1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/PriorityWorklist.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/DomTreeUpdater.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/InstSimplifyFolder.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ProfDataUtils.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 49 using namespace llvm; 50 using namespace llvm::PatternMatch; 51 52 #define DEBUG_TYPE "loop-utils" 53 54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 56 57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 58 MemorySSAUpdater *MSSAU, 59 bool PreserveLCSSA) { 60 bool Changed = false; 61 62 // We re-use a vector for the in-loop predecesosrs. 63 SmallVector<BasicBlock *, 4> InLoopPredecessors; 64 65 auto RewriteExit = [&](BasicBlock *BB) { 66 assert(InLoopPredecessors.empty() && 67 "Must start with an empty predecessors list!"); 68 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 69 70 // See if there are any non-loop predecessors of this exit block and 71 // keep track of the in-loop predecessors. 72 bool IsDedicatedExit = true; 73 for (auto *PredBB : predecessors(BB)) 74 if (L->contains(PredBB)) { 75 if (isa<IndirectBrInst>(PredBB->getTerminator())) 76 // We cannot rewrite exiting edges from an indirectbr. 77 return false; 78 79 InLoopPredecessors.push_back(PredBB); 80 } else { 81 IsDedicatedExit = false; 82 } 83 84 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 85 86 // Nothing to do if this is already a dedicated exit. 87 if (IsDedicatedExit) 88 return false; 89 90 auto *NewExitBB = SplitBlockPredecessors( 91 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 92 93 if (!NewExitBB) 94 LLVM_DEBUG( 95 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 96 << *L << "\n"); 97 else 98 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 99 << NewExitBB->getName() << "\n"); 100 return true; 101 }; 102 103 // Walk the exit blocks directly rather than building up a data structure for 104 // them, but only visit each one once. 105 SmallPtrSet<BasicBlock *, 4> Visited; 106 for (auto *BB : L->blocks()) 107 for (auto *SuccBB : successors(BB)) { 108 // We're looking for exit blocks so skip in-loop successors. 109 if (L->contains(SuccBB)) 110 continue; 111 112 // Visit each exit block exactly once. 113 if (!Visited.insert(SuccBB).second) 114 continue; 115 116 Changed |= RewriteExit(SuccBB); 117 } 118 119 return Changed; 120 } 121 122 /// Returns the instructions that use values defined in the loop. 123 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 124 SmallVector<Instruction *, 8> UsedOutside; 125 126 for (auto *Block : L->getBlocks()) 127 // FIXME: I believe that this could use copy_if if the Inst reference could 128 // be adapted into a pointer. 129 for (auto &Inst : *Block) { 130 auto Users = Inst.users(); 131 if (any_of(Users, [&](User *U) { 132 auto *Use = cast<Instruction>(U); 133 return !L->contains(Use->getParent()); 134 })) 135 UsedOutside.push_back(&Inst); 136 } 137 138 return UsedOutside; 139 } 140 141 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 142 // By definition, all loop passes need the LoopInfo analysis and the 143 // Dominator tree it depends on. Because they all participate in the loop 144 // pass manager, they must also preserve these. 145 AU.addRequired<DominatorTreeWrapperPass>(); 146 AU.addPreserved<DominatorTreeWrapperPass>(); 147 AU.addRequired<LoopInfoWrapperPass>(); 148 AU.addPreserved<LoopInfoWrapperPass>(); 149 150 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 151 // here because users shouldn't directly get them from this header. 152 extern char &LoopSimplifyID; 153 extern char &LCSSAID; 154 AU.addRequiredID(LoopSimplifyID); 155 AU.addPreservedID(LoopSimplifyID); 156 AU.addRequiredID(LCSSAID); 157 AU.addPreservedID(LCSSAID); 158 // This is used in the LPPassManager to perform LCSSA verification on passes 159 // which preserve lcssa form 160 AU.addRequired<LCSSAVerificationPass>(); 161 AU.addPreserved<LCSSAVerificationPass>(); 162 163 // Loop passes are designed to run inside of a loop pass manager which means 164 // that any function analyses they require must be required by the first loop 165 // pass in the manager (so that it is computed before the loop pass manager 166 // runs) and preserved by all loop pasess in the manager. To make this 167 // reasonably robust, the set needed for most loop passes is maintained here. 168 // If your loop pass requires an analysis not listed here, you will need to 169 // carefully audit the loop pass manager nesting structure that results. 170 AU.addRequired<AAResultsWrapperPass>(); 171 AU.addPreserved<AAResultsWrapperPass>(); 172 AU.addPreserved<BasicAAWrapperPass>(); 173 AU.addPreserved<GlobalsAAWrapperPass>(); 174 AU.addPreserved<SCEVAAWrapperPass>(); 175 AU.addRequired<ScalarEvolutionWrapperPass>(); 176 AU.addPreserved<ScalarEvolutionWrapperPass>(); 177 // FIXME: When all loop passes preserve MemorySSA, it can be required and 178 // preserved here instead of the individual handling in each pass. 179 } 180 181 /// Manually defined generic "LoopPass" dependency initialization. This is used 182 /// to initialize the exact set of passes from above in \c 183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 184 /// with: 185 /// 186 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 187 /// 188 /// As-if "LoopPass" were a pass. 189 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 192 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 193 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 194 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 196 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 198 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 200 } 201 202 /// Create MDNode for input string. 