ll for an example), thus changing the parent's
794   // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
795   // loop which might have a had a block removed.
796   if (OutermostLoop != L)
797     formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
798 }
799 
800 
801 /// Checks if \p L has an exiting latch branch.  There may also be other
802 /// exiting blocks.  Returns branch instruction terminating the loop
803 /// latch if above check is successful, nullptr otherwise.
804 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
805   BasicBlock *Latch = L->getLoopLatch();
806   if (!Latch)
807     return nullptr;
808 
809   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
810   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
811     return nullptr;
812 
813   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
814           LatchBR->getSuccessor(1) == L->getHeader()) &&
815          "At least one edge out of the latch must go to the header");
816 
817   return LatchBR;
818 }
819 
820 /// Return the estimated trip count for any exiting branch which dominates
821 /// the loop latch.
822 static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch,
823                                                      Loop *L,
824                                                      uint64_t &OrigExitWeight) {
825   // To estimate the number of times the loop body was executed, we want to
826   // know the number of times the backedge was taken, vs. the number of times
827   // we exited the loop.
828   uint64_t LoopWeight, ExitWeight;
829   if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
830     return std::nullopt;
831 
832   if (L->contains(ExitingBranch->getSuccessor(1)))
833     std::swap(LoopWeight, ExitWeight);
834 
835   if (!ExitWeight)
836     // Don't have a way to return predicated infinite
837     return std::nullopt;
838 
839   OrigExitWeight = ExitWeight;
840 
841   // Estimated exit count is a ratio of the loop weight by the weight of the
842   // edge exiting the loop, rounded to nearest.
843   uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
844   // Estimated trip count is one plus estimated exit count.
845   return ExitCount + 1;
846 }
847 
848 std::optional<unsigned>
849 llvm::getLoopEstimatedTripCount(Loop *L,
850                                 unsigned *EstimatedLoopInvocationWeight) {
851   // Currently we take the estimate exit count only from the loop latch,
852   // ignoring other exiting blocks.  This can overestimate the trip count
853   // if we exit through another exit, but can never underestimate it.
854   // TODO: incorporate information from other exits
855   if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
856     uint64_t ExitWeight;
857     if (std::optional<uint64_t> EstTripCount =
858             getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
859       if (EstimatedLoopInvocationWeight)
860         *EstimatedLoopInvocationWeight = ExitWeight;
861       return *EstTripCount;
862     }
863   }
864   return std::nullopt;
865 }
866 
867 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
868                                      unsigned EstimatedloopInvocationWeight) {
869   // At the moment, we currently support changing the estimate trip count of
870   // the latch branch only.  We could extend this API to manipulate estimated
871   // trip counts for any exit.
872   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
873   if (!LatchBranch)
874     return false;
875 
876   // Calculate taken and exit weights.
877   unsigned LatchExitWeight = 0;
878   unsigned BackedgeTakenWeight = 0;
879 
880   if (EstimatedTripCount > 0) {
881     LatchExitWeight = EstimatedloopInvocationWeight;
882     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
883   }
884 
885   // Make a swap if back edge is taken when condition is "false".
886   if (LatchBranch->getSuccessor(0) != L->getHeader())
887     std::swap(BackedgeTakenWeight, LatchExitWeight);
888 
889   MDBuilder MDB(LatchBranch->getContext());
890 
891   // Set/Update profile metadata.
892   LatchBranch->setMetadata(
893       LLVMContext::MD_prof,
894       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
895 
896   return true;
897 }
898 
899 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
900                                               ScalarEvolution &SE) {
901   Loop *OuterL = InnerLoop->getParentLoop();
902   if (!OuterL)
903     return true;
904 
905   // Get the backedge taken count for the inner loop
906   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
907   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
908   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
909       !InnerLoopBECountSC->getType()->isIntegerTy())
910     return false;
911 
912   // Get whether count is invariant to the outer loop
913   ScalarEvolution::LoopDisposition LD =
914       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
915   if (LD != ScalarEvolution::LoopInvariant)
916     return false;
917 
918   return true;
919 }
920 
921 unsigned llvm::getArithmeticReductionInstruction(Intrinsic::ID RdxID) {
922   switch (RdxID) {
923   case Intrinsic::vector_reduce_fadd:
924     return Instruction::FAdd;
925   case Intrinsic::vector_reduce_fmul:
926     return Instruction::FMul;
927   case Intrinsic::vector_reduce_add:
928     return Instruction::Add;
929   case Intrinsic::vector_reduce_mul:
930     return Instruction::Mul;
931   case Intrinsic::vector_reduce_and:
932     return Instruction::And;
933   case Intrinsic::vector_reduce_or:
934     return Instruction::Or;
935   case Intrinsic::vector_reduce_xor:
936     return Instruction::Xor;
937   case Intrinsic::vector_reduce_smax:
938   case Intrinsic::vector_reduce_smin:
939   case Intrinsic::vector_reduce_umax:
940   case Intrinsic::vector_reduce_umin:
941     return Instruction::ICmp;
942   case Intrinsic::vector_reduce_fmax:
943   case Intrinsic::vector_reduce_fmin:
944     return Instruction::FCmp;
945   default:
946     llvm_unreachable("Unexpected ID");
947   }
948 }
949 
950 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID) {
951   switch (RdxID) {
952   default:
953     llvm_unreachable("Unknown min/max recurrence kind");
954   case Intrinsic::vector_reduce_umin:
955     return Intrinsic::umin;
956   case Intrinsic::vector_reduce_umax:
957     return Intrinsic::umax;
958   case Intrinsic::vector_reduce_smin:
959     return Intrinsic::smin;
960   case Intrinsic::vector_reduce_smax:
961     return Intrinsic::smax;
962   case Intrinsic::vector_reduce_fmin:
963     return Intrinsic::minnum;
