1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/PriorityWorklist.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/DomTreeUpdater.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/InstSimplifyFolder.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ProfDataUtils.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 49 using namespace llvm; 50 using namespace llvm::PatternMatch; 51 52 #define DEBUG_TYPE "loop-utils" 53 54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 56 57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 58 MemorySSAUpdater *MSSAU, 59 bool PreserveLCSSA) { 60 bool Changed = false; 61 62 // We re-use a vector for the in-loop predecesosrs. 63 SmallVector<BasicBlock *, 4> InLoopPredecessors; 64 65 auto RewriteExit = [&](BasicBlock *BB) { 66 assert(InLoopPredecessors.empty() && 67 "Must start with an empty predecessors list!"); 68 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 69 70 // See if there are any non-loop predecessors of this exit block and 71 // keep track of the in-loop predecessors. 72 bool IsDedicatedExit = true; 73 for (auto *PredBB : predecessors(BB)) 74 if (L->contains(PredBB)) { 75 if (isa<IndirectBrInst>(PredBB->getTerminator())) 76 // We cannot rewrite exiting edges from an indirectbr. 77 return false; 78 79 InLoopPredecessors.push_back(PredBB); 80 } else { 81 IsDedicatedExit = false; 82 } 83 84 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 85 86 // Nothing to do if this is already a dedicated exit. 87 if (IsDedicatedExit) 88 return false; 89 90 auto *NewExitBB = SplitBlockPredecessors( 91 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 92 93 if (!NewExitBB) 94 LLVM_DEBUG( 95 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 96 << *L << "\n"); 97 else 98 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 99 << NewExitBB->getName() << "\n"); 100 return true; 101 }; 102 103 // Walk the exit blocks directly rather than building up a data structure for 104 // them, but only visit each one once. 105 SmallPtrSet<BasicBlock *, 4> Visited; 106 for (auto *BB : L->blocks()) 107 for (auto *SuccBB : successors(BB)) { 108 // We're looking for exit blocks so skip in-loop successors. 109 if (L->contains(SuccBB)) 110 continue; 111 112 // Visit each exit block exactly once. 113 if (!Visited.insert(SuccBB).second) 114 continue; 115 116 Changed |= RewriteExit(SuccBB); 117 } 118 119 return Changed; 120 } 121 122 /// Returns the instructions that use values defined in the loop. 123 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 124 SmallVector<Instruction *, 8> UsedOutside; 125 126 for (auto *Block : L->getBlocks()) 127 // FIXME: I believe that this could use copy_if if the Inst reference could 128 // be adapted into a pointer. 129 for (auto &Inst : *Block) { 130 auto Users = Inst.users(); 131 if (any_of(Users, [&](User *U) { 132 auto *Use = cast<Instruction>(U); 133 return !L->contains(Use->getParent()); 134 })) 135 UsedOutside.push_back(&Inst); 136 } 137 138 return UsedOutside; 139 } 140 141 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 142 // By definition, all loop passes need the LoopInfo analysis and the 143 // Dominator tree it depends on. Because they all participate in the loop 144 // pass manager, they must also preserve these. 145 AU.addRequired<DominatorTreeWrapperPass>(); 146 AU.addPreserved<DominatorTreeWrapperPass>(); 147 AU.addRequired<LoopInfoWrapperPass>(); 148 AU.addPreserved<LoopInfoWrapperPass>(); 149 150 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 151 // here because users shouldn't directly get them from this header. 152 extern char &LoopSimplifyID; 153 extern char &LCSSAID; 154 AU.addRequiredID(LoopSimplifyID); 155 AU.addPreservedID(LoopSimplifyID); 156 AU.addRequiredID(LCSSAID); 157 AU.addPreservedID(LCSSAID); 158 // This is used in the LPPassManager to perform LCSSA verification on passes 159 // which preserve lcssa form 160 AU.addRequired<LCSSAVerificationPass>(); 161 AU.addPreserved<LCSSAVerificationPass>(); 162 163 // Loop passes are designed to run inside of a loop pass manager which means 164 // that any function analyses they require must be required by the first loop 165 // pass in the manager (so that it is computed before the loop pass manager 166 // runs) and preserved by all loop pasess in the manager. To make this 167 // reasonably robust, the set needed for most loop passes is maintained here. 168 // If your loop pass requires an analysis not listed here, you will need to 169 // carefully audit the loop pass manager nesting structure that results. 170 AU.addRequired<AAResultsWrapperPass>(); 171 AU.addPreserved<AAResultsWrapperPass>(); 172 AU.addPreserved<BasicAAWrapperPass>(); 173 AU.addPreserved<GlobalsAAWrapperPass>(); 174 AU.addPreserved<SCEVAAWrapperPass>(); 175 AU.addRequired<ScalarEvolutionWrapperPass>(); 176 AU.addPreserved<ScalarEvolutionWrapperPass>(); 177 // FIXME: When all loop passes preserve MemorySSA, it can be required and 178 // preserved here instead of the individual handling in each pass. 179 } 180 181 /// Manually defined generic "LoopPass" dependency initialization. This is used 182 /// to initialize the exact set of passes from above in \c 183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 184 /// with: 185 /// 186 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 187 /// 188 /// As-if "LoopPass" were a pass. 189 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 192 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 193 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 194 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 196 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 198 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 200 } 201 202 /// Create MDNode for input string. 203 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 204 LLVMContext &Context = TheLoop->getHeader()->getContext(); 205 Metadata *MDs[] = { 206 MDString::get(Context, Name), 207 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 208 return MDNode::get(Context, MDs); 209 } 210 211 /// Set input string into loop metadata by keeping other values intact. 212 /// If the string is already in loop metadata update value if it is 213 /// different. 214 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 215 unsigned V) { 216 SmallVector<Metadata *, 4> MDs(1); 217 // If the loop already has metadata, retain it. 218 MDNode *LoopID = TheLoop->getLoopID(); 219 if (LoopID) { 220 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 221 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 222 // If it is of form key = value, try to parse it. 223 if (Node->getNumOperands() == 2) { 224 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 225 if (S && S->getString() == StringMD) { 226 ConstantInt *IntMD = 227 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 228 if (IntMD && IntMD->getSExtValue() == V) 229 // It is already in place. Do nothing. 230 return; 231 // We need to update the value, so just skip it here and it will 232 // be added after copying other existed nodes. 233 continue; 234 } 235 } 236 MDs.push_back(Node); 237 } 238 } 239 // Add new metadata. 240 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 241 // Replace current metadata node with new one. 242 LLVMContext &Context = TheLoop->getHeader()->getContext(); 243 MDNode *NewLoopID = MDNode::get(Context, MDs); 244 // Set operand 0 to refer to the loop id itself. 245 NewLoopID->replaceOperandWith(0, NewLoopID); 246 TheLoop->setLoopID(NewLoopID); 247 } 248 249 std::optional<ElementCount> 250 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 251 std::optional<int> Width = 252 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 253 254 if (Width) { 255 std::optional<int> IsScalable = getOptionalIntLoopAttribute( 256 TheLoop, "llvm.loop.vectorize.scalable.enable"); 257 return ElementCount::get(*Width, IsScalable.value_or(false)); 258 } 259 260 return std::nullopt; 261 } 262 263 std::optional<MDNode *> llvm::makeFollowupLoopID( 264 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 265 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 266 if (!OrigLoopID) { 267 if (AlwaysNew) 268 return nullptr; 269 return std::nullopt; 270 } 271 272 assert(OrigLoopID->getOperand(0) == OrigLoopID); 273 274 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 275 bool InheritSomeAttrs = 276 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 277 SmallVector<Metadata *, 8> MDs; 278 MDs.push_back(nullptr); 279 280 bool Changed = false; 281 if (InheritAllAttrs || InheritSomeAttrs) { 282 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 283 MDNode *Op = cast<MDNode>(Existing.get()); 284 285 auto InheritThisAttribute = [InheritSomeAttrs, 286 InheritOptionsExceptPrefix](MDNode *Op) { 287 if (!InheritSomeAttrs) 288 return false; 289 290 // Skip malformatted attribute metadata nodes. 291 if (Op->getNumOperands() == 0) 292 return true; 293 Metadata *NameMD = Op->getOperand(0).get(); 294 if (!isa<MDString>(NameMD)) 295 return true; 296 StringRef AttrName = cast<MDString>(NameMD)->getString(); 297 298 // Do not inherit excluded attributes. 299 return !AttrName.starts_with(InheritOptionsExceptPrefix); 300 }; 301 302 if (InheritThisAttribute(Op)) 303 MDs.push_back(Op); 304 else 305 Changed = true; 306 } 307 } else { 308 // Modified if we dropped at least one attribute. 309 Changed = OrigLoopID->getNumOperands() > 1; 310 } 311 312 bool HasAnyFollowup = false; 313 for (StringRef OptionName : FollowupOptions) { 314 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 315 if (!FollowupNode) 316 continue; 317 318 HasAnyFollowup = true; 319 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 320 MDs.push_back(Option.get()); 321 Changed = true; 322 } 323 } 324 325 // Attributes of the followup loop not specified explicity, so signal to the 326 // transformation pass to add suitable attributes. 