203 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 204 LLVMContext &Context = TheLoop->getHeader()->getContext(); 205 Metadata *MDs[] = { 206 MDString::get(Context, Name), 207 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 208 return MDNode::get(Context, MDs); 209 } 210 211 /// Set input string into loop metadata by keeping other values intact. 212 /// If the string is already in loop metadata update value if it is 213 /// different. 214 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 215 unsigned V) { 216 SmallVector<Metadata *, 4> MDs(1); 217 // If the loop already has metadata, retain it. 218 MDNode *LoopID = TheLoop->getLoopID(); 219 if (LoopID) { 220 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 221 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 222 // If it is of form key = value, try to parse it. 223 if (Node->getNumOperands() == 2) { 224 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 225 if (S && S->getString() == StringMD) { 226 ConstantInt *IntMD = 227 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 228 if (IntMD && IntMD->getSExtValue() == V) 229 // It is already in place. Do nothing. 230 return; 231 // We need to update the value, so just skip it here and it will 232 // be added after copying other existed nodes. 233 continue; 234 } 235 } 236 MDs.push_back(Node); 237 } 238 } 239 // Add new metadata. 240 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 241 // Replace current metadata node with new one. 242 LLVMContext &Context = TheLoop->getHeader()->getContext(); 243 MDNode *NewLoopID = MDNode::get(Context, MDs); 244 // Set operand 0 to refer to the loop id itself. 245 NewLoopID->replaceOperandWith(0, NewLoopID); 246 TheLoop->setLoopID(NewLoopID); 247 } 248 249 std::optional<ElementCount> 250 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 251 std::optional<int> Width = 252 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 253 254 if (Width) { 255 std::optional<int> IsScalable = getOptionalIntLoopAttribute( 256 TheLoop, "llvm.loop.vectorize.scalable.enable"); 257 return ElementCount::get(*Width, IsScalable.value_or(false)); 258 } 259 260 return std::nullopt; 261 } 262 263 std::optional<MDNode *> llvm::makeFollowupLoopID( 264 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 265 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 266 if (!OrigLoopID) { 267 if (AlwaysNew) 268 return nullptr; 269 return std::nullopt; 270 } 271 272 assert(OrigLoopID->getOperand(0) == OrigLoopID); 273 274 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 275 bool InheritSomeAttrs = 276 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 277 SmallVector<Metadata *, 8> MDs; 278 MDs.push_back(nullptr); 279 280 bool Changed = false; 281 if (InheritAllAttrs || InheritSomeAttrs) { 282 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 283 MDNode *Op = cast<MDNode>(Existing.get()); 284 285 auto InheritThisAttribute = [InheritSomeAttrs, 286 InheritOptionsExceptPrefix](MDNode *Op) { 287 if (!InheritSomeAttrs) 288 return false; 289 290 // Skip malformatted attribute metadata nodes. 291 if (Op->getNumOperands() == 0) 292 return true; 293 Metadata *NameMD = Op->getOperand(0).get(); 294 if (!isa<MDString>(NameMD)) 295 return true; 296 StringRef AttrName = cast<MDString>(NameMD)->getString(); 297 298 // Do not inherit excluded attributes. 299 return !AttrName.starts_with(InheritOptionsExceptPrefix); 300 }; 301 302 if (InheritThisAttribute(Op)) 303 MDs.push_back(Op); 304 else 305 Changed = true; 306 } 307 } else { 308 // Modified if we dropped at least one attribute. 309 Changed = OrigLoopID->getNumOperands() > 1; 310 } 311 312 bool HasAnyFollowup = false; 313 for (StringRef OptionName : FollowupOptions) { 314 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 315 if (!FollowupNode) 316 continue; 317 318 HasAnyFollowup = true; 319 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 320 MDs.push_back(Option.get()); 321 Changed = true; 322 } 323 } 324 325 // Attributes of the followup loop not specified explicity, so signal to the 326 // transformation pass to add suitable attributes. 327 if (!AlwaysNew && !HasAnyFollowup) 328 return std::nullopt; 329 330 // If no attributes were added or remove, the previous loop Id can be reused. 331 if (!AlwaysNew && !Changed) 332 return OrigLoopID; 333 334 // No attributes is equivalent to having no !llvm.loop metadata at all. 335 if (MDs.size() == 1) 336 return nullptr; 337 338 // Build the new loop ID. 339 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 340 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 341 return FollowupLoopID; 342 } 343 344 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 345 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 346 } 347 348 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 349 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 350 } 351 352 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 353 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 354 return TM_SuppressedByUser; 355 356 std::optional<int> Count = 357 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 358 if (Count) 359 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 360 361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 362 return TM_ForcedByUser; 363 364 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 365 return TM_ForcedByUser; 366 367 if (hasDisableAllTransformsHint(L)) 368 return TM_Disable; 369 370 return TM_Unspecified; 371 } 372 373 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 374 