964   case Intrinsic::vector_reduce_fmax:
965     return Intrinsic::maxnum;
966   case Intrinsic::vector_reduce_fminimum:
967     return Intrinsic::minimum;
968   case Intrinsic::vector_reduce_fmaximum:
969     return Intrinsic::maximum;
970   }
971 }
972 
973 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) {
974   switch (RK) {
975   default:
976     llvm_unreachable("Unknown min/max recurrence kind");
977   case RecurKind::UMin:
978     return Intrinsic::umin;
979   case RecurKind::UMax:
980     return Intrinsic::umax;
981   case RecurKind::SMin:
982     return Intrinsic::smin;
983   case RecurKind::SMax:
984     return Intrinsic::smax;
985   case RecurKind::FMin:
986     return Intrinsic::minnum;
987   case RecurKind::FMax:
988     return Intrinsic::maxnum;
989   case RecurKind::FMinimum:
990     return Intrinsic::minimum;
991   case RecurKind::FMaximum:
992     return Intrinsic::maximum;
993   }
994 }
995 
996 RecurKind llvm::getMinMaxReductionRecurKind(Intrinsic::ID RdxID) {
997   switch (RdxID) {
998   case Intrinsic::vector_reduce_smax:
999     return RecurKind::SMax;
1000   case Intrinsic::vector_reduce_smin:
1001     return RecurKind::SMin;
1002   case Intrinsic::vector_reduce_umax:
1003     return RecurKind::UMax;
1004   case Intrinsic::vector_reduce_umin:
1005     return RecurKind::UMin;
1006   case Intrinsic::vector_reduce_fmax:
1007     return RecurKind::FMax;
1008   case Intrinsic::vector_reduce_fmin:
1009     return RecurKind::FMin;
1010   default:
1011     return RecurKind::None;
1012   }
1013 }
1014 
1015 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
1016   switch (RK) {
1017   default:
1018     llvm_unreachable("Unknown min/max recurrence kind");
1019   case RecurKind::UMin:
1020     return CmpInst::ICMP_ULT;
1021   case RecurKind::UMax:
1022     return CmpInst::ICMP_UGT;
1023   case RecurKind::SMin:
1024     return CmpInst::ICMP_SLT;
1025   case RecurKind::SMax:
1026     return CmpInst::ICMP_SGT;
1027   case RecurKind::FMin:
1028     return CmpInst::FCMP_OLT;
1029   case RecurKind::FMax:
1030     return CmpInst::FCMP_OGT;
1031   // We do not add FMinimum/FMaximum recurrence kind here since there is no
1032   // equivalent predicate which compares signed zeroes according to the
1033   // semantics of the intrinsics (llvm.minimum/maximum).
1034   }
1035 }
1036 
1037 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
1038                             Value *Right) {
1039   Type *Ty = Left->getType();
1040   if (Ty->isIntOrIntVectorTy() ||
1041       (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) {
1042     // TODO: Add float minnum/maxnum support when FMF nnan is set.
1043     Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK);
1044     return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
1045                                    "rdx.minmax");
1046   }
1047   CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
1048   Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
1049   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1050   return Select;
1051 }
1052 
1053 // Helper to generate an ordered reduction.
1054 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
1055                                  unsigned Op, RecurKind RdxKind) {
1056   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1057 
1058   // Extract and apply reduction ops in ascending order:
1059   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1060   Value *Result = Acc;
1061   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1062     Value *Ext =
1063         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1064 
1065     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1066       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1067                                    "bin.rdx");
1068     } else {
1069       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1070              "Invalid min/max");
1071       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
1072     }
1073   }
1074 
1075   return Result;
1076 }
1077 
1078 // Helper to generate a log2 shuffle reduction.
1079 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
1080                                  unsigned Op, RecurKind RdxKind) {
1081   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1082   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1083   // and vector ops, reducing the set of values being computed by half each
1084   // round.
1085   assert(isPowerOf2_32(VF) &&
1086          "Reduction emission only supported for pow2 vectors!");
1087   // Note: fast-math-flags flags are controlled by the builder configuration
1088   // and are assumed to apply to all generated arithmetic instructions.  Other
1089   // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1090   // of the builder configuration, and since they're not passed explicitly,
1091   // will never be relevant here.  Note that it would be generally unsound to
1092   // propagate these from an intrinsic call to the expansion anyways as we/
1093   // change the order of operations.
1094   Value *TmpVec = Src;
1095   SmallVector<int, 32> ShuffleMask(VF);
1096   for (unsigned i = VF; i != 1; i >>= 1) {
1097     // Move the upper half of the vector to the lower half.
1098     for (unsigned j = 0; j != i / 2; ++j)
1099       ShuffleMask[j] = i / 2 + j;
1100 
1101     // Fill the rest of the mask with undef.
1102     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1103 
1104     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1105 
1106     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1107       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1108                                    "bin.rdx");
1109     } else {
1110       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1111              "Invalid min/max");
1112       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1113     }
1114   }
1115   // The result is in the first element of the vector.
1116   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1117 }
1118 
1119 Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src,
1120                                         const RecurrenceDescriptor &Desc,
1121                                         PHINode *OrigPhi) {
1122   assert(
1123       RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) &&
1124       "Unexpected reduction kind");
1125   Value *InitVal = Desc.getRecurrenceStartValue();
1126   Value *NewVal = nullptr;
1127 
1128   // First use the original phi to determine the new value we're trying to
1129   // select from in the loop.