327 if (!AlwaysNew && !HasAnyFollowup) 328 return std::nullopt; 329 330 // If no attributes were added or remove, the previous loop Id can be reused. 331 if (!AlwaysNew && !Changed) 332 return OrigLoopID; 333 334 // No attributes is equivalent to having no !llvm.loop metadata at all. 335 if (MDs.size() == 1) 336 return nullptr; 337 338 // Build the new loop ID. 339 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 340 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 341 return FollowupLoopID; 342 } 343 344 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 345 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 346 } 347 348 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 349 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 350 } 351 352 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 353 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 354 return TM_SuppressedByUser; 355 356 std::optional<int> Count = 357 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 358 if (Count) 359 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 360 361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 362 return TM_ForcedByUser; 363 364 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 365 return TM_ForcedByUser; 366 367 if (hasDisableAllTransformsHint(L)) 368 return TM_Disable; 369 370 return TM_Unspecified; 371 } 372 373 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 374 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 375 return TM_SuppressedByUser; 376 377 std::optional<int> Count = 378 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 379 if (Count) 380 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 381 382 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 383 return TM_ForcedByUser; 384 385 if (hasDisableAllTransformsHint(L)) 386 return TM_Disable; 387 388 return TM_Unspecified; 389 } 390 391 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 392 std::optional<bool> Enable = 393 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 394 395 if (Enable == false) 396 return TM_SuppressedByUser; 397 398 std::optional<ElementCount> VectorizeWidth = 399 getOptionalElementCountLoopAttribute(L); 400 std::optional<int> InterleaveCount = 401 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 402 403 // 'Forcing' vector width and interleave count to one effectively disables 404 // this tranformation. 405 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 406 InterleaveCount == 1) 407 return TM_SuppressedByUser; 408 409 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 410 return TM_Disable; 411 412 if (Enable == true) 413 return TM_ForcedByUser; 414 415 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 416 return TM_Disable; 417 418 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 419 return TM_Enable; 420 421 if (hasDisableAllTransformsHint(L)) 422 return TM_Disable; 423 424 return TM_Unspecified; 425 } 426 427 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 428 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 429 return TM_ForcedByUser; 430 431 if (hasDisableAllTransformsHint(L)) 432 return TM_Disable; 433 434 return TM_Unspecified; 435 } 436 437 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 438 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 439 return TM_SuppressedByUser; 440 441 if (hasDisableAllTransformsHint(L)) 442 return TM_Disable; 443 444 return TM_Unspecified; 445 } 446 447 /// Does a BFS from a given node to all of its children inside a given loop. 448 /// The returned vector of nodes includes the starting point. 449 SmallVector<DomTreeNode *, 16> 450 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 451 SmallVector<DomTreeNode *, 16> Worklist; 452 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 453 // Only include subregions in the top level loop. 454 BasicBlock *BB = DTN->getBlock(); 455 if (CurLoop->contains(BB)) 456 Worklist.push_back(DTN); 457 }; 458 459 AddRegionToWorklist(N); 460 461 for (size_t I = 0; I < Worklist.size(); I++) { 462 for (DomTreeNode *Child : Worklist[I]->children()) 463 AddRegionToWorklist(Child); 464 } 465 466 return Worklist; 467 } 468 469 bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) { 470 int LatchIdx = PN->getBasicBlockIndex(LatchBlock); 471 assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode"); 472 Value *IncV = PN->getIncomingValue(LatchIdx); 473 474 for (User *U : PN->users()) 475 if (U != Cond && U != IncV) return false; 476 477 for (User *U : IncV->users()) 478 if (U != Cond && U != PN) return false; 479 return true; 480 } 481 482 483 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 484 LoopInfo *LI, MemorySSA *MSSA) { 485 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 486 auto *Preheader = L->getLoopPreheader(); 487 assert(Preheader && "Preheader should exist!"); 488 489 std::unique_ptr<MemorySSAUpdater> MSSAU; 490 if (MSSA) 491 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 492 493 // Now that we know the removal is safe, remove the loop by changing the 494 // branch from the preheader to go to the single exit block. 495 // 496 // Because we're deleting a large chunk of code at once, the sequence in which 497 // we remove things is very important to avoid invalidation issues. 498 499 // Tell ScalarEvolution that the loop is deleted. Do this before 500 // deleting the loop so that ScalarEvolution can look at the loop 501 // to determine what it needs to clean up. 502 if (SE) { 503 SE->forgetLoop(L); 504 SE->forgetBlockAndLoopDispositions(); 505 } 506 507 Instruction *OldTerm = Preheader->getTerminator(); 508 assert(!OldTerm->mayHaveSideEffects() && 509 "Preheader must end with a side-effect-free terminator"); 510 assert(OldTerm->getNumSuccessors() == 1 && 511 "Preheader must have a single successor"); 512 // Connect the preheader to the exit block. Keep the old edge to the header 513 // around to perform the dominator tree update in two separate steps 514 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 515 // preheader -> header. 516 // 517 // 518 // 0. Preheader 1. Preheader 2. Preheader 519 // | | | | 520 // V | V | 521 // Header <--\ | Header <--\ | Header <--\ 522 // | | | | | | | | | | | 523 // | V | | | V | | | V | 524 // | Body --/ | | Body --/ | | Body --/ 525 // V V V V V 526 // Exit Exit Exit 527 // 528 // By doing this is two separate steps we can perform the dominator tree 529 // update without using the batch update API. 530 // 531 // Even when the loop is never executed, we cannot remove the edge from the 532 // source block to the exit block. Consider the case where the unexecuted loop 533 // branches back to an outer loop. If we deleted the loop and removed the edge 534 // coming to this inner loop, this will break the outer loop structure (by 535 // deleting the backedge of the outer loop). If the outer loop is indeed a 536 // non-loop, it will be deleted in a future iteration of loop deletion pass. 537 IRBuilder<> Builder(OldTerm); 538 539 auto *ExitBlock = L->getUniqueExitBlock(); 540 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 541 if (ExitBlock) { 542 assert(ExitBlock && "Should have a unique exit block!"); 543 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 544 545 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 546 // Remove the old branch. The conditional branch becomes a new terminator. 547 OldTerm->eraseFromParent(); 548 549 // Rewrite phis in the exit block to get their inputs from the Preheader 550 // instead of the exiting block. 551 for (PHINode &P : ExitBlock->phis()) { 552 // Set the zero'th element of Phi to be from the preheader and remove all 553 // other incoming values. Given the loop has dedicated exits, all other 554 // incoming values must be from the exiting blocks. 555 int PredIndex = 0; 556 P.setIncomingBlock(PredIndex, Preheader); 557 // Removes all incoming values from all other exiting blocks (including 558 // duplicate values from an exiting block). 559 // Nuke all entries except the zero'th entry which is the preheader entry. 560 P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; }, 561 /* DeletePHIIfEmpty */ false); 562 563 assert((P.getNumIncomingValues() == 1 && 564 P.getIncomingBlock(PredIndex) == Preheader) && 565 "Should have exactly one value and that's from the preheader!"); 566 } 567 568 if (DT) { 569 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 570 if (MSSA) { 571 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 572 *DT); 573 if (VerifyMemorySSA) 574 MSSA->verifyMemorySSA(); 575 } 576 } 577 578 // Disconnect the loop body by branching directly to its exit. 579 Builder.SetInsertPoint(Preheader->getTerminator()); 580 Builder.CreateBr(ExitBlock); 581 // Remove the old branch. 582 Preheader->getTerminator()->eraseFromParent(); 583 } else { 584 assert(L->hasNoExitBlocks() && 585 "Loop should have either zero or one exit blocks."); 586 587 Builder.SetInsertPoint(OldTerm); 588 Builder.CreateUnreachable(); 589 Preheader->getTerminator()->eraseFromParent(); 590 } 591 592 if (DT) { 593 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 594 if (MSSA) { 595 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 596 *DT); 597 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 598 L->block_end()); 599 MSSAU->removeBlocks(DeadBlockSet); 600 if (VerifyMemorySSA) 601 MSSA->verifyMemorySSA(); 602 } 603 } 604 605 // Use a map to unique and a vector to guarantee deterministic ordering. 