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 375 return TM_SuppressedByUser; 376 377 std::optional<int> Count = 378 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 379 if (Count) 380 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 381 382 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 383 return TM_ForcedByUser; 384 385 if (hasDisableAllTransformsHint(L)) 386 return TM_Disable; 387 388 return TM_Unspecified; 389 } 390 391 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 392 std::optional<bool> Enable = 393 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 394 395 if (Enable == false) 396 return TM_SuppressedByUser; 397 398 std::optional<ElementCount> VectorizeWidth = 399 getOptionalElementCountLoopAttribute(L); 400 std::optional<int> InterleaveCount = 401 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 402 403 // 'Forcing' vector width and interleave count to one effectively disables 404 // this tranformation. 405 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 406 InterleaveCount == 1) 407 return TM_SuppressedByUser; 408 409 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 410 return TM_Disable; 411 412 if (Enable == true) 413 return TM_ForcedByUser; 414 415 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 416 return TM_Disable; 417 418 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 419 return TM_Enable; 420 421 if (hasDisableAllTransformsHint(L)) 422 return TM_Disable; 423 424 return TM_Unspecified; 425 } 426 427 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 428 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 429 return TM_ForcedByUser; 430 431 if (hasDisableAllTransformsHint(L)) 432 return TM_Disable; 433 434 return TM_Unspecified; 435 } 436 437 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 438 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 439 return TM_SuppressedByUser; 440 441 if (hasDisableAllTransformsHint(L)) 442 return TM_Disable; 443 444 return TM_Unspecified; 445 } 446 447 /// Does a BFS from a given node to all of its children inside a given loop. 448 /// The returned vector of basic blocks includes the starting point. 449 SmallVector<BasicBlock *, 16> llvm::collectChildrenInLoop(DominatorTree *DT, 450 DomTreeNode *N, 451 const Loop *CurLoop) { 452 SmallVector<BasicBlock *, 16> Worklist; 453 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 454 // Only include subregions in the top level loop. 455 BasicBlock *BB = DTN->getBlock(); 456 if (CurLoop->contains(BB)) 457 Worklist.push_back(DTN->getBlock()); 458 }; 459 460 AddRegionToWorklist(N); 461 462 for (size_t I = 0; I < Worklist.size(); I++) { 463 for (DomTreeNode *Child : DT->getNode(Worklist[I])->children()) 464 AddRegionToWorklist(Child); 465 } 466 467 return Worklist; 468 } 469 470 bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) { 471 int LatchIdx = PN->getBasicBlockIndex(LatchBlock); 472 assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode"); 473 Value *IncV = PN->getIncomingValue(LatchIdx); 474 475 for (User *U : PN->users()) 476 if (U != Cond && U != IncV) return false; 477 478 for (User *U : IncV->users()) 479 if (U != Cond && U != PN) return false; 480 return true; 481 } 482 483 484 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 485 LoopInfo *LI, MemorySSA *MSSA) { 486 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 487 auto *Preheader = L->getLoopPreheader(); 488 assert(Preheader && "Preheader should exist!"); 489 490 std::unique_ptr<MemorySSAUpdater> MSSAU; 491 if (MSSA) 492 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 493 494 // Now that we know the removal is safe, remove the loop by changing the 495 // branch from the preheader to go to the single exit block. 496 // 497 // Because we're deleting a large chunk of code at once, the sequence in which 498 // we remove things is very important to avoid invalidation issues. 499 500 // Tell ScalarEvolution that the loop is deleted. Do this before 501 // deleting the loop so that ScalarEvolution can look at the loop 502 // to determine what it needs to clean up. 503 if (SE) { 504 SE->forgetLoop(L); 505 SE->forgetBlockAndLoopDispositions(); 506 } 507 508 Instruction *OldTerm = Preheader->getTerminator(); 509 assert(!OldTerm->mayHaveSideEffects() && 510 "Preheader must end with a side-effect-free terminator"); 511 assert(OldTerm->getNumSuccessors() == 1 && 512 "Preheader must have a single successor"); 513 // Connect the preheader to the exit block. Keep the old edge to the header 514 // around to perform the dominator tree update in two separate steps 515 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 516 // preheader -> header. 517 // 518 // 519 // 0. Preheader 1. Preheader 2. Preheader 520 // | | | | 521 // V | V | 522 // Header <--\ | Header <--\ | Header <--\ 523 // | | | | | | | | | | | 524 // | V | | | V | | | V | 525 // | Body --/ | | Body --/ | | Body --/ 526 // V V V V V 527 // Exit Exit Exit 528 // 529 // By doing this is two separate steps we can perform the dominator tree 530 // update without using the batch update API. 531 // 532 // Even when the loop is never executed, we cannot remove the edge from the 533 // source block to the exit block. Consider the case where the unexecuted loop 534 // branches back to an outer loop. If we deleted the loop and removed the edge 535 // coming to this inner loop, this will break the outer loop structure (by 536 // deleting the backedge of the outer loop). If the outer loop is indeed a 537 // non-loop, it will be deleted in a future iteration of loop deletion pass. 538 IRBuilder<> Builder(OldTerm); 539 540 auto *ExitBlock = L->getUniqueExitBlock(); 541 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 542 if (ExitBlock) { 543 assert(ExitBlock && "Should have a unique exit block!"); 544 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 545 546 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 547 // Remove the old branch. The conditional branch becomes a new terminator. 