1130   SelectInst *SI = nullptr;
1131   for (auto *U : OrigPhi->users()) {
1132     if ((SI = dyn_cast<SelectInst>(U)))
1133       break;
1134   }
1135   assert(SI && "One user of the original phi should be a select");
1136 
1137   if (SI->getTrueValue() == OrigPhi)
1138     NewVal = SI->getFalseValue();
1139   else {
1140     assert(SI->getFalseValue() == OrigPhi &&
1141            "At least one input to the select should be the original Phi");
1142     NewVal = SI->getTrueValue();
1143   }
1144 
1145   // If any predicate is true it means that we want to select the new value.
1146   Value *AnyOf =
1147       Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src;
1148   // The compares in the loop may yield poison, which propagates through the
1149   // bitwise ORs. Freeze it here before the condition is used.
1150   AnyOf = Builder.CreateFreeze(AnyOf);
1151   return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select");
1152 }
1153 
1154 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src,
1155                                          RecurKind RdxKind) {
1156   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1157   switch (RdxKind) {
1158   case RecurKind::Add:
1159     return Builder.CreateAddReduce(Src);
1160   case RecurKind::Mul:
1161     return Builder.CreateMulReduce(Src);
1162   case RecurKind::And:
1163     return Builder.CreateAndReduce(Src);
1164   case RecurKind::Or:
1165     return Builder.CreateOrReduce(Src);
1166   case RecurKind::Xor:
1167     return Builder.CreateXorReduce(Src);
1168   case RecurKind::FMulAdd:
1169   case RecurKind::FAdd:
1170     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1171                                     Src);
1172   case RecurKind::FMul:
1173     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1174   case RecurKind::SMax:
1175     return Builder.CreateIntMaxReduce(Src, true);
1176   case RecurKind::SMin:
1177     return Builder.CreateIntMinReduce(Src, true);
1178   case RecurKind::UMax:
1179     return Builder.CreateIntMaxReduce(Src, false);
1180   case RecurKind::UMin:
1181     return Builder.CreateIntMinReduce(Src, false);
1182   case RecurKind::FMax:
1183     return Builder.CreateFPMaxReduce(Src);
1184   case RecurKind::FMin:
1185     return Builder.CreateFPMinReduce(Src);
1186   case RecurKind::FMinimum:
1187     return Builder.CreateFPMinimumReduce(Src);
1188   case RecurKind::FMaximum:
1189     return Builder.CreateFPMaximumReduce(Src);
1190   default:
1191     llvm_unreachable("Unhandled opcode");
1192   }
1193 }
1194 
1195 Value *llvm::createTargetReduction(IRBuilderBase &B,
1196                                    const RecurrenceDescriptor &Desc, Value *Src,
1197                                    PHINode *OrigPhi) {
1198   // TODO: Support in-order reductions based on the recurrence descriptor.
1199   // All ops in the reduction inherit fast-math-flags from the recurrence
1200   // descriptor.
1201   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1202   B.setFastMathFlags(Desc.getFastMathFlags());
1203 
1204   RecurKind RK = Desc.getRecurrenceKind();
1205   if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
1206     return createAnyOfTargetReduction(B, Src, Desc, OrigPhi);
1207 
1208   return createSimpleTargetReduction(B, Src, RK);
1209 }
1210 
1211 Value *llvm::createOrderedReduction(IRBuilderBase &B,
1212                                     const RecurrenceDescriptor &Desc,
1213                                     Value *Src, Value *Start) {
1214   assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
1215           Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
1216          "Unexpected reduction kind");
1217   assert(Src->getType()->isVectorTy() && "Expected a vector type");
1218   assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1219 
1220   return B.CreateFAddReduce(Start, Src);
1221 }
1222 
1223 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue,
1224                             bool IncludeWrapFlags) {
1225   auto *VecOp = dyn_cast<Instruction>(I);
1226   if (!VecOp)
1227     return;
1228   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1229                                             : dyn_cast<Instruction>(OpValue);
1230   if (!Intersection)
1231     return;
1232   const unsigned Opcode = Intersection->getOpcode();
1233   VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1234   for (auto *V : VL) {
1235     auto *Instr = dyn_cast<Instruction>(V);
1236     if (!Instr)
1237       continue;
1238     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1239       VecOp->andIRFlags(V);
1240   }
1241 }
1242 
1243 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1244                                  ScalarEvolution &SE) {
1245   const SCEV *Zero = SE.getZero(S->getType());
1246   return SE.isAvailableAtLoopEntry(S, L) &&
1247          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1248 }
1249 
1250 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1251                                     ScalarEvolution &SE) {
1252   const SCEV *Zero = SE.getZero(S->getType());
1253   return SE.isAvailableAtLoopEntry(S, L) &&
1254          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1255 }
1256 
1257 bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
1258                                  ScalarEvolution &SE) {
1259   const SCEV *Zero = SE.getZero(S->getType());
1260   return SE.isAvailableAtLoopEntry(S, L) &&
1261          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero);
1262 }
1263 
1264 bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L,
1265                                     ScalarEvolution &SE) {
1266   const SCEV *Zero = SE.getZero(S->getType());
1267   return SE.isAvailableAtLoopEntry(S, L) &&
1268          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero);
1269 }
1270 
1271 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1272                              bool Signed) {
1273   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1274   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1275     APInt::getMinValue(BitWidth);
1276   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1277   return SE.isAvailableAtLoopEntry(S, L) &&
1278          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1279                                      SE.getConstant(Min));
1280 }
1281 
1282 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1283                              bool Signed) {
1284   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1285   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1286     APInt::getMaxValue(BitWidth);
1287   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1288   return SE.isAvailableAtLoopEntry(S, L) &&
1289          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1290                                      SE.getConstant(Max));
1291 }
1292 
1293 //===----------------------------------------------------------------------===//
1294 // rewriteLoopExitValues - Optimize IV users outside the loop.
1295 // As a side effect, reduces the amount of IV processing within the loop.