606 llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet; 607 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 608 llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords; 609 610 if (ExitBlock) { 611 // Given LCSSA form is satisfied, we should not have users of instructions 612 // within the dead loop outside of the loop. However, LCSSA doesn't take 613 // unreachable uses into account. We handle them here. 614 // We could do it after drop all references (in this case all users in the 615 // loop will be already eliminated and we have less work to do but according 616 // to API doc of User::dropAllReferences only valid operation after dropping 617 // references, is deletion. So let's substitute all usages of 618 // instruction from the loop with poison value of corresponding type first. 619 for (auto *Block : L->blocks()) 620 for (Instruction &I : *Block) { 621 auto *Poison = PoisonValue::get(I.getType()); 622 for (Use &U : llvm::make_early_inc_range(I.uses())) { 623 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 624 if (L->contains(Usr->getParent())) 625 continue; 626 // If we have a DT then we can check that uses outside a loop only in 627 // unreachable block. 628 if (DT) 629 assert(!DT->isReachableFromEntry(U) && 630 "Unexpected user in reachable block"); 631 U.set(Poison); 632 } 633 634 // RemoveDIs: do the same as below for DbgVariableRecords. 635 if (Block->IsNewDbgInfoFormat) { 636 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 637 filterDbgVars(I.getDbgRecordRange()))) { 638 DebugVariable Key(DVR.getVariable(), DVR.getExpression(), 639 DVR.getDebugLoc().get()); 640 if (!DeadDebugSet.insert(Key).second) 641 continue; 642 // Unlinks the DVR from it's container, for later insertion. 643 DVR.removeFromParent(); 644 DeadDbgVariableRecords.push_back(&DVR); 645 } 646 } 647 648 // For one of each variable encountered, preserve a debug intrinsic (set 649 // to Poison) and transfer it to the loop exit. This terminates any 650 // variable locations that were set during the loop. 651 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 652 if (!DVI) 653 continue; 654 if (!DeadDebugSet.insert(DebugVariable(DVI)).second) 655 continue; 656 DeadDebugInst.push_back(DVI); 657 } 658 659 // After the loop has been deleted all the values defined and modified 660 // inside the loop are going to be unavailable. Values computed in the 661 // loop will have been deleted, automatically causing their debug uses 662 // be be replaced with undef. Loop invariant values will still be available. 663 // Move dbg.values out the loop so that earlier location ranges are still 664 // terminated and loop invariant assignments are preserved. 665 DIBuilder DIB(*ExitBlock->getModule()); 666 BasicBlock::iterator InsertDbgValueBefore = 667 ExitBlock->getFirstInsertionPt(); 668 assert(InsertDbgValueBefore != ExitBlock->end() && 669 "There should be a non-PHI instruction in exit block, else these " 670 "instructions will have no parent."); 671 672 for (auto *DVI : DeadDebugInst) 673 DVI->moveBefore(*ExitBlock, InsertDbgValueBefore); 674 675 // Due to the "head" bit in BasicBlock::iterator, we're going to insert 676 // each DbgVariableRecord right at the start of the block, wheras dbg.values 677 // would be repeatedly inserted before the first instruction. To replicate 678 // this behaviour, do it backwards. 679 for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords)) 680 ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore); 681 } 682 683 // Remove the block from the reference counting scheme, so that we can 684 // delete it freely later. 685 for (auto *Block : L->blocks()) 686 Block->dropAllReferences(); 687 688 if (MSSA && VerifyMemorySSA) 689 MSSA->verifyMemorySSA(); 690 691 if (LI) { 692 // Erase the instructions and the blocks without having to worry 693 // about ordering because we already dropped the references. 694 // NOTE: This iteration is safe because erasing the block does not remove 695 // its entry from the loop's block list. We do that in the next section. 696 for (BasicBlock *BB : L->blocks()) 697 BB->eraseFromParent(); 698 699 // Finally, the blocks from loopinfo. This has to happen late because 700 // otherwise our loop iterators won't work. 701 702 SmallPtrSet<BasicBlock *, 8> blocks; 703 blocks.insert(L->block_begin(), L->block_end()); 704 for (BasicBlock *BB : blocks) 705 LI->removeBlock(BB); 706 707 // The last step is to update LoopInfo now that we've eliminated this loop. 708 // Note: LoopInfo::erase remove the given loop and relink its subloops with 709 // its parent. While removeLoop/removeChildLoop remove the given loop but 710 // not relink its subloops, which is what we want. 711 if (Loop *ParentLoop = L->getParentLoop()) { 712 Loop::iterator I = find(*ParentLoop, L); 713 assert(I != ParentLoop->end() && "Couldn't find loop"); 714 ParentLoop->removeChildLoop(I); 715 } else { 716 Loop::iterator I = find(*LI, L); 717 assert(I != LI->end() && "Couldn't find loop"); 718 LI->removeLoop(I); 719 } 720 LI->destroy(L); 721 } 722 } 723 724 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 725 LoopInfo &LI, MemorySSA *MSSA) { 726 auto *Latch = L->getLoopLatch(); 727 assert(Latch && "multiple latches not yet supported"); 728 auto *Header = L->getHeader(); 729 Loop *OutermostLoop = L->getOutermostLoop(); 730 731 SE.forgetLoop(L); 732 SE.forgetBlockAndLoopDispositions(); 733 734 std::unique_ptr<MemorySSAUpdater> MSSAU; 735 if (MSSA) 736 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 737 738 // Update the CFG and domtree. We chose to special case a couple of 739 // of common cases for code quality and test readability reasons. 740 [&]() -> void { 741 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) { 742 if (!BI->isConditional()) { 743 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 744 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU, 745 MSSAU.get()); 746 return; 747 } 748 749 // Conditional latch/exit - note that latch can be shared by inner 750 // and outer loop so the other target doesn't need to an exit 751 if (L->isLoopExiting(Latch)) { 752 // TODO: Generalize ConstantFoldTerminator so that it can be used 753 // here without invalidating LCSSA or MemorySSA. (Tricky case for 754 // LCSSA: header is an exit block of a preceeding sibling loop w/o 755 // dedicated exits.) 756 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0; 757 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx); 758 759 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 760 Header->removePredecessor(Latch, true); 761 762 IRBuilder<> Builder(BI); 763 auto *NewBI = Builder.CreateBr(ExitBB); 764 // Transfer the metadata to the new branch instruction (minus the 765 // loop info since this is no longer a loop) 766 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg, 767 LLVMContext::MD_annotation}); 768 769 BI->eraseFromParent(); 770 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}}); 771 if (MSSA) 772 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT); 773 return; 774 } 775 } 776 777 // General case. By splitting the backedge, and then explicitly making it 778 // unreachable we gracefully handle corner cases such as switch and invoke 779 // termiantors. 780 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 781 782 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 783 (void)changeToUnreachable(BackedgeBB->getTerminator(), 784 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 785 }(); 786 787 // Erase (and destroy) this loop instance. Handles relinking sub-loops 788 // and blocks within the loop as needed. 789 LI.erase(L); 790 791 // If the loop we broke had a parent, then changeToUnreachable might have 792 // caused a block to be removed from the parent loop (see loop_nest_lcssa 793 // test case in zero-btc.ll for an example), thus changing the parent's 794 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 795 // loop which might have a had a block removed. 796 if (OutermostLoop != L) 797 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 798 } 799 800 801 /// Checks if \p L has an exiting latch branch. There may also be other 802 /// exiting blocks. Returns branch instruction terminating the loop 803 /// latch if above check is successful, nullptr otherwise. 804 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 805 BasicBlock *Latch = L->getLoopLatch(); 806 if (!Latch) 807 return nullptr; 808 809 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 810 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 811 return nullptr; 812 813 assert((LatchBR->getSuccessor(0) == L->getHeader() || 814 LatchBR->getSuccessor(1) == L->getHeader()) && 815 "At least one edge out of the latch must go to the header"); 816 817 return LatchBR; 818 } 819 820 /// Return the estimated trip count for any exiting branch which dominates 821 /// the loop latch. 822 static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch, 823 Loop *L, 824 uint64_t &OrigExitWeight) { 825 // To estimate the number of times the loop body was executed, we want to 826 // know the number of times the backedge was taken, vs. the number of times 827 // we exited the loop. 828 uint64_t LoopWeight, ExitWeight; 829 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight)) 830 return std::nullopt; 831 832 if (L->contains(ExitingBranch->getSuccessor(1))) 833 std::swap(LoopWeight, ExitWeight); 834 835 if (!ExitWeight) 836 // Don't have a way to return predicated infinite 837 return std::nullopt; 838 839 OrigExitWeight = ExitWeight; 840 841 // Estimated exit count is a ratio of the loop weight by the weight of the 842 // edge exiting the loop, rounded to nearest. 843 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight); 844 // Estimated trip count is one plus estimated exit count. 