548 OldTerm->eraseFromParent(); 549 550 // Rewrite phis in the exit block to get their inputs from the Preheader 551 // instead of the exiting block. 552 for (PHINode &P : ExitBlock->phis()) { 553 // Set the zero'th element of Phi to be from the preheader and remove all 554 // other incoming values. Given the loop has dedicated exits, all other 555 // incoming values must be from the exiting blocks. 556 int PredIndex = 0; 557 P.setIncomingBlock(PredIndex, Preheader); 558 // Removes all incoming values from all other exiting blocks (including 559 // duplicate values from an exiting block). 560 // Nuke all entries except the zero'th entry which is the preheader entry. 561 P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; }, 562 /* DeletePHIIfEmpty */ false); 563 564 assert((P.getNumIncomingValues() == 1 && 565 P.getIncomingBlock(PredIndex) == Preheader) && 566 "Should have exactly one value and that's from the preheader!"); 567 } 568 569 if (DT) { 570 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 571 if (MSSA) { 572 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 573 *DT); 574 if (VerifyMemorySSA) 575 MSSA->verifyMemorySSA(); 576 } 577 } 578 579 // Disconnect the loop body by branching directly to its exit. 580 Builder.SetInsertPoint(Preheader->getTerminator()); 581 Builder.CreateBr(ExitBlock); 582 // Remove the old branch. 583 Preheader->getTerminator()->eraseFromParent(); 584 } else { 585 assert(L->hasNoExitBlocks() && 586 "Loop should have either zero or one exit blocks."); 587 588 Builder.SetInsertPoint(OldTerm); 589 Builder.CreateUnreachable(); 590 Preheader->getTerminator()->eraseFromParent(); 591 } 592 593 if (DT) { 594 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 595 if (MSSA) { 596 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 597 *DT); 598 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 599 L->block_end()); 600 MSSAU->removeBlocks(DeadBlockSet); 601 if (VerifyMemorySSA) 602 MSSA->verifyMemorySSA(); 603 } 604 } 605 606 // Use a map to unique and a vector to guarantee deterministic ordering. 607 llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet; 608 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 609 llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords; 610 611 if (ExitBlock) { 612 // Given LCSSA form is satisfied, we should not have users of instructions 613 // within the dead loop outside of the loop. However, LCSSA doesn't take 614 // unreachable uses into account. We handle them here. 615 // We could do it after drop all references (in this case all users in the 616 // loop will be already eliminated and we have less work to do but according 617 // to API doc of User::dropAllReferences only valid operation after dropping 618 // references, is deletion. So let's substitute all usages of 619 // instruction from the loop with poison value of corresponding type first. 620 for (auto *Block : L->blocks()) 621 for (Instruction &I : *Block) { 622 auto *Poison = PoisonValue::get(I.getType()); 623 for (Use &U : llvm::make_early_inc_range(I.uses())) { 624 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 625 if (L->contains(Usr->getParent())) 626 continue; 627 // If we have a DT then we can check that uses outside a loop only in 628 // unreachable block. 629 if (DT) 630 assert(!DT->isReachableFromEntry(U) && 631 "Unexpected user in reachable block"); 632 U.set(Poison); 633 } 634 635 // RemoveDIs: do the same as below for DbgVariableRecords. 636 if (Block->IsNewDbgInfoFormat) { 637 for (DbgVariableRecord &DVR : llvm::make_early_inc_range( 638 filterDbgVars(I.getDbgRecordRange()))) { 639 DebugVariable Key(DVR.getVariable(), DVR.getExpression(), 640 DVR.getDebugLoc().get()); 641 if (!DeadDebugSet.insert(Key).second) 642 continue; 643 // Unlinks the DVR from it's container, for later insertion. 644 DVR.removeFromParent(); 645 DeadDbgVariableRecords.push_back(&DVR); 646 } 647 } 648 649 // For one of each variable encountered, preserve a debug intrinsic (set 650 // to Poison) and transfer it to the loop exit. This terminates any 651 // variable locations that were set during the loop. 652 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 653 if (!DVI) 654 continue; 655 if (!DeadDebugSet.insert(DebugVariable(DVI)).second) 656 continue; 657 DeadDebugInst.push_back(DVI); 658 } 659 660 // After the loop has been deleted all the values defined and modified 661 // inside the loop are going to be unavailable. Values computed in the 662 // loop will have been deleted, automatically causing their debug uses 663 // be be replaced with undef. Loop invariant values will still be available. 664 // Move dbg.values out the loop so that earlier location ranges are still 665 // terminated and loop invariant assignments are preserved. 666 DIBuilder DIB(*ExitBlock->getModule()); 667 BasicBlock::iterator InsertDbgValueBefore = 668 ExitBlock->getFirstInsertionPt(); 669 assert(InsertDbgValueBefore != ExitBlock->end() && 670 "There should be a non-PHI instruction in exit block, else these " 671 "instructions will have no parent."); 672 673 for (auto *DVI : DeadDebugInst) 674 DVI->moveBefore(*ExitBlock, InsertDbgValueBefore); 675 676 // Due to the "head" bit in BasicBlock::iterator, we're going to insert 677 // each DbgVariableRecord right at the start of the block, wheras dbg.values 678 // would be repeatedly inserted before the first instruction. To replicate 679 // this behaviour, do it backwards. 