1296 //===----------------------------------------------------------------------===//
1297 
1298 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1299   SmallPtrSet<const Instruction *, 8> Visited;
1300   SmallVector<const Instruction *, 8> WorkList;
1301   Visited.insert(I);
1302   WorkList.push_back(I);
1303   while (!WorkList.empty()) {
1304     const Instruction *Curr = WorkList.pop_back_val();
1305     // This use is outside the loop, nothing to do.
1306     if (!L->contains(Curr))
1307       continue;
1308     // Do we assume it is a "hard" use which will not be eliminated easily?
1309     if (Curr->mayHaveSideEffects())
1310       return true;
1311     // Otherwise, add all its users to worklist.
1312     for (const auto *U : Curr->users()) {
1313       auto *UI = cast<Instruction>(U);
1314       if (Visited.insert(UI).second)
1315         WorkList.push_back(UI);
1316     }
1317   }
1318   return false;
1319 }
1320 
1321 // Collect information about PHI nodes which can be transformed in
1322 // rewriteLoopExitValues.
1323 struct RewritePhi {
1324   PHINode *PN;               // For which PHI node is this replacement?
1325   unsigned Ith;              // For which incoming value?
1326   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1327   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1328   bool HighCost;               // Is this expansion a high-cost?
1329 
1330   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1331              bool H)
1332       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1333         HighCost(H) {}
1334 };
1335 
1336 // Check whether it is possible to delete the loop after rewriting exit
1337 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1338 // aggressively.
1339 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1340   BasicBlock *Preheader = L->getLoopPreheader();
1341   // If there is no preheader, the loop will not be deleted.
1342   if (!Preheader)
1343     return false;
1344 
1345   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1346   // We obviate multiple ExitingBlocks case for simplicity.
1347   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1348   // after exit value rewriting, we can enhance the logic here.
1349   SmallVector<BasicBlock *, 4> ExitingBlocks;
1350   L->getExitingBlocks(ExitingBlocks);
1351   SmallVector<BasicBlock *, 8> ExitBlocks;
1352   L->getUniqueExitBlocks(ExitBlocks);
1353   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1354     return false;
1355 
1356   BasicBlock *ExitBlock = ExitBlocks[0];
1357   BasicBlock::iterator BI = ExitBlock->begin();
1358   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1359     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1360 
1361     // If the Incoming value of P is found in RewritePhiSet, we know it
1362     // could be rewritten to use a loop invariant value in transformation
1363     // phase later. Skip it in the loop invariant check below.
1364     bool found = false;
1365     for (const RewritePhi &Phi : RewritePhiSet) {
1366       unsigned i = Phi.Ith;
1367       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1368         found = true;
1369         break;
1370       }
1371     }
1372 
1373     Instruction *I;
1374     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1375       if (!L->hasLoopInvariantOperands(I))
1376         return false;
1377 
1378     ++BI;
1379   }
1380 
1381   for (auto *BB : L->blocks())
1382     if (llvm::any_of(*BB, [](Instruction &I) {
1383           return I.mayHaveSideEffects();
1384         }))
1385       return false;
1386 
1387   return true;
1388 }
1389 
1390 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1391 /// and returns true if this Phi is an induction phi in the loop. When
1392 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1393 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
1394                           InductionDescriptor &ID) {
1395   if (!Phi)
1396     return false;
1397   if (!L->getLoopPreheader())
1398     return false;
1399   if (Phi->getParent() != L->getHeader())
1400     return false;
1401   return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
1402 }
1403 
1404 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1405                                 ScalarEvolution *SE,
1406                                 const TargetTransformInfo *TTI,
1407                                 SCEVExpander &Rewriter, DominatorTree *DT,
1408                                 ReplaceExitVal ReplaceExitValue,
1409                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1410   // Check a pre-condition.
1411   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1412          "Indvars did not preserve LCSSA!");
1413 
1414   SmallVector<BasicBlock*, 8> ExitBlocks;
1415   L->getUniqueExitBlocks(ExitBlocks);
1416 
1417   SmallVector<RewritePhi, 8> RewritePhiSet;
1418   // Find all values that are computed inside the loop, but used outside of it.
1419   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1420   // the exit blocks of the loop to find them.
1421   for (BasicBlock *ExitBB : ExitBlocks) {
1422     // If there are no PHI nodes in this exit block, then no values defined
1423     // inside the loop are used on this path, skip it.
1424     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1425     if (!PN) continue;
1426 
1427     unsigned NumPreds = PN->getNumIncomingValues();
1428 
1429     // Iterate over all of the PHI nodes.
1430     BasicBlock::iterator BBI = ExitBB->begin();
1431     while ((PN = dyn_cast<PHINode>(BBI++))) {
1432       if (PN->use_empty())
1433         continue; // dead use, don't replace it
1434 
1435       if (!SE->isSCEVable(PN->getType()))
1436         continue;
1437 
1438       // Iterate over all of the values in all the PHI nodes.
1439       for (unsigned i = 0; i != NumPreds; ++i) {
1440         // If the value being merged in is not integer or is not defined
1441         // in the loop, skip it.
1442         Value *InVal = PN->getIncomingValue(i);
1443         if (!isa<Instruction>(InVal))
1444           continue;
1445 
1446         // If this pred is for a subloop, not L itself, skip it.
1447         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1448           continue; // The Block is in a subloop, skip it.
1449 
1450         // Check that InVal is defined in the loop.
1451         Instruction *Inst = cast<Instruction>(InVal);
1452         if (!L->contains(Inst))
1453           continue;
1454 
1455         // Find exit values which are induction variables in the loop, and are
1456         // unused in the loop, with the only use being the exit block PhiNode,
1457         // and the induction variable update binary operator.