845 return ExitCount + 1; 846 } 847 848 std::optional<unsigned> 849 llvm::getLoopEstimatedTripCount(Loop *L, 850 unsigned *EstimatedLoopInvocationWeight) { 851 // Currently we take the estimate exit count only from the loop latch, 852 // ignoring other exiting blocks. This can overestimate the trip count 853 // if we exit through another exit, but can never underestimate it. 854 // TODO: incorporate information from other exits 855 if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) { 856 uint64_t ExitWeight; 857 if (std::optional<uint64_t> EstTripCount = 858 getEstimatedTripCount(LatchBranch, L, ExitWeight)) { 859 if (EstimatedLoopInvocationWeight) 860 *EstimatedLoopInvocationWeight = ExitWeight; 861 return *EstTripCount; 862 } 863 } 864 return std::nullopt; 865 } 866 867 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 868 unsigned EstimatedloopInvocationWeight) { 869 // At the moment, we currently support changing the estimate trip count of 870 // the latch branch only. We could extend this API to manipulate estimated 871 // trip counts for any exit. 872 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 873 if (!LatchBranch) 874 return false; 875 876 // Calculate taken and exit weights. 877 unsigned LatchExitWeight = 0; 878 unsigned BackedgeTakenWeight = 0; 879 880 if (EstimatedTripCount > 0) { 881 LatchExitWeight = EstimatedloopInvocationWeight; 882 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 883 } 884 885 // Make a swap if back edge is taken when condition is "false". 886 if (LatchBranch->getSuccessor(0) != L->getHeader()) 887 std::swap(BackedgeTakenWeight, LatchExitWeight); 888 889 MDBuilder MDB(LatchBranch->getContext()); 890 891 // Set/Update profile metadata. 892 LatchBranch->setMetadata( 893 LLVMContext::MD_prof, 894 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 895 896 return true; 897 } 898 899 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 900 ScalarEvolution &SE) { 901 Loop *OuterL = InnerLoop->getParentLoop(); 902 if (!OuterL) 903 return true; 904 905 // Get the backedge taken count for the inner loop 906 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 907 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 908 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 909 !InnerLoopBECountSC->getType()->isIntegerTy()) 910 return false; 911 912 // Get whether count is invariant to the outer loop 913 ScalarEvolution::LoopDisposition LD = 914 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 915 if (LD != ScalarEvolution::LoopInvariant) 916 return false; 917 918 return true; 919 } 920 921 constexpr Intrinsic::ID llvm::getReductionIntrinsicID(RecurKind RK) { 922 switch (RK) { 923 default: 924 llvm_unreachable("Unexpected recurrence kind"); 925 case RecurKind::Add: 926 return Intrinsic::vector_reduce_add; 927 case RecurKind::Mul: 928 return Intrinsic::vector_reduce_mul; 929 case RecurKind::And: 930 return Intrinsic::vector_reduce_and; 931 case RecurKind::Or: 932 return Intrinsic::vector_reduce_or; 933 case RecurKind::Xor: 934 return Intrinsic::vector_reduce_xor; 935 case RecurKind::FMulAdd: 936 case RecurKind::FAdd: 937 return Intrinsic::vector_reduce_fadd; 938 case RecurKind::FMul: 939 return Intrinsic::vector_reduce_fmul; 940 case RecurKind::SMax: 941 return Intrinsic::vector_reduce_smax; 942 case RecurKind::SMin: 943 return Intrinsic::vector_reduce_smin; 944 case RecurKind::UMax: 945 return Intrinsic::vector_reduce_umax; 946 case RecurKind::UMin: 947 return Intrinsic::vector_reduce_umin; 948 case RecurKind::FMax: 949 return Intrinsic::vector_reduce_fmax; 950 case RecurKind::FMin: 951 return Intrinsic::vector_reduce_fmin; 952 case RecurKind::FMaximum: 953 return Intrinsic::vector_reduce_fmaximum; 954 case RecurKind::FMinimum: 955 return Intrinsic::vector_reduce_fminimum; 956 } 957 } 958 959 unsigned llvm::getArithmeticReductionInstruction(Intrinsic::ID RdxID) { 960 switch (RdxID) { 961 case Intrinsic::vector_reduce_fadd: 962 return Instruction::FAdd; 963 case Intrinsic::vector_reduce_fmul: 964 return Instruction::FMul; 965 case Intrinsic::vector_reduce_add: 966 return Instruction::Add; 967 case Intrinsic::vector_reduce_mul: 968 return Instruction::Mul; 969 case Intrinsic::vector_reduce_and: 970 return Instruction::And; 971 case Intrinsic::vector_reduce_or: 972 return Instruction::Or; 973 case Intrinsic::vector_reduce_xor: 974 return Instruction::Xor; 975 case Intrinsic::vector_reduce_smax: 976 case Intrinsic::vector_reduce_smin: 977 case Intrinsic::vector_reduce_umax: 978 case Intrinsic::vector_reduce_umin: 979 return Instruction::ICmp; 980 case Intrinsic::vector_reduce_fmax: 981 case Intrinsic::vector_reduce_fmin: 982 return Instruction::FCmp; 983 default: 984 llvm_unreachable("Unexpected ID"); 985 } 986 } 987 988 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID) { 989 switch (RdxID) { 990 default: 991 llvm_unreachable("Unknown min/max recurrence kind"); 992 case Intrinsic::vector_reduce_umin: 993 return Intrinsic::umin; 994 case Intrinsic::vector_reduce_umax: 995 return Intrinsic::umax; 996 case Intrinsic::vector_reduce_smin: 997 return Intrinsic::smin; 998 case Intrinsic::vector_reduce_smax: 999 return Intrinsic::smax; 1000 case Intrinsic::vector_reduce_fmin: 1001 return Intrinsic::minnum; 1002 case Intrinsic::vector_reduce_fmax: 1003 return Intrinsic::maxnum; 1004 case Intrinsic::vector_reduce_fminimum: 1005 return Intrinsic::minimum; 1006 case Intrinsic::vector_reduce_fmaximum: 1007 return Intrinsic::maximum; 1008 } 1009 } 1010 1011 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) { 1012 switch (RK) { 1013 default: 1014 llvm_unreachable("Unknown min/max recurrence kind"); 1015 case RecurKind::UMin: 1016 return Intrinsic::umin; 1017 case RecurKind::UMax: 1018 return Intrinsic::umax; 1019 case RecurKind::SMin: 1020 return Intrinsic::smin; 1021 case RecurKind::SMax: 1022 return Intrinsic::smax; 1023 case RecurKind::FMin: 1024 return Intrinsic::minnum; 1025 case RecurKind::FMax: 1026 return Intrinsic::maxnum; 1027 case RecurKind::FMinimum: 1028 return Intrinsic::minimum; 1029 case RecurKind::FMaximum: 1030 return Intrinsic::maximum; 1031 } 1032 } 1033 1034 RecurKind llvm::getMinMaxReductionRecurKind(Intrinsic::ID RdxID) { 1035 switch (RdxID) { 1036 case Intrinsic::vector_reduce_smax: 1037 return RecurKind::SMax; 1038 case Intrinsic::vector_reduce_smin: 1039 return RecurKind::SMin; 1040 case Intrinsic::vector_reduce_umax: 1041 return RecurKind::UMax; 1042 case Intrinsic::vector_reduce_umin: 1043 return RecurKind::UMin; 1044 case Intrinsic::vector_reduce_fmax: 1045 return RecurKind::FMax; 1046 case Intrinsic::vector_reduce_fmin: 1047 return RecurKind::FMin; 1048 default: 1049 return RecurKind::None; 1050 } 1051 } 1052 1053 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) { 1054 switch (RK) { 1055 default: 1056 llvm_unreachable("Unknown min/max recurrence kind"); 1057 case RecurKind::UMin: 1058 return CmpInst::ICMP_ULT; 1059 case RecurKind::UMax: 1060 return CmpInst::ICMP_UGT; 1061 case RecurKind::SMin: 1062 return CmpInst::ICMP_SLT; 1063 case RecurKind::SMax: 1064 return CmpInst::ICMP_SGT; 1065 case RecurKind::FMin: 1066 return CmpInst::FCMP_OLT; 1067 case RecurKind::FMax: 1068 return CmpInst::FCMP_OGT; 1069 // We do not add FMinimum/FMaximum recurrence kind here since there is no 1070 // equivalent predicate which compares signed zeroes according to the 1071 // semantics of the intrinsics (llvm.minimum/maximum). 1072 } 1073 } 1074 1075 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 1076 Value *Right) { 1077 Type *Ty = Left->getType(); 1078 if (Ty->isIntOrIntVectorTy() || 1079 (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) { 1080 // TODO: Add float minnum/maxnum support when FMF nnan is set. 1081 Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK); 1082 return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr, 1083 "rdx.minmax"); 1084 } 1085 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK); 1086 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 1087 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 1088 return Select; 1089 } 1090 1091 // Helper to generate an ordered reduction. 1092 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 1093 unsigned Op, RecurKind RdxKind) { 1094 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 1095 1096 // Extract and apply reduction ops in ascending order: 1097 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 1098 Value *Result = Acc; 1099 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 1100 Value *Ext = 1101 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 1102 1103 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1104 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 1105 "bin.rdx"); 1106 } else { 1107 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1108 "Invalid min/max"); 1109 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 1110 } 1111 } 1112 1113 return Result; 1114 } 1115 1116 // Helper to generate a log2 shuffle reduction. 1117 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 1118 unsigned Op, 1119 TargetTransformInfo::ReductionShuffle RS, 1120 RecurKind RdxKind) { 1121 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 1122 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 1123 // and vector ops, reducing the set of values being computed by half each 1124 // round. 1125 assert(isPowerOf2_32(VF) && 1126 "Reduction emission only supported for pow2 vectors!"); 1127 // Note: fast-math-flags flags are controlled by the builder configuration 1128 // and are assumed to apply to all generated arithmetic instructions. Other 1129 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part 1130 // of the builder configuration, and since they're not passed explicitly, 1131 // will never be relevant here. Note that it would be generally unsound to 1132 // propagate these from an intrinsic call to the expansion anyways as we/ 1133 // change the order of operations. 