680 for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords)) 681 ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore); 682 } 683 684 // Remove the block from the reference counting scheme, so that we can 685 // delete it freely later. 686 for (auto *Block : L->blocks()) 687 Block->dropAllReferences(); 688 689 if (MSSA && VerifyMemorySSA) 690 MSSA->verifyMemorySSA(); 691 692 if (LI) { 693 // Erase the instructions and the blocks without having to worry 694 // about ordering because we already dropped the references. 695 // NOTE: This iteration is safe because erasing the block does not remove 696 // its entry from the loop's block list. We do that in the next section. 697 for (BasicBlock *BB : L->blocks()) 698 BB->eraseFromParent(); 699 700 // Finally, the blocks from loopinfo. This has to happen late because 701 // otherwise our loop iterators won't work. 702 703 SmallPtrSet<BasicBlock *, 8> blocks; 704 blocks.insert(L->block_begin(), L->block_end()); 705 for (BasicBlock *BB : blocks) 706 LI->removeBlock(BB); 707 708 // The last step is to update LoopInfo now that we've eliminated this loop. 709 // Note: LoopInfo::erase remove the given loop and relink its subloops with 710 // its parent. While removeLoop/removeChildLoop remove the given loop but 711 // not relink its subloops, which is what we want. 712 if (Loop *ParentLoop = L->getParentLoop()) { 713 Loop::iterator I = find(*ParentLoop, L); 714 assert(I != ParentLoop->end() && "Couldn't find loop"); 715 ParentLoop->removeChildLoop(I); 716 } else { 717 Loop::iterator I = find(*LI, L); 718 assert(I != LI->end() && "Couldn't find loop"); 719 LI->removeLoop(I); 720 } 721 LI->destroy(L); 722 } 723 } 724 725 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 726 LoopInfo &LI, MemorySSA *MSSA) { 727 auto *Latch = L->getLoopLatch(); 728 assert(Latch && "multiple latches not yet supported"); 729 auto *Header = L->getHeader(); 730 Loop *OutermostLoop = L->getOutermostLoop(); 731 732 SE.forgetLoop(L); 733 SE.forgetBlockAndLoopDispositions(); 734 735 std::unique_ptr<MemorySSAUpdater> MSSAU; 736 if (MSSA) 737 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 738 739 // Update the CFG and domtree. We chose to special case a couple of 740 // of common cases for code quality and test readability reasons. 741 [&]() -> void { 742 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) { 743 if (!BI->isConditional()) { 744 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 745 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU, 746 MSSAU.get()); 747 return; 748 } 749 750 // Conditional latch/exit - note that latch can be shared by inner 751 // and outer loop so the other target doesn't need to an exit 752 if (L->isLoopExiting(Latch)) { 753 // TODO: Generalize ConstantFoldTerminator so that it can be used 754 // here without invalidating LCSSA or MemorySSA. (Tricky case for 755 // LCSSA: header is an exit block of a preceeding sibling loop w/o 756 // dedicated exits.) 757 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0; 758 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx); 759 760 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 761 Header->removePredecessor(Latch, true); 762 763 IRBuilder<> Builder(BI); 764 auto *NewBI = Builder.CreateBr(ExitBB); 765 // Transfer the metadata to the new branch instruction (minus the 766 // loop info since this is no longer a loop) 767 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg, 768 LLVMContext::MD_annotation}); 769 770 BI->eraseFromParent(); 771 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}}); 772 if (MSSA) 773 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT); 774 return; 775 } 776 } 777 778 // General case. By splitting the backedge, and then explicitly making it 779 // unreachable we gracefully handle corner cases such as switch and invoke 780 // termiantors. 781 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 782 783 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 784 (void)changeToUnreachable(BackedgeBB->getTerminator(), 785 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 786 }(); 787 788 // Erase (and destroy) this loop instance. Handles relinking sub-loops 789 // and blocks within the loop as needed. 790 LI.erase(L); 791 792 // If the loop we broke had a parent, then changeToUnreachable might have 793 // caused a block to be removed from the parent loop (see loop_nest_lcssa 794 // test case in zero-btc.ll for an example), thus changing the parent's 795 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 796 // loop which might have a had a block removed. 797 if (OutermostLoop != L) 798 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 799 } 800 801 802 /// Checks if \p L has an exiting latch branch. There may also be other 803 /// exiting blocks. Returns branch instruction terminating the loop 804 /// latch if above check is successful, nullptr otherwise. 805 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 806 BasicBlock *Latch = L->getLoopLatch(); 807 if (!Latch) 808 return nullptr; 809 810 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 811 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 812 return nullptr; 813 814 assert((LatchBR->getSuccessor(0) == L->getHeader() || 815 LatchBR->getSuccessor(1) == L->getHeader()) && 816 "At least one edge out of the latch must go to the header"); 817 818 return LatchBR; 819 } 820 821 /// Return the estimated trip count for any exiting branch which dominates 822 /// the loop latch. 