1458         // The exit value can be replaced with the final value when it is cheap
1459         // to do so.
1460         if (ReplaceExitValue == UnusedIndVarInLoop) {
1461           InductionDescriptor ID;
1462           PHINode *IndPhi = dyn_cast<PHINode>(Inst);
1463           if (IndPhi) {
1464             if (!checkIsIndPhi(IndPhi, L, SE, ID))
1465               continue;
1466             // This is an induction PHI. Check that the only users are PHI
1467             // nodes, and induction variable update binary operators.
1468             if (llvm::any_of(Inst->users(), [&](User *U) {
1469                   if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1470                     return true;
1471                   BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1472                   if (B && B != ID.getInductionBinOp())
1473                     return true;
1474                   return false;
1475                 }))
1476               continue;
1477           } else {
1478             // If it is not an induction phi, it must be an induction update
1479             // binary operator with an induction phi user.
1480             BinaryOperator *B = dyn_cast<BinaryOperator>(Inst);
1481             if (!B)
1482               continue;
1483             if (llvm::any_of(Inst->users(), [&](User *U) {
1484                   PHINode *Phi = dyn_cast<PHINode>(U);
1485                   if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1486                     return true;
1487                   return false;
1488                 }))
1489               continue;
1490             if (B != ID.getInductionBinOp())
1491               continue;
1492           }
1493         }
1494 
1495         // Okay, this instruction has a user outside of the current loop
1496         // and varies predictably *inside* the loop.  Evaluate the value it
1497         // contains when the loop exits, if possible.  We prefer to start with
1498         // expressions which are true for all exits (so as to maximize
1499         // expression reuse by the SCEVExpander), but resort to per-exit
1500         // evaluation if that fails.
1501         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1502         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1503             !SE->isLoopInvariant(ExitValue, L) ||
1504             !Rewriter.isSafeToExpand(ExitValue)) {
1505           // TODO: This should probably be sunk into SCEV in some way; maybe a
1506           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1507           // most SCEV expressions and other recurrence types (e.g. shift
1508           // recurrences).  Is there existing code we can reuse?
1509           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1510           if (isa<SCEVCouldNotCompute>(ExitCount))
1511             continue;
1512           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1513             if (AddRec->getLoop() == L)
1514               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1515           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1516               !SE->isLoopInvariant(ExitValue, L) ||
1517               !Rewriter.isSafeToExpand(ExitValue))
1518             continue;
1519         }
1520 
1521         // Computing the value outside of the loop brings no benefit if it is
1522         // definitely used inside the loop in a way which can not be optimized
1523         // away. Avoid doing so unless we know we have a value which computes
1524         // the ExitValue already. TODO: This should be merged into SCEV
1525         // expander to leverage its knowledge of existing expressions.
1526         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1527             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1528           continue;
1529 
1530         // Check if expansions of this SCEV would count as being high cost.
1531         bool HighCost = Rewriter.isHighCostExpansion(
1532             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1533 
1534         // Note that we must not perform expansions until after
1535         // we query *all* the costs, because if we perform temporary expansion
1536         // inbetween, one that we might not intend to keep, said expansion
1537         // *may* affect cost calculation of the next SCEV's we'll query,
1538         // and next SCEV may errneously get smaller cost.
1539 
1540         // Collect all the candidate PHINodes to be rewritten.
1541         Instruction *InsertPt =
1542           (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
1543           &*Inst->getParent()->getFirstInsertionPt() : Inst;
1544         RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1545       }
1546     }
1547   }
1548 
1549   // TODO: evaluate whether it is beneficial to change how we calculate
1550   // high-cost: if we have SCEV 'A' which we know we will expand, should we
1551   // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1552   // potentially giving cost bonus to those other SCEV's?
1553 
1554   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1555   int NumReplaced = 0;
1556 
1557   // Transformation.
1558   for (const RewritePhi &Phi : RewritePhiSet) {
1559     PHINode *PN = Phi.PN;
1560 
1561     // Only do the rewrite when the ExitValue can be expanded cheaply.
1562     // If LoopCanBeDel is true, rewrite exit value aggressively.
1563     if ((ReplaceExitValue == OnlyCheapRepl ||
1564          ReplaceExitValue == UnusedIndVarInLoop) &&
1565         !LoopCanBeDel && Phi.HighCost)
1566       continue;
1567 
1568     Value *ExitVal = Rewriter.expandCodeFor(
1569         Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1570 
1571     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1572                       << '\n'
1573                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1574 
1575 #ifndef NDEBUG
1576     // If we reuse an instruction from a loop which is neither L nor one of
1577     // its containing loops, we end up breaking LCSSA form for this loop by
1578     // creating a new use of its instruction.
1579     if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1580       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1581         if (EVL != L)
1582           assert(EVL->contains(L) && "LCSSA breach detected!");
1583 #endif
1584 
1585     NumReplaced++;
1586     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1587     PN->setIncomingValue(Phi.Ith, ExitVal);
1588     // It's necessary to tell ScalarEvolution about this explicitly so that
1589     // it can walk the def-use list and forget all SCEVs, as it may not be
1590     // watching the PHI itself. Once the new exit value is in place, there
1591     // may not be a def-use connection between the loop and every instruction
1592     // which got a SCEVAddRecExpr for that loop.
1593     SE->forgetValue(PN);
1594 
1595     // If this instruction is dead now, delete it. Don't do it now to avoid
1596     // invalidating iterators.
1597     if (isInstructionTriviallyDead(Inst, TLI))
1598       DeadInsts.push_back(Inst);
1599 
1600     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1601     if (PN->getNumIncomingValues() == 1 &&
1602         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1603       PN->replaceAllUsesWith(ExitVal);
1604       PN->eraseFromParent();
1605     }
1606   }
1607 
1608   // The insertion point instruction may have been deleted; clear it out
1609   // so that the rewriter doesn't trip over it later.