1134 auto BuildShuffledOp = [&Builder, &Op, 1135 &RdxKind](SmallVectorImpl<int> &ShuffleMask, 1136 Value *&TmpVec) -> void { 1137 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 1138 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1139 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 1140 "bin.rdx"); 1141 } else { 1142 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1143 "Invalid min/max"); 1144 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 1145 } 1146 }; 1147 1148 Value *TmpVec = Src; 1149 if (TargetTransformInfo::ReductionShuffle::Pairwise == RS) { 1150 SmallVector<int, 32> ShuffleMask(VF); 1151 for (unsigned stride = 1; stride < VF; stride <<= 1) { 1152 // Initialise the mask with undef. 1153 std::fill(ShuffleMask.begin(), ShuffleMask.end(), -1); 1154 for (unsigned j = 0; j < VF; j += stride << 1) { 1155 ShuffleMask[j] = j + stride; 1156 } 1157 BuildShuffledOp(ShuffleMask, TmpVec); 1158 } 1159 } else { 1160 SmallVector<int, 32> ShuffleMask(VF); 1161 for (unsigned i = VF; i != 1; i >>= 1) { 1162 // Move the upper half of the vector to the lower half. 1163 for (unsigned j = 0; j != i / 2; ++j) 1164 ShuffleMask[j] = i / 2 + j; 1165 1166 // Fill the rest of the mask with undef. 1167 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 1168 BuildShuffledOp(ShuffleMask, TmpVec); 1169 } 1170 } 1171 // The result is in the first element of the vector. 1172 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1173 } 1174 1175 Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src, 1176 const RecurrenceDescriptor &Desc, 1177 PHINode *OrigPhi) { 1178 assert( 1179 RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) && 1180 "Unexpected reduction kind"); 1181 Value *InitVal = Desc.getRecurrenceStartValue(); 1182 Value *NewVal = nullptr; 1183 1184 // First use the original phi to determine the new value we're trying to 1185 // select from in the loop. 1186 SelectInst *SI = nullptr; 1187 for (auto *U : OrigPhi->users()) { 1188 if ((SI = dyn_cast<SelectInst>(U))) 1189 break; 1190 } 1191 assert(SI && "One user of the original phi should be a select"); 1192 1193 if (SI->getTrueValue() == OrigPhi) 1194 NewVal = SI->getFalseValue(); 1195 else { 1196 assert(SI->getFalseValue() == OrigPhi && 1197 "At least one input to the select should be the original Phi"); 1198 NewVal = SI->getTrueValue(); 1199 } 1200 1201 // If any predicate is true it means that we want to select the new value. 1202 Value *AnyOf = 1203 Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src; 1204 // The compares in the loop may yield poison, which propagates through the 1205 // bitwise ORs. Freeze it here before the condition is used. 1206 AnyOf = Builder.CreateFreeze(AnyOf); 1207 return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select"); 1208 } 1209 1210 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src, 1211 RecurKind RdxKind) { 1212 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1213 auto getIdentity = [&]() { 1214 Intrinsic::ID ID = getReductionIntrinsicID(RdxKind); 1215 unsigned Opc = getArithmeticReductionInstruction(ID); 1216 bool NSZ = Builder.getFastMathFlags().noSignedZeros(); 1217 return ConstantExpr::getBinOpIdentity(Opc, SrcVecEltTy, false, NSZ); 1218 }; 1219 switch (RdxKind) { 1220 case RecurKind::Add: 1221 case RecurKind::Mul: 1222 case RecurKind::And: 1223 case RecurKind::Or: 1224 case RecurKind::Xor: 1225 case RecurKind::SMax: 1226 case RecurKind::SMin: 1227 case RecurKind::UMax: 1228 case RecurKind::UMin: 1229 case RecurKind::FMax: 1230 case RecurKind::FMin: 1231 case RecurKind::FMinimum: 1232 case RecurKind::FMaximum: 1233 return Builder.CreateUnaryIntrinsic(getReductionIntrinsicID(RdxKind), Src); 1234 case RecurKind::FMulAdd: 1235 case RecurKind::FAdd: 1236 return Builder.CreateFAddReduce(getIdentity(), Src); 1237 case RecurKind::FMul: 1238 return Builder.CreateFMulReduce(getIdentity(), Src); 1239 default: 1240 llvm_unreachable("Unhandled opcode"); 1241 } 1242 } 1243 1244 Value *llvm::createSimpleTargetReduction(VectorBuilder &VBuilder, Value *Src, 1245 const RecurrenceDescriptor &Desc) { 1246 RecurKind Kind = Desc.getRecurrenceKind(); 1247 assert(!RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind) && 1248 "AnyOf reduction is not supported."); 1249 Intrinsic::ID Id = getReductionIntrinsicID(Kind); 1250 auto *SrcTy = cast<VectorType>(Src->getType()); 1251 Type *SrcEltTy = SrcTy->getElementType(); 1252 Value *Iden = 1253 Desc.getRecurrenceIdentity(Kind, SrcEltTy, Desc.getFastMathFlags()); 1254 Value *Ops[] = {Iden, Src}; 1255 return VBuilder.createSimpleTargetReduction(Id, SrcTy, Ops); 1256 } 1257 1258 Value *llvm::createTargetReduction(IRBuilderBase &B, 1259 const RecurrenceDescriptor &Desc, Value *Src, 1260 PHINode *OrigPhi) { 1261 // TODO: Support in-order reductions based on the recurrence descriptor. 1262 // All ops in the reduction inherit fast-math-flags from the recurrence 1263 // descriptor. 1264 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1265 B.setFastMathFlags(Desc.getFastMathFlags()); 1266 1267 RecurKind RK = Desc.getRecurrenceKind(); 1268 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) 1269 return createAnyOfTargetReduction(B, Src, Desc, OrigPhi); 1270 1271 return createSimpleTargetReduction(B, Src, RK); 1272 } 1273 1274 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1275 const RecurrenceDescriptor &Desc, 1276 Value *Src, Value *Start) { 1277 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1278 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1279 "Unexpected reduction kind"); 1280 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1281 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1282 1283 return B.CreateFAddReduce(Start, Src); 1284 } 1285 1286 Value *llvm::createOrderedReduction(VectorBuilder &VBuilder, 1287 const RecurrenceDescriptor &Desc, 1288 Value *Src, Value *Start) { 1289 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1290 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1291 "Unexpected reduction kind"); 1292 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1293 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1294 1295 Intrinsic::ID Id = getReductionIntrinsicID(RecurKind::FAdd); 1296 auto *SrcTy = cast<VectorType>(Src->getType()); 1297 Value *Ops[] = {Start, Src}; 1298 return VBuilder.createSimpleTargetReduction(Id, SrcTy, Ops); 1299 } 1300 1301 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue, 1302 bool IncludeWrapFlags) { 1303 auto *VecOp = dyn_cast<Instruction>(I); 1304 if (!VecOp) 1305 return; 1306 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1307 : dyn_cast<Instruction>(OpValue); 1308 if (!Intersection) 1309 return; 1310 const unsigned Opcode = Intersection->getOpcode(); 1311 VecOp->copyIRFlags(Intersection, IncludeWrapFlags); 1312 for (auto *V : VL) { 1313 auto *Instr = dyn_cast<Instruction>(V); 1314 if (!Instr) 1315 continue; 1316 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1317 VecOp->andIRFlags(V); 1318 } 1319 } 1320 1321 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1322 ScalarEvolution &SE) { 1323 const SCEV *Zero = SE.getZero(S->getType()); 1324 return SE.isAvailableAtLoopEntry(S, L) && 1325 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1326 } 1327 1328 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1329 ScalarEvolution &SE) { 1330 const SCEV *Zero = SE.getZero(S->getType()); 1331 return SE.isAvailableAtLoopEntry(S, L) && 1332 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1333 } 1334 1335 bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L, 1336 ScalarEvolution &SE) { 1337 const SCEV *Zero = SE.getZero(S->getType()); 1338 return SE.isAvailableAtLoopEntry(S, L) && 1339 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero); 1340 } 1341 1342 bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, 1343 ScalarEvolution &SE) { 1344 const SCEV *Zero = SE.getZero(S->getType()); 1345 return SE.isAvailableAtLoopEntry(S, L) && 1346 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero); 1347 } 1348 1349 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1350 bool Signed) { 1351 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1352 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1353 APInt::getMinValue(BitWidth); 1354 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1355 return SE.isAvailableAtLoopEntry(S, L) && 1356 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1357 SE.getConstant(Min)); 1358 } 1359 1360 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1361 bool Signed) { 1362 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1363 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1364 APInt::getMaxValue(BitWidth); 1365 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1366 return SE.isAvailableAtLoopEntry(S, L) && 1367 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1368 SE.getConstant(Max)); 1369 } 1370 1371 //===----------------------------------------------------------------------===// 1372 // rewriteLoopExitValues - Optimize IV users outside the loop. 1373 // As a side effect, reduces the amount of IV processing within the loop. 1374 //===----------------------------------------------------------------------===// 1375 1376 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1377 SmallPtrSet<const Instruction *, 8> Visited; 1378 SmallVector<const Instruction *, 8> WorkList; 1379 Visited.insert(I); 1380 WorkList.push_back(I); 1381 while (!WorkList.empty()) { 1382 const Instruction *Curr = WorkList.pop_back_val(); 1383 // This use is outside the loop, nothing to do. 1384 if (!L->contains(Curr)) 1385 continue; 1386 // Do we assume it is a "hard" use which will not be eliminated easily? 1387 if (Curr->mayHaveSideEffects()) 1388 return true; 1389 // Otherwise, add all its users to worklist. 1390 for (const auto *U : Curr->users()) { 1391 auto *UI = cast<Instruction>(U); 1392 if (Visited.insert(UI).second) 1393 WorkList.push_back(UI); 1394 } 1395 } 1396 return false; 1397 } 1398 1399 // Collect information about PHI nodes which can be transformed in 1400 // rewriteLoopExitValues. 1401 struct RewritePhi { 1402 PHINode *PN; // For which PHI node is this replacement? 