823 static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch, 824 Loop *L, 825 uint64_t &OrigExitWeight) { 826 // To estimate the number of times the loop body was executed, we want to 827 // know the number of times the backedge was taken, vs. the number of times 828 // we exited the loop. 829 uint64_t LoopWeight, ExitWeight; 830 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight)) 831 return std::nullopt; 832 833 if (L->contains(ExitingBranch->getSuccessor(1))) 834 std::swap(LoopWeight, ExitWeight); 835 836 if (!ExitWeight) 837 // Don't have a way to return predicated infinite 838 return std::nullopt; 839 840 OrigExitWeight = ExitWeight; 841 842 // Estimated exit count is a ratio of the loop weight by the weight of the 843 // edge exiting the loop, rounded to nearest. 844 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight); 845 // Estimated trip count is one plus estimated exit count. 846 return ExitCount + 1; 847 } 848 849 std::optional<unsigned> 850 llvm::getLoopEstimatedTripCount(Loop *L, 851 unsigned *EstimatedLoopInvocationWeight) { 852 // Currently we take the estimate exit count only from the loop latch, 853 // ignoring other exiting blocks. This can overestimate the trip count 854 // if we exit through another exit, but can never underestimate it. 855 // TODO: incorporate information from other exits 856 if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) { 857 uint64_t ExitWeight; 858 if (std::optional<uint64_t> EstTripCount = 859 getEstimatedTripCount(LatchBranch, L, ExitWeight)) { 860 if (EstimatedLoopInvocationWeight) 861 *EstimatedLoopInvocationWeight = ExitWeight; 862 return *EstTripCount; 863 } 864 } 865 return std::nullopt; 866 } 867 868 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 869 unsigned EstimatedloopInvocationWeight) { 870 // At the moment, we currently support changing the estimate trip count of 871 // the latch branch only. We could extend this API to manipulate estimated 872 // trip counts for any exit. 873 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 874 if (!LatchBranch) 875 return false; 876 877 // Calculate taken and exit weights. 878 unsigned LatchExitWeight = 0; 879 unsigned BackedgeTakenWeight = 0; 880 881 if (EstimatedTripCount > 0) { 882 LatchExitWeight = EstimatedloopInvocationWeight; 883 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 884 } 885 886 // Make a swap if back edge is taken when condition is "false". 887 if (LatchBranch->getSuccessor(0) != L->getHeader()) 888 std::swap(BackedgeTakenWeight, LatchExitWeight); 889 890 MDBuilder MDB(LatchBranch->getContext()); 891 892 // Set/Update profile metadata. 893 LatchBranch->setMetadata( 894 LLVMContext::MD_prof, 895 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 896 897 return true; 898 } 899 900 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 901 ScalarEvolution &SE) { 902 Loop *OuterL = InnerLoop->getParentLoop(); 903 if (!OuterL) 904 return true; 905 906 // Get the backedge taken count for the inner loop 907 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 908 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 909 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 910 !InnerLoopBECountSC->getType()->isIntegerTy()) 911 return false; 912 913 // Get whether count is invariant to the outer loop 914 ScalarEvolution::LoopDisposition LD = 915 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 916 if (LD != ScalarEvolution::LoopInvariant) 917 return false; 918 919 return true; 920 } 921 922 constexpr Intrinsic::ID llvm::getReductionIntrinsicID(RecurKind RK) { 923 switch (RK) { 924 default: 925 llvm_unreachable("Unexpected recurrence kind"); 926 case RecurKind::Add: 927 return Intrinsic::vector_reduce_add; 928 case RecurKind::Mul: 929 return Intrinsic::vector_reduce_mul; 930 case RecurKind::And: 931 return Intrinsic::vector_reduce_and; 932 case RecurKind::Or: 933 return Intrinsic::vector_reduce_or; 934 case RecurKind::Xor: 935 return Intrinsic::vector_reduce_xor; 936 case RecurKind::FMulAdd: 937 case RecurKind::FAdd: 938 return Intrinsic::vector_reduce_fadd; 939 case RecurKind::FMul: 940 return Intrinsic::vector_reduce_fmul; 941 case RecurKind::SMax: 942 return Intrinsic::vector_reduce_smax; 943 case RecurKind::SMin: 944 return Intrinsic::vector_reduce_smin; 945 case RecurKind::UMax: 946 return Intrinsic::vector_reduce_umax; 947 case RecurKind::UMin: 948 return Intrinsic::vector_reduce_umin; 949 case RecurKind::FMax: 950 return Intrinsic::vector_reduce_fmax; 951 case RecurKind::FMin: 952 return Intrinsic::vector_reduce_fmin; 953 case RecurKind::FMaximum: 954 return Intrinsic::vector_reduce_fmaximum; 955 case RecurKind::FMinimum: 956 return Intrinsic::vector_reduce_fminimum; 957 } 958 } 959 960 unsigned llvm::getArithmeticReductionInstruction(Intrinsic::ID RdxID) { 961 switch (RdxID) { 962 case Intrinsic::vector_reduce_fadd: 963 return Instruction::FAdd; 964 case Intrinsic::vector_reduce_fmul: 965 return Instruction::FMul; 966 case Intrinsic::vector_reduce_add: 967 return Instruction::Add; 968 case Intrinsic::vector_reduce_mul: 969 return Instruction::Mul; 970 case Intrinsic::vector_reduce_and: 971 return Instruction::And; 972 case Intrinsic::vector_reduce_or: 973 return Instruction::Or; 974 case Intrinsic::vector_reduce_xor: 975 return Instruction::Xor; 976 case Intrinsic::vector_reduce_smax: 977 case Intrinsic::vector_reduce_smin: 978 case Intrinsic::vector_reduce_umax: 979 case Intrinsic::vector_reduce_umin: 980 return Instruction::ICmp; 981 case Intrinsic::vector_reduce_fmax: 982 case Intrinsic::vector_reduce_fmin: 983 return Instruction::FCmp; 984 default: 985 llvm_unreachable("Unexpected ID"); 986 } 987 } 988 989 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID) { 