1610   Rewriter.clearInsertPoint();
1611   return NumReplaced;
1612 }
1613 
1614 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1615 /// \p OrigLoop.
1616 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1617                                         Loop *RemainderLoop, uint64_t UF) {
1618   assert(UF > 0 && "Zero unrolled factor is not supported");
1619   assert(UnrolledLoop != RemainderLoop &&
1620          "Unrolled and Remainder loops are expected to distinct");
1621 
1622   // Get number of iterations in the original scalar loop.
1623   unsigned OrigLoopInvocationWeight = 0;
1624   std::optional<unsigned> OrigAverageTripCount =
1625       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1626   if (!OrigAverageTripCount)
1627     return;
1628 
1629   // Calculate number of iterations in unrolled loop.
1630   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1631   // Calculate number of iterations for remainder loop.
1632   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1633 
1634   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1635                             OrigLoopInvocationWeight);
1636   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1637                             OrigLoopInvocationWeight);
1638 }
1639 
1640 /// Utility that implements appending of loops onto a worklist.
1641 /// Loops are added in preorder (analogous for reverse postorder for trees),
1642 /// and the worklist is processed LIFO.
1643 template <typename RangeT>
1644 void llvm::appendReversedLoopsToWorklist(
1645     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1646   // We use an internal worklist to build up the preorder traversal without
1647   // recursion.
1648   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1649 
1650   // We walk the initial sequence of loops in reverse because we generally want
1651   // to visit defs before uses and the worklist is LIFO.
1652   for (Loop *RootL : Loops) {
1653     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1654     assert(PreOrderWorklist.empty() &&
1655            "Must start with an empty preorder walk worklist.");
1656     PreOrderWorklist.push_back(RootL);
1657     do {
1658       Loop *L = PreOrderWorklist.pop_back_val();
1659       PreOrderWorklist.append(L->begin(), L->end());
1660       PreOrderLoops.push_back(L);
1661     } while (!PreOrderWorklist.empty());
1662 
1663     Worklist.insert(std::move(PreOrderLoops));
1664     PreOrderLoops.clear();
1665   }
1666 }
1667 
1668 template <typename RangeT>
1669 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1670                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1671   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1672 }
1673 
1674 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1675     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1676 
1677 template void
1678 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1679                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1680 
1681 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1682                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1683   appendReversedLoopsToWorklist(LI, Worklist);
1684 }
1685 
1686 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1687                       LoopInfo *LI, LPPassManager *LPM) {
1688   Loop &New = *LI->AllocateLoop();
1689   if (PL)
1690     PL->addChildLoop(&New);
1691   else
1692     LI->addTopLevelLoop(&New);
1693 
1694   if (LPM)
1695     LPM->addLoop(New);
1696 
1697   // Add all of the blocks in L to the new loop.
1698   for (BasicBlock *BB : L->blocks())
1699     if (LI->getLoopFor(BB) == L)
1700       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1701 
1702   // Add all of the subloops to the new loop.
1703   for (Loop *I : *L)
1704     cloneLoop(I, &New, VM, LI, LPM);
1705 
1706   return &New;
1707 }
1708 
1709 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1710 /// need to use value-handles because SCEV expansion can invalidate previously
1711 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1712 /// a previous one.
1713 struct PointerBounds {
1714   TrackingVH<Value> Start;
1715   TrackingVH<Value> End;
1716   Value *StrideToCheck;
1717 };
1718 
1719 /// Expand code for the lower and upper bound of the pointer group \p CG
1720 /// in \p TheLoop.  \return the values for the bounds.
1721 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1722                                   Loop *TheLoop, Instruction *Loc,
1723                                   SCEVExpander &Exp, bool HoistRuntimeChecks) {
1724   LLVMContext &Ctx = Loc->getContext();
1725   Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);
1726 
1727   Value *Start = nullptr, *End = nullptr;
1728   LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1729   const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;
1730 
1731   // If the Low and High values are themselves loop-variant, then we may want
1732   // to expand the range to include those covered by the outer loop as well.
1733   // There is a trade-off here with the advantage being that creating checks
1734   // using the expanded range permits the runtime memory checks to be hoisted
1735   // out of the outer loop. This reduces the cost of entering the inner loop,
1736   // which can be significant for low trip counts. The disadvantage is that
1737   // there is a chance we may now never enter the vectorized inner loop,
1738   // whereas using a restricted range check could have allowed us to enter at
1739   // least once. This is why the behaviour is not currently the default and is
1740   // controlled by the parameter 'HoistRuntimeChecks'.
1741   if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
1742       isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) {
1743     auto *HighAR = cast<SCEVAddRecExpr>(High);
1744     auto *LowAR = cast<SCEVAddRecExpr>(Low);
1745     const Loop *OuterLoop = TheLoop->getParentLoop();
1746     const SCEV *Recur = LowAR->getStepRecurrence(*Exp.getSE());
1747     if (Recur == HighAR->getStepRecurrence(*Exp.getSE()) &&
1748         HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
1749       BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1750       const SCEV *OuterExitCount =
1751           Exp.getSE()->getExitCount(OuterLoop, OuterLoopLatch);
1752       if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
1753           OuterExitCount->getType()->isIntegerTy()) {
1754         const SCEV *NewHigh = cast<SCEVAddRecExpr>(High)->evaluateAtIteration(
1755             OuterExitCount, *Exp.getSE());
1756         if (!isa<SCEVCouldNotCompute>(NewHigh)) {
1757           LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
1758                                "outer loop in order to permit hoisting\n");
1759           High = NewHigh;
1760           Low = cast<SCEVAddRecExpr>(Low)->getStart();
1761           // If there is a possibility that the stride is negative then we have
1762           // to generate extra checks to ensure the stride is positive.