1403 unsigned Ith; // For which incoming value? 1404 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1405 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1406 bool HighCost; // Is this expansion a high-cost? 1407 1408 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1409 bool H) 1410 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1411 HighCost(H) {} 1412 }; 1413 1414 // Check whether it is possible to delete the loop after rewriting exit 1415 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1416 // aggressively. 1417 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1418 BasicBlock *Preheader = L->getLoopPreheader(); 1419 // If there is no preheader, the loop will not be deleted. 1420 if (!Preheader) 1421 return false; 1422 1423 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1424 // We obviate multiple ExitingBlocks case for simplicity. 1425 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1426 // after exit value rewriting, we can enhance the logic here. 1427 SmallVector<BasicBlock *, 4> ExitingBlocks; 1428 L->getExitingBlocks(ExitingBlocks); 1429 SmallVector<BasicBlock *, 8> ExitBlocks; 1430 L->getUniqueExitBlocks(ExitBlocks); 1431 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1432 return false; 1433 1434 BasicBlock *ExitBlock = ExitBlocks[0]; 1435 BasicBlock::iterator BI = ExitBlock->begin(); 1436 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1437 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1438 1439 // If the Incoming value of P is found in RewritePhiSet, we know it 1440 // could be rewritten to use a loop invariant value in transformation 1441 // phase later. Skip it in the loop invariant check below. 1442 bool found = false; 1443 for (const RewritePhi &Phi : RewritePhiSet) { 1444 unsigned i = Phi.Ith; 1445 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1446 found = true; 1447 break; 1448 } 1449 } 1450 1451 Instruction *I; 1452 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1453 if (!L->hasLoopInvariantOperands(I)) 1454 return false; 1455 1456 ++BI; 1457 } 1458 1459 for (auto *BB : L->blocks()) 1460 if (llvm::any_of(*BB, [](Instruction &I) { 1461 return I.mayHaveSideEffects(); 1462 })) 1463 return false; 1464 1465 return true; 1466 } 1467 1468 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi, 1469 /// and returns true if this Phi is an induction phi in the loop. When 1470 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI. 1471 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, 1472 InductionDescriptor &ID) { 1473 if (!Phi) 1474 return false; 1475 if (!L->getLoopPreheader()) 1476 return false; 1477 if (Phi->getParent() != L->getHeader()) 1478 return false; 1479 return InductionDescriptor::isInductionPHI(Phi, L, SE, ID); 1480 } 1481 1482 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1483 ScalarEvolution *SE, 1484 const TargetTransformInfo *TTI, 1485 SCEVExpander &Rewriter, DominatorTree *DT, 1486 ReplaceExitVal ReplaceExitValue, 1487 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1488 // Check a pre-condition. 1489 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1490 "Indvars did not preserve LCSSA!"); 1491 1492 SmallVector<BasicBlock*, 8> ExitBlocks; 1493 L->getUniqueExitBlocks(ExitBlocks); 1494 1495 SmallVector<RewritePhi, 8> RewritePhiSet; 1496 // Find all values that are computed inside the loop, but used outside of it. 1497 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1498 // the exit blocks of the loop to find them. 1499 for (BasicBlock *ExitBB : ExitBlocks) { 1500 // If there are no PHI nodes in this exit block, then no values defined 1501 // inside the loop are used on this path, skip it. 1502 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1503 if (!PN) continue; 1504 1505 unsigned NumPreds = PN->getNumIncomingValues(); 1506 1507 // Iterate over all of the PHI nodes. 1508 BasicBlock::iterator BBI = ExitBB->begin(); 1509 while ((PN = dyn_cast<PHINode>(BBI++))) { 1510 if (PN->use_empty()) 1511 continue; // dead use, don't replace it 1512 1513 if (!SE->isSCEVable(PN->getType())) 1514 continue; 1515 1516 // Iterate over all of the values in all the PHI nodes. 1517 for (unsigned i = 0; i != NumPreds; ++i) { 1518 // If the value being merged in is not integer or is not defined 1519 // in the loop, skip it. 1520 Value *InVal = PN->getIncomingValue(i); 1521 if (!isa<Instruction>(InVal)) 1522 continue; 1523 1524 // If this pred is for a subloop, not L itself, skip it. 1525 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1526 continue; // The Block is in a subloop, skip it. 1527 1528 // Check that InVal is defined in the loop. 1529 Instruction *Inst = cast<Instruction>(InVal); 1530 if (!L->contains(Inst)) 1531 continue; 1532 1533 // Find exit values which are induction variables in the loop, and are 1534 // unused in the loop, with the only use being the exit block PhiNode, 1535 // and the induction variable update binary operator. 1536 // The exit value can be replaced with the final value when it is cheap 1537 // to do so. 1538 if (ReplaceExitValue == UnusedIndVarInLoop) { 1539 InductionDescriptor ID; 1540 PHINode *IndPhi = dyn_cast<PHINode>(Inst); 1541 if (IndPhi) { 1542 if (!checkIsIndPhi(IndPhi, L, SE, ID)) 1543 continue; 1544 // This is an induction PHI. Check that the only users are PHI 1545 // nodes, and induction variable update binary operators. 1546 if (llvm::any_of(Inst->users(), [&](User *U) { 1547 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U)) 1548 return true; 1549 BinaryOperator *B = dyn_cast<BinaryOperator>(U); 1550 if (B && B != ID.getInductionBinOp()) 1551 return true; 1552 return false; 1553 })) 1554 continue; 1555 } else { 1556 // If it is not an induction phi, it must be an induction update 1557 // binary operator with an induction phi user. 1558 BinaryOperator *B = dyn_cast<BinaryOperator>(Inst); 1559 if (!B) 1560 continue; 1561 if (llvm::any_of(Inst->users(), [&](User *U) { 1562 PHINode *Phi = dyn_cast<PHINode>(U); 1563 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID)) 1564 return true; 1565 return false; 1566 })) 1567 continue; 1568 if (B != ID.getInductionBinOp()) 1569 continue; 1570 } 1571 } 1572 1573 // Okay, this instruction has a user outside of the current loop 1574 // and varies predictably *inside* the loop. Evaluate the value it 1575 // contains when the loop exits, if possible. We prefer to start with 1576 // expressions which are true for all exits (so as to maximize 1577 // expression reuse by the SCEVExpander), but resort to per-exit 1578 // evaluation if that fails. 1579 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1580 if (isa<SCEVCouldNotCompute>(ExitValue) || 1581 !SE->isLoopInvariant(ExitValue, L) || 1582 !Rewriter.isSafeToExpand(ExitValue)) { 1583 // TODO: This should probably be sunk into SCEV in some way; maybe a 1584 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1585 // most SCEV expressions and other recurrence types (e.g. shift 1586 // recurrences). Is there existing code we can reuse? 1587 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1588 if (isa<SCEVCouldNotCompute>(ExitCount)) 1589 continue; 1590 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1591 if (AddRec->getLoop() == L) 1592 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1593 if (isa<SCEVCouldNotCompute>(ExitValue) || 1594 !SE->isLoopInvariant(ExitValue, L) || 1595 !Rewriter.isSafeToExpand(ExitValue)) 1596 continue; 1597 } 1598 1599 // Computing the value outside of the loop brings no benefit if it is 1600 // definitely used inside the loop in a way which can not be optimized 1601 // away. Avoid doing so unless we know we have a value which computes 1602 // the ExitValue already. TODO: This should be merged into SCEV 1603 // expander to leverage its knowledge of existing expressions. 1604 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1605 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1606 continue; 1607 1608 // Check if expansions of this SCEV would count as being high cost. 1609 bool HighCost = Rewriter.isHighCostExpansion( 1610 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1611 1612 // Note that we must not perform expansions until after 1613 // we query *all* the costs, because if we perform temporary expansion 1614 // inbetween, one that we might not intend to keep, said expansion 1615 // *may* affect cost calculation of the next SCEV's we'll query, 1616 // and next SCEV may errneously get smaller cost. 1617 1618 // Collect all the candidate PHINodes to be rewritten. 1619 Instruction *InsertPt = 1620 (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ? 1621 &*Inst->getParent()->getFirstInsertionPt() : Inst; 1622 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost); 1623 } 1624 } 1625 } 1626 1627 // TODO: evaluate whether it is beneficial to change how we calculate 1628 // high-cost: if we have SCEV 'A' which we know we will expand, should we 1629 // calculate the cost of other SCEV's after expanding SCEV 'A', thus 1630 // potentially giving cost bonus to those other SCEV's? 1631 1632 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1633 int NumReplaced = 0; 1634 1635 // Transformation. 1636 for (const RewritePhi &Phi : RewritePhiSet) { 1637 PHINode *PN = Phi.PN; 1638 1639 // Only do the rewrite when the ExitValue can be expanded cheaply. 1640 // If LoopCanBeDel is true, rewrite exit value aggressively. 1641 if ((ReplaceExitValue == OnlyCheapRepl || 1642 ReplaceExitValue == UnusedIndVarInLoop) && 1643 !LoopCanBeDel && Phi.HighCost) 1644 continue; 1645 1646 Value *ExitVal = Rewriter.expandCodeFor( 1647 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint); 1648 1649 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal 1650 << '\n' 1651 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1652 1653 #ifndef NDEBUG 1654 // If we reuse an instruction from a loop which is neither L nor one of 1655 // its containing loops, we end up breaking LCSSA form for this loop by 1656 // creating a new use of its instruction. 