990 switch (RdxID) { 991 default: 992 llvm_unreachable("Unknown min/max recurrence kind"); 993 case Intrinsic::vector_reduce_umin: 994 return Intrinsic::umin; 995 case Intrinsic::vector_reduce_umax: 996 return Intrinsic::umax; 997 case Intrinsic::vector_reduce_smin: 998 return Intrinsic::smin; 999 case Intrinsic::vector_reduce_smax: 1000 return Intrinsic::smax; 1001 case Intrinsic::vector_reduce_fmin: 1002 return Intrinsic::minnum; 1003 case Intrinsic::vector_reduce_fmax: 1004 return Intrinsic::maxnum; 1005 case Intrinsic::vector_reduce_fminimum: 1006 return Intrinsic::minimum; 1007 case Intrinsic::vector_reduce_fmaximum: 1008 return Intrinsic::maximum; 1009 } 1010 } 1011 1012 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) { 1013 switch (RK) { 1014 default: 1015 llvm_unreachable("Unknown min/max recurrence kind"); 1016 case RecurKind::UMin: 1017 return Intrinsic::umin; 1018 case RecurKind::UMax: 1019 return Intrinsic::umax; 1020 case RecurKind::SMin: 1021 return Intrinsic::smin; 1022 case RecurKind::SMax: 1023 return Intrinsic::smax; 1024 case RecurKind::FMin: 1025 return Intrinsic::minnum; 1026 case RecurKind::FMax: 1027 return Intrinsic::maxnum; 1028 case RecurKind::FMinimum: 1029 return Intrinsic::minimum; 1030 case RecurKind::FMaximum: 1031 return Intrinsic::maximum; 1032 } 1033 } 1034 1035 RecurKind llvm::getMinMaxReductionRecurKind(Intrinsic::ID RdxID) { 1036 switch (RdxID) { 1037 case Intrinsic::vector_reduce_smax: 1038 return RecurKind::SMax; 1039 case Intrinsic::vector_reduce_smin: 1040 return RecurKind::SMin; 1041 case Intrinsic::vector_reduce_umax: 1042 return RecurKind::UMax; 1043 case Intrinsic::vector_reduce_umin: 1044 return RecurKind::UMin; 1045 case Intrinsic::vector_reduce_fmax: 1046 return RecurKind::FMax; 1047 case Intrinsic::vector_reduce_fmin: 1048 return RecurKind::FMin; 1049 default: 1050 return RecurKind::None; 1051 } 1052 } 1053 1054 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) { 1055 switch (RK) { 1056 default: 1057 llvm_unreachable("Unknown min/max recurrence kind"); 1058 case RecurKind::UMin: 1059 return CmpInst::ICMP_ULT; 1060 case RecurKind::UMax: 1061 return CmpInst::ICMP_UGT; 1062 case RecurKind::SMin: 1063 return CmpInst::ICMP_SLT; 1064 case RecurKind::SMax: 1065 return CmpInst::ICMP_SGT; 1066 case RecurKind::FMin: 1067 return CmpInst::FCMP_OLT; 1068 case RecurKind::FMax: 1069 return CmpInst::FCMP_OGT; 1070 // We do not add FMinimum/FMaximum recurrence kind here since there is no 1071 // equivalent predicate which compares signed zeroes according to the 1072 // semantics of the intrinsics (llvm.minimum/maximum). 1073 } 1074 } 1075 1076 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 1077 Value *Right) { 1078 Type *Ty = Left->getType(); 1079 if (Ty->isIntOrIntVectorTy() || 1080 (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) { 1081 // TODO: Add float minnum/maxnum support when FMF nnan is set. 1082 Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK); 1083 return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr, 1084 "rdx.minmax"); 1085 } 1086 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK); 1087 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 1088 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 1089 return Select; 1090 } 1091 1092 // Helper to generate an ordered reduction. 1093 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 1094 unsigned Op, RecurKind RdxKind) { 1095 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 1096 1097 // Extract and apply reduction ops in ascending order: 1098 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 1099 Value *Result = Acc; 1100 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 1101 Value *Ext = 1102 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 1103 1104 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1105 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 1106 "bin.rdx"); 1107 } else { 1108 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1109 "Invalid min/max"); 1110 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 1111 } 1112 } 1113 1114 return Result; 1115 } 1116 1117 // Helper to generate a log2 shuffle reduction. 1118 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 1119 unsigned Op, 1120 TargetTransformInfo::ReductionShuffle RS, 1121 RecurKind RdxKind) { 1122 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 1123 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 1124 // and vector ops, reducing the set of values being computed by half each 1125 // round. 1126 assert(isPowerOf2_32(VF) && 1127 "Reduction emission only supported for pow2 vectors!"); 1128 // Note: fast-math-flags flags are controlled by the builder configuration 1129 // and are assumed to apply to all generated arithmetic instructions. Other 1130 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part 1131 // of the builder configuration, and since they're not passed explicitly, 1132 // will never be relevant here. Note that it would be generally unsound to 1133 // propagate these from an intrinsic call to the expansion anyways as we/ 1134 // change the order of operations. 1135 auto BuildShuffledOp = [&Builder, &Op, 1136 &RdxKind](SmallVectorImpl<int> &ShuffleMask, 1137 Value *&TmpVec) -> void { 1138 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 1139 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1140 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 1141 "bin.rdx"); 1142 } else { 1143 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1144 "Invalid min/max"); 1145 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 1146 } 1147 }; 1148 1149 Value *TmpVec = Src; 1150 if (TargetTransformInfo::ReductionShuffle::Pairwise == RS) { 1151 SmallVector<int, 32> ShuffleMask(VF); 1152 for (unsigned stride = 1; stride < VF; stride <<= 1) { 1153 // Initialise the mask with undef. 