1763           if (!Exp.getSE()->isKnownNonNegative(Recur)) {
1764             Stride = Recur;
1765             LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
1766                                  "positive: "
1767                               << *Stride << '\n');
1768           }
1769         }
1770       }
1771     }
1772   }
1773 
1774   Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
1775   End = Exp.expandCodeFor(High, PtrArithTy, Loc);
1776   if (CG->NeedsFreeze) {
1777     IRBuilder<> Builder(Loc);
1778     Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
1779     End = Builder.CreateFreeze(End, End->getName() + ".fr");
1780   }
1781   Value *StrideVal =
1782       Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
1783   LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
1784   return {Start, End, StrideVal};
1785 }
1786 
1787 /// Turns a collection of checks into a collection of expanded upper and
1788 /// lower bounds for both pointers in the check.
1789 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1790 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1791              Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) {
1792   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1793 
1794   // Here we're relying on the SCEV Expander's cache to only emit code for the
1795   // same bounds once.
1796   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1797             [&](const RuntimePointerCheck &Check) {
1798               PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
1799                                                  HoistRuntimeChecks),
1800                             Second = expandBounds(Check.second, L, Loc, Exp,
1801                                                   HoistRuntimeChecks);
1802               return std::make_pair(First, Second);
1803             });
1804 
1805   return ChecksWithBounds;
1806 }
1807 
1808 Value *llvm::addRuntimeChecks(
1809     Instruction *Loc, Loop *TheLoop,
1810     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1811     SCEVExpander &Exp, bool HoistRuntimeChecks) {
1812   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1813   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1814   auto ExpandedChecks =
1815       expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);
1816 
1817   LLVMContext &Ctx = Loc->getContext();
1818   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1819                                            Loc->getModule()->getDataLayout());
1820   ChkBuilder.SetInsertPoint(Loc);
1821   // Our instructions might fold to a constant.
1822   Value *MemoryRuntimeCheck = nullptr;
1823 
1824   for (const auto &Check : ExpandedChecks) {
1825     const PointerBounds &A = Check.first, &B = Check.second;
1826     // Check if two pointers (A and B) conflict where conflict is computed as:
1827     // start(A) <= end(B) && start(B) <= end(A)
1828 
1829     assert((A.Start->getType()->getPointerAddressSpace() ==
1830             B.End->getType()->getPointerAddressSpace()) &&
1831            (B.Start->getType()->getPointerAddressSpace() ==
1832             A.End->getType()->getPointerAddressSpace()) &&
1833            "Trying to bounds check pointers with different address spaces");
1834 
1835     // [A|B].Start points to the first accessed byte under base [A|B].
1836     // [A|B].End points to the last accessed byte, plus one.
1837     // There is no conflict when the intervals are disjoint:
1838     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1839     //
1840     // bound0 = (B.Start < A.End)
1841     // bound1 = (A.Start < B.End)
1842     //  IsConflict = bound0 & bound1
1843     Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
1844     Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
1845     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1846     if (A.StrideToCheck) {
1847       Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1848           A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
1849           "stride.check");
1850       IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1851     }
1852     if (B.StrideToCheck) {
1853       Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1854           B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
1855           "stride.check");
1856       IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1857     }
1858     if (MemoryRuntimeCheck) {
1859       IsConflict =
1860           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1861     }
1862     MemoryRuntimeCheck = IsConflict;
1863   }
1864 
1865   return MemoryRuntimeCheck;
1866 }
1867 
1868 Value *llvm::addDiffRuntimeChecks(
1869     Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
1870     function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
1871 
1872   LLVMContext &Ctx = Loc->getContext();
1873   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1874                                            Loc->getModule()->getDataLayout());
1875   ChkBuilder.SetInsertPoint(Loc);
1876   // Our instructions might fold to a constant.
1877   Value *MemoryRuntimeCheck = nullptr;
1878 
1879   auto &SE = *Expander.getSE();
1880   // Map to keep track of created compares, The key is the pair of operands for
1881   // the compare, to allow detecting and re-using redundant compares.
1882   DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares;
1883   for (const auto &C : Checks) {
1884     Type *Ty = C.SinkStart->getType();
1885     // Compute VF * IC * AccessSize.
1886     auto *VFTimesUFTimesSize =
1887         ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
1888                              ConstantInt::get(Ty, IC * C.AccessSize));
1889     Value *Diff = Expander.expandCodeFor(
1890         SE.getMinusSCEV(C.SinkStart, C.SrcStart), Ty, Loc);
1891 
1892     // Check if the same compare has already been created earlier. In that case,
1893     // there is no need to check it again.
1894     Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize});
1895     if (IsConflict)
1896       continue;
1897 
1898     IsConflict =
1899         ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check");
1900     SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict});
1901     if (C.NeedsFreeze)
1902       IsConflict =
1903           ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
1904     if (MemoryRuntimeCheck) {
1905       IsConflict =
1906           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1907     }
1908     MemoryRuntimeCheck = IsConflict;
1909   }
1910 
1911   return MemoryRuntimeCheck;
1912 }
1913 
1914 std::optional<IVConditionInfo>
1915 llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold,
1916                             const MemorySSA &MSSA, AAResults &AA) {
1917   auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1918   if (!TI || !TI->isConditional())
1919     return {};
1920 
1921   auto *CondI = dyn_cast<Instruction>(TI->getCondition());
1922   // The case with the condition outside the loop should already be handled
1923   // earlier.