1657 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1658 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1659 if (EVL != L) 1660 assert(EVL->contains(L) && "LCSSA breach detected!"); 1661 #endif 1662 1663 NumReplaced++; 1664 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1665 PN->setIncomingValue(Phi.Ith, ExitVal); 1666 // It's necessary to tell ScalarEvolution about this explicitly so that 1667 // it can walk the def-use list and forget all SCEVs, as it may not be 1668 // watching the PHI itself. Once the new exit value is in place, there 1669 // may not be a def-use connection between the loop and every instruction 1670 // which got a SCEVAddRecExpr for that loop. 1671 SE->forgetValue(PN); 1672 1673 // If this instruction is dead now, delete it. Don't do it now to avoid 1674 // invalidating iterators. 1675 if (isInstructionTriviallyDead(Inst, TLI)) 1676 DeadInsts.push_back(Inst); 1677 1678 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1679 if (PN->getNumIncomingValues() == 1 && 1680 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1681 PN->replaceAllUsesWith(ExitVal); 1682 PN->eraseFromParent(); 1683 } 1684 } 1685 1686 // The insertion point instruction may have been deleted; clear it out 1687 // so that the rewriter doesn't trip over it later. 1688 Rewriter.clearInsertPoint(); 1689 return NumReplaced; 1690 } 1691 1692 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1693 /// \p OrigLoop. 1694 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1695 Loop *RemainderLoop, uint64_t UF) { 1696 assert(UF > 0 && "Zero unrolled factor is not supported"); 1697 assert(UnrolledLoop != RemainderLoop && 1698 "Unrolled and Remainder loops are expected to distinct"); 1699 1700 // Get number of iterations in the original scalar loop. 1701 unsigned OrigLoopInvocationWeight = 0; 1702 std::optional<unsigned> OrigAverageTripCount = 1703 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1704 if (!OrigAverageTripCount) 1705 return; 1706 1707 // Calculate number of iterations in unrolled loop. 1708 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1709 // Calculate number of iterations for remainder loop. 1710 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1711 1712 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1713 OrigLoopInvocationWeight); 1714 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1715 OrigLoopInvocationWeight); 1716 } 1717 1718 /// Utility that implements appending of loops onto a worklist. 1719 /// Loops are added in preorder (analogous for reverse postorder for trees), 1720 /// and the worklist is processed LIFO. 1721 template <typename RangeT> 1722 void llvm::appendReversedLoopsToWorklist( 1723 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1724 // We use an internal worklist to build up the preorder traversal without 1725 // recursion. 1726 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1727 1728 // We walk the initial sequence of loops in reverse because we generally want 1729 // to visit defs before uses and the worklist is LIFO. 1730 for (Loop *RootL : Loops) { 1731 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1732 assert(PreOrderWorklist.empty() && 1733 "Must start with an empty preorder walk worklist."); 1734 PreOrderWorklist.push_back(RootL); 1735 do { 1736 Loop *L = PreOrderWorklist.pop_back_val(); 1737 PreOrderWorklist.append(L->begin(), L->end()); 1738 PreOrderLoops.push_back(L); 1739 } while (!PreOrderWorklist.empty()); 1740 1741 Worklist.insert(std::move(PreOrderLoops)); 1742 PreOrderLoops.clear(); 1743 } 1744 } 1745 1746 template <typename RangeT> 1747 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1748 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1749 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1750 } 1751 1752 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1753 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1754 1755 template void 1756 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1757 SmallPriorityWorklist<Loop *, 4> &Worklist); 1758 1759 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1760 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1761 appendReversedLoopsToWorklist(LI, Worklist); 1762 } 1763 1764 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1765 LoopInfo *LI, LPPassManager *LPM) { 1766 Loop &New = *LI->AllocateLoop(); 1767 if (PL) 1768 PL->addChildLoop(&New); 1769 else 1770 LI->addTopLevelLoop(&New); 1771 1772 if (LPM) 1773 LPM->addLoop(New); 1774 1775 // Add all of the blocks in L to the new loop. 1776 for (BasicBlock *BB : L->blocks()) 1777 if (LI->getLoopFor(BB) == L) 1778 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI); 1779 1780 // Add all of the subloops to the new loop. 1781 for (Loop *I : *L) 1782 cloneLoop(I, &New, VM, LI, LPM); 1783 1784 return &New; 1785 } 1786 1787 /// IR Values for the lower and upper bounds of a pointer evolution. We 1788 /// need to use value-handles because SCEV expansion can invalidate previously 1789 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1790 /// a previous one. 1791 struct PointerBounds { 1792 TrackingVH<Value> Start; 1793 TrackingVH<Value> End; 1794 Value *StrideToCheck; 1795 }; 1796 1797 /// Expand code for the lower and upper bound of the pointer group \p CG 1798 /// in \p TheLoop. \return the values for the bounds. 1799 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1800 Loop *TheLoop, Instruction *Loc, 1801 SCEVExpander &Exp, bool HoistRuntimeChecks) { 1802 LLVMContext &Ctx = Loc->getContext(); 1803 Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace); 1804 1805 Value *Start = nullptr, *End = nullptr; 1806 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1807 const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr; 1808 1809 // If the Low and High values are themselves loop-variant, then we may want 1810 // to expand the range to include those covered by the outer loop as well. 1811 // There is a trade-off here with the advantage being that creating checks 1812 // using the expanded range permits the runtime memory checks to be hoisted 1813 // out of the outer loop. This reduces the cost of entering the inner loop, 1814 // which can be significant for low trip counts. The disadvantage is that 1815 // there is a chance we may now never enter the vectorized inner loop, 1816 // whereas using a restricted range check could have allowed us to enter at 1817 // least once. This is why the behaviour is not currently the default and is 1818 // controlled by the parameter 'HoistRuntimeChecks'. 1819 if (HoistRuntimeChecks && TheLoop->getParentLoop() && 1820 isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) { 1821 auto *HighAR = cast<SCEVAddRecExpr>(High); 1822 auto *LowAR = cast<SCEVAddRecExpr>(Low); 1823 const Loop *OuterLoop = TheLoop->getParentLoop(); 1824 ScalarEvolution &SE = *Exp.getSE(); 1825 const SCEV *Recur = LowAR->getStepRecurrence(SE); 1826 if (Recur == HighAR->getStepRecurrence(SE) && 1827 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) { 1828 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1829 const SCEV *OuterExitCount = SE.getExitCount(OuterLoop, OuterLoopLatch); 1830 if (!isa<SCEVCouldNotCompute>(OuterExitCount) && 1831 OuterExitCount->getType()->isIntegerTy()) { 1832 const SCEV *NewHigh = 1833 cast<SCEVAddRecExpr>(High)->evaluateAtIteration(OuterExitCount, SE); 1834 if (!isa<SCEVCouldNotCompute>(NewHigh)) { 1835 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include " 1836 "outer loop in order to permit hoisting\n"); 1837 High = NewHigh; 1838 Low = cast<SCEVAddRecExpr>(Low)->getStart(); 1839 // If there is a possibility that the stride is negative then we have 1840 // to generate extra checks to ensure the stride is positive. 1841 if (!SE.isKnownNonNegative( 1842 SE.applyLoopGuards(Recur, HighAR->getLoop()))) { 1843 Stride = Recur; 1844 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is " 1845 "positive: " 1846 << *Stride << '\n'); 1847 } 1848 } 1849 } 1850 } 1851 } 1852 1853 Start = Exp.expandCodeFor(Low, PtrArithTy, Loc); 1854 End = Exp.expandCodeFor(High, PtrArithTy, Loc); 1855 if (CG->NeedsFreeze) { 1856 IRBuilder<> Builder(Loc); 1857 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr"); 1858 End = Builder.CreateFreeze(End, End->getName() + ".fr"); 1859 } 1860 Value *StrideVal = 1861 Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr; 1862 LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n"); 1863 return {Start, End, StrideVal}; 1864 } 1865 1866 /// Turns a collection of checks into a collection of expanded upper and 1867 /// lower bounds for both pointers in the check. 1868 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1869 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1870 Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) { 1871 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1872 1873 // Here we're relying on the SCEV Expander's cache to only emit code for the 1874 // same bounds once. 1875 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1876 [&](const RuntimePointerCheck &Check) { 1877 PointerBounds First = expandBounds(Check.first, L, Loc, Exp, 1878 HoistRuntimeChecks), 1879 Second = expandBounds(Check.second, L, Loc, Exp, 1880 HoistRuntimeChecks); 1881 return std::make_pair(First, Second); 1882 }); 1883 1884 return ChecksWithBounds; 1885 } 1886 1887 Value *llvm::addRuntimeChecks( 1888 Instruction *Loc, Loop *TheLoop, 1889 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1890 SCEVExpander &Exp, bool HoistRuntimeChecks) { 1891 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1892 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1893 auto ExpandedChecks = 1894 expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks); 1895 1896 LLVMContext &Ctx = Loc->getContext(); 1897 IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout())); 1898 ChkBuilder.SetInsertPoint(Loc); 1899 // Our instructions might fold to a constant. 