1154 std::fill(ShuffleMask.begin(), ShuffleMask.end(), -1); 1155 for (unsigned j = 0; j < VF; j += stride << 1) { 1156 ShuffleMask[j] = j + stride; 1157 } 1158 BuildShuffledOp(ShuffleMask, TmpVec); 1159 } 1160 } else { 1161 SmallVector<int, 32> ShuffleMask(VF); 1162 for (unsigned i = VF; i != 1; i >>= 1) { 1163 // Move the upper half of the vector to the lower half. 1164 for (unsigned j = 0; j != i / 2; ++j) 1165 ShuffleMask[j] = i / 2 + j; 1166 1167 // Fill the rest of the mask with undef. 1168 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 1169 BuildShuffledOp(ShuffleMask, TmpVec); 1170 } 1171 } 1172 // The result is in the first element of the vector. 1173 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1174 } 1175 1176 Value *llvm::createAnyOfReduction(IRBuilderBase &Builder, Value *Src, 1177 const RecurrenceDescriptor &Desc, 1178 PHINode *OrigPhi) { 1179 assert( 1180 RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) && 1181 "Unexpected reduction kind"); 1182 Value *InitVal = Desc.getRecurrenceStartValue(); 1183 Value *NewVal = nullptr; 1184 1185 // First use the original phi to determine the new value we're trying to 1186 // select from in the loop. 1187 SelectInst *SI = nullptr; 1188 for (auto *U : OrigPhi->users()) { 1189 if ((SI = dyn_cast<SelectInst>(U))) 1190 break; 1191 } 1192 assert(SI && "One user of the original phi should be a select"); 1193 1194 if (SI->getTrueValue() == OrigPhi) 1195 NewVal = SI->getFalseValue(); 1196 else { 1197 assert(SI->getFalseValue() == OrigPhi && 1198 "At least one input to the select should be the original Phi"); 1199 NewVal = SI->getTrueValue(); 1200 } 1201 1202 // If any predicate is true it means that we want to select the new value. 1203 Value *AnyOf = 1204 Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src; 1205 // The compares in the loop may yield poison, which propagates through the 1206 // bitwise ORs. Freeze it here before the condition is used. 1207 AnyOf = Builder.CreateFreeze(AnyOf); 1208 return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select"); 1209 } 1210 1211 Value *llvm::getReductionIdentity(Intrinsic::ID RdxID, Type *Ty, 1212 FastMathFlags Flags) { 1213 bool Negative = false; 1214 switch (RdxID) { 1215 default: 1216 llvm_unreachable("Expecting a reduction intrinsic"); 1217 case Intrinsic::vector_reduce_add: 1218 case Intrinsic::vector_reduce_mul: 1219 case Intrinsic::vector_reduce_or: 1220 case Intrinsic::vector_reduce_xor: 1221 case Intrinsic::vector_reduce_and: 1222 case Intrinsic::vector_reduce_fadd: 1223 case Intrinsic::vector_reduce_fmul: { 1224 unsigned Opc = getArithmeticReductionInstruction(RdxID); 1225 return ConstantExpr::getBinOpIdentity(Opc, Ty, false, 1226 Flags.noSignedZeros()); 1227 } 1228 case Intrinsic::vector_reduce_umax: 1229 case Intrinsic::vector_reduce_umin: 1230 case Intrinsic::vector_reduce_smin: 1231 case Intrinsic::vector_reduce_smax: { 1232 Intrinsic::ID ScalarID = getMinMaxReductionIntrinsicOp(RdxID); 1233 return ConstantExpr::getIntrinsicIdentity(ScalarID, Ty); 1234 } 1235 case Intrinsic::vector_reduce_fmax: 1236 case Intrinsic::vector_reduce_fmaximum: 1237 Negative = true; 1238 [[fallthrough]]; 1239 case Intrinsic::vector_reduce_fmin: 1240 case Intrinsic::vector_reduce_fminimum: { 1241 bool PropagatesNaN = RdxID == Intrinsic::vector_reduce_fminimum || 1242 RdxID == Intrinsic::vector_reduce_fmaximum; 1243 const fltSemantics &Semantics = Ty->getFltSemantics(); 1244 return (!Flags.noNaNs() && !PropagatesNaN) 1245 ? ConstantFP::getQNaN(Ty, Negative) 1246 : !Flags.noInfs() 1247 ? ConstantFP::getInfinity(Ty, Negative) 1248 : ConstantFP::get(Ty, APFloat::getLargest(Semantics, Negative)); 1249 } 1250 } 1251 } 1252 1253 Value *llvm::getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF) { 1254 assert((!(K == RecurKind::FMin || K == RecurKind::FMax) || 1255 (FMF.noNaNs() && FMF.noSignedZeros())) && 1256 "nnan, nsz is expected to be set for FP min/max reduction."); 1257 Intrinsic::ID RdxID = getReductionIntrinsicID(K); 1258 return getReductionIdentity(RdxID, Tp, FMF); 1259 } 1260 1261 Value *llvm::createSimpleReduction(IRBuilderBase &Builder, Value *Src, 1262 RecurKind RdxKind) { 1263 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1264 auto getIdentity = [&]() { 1265 return getRecurrenceIdentity(RdxKind, SrcVecEltTy, 1266 Builder.getFastMathFlags()); 1267 }; 1268 switch (RdxKind) { 1269 case RecurKind::Add: 1270 case RecurKind::Mul: 1271 case RecurKind::And: 1272 case RecurKind::Or: 1273 case RecurKind::Xor: 1274 case RecurKind::SMax: 1275 case RecurKind::SMin: 1276 case RecurKind::UMax: 1277 case RecurKind::UMin: 1278 case RecurKind::FMax: 1279 case RecurKind::FMin: 1280 case RecurKind::FMinimum: 1281 case RecurKind::FMaximum: 1282 return Builder.CreateUnaryIntrinsic(getReductionIntrinsicID(RdxKind), Src); 1283 case RecurKind::FMulAdd: 1284 case RecurKind::FAdd: 1285 return Builder.CreateFAddReduce(getIdentity(), Src); 1286 case RecurKind::FMul: 1287 return Builder.CreateFMulReduce(getIdentity(), Src); 1288 default: 1289 llvm_unreachable("Unhandled opcode"); 1290 } 1291 } 1292 1293 Value *llvm::createSimpleReduction(VectorBuilder &VBuilder, Value *Src, 1294 const RecurrenceDescriptor &Desc) { 1295 RecurKind Kind = Desc.getRecurrenceKind(); 1296 assert(!RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind) && 1297 "AnyOf reduction is not supported."); 1298 Intrinsic::ID Id = getReductionIntrinsicID(Kind); 1299 auto *SrcTy = cast<VectorType>(Src