1924   // Allow CmpInst and TruncInsts as they may be users of load instructions
1925   // and have potential for partial unswitching
1926   if (!CondI || !isa<CmpInst, TruncInst>(CondI) || !L.contains(CondI))
1927     return {};
1928 
1929   SmallVector<Instruction *> InstToDuplicate;
1930   InstToDuplicate.push_back(CondI);
1931 
1932   SmallVector<Value *, 4> WorkList;
1933   WorkList.append(CondI->op_begin(), CondI->op_end());
1934 
1935   SmallVector<MemoryAccess *, 4> AccessesToCheck;
1936   SmallVector<MemoryLocation, 4> AccessedLocs;
1937   while (!WorkList.empty()) {
1938     Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1939     if (!I || !L.contains(I))
1940       continue;
1941 
1942     // TODO: support additional instructions.
1943     if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1944       return {};
1945 
1946     // Do not duplicate volatile and atomic loads.
1947     if (auto *LI = dyn_cast<LoadInst>(I))
1948       if (LI->isVolatile() || LI->isAtomic())
1949         return {};
1950 
1951     InstToDuplicate.push_back(I);
1952     if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1953       if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1954         // Queue the defining access to check for alias checks.
1955         AccessesToCheck.push_back(MemUse->getDefiningAccess());
1956         AccessedLocs.push_back(MemoryLocation::get(I));
1957       } else {
1958         // MemoryDefs may clobber the location or may be atomic memory
1959         // operations. Bail out.
1960         return {};
1961       }
1962     }
1963     WorkList.append(I->op_begin(), I->op_end());
1964   }
1965 
1966   if (InstToDuplicate.empty())
1967     return {};
1968 
1969   SmallVector<BasicBlock *, 4> ExitingBlocks;
1970   L.getExitingBlocks(ExitingBlocks);
1971   auto HasNoClobbersOnPath =
1972       [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1973        MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1974                       SmallVector<MemoryAccess *, 4> AccessesToCheck)
1975       -> std::optional<IVConditionInfo> {
1976     IVConditionInfo Info;
1977     // First, collect all blocks in the loop that are on a patch from Succ
1978     // to the header.
1979     SmallVector<BasicBlock *, 4> WorkList;
1980     WorkList.push_back(Succ);
1981     WorkList.push_back(Header);
1982     SmallPtrSet<BasicBlock *, 4> Seen;
1983     Seen.insert(Header);
1984     Info.PathIsNoop &=
1985         all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1986 
1987     while (!WorkList.empty()) {
1988       BasicBlock *Current = WorkList.pop_back_val();
1989       if (!L.contains(Current))
1990         continue;
1991       const auto &SeenIns = Seen.insert(Current);
1992       if (!SeenIns.second)
1993         continue;
1994 
1995       Info.PathIsNoop &= all_of(
1996           *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1997       WorkList.append(succ_begin(Current), succ_end(Current));
1998     }
1999 
2000     // Require at least 2 blocks on a path through the loop. This skips
2001     // paths that directly exit the loop.
2002     if (Seen.size() < 2)
2003       return {};
2004 
2005     // Next, check if there are any MemoryDefs that are on the path through
2006     // the loop (in the Seen set) and they may-alias any of the locations in
2007     // AccessedLocs. If that is the case, they may modify the condition and
2008     // partial unswitching is not possible.
2009     SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
2010     while (!AccessesToCheck.empty()) {
2011       MemoryAccess *Current = AccessesToCheck.pop_back_val();
2012       auto SeenI = SeenAccesses.insert(Current);
2013       if (!SeenI.second || !Seen.contains(Current->getBlock()))
2014         continue;
2015 
2016       // Bail out if exceeded the threshold.
2017       if (SeenAccesses.size() >= MSSAThreshold)
2018         return {};
2019 
2020       // MemoryUse are read-only accesses.
2021       if (isa<MemoryUse>(Current))
2022         continue;
2023 
2024       // For a MemoryDef, check if is aliases any of the location feeding
2025       // the original condition.
2026       if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
2027         if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
2028               return isModSet(
2029                   AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
2030             }))
2031           return {};
2032       }
2033 
2034       for (Use &U : Current->uses())
2035         AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
2036     }
2037 
2038     // We could also allow loops with known trip counts without mustprogress,
2039     // but ScalarEvolution may not be available.
2040     Info.PathIsNoop &= isMustProgress(&L);
2041 
2042     // If the path is considered a no-op so far, check if it reaches a
2043     // single exit block without any phis. This ensures no values from the
2044     // loop are used outside of the loop.
2045     if (Info.PathIsNoop) {
2046       for (auto *Exiting : ExitingBlocks) {
2047         if (!Seen.contains(Exiting))
2048           continue;
2049         for (auto *Succ : successors(Exiting)) {
2050           if (L.contains(Succ))
2051             continue;
2052 
2053           Info.PathIsNoop &= Succ->phis().empty() &&
2054                              (!Info.ExitForPath || Info.ExitForPath == Succ);
2055           if (!Info.PathIsNoop)
2056             break;
2057           assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
2058                  "cannot have multiple exit blocks");
2059           Info.ExitForPath = Succ;
2060         }
2061       }
2062     }
2063     if (!Info.ExitForPath)
2064       Info.PathIsNoop = false;
2065 
2066     Info.InstToDuplicate = InstToDuplicate;
2067     return Info;
2068   };
2069 
2070   // If we branch to the same successor, partial unswitching will not be
2071   // beneficial.
2072   if (TI->getSuccessor(0) == TI->getSuccessor(1))
2073     return {};
2074 
2075   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2076                                       AccessesToCheck)) {
2077     Info->KnownValue = ConstantInt::getTrue(TI->getContext());
2078     return Info;
2079   }
2080   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
2081                                       AccessesToCheck)) {
2082     Info->KnownValue = ConstantInt::getFalse(TI->getContext());
2083     return Info;
2084   }
2085 
2086   return {};
2087 }
2088