1900 Value *MemoryRuntimeCheck = nullptr; 1901 1902 for (const auto &[A, B] : ExpandedChecks) { 1903 // Check if two pointers (A and B) conflict where conflict is computed as: 1904 // start(A) <= end(B) && start(B) <= end(A) 1905 1906 assert((A.Start->getType()->getPointerAddressSpace() == 1907 B.End->getType()->getPointerAddressSpace()) && 1908 (B.Start->getType()->getPointerAddressSpace() == 1909 A.End->getType()->getPointerAddressSpace()) && 1910 "Trying to bounds check pointers with different address spaces"); 1911 1912 // [A|B].Start points to the first accessed byte under base [A|B]. 1913 // [A|B].End points to the last accessed byte, plus one. 1914 // There is no conflict when the intervals are disjoint: 1915 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1916 // 1917 // bound0 = (B.Start < A.End) 1918 // bound1 = (A.Start < B.End) 1919 // IsConflict = bound0 & bound1 1920 Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0"); 1921 Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1"); 1922 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1923 if (A.StrideToCheck) { 1924 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT( 1925 A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0), 1926 "stride.check"); 1927 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride); 1928 } 1929 if (B.StrideToCheck) { 1930 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT( 1931 B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0), 1932 "stride.check"); 1933 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride); 1934 } 1935 if (MemoryRuntimeCheck) { 1936 IsConflict = 1937 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1938 } 1939 MemoryRuntimeCheck = IsConflict; 1940 } 1941 1942 return MemoryRuntimeCheck; 1943 } 1944 1945 Value *llvm::addDiffRuntimeChecks( 1946 Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander, 1947 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) { 1948 1949 LLVMContext &Ctx = Loc->getContext(); 1950 IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout())); 1951 ChkBuilder.SetInsertPoint(Loc); 1952 // Our instructions might fold to a constant. 1953 Value *MemoryRuntimeCheck = nullptr; 1954 1955 auto &SE = *Expander.getSE(); 1956 // Map to keep track of created compares, The key is the pair of operands for 1957 // the compare, to allow detecting and re-using redundant compares. 1958 DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares; 1959 for (const auto &[SrcStart, SinkStart, AccessSize, NeedsFreeze] : Checks) { 1960 Type *Ty = SinkStart->getType(); 1961 // Compute VF * IC * AccessSize. 1962 auto *VFTimesUFTimesSize = 1963 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()), 1964 ConstantInt::get(Ty, IC * AccessSize)); 1965 Value *Diff = 1966 Expander.expandCodeFor(SE.getMinusSCEV(SinkStart, SrcStart), Ty, Loc); 1967 1968 // Check if the same compare has already been created earlier. In that case, 1969 // there is no need to check it again. 1970 Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize}); 1971 if (IsConflict) 1972 continue; 1973 1974 IsConflict = 1975 ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check"); 1976 SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict}); 1977 if (NeedsFreeze) 1978 IsConflict = 1979 ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr"); 1980 if (MemoryRuntimeCheck) { 1981 IsConflict = 1982 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1983 } 1984 MemoryRuntimeCheck = IsConflict; 1985 } 1986 1987 return MemoryRuntimeCheck; 1988 } 1989 1990 std::optional<IVConditionInfo> 1991 llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, 1992 const MemorySSA &MSSA, AAResults &AA) { 1993 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1994 if (!TI || !TI->isConditional()) 1995 return {}; 1996 1997 auto *CondI = dyn_cast<Instruction>(TI->getCondition()); 1998 // The case with the condition outside the loop should already be handled 1999 // earlier. 2000 // Allow CmpInst and TruncInsts as they may be users of load instructions 2001 // and have potential for partial unswitching 2002 if (!CondI || !isa<CmpInst, TruncInst>(CondI) || !L.contains(CondI)) 2003 return {}; 2004 2005 SmallVector<Instruction *> InstToDuplicate; 2006 InstToDuplicate.push_back(CondI); 2007 2008 SmallVector<Value *, 4> WorkList; 2009 WorkList.append(CondI->op_begin(), CondI->op_end()); 2010 2011 SmallVector<MemoryAccess *, 4> AccessesToCheck; 2012 SmallVector<MemoryLocation, 4> AccessedLocs; 2013 while (!WorkList.empty()) { 2014 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 2015 if (!I || !L.contains(I)) 2016 continue; 2017 2018 // TODO: support additional instructions. 2019 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 2020 return {}; 2021 2022 // Do not duplicate volatile and atomic loads. 2023 if (auto *LI = dyn_cast<LoadInst>(I)) 2024 if (LI->isVolatile() || LI->isAtomic()) 2025 return {}; 2026 2027 InstToDuplicate.push_back(I); 2028 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 2029 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 2030 // Queue the defining access to check for alias checks. 2031 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 2032 AccessedLocs.push_back(MemoryLocation::get(I)); 2033 } else { 2034 // MemoryDefs may clobber the location or may be atomic memory 2035 // operations. Bail out. 2036 return {}; 2037 } 2038 } 2039 WorkList.append(I->op_begin(), I->op_end()); 2040 } 2041 2042 if (InstToDuplicate.empty()) 2043 return {}; 2044 2045 SmallVector<BasicBlock *, 4> ExitingBlocks; 2046 L.getExitingBlocks(ExitingBlocks); 2047 auto HasNoClobbersOnPath = 2048 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 2049 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 2050 SmallVector<MemoryAccess *, 4> AccessesToCheck) 2051 -> std::optional<IVConditionInfo> { 2052 IVConditionInfo Info; 2053 // First, collect all blocks in the loop that are on a patch from Succ 2054 // to the header. 2055 SmallVector<BasicBlock *, 4> WorkList; 2056 WorkList.push_back(Succ); 2057 WorkList.push_back(Header); 2058 SmallPtrSet<BasicBlock *, 4> Seen; 2059 Seen.insert(Header); 2060 Info.PathIsNoop &= 2061 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 2062 2063 while (!WorkList.empty()) { 2064 BasicBlock *Current = WorkList.pop_back_val(); 2065 if (!L.contains(Current)) 2066 continue; 2067 const auto &SeenIns = Seen.insert(Current); 2068 if (!SeenIns.second) 2069 continue; 2070 2071 Info.PathIsNoop &= all_of( 2072 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 2073 WorkList.append(succ_begin(Current), succ_end(Current)); 2074 } 2075 2076 // Require at least 2 blocks on a path through the loop. This skips 2077 // paths that directly exit the loop. 2078 if (Seen.size() < 2) 2079 return {}; 2080 2081 // Next, check if there are any MemoryDefs that are on the path through 2082 // the loop (in the Seen set) and they may-alias any of the locations in 2083 // AccessedLocs. If that is the case, they may modify the condition and 2084 // partial unswitching is not possible. 2085 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 2086 while (!AccessesToCheck.empty()) { 2087 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 2088 auto SeenI = SeenAccesses.insert(Current); 2089 if (!SeenI.second || !Seen.contains(Current->getBlock())) 2090 continue; 2091 2092 // Bail out if exceeded the threshold. 2093 if (SeenAccesses.size() >= MSSAThreshold) 2094 return {}; 2095 2096 // MemoryUse are read-only accesses. 2097 if (isa<MemoryUse>(Current)) 2098 continue; 2099 2100 // For a MemoryDef, check if is aliases any of the location feeding 2101 // the original condition. 2102 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 2103 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 2104 return isModSet( 2105 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 2106 })) 2107 return {}; 2108 } 2109 2110 for (Use &U : Current->uses()) 2111 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 2112 } 2113 2114 // We could also allow loops with known trip counts without mustprogress, 2115 // but ScalarEvolution may not be available. 2116 Info.PathIsNoop &= isMustProgress(&L); 2117 2118 // If the path is considered a no-op so far, check if it reaches a 2119 // single exit block without any phis. This ensures no values from the 2120 // loop are used outside of the loop. 2121 if (Info.PathIsNoop) { 2122 for (auto *Exiting : ExitingBlocks) { 2123 if (!Seen.contains(Exiting)) 2124 continue; 2125 for (auto *Succ : successors(Exiting)) { 2126 if (L.contains(Succ)) 2127 continue; 2128 2129 Info.PathIsNoop &= Succ->phis().empty() && 2130 (!Info.ExitForPath || Info.ExitForPath == Succ); 2131 if (!Info.PathIsNoop) 2132 break; 2133 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 2134 "cannot have multiple exit blocks"); 2135 Info.ExitForPath = Succ; 2136 } 2137 } 2138 } 2139 if (!Info.ExitForPath) 2140 Info.PathIsNoop = false; 2141 2142 Info.InstToDuplicate = InstToDuplicate; 2143 return Info; 2144 }; 2145 2146 // If we branch to the same successor, partial unswitching will not be 2147 // beneficial. 2148 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 2149 return {}; 2150 2151 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 2152 AccessesToCheck)) { 2153 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 2154 return Info; 2155 } 2156 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 2157 AccessesToCheck)) { 2158 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 2159 return Info; 2160 } 2161 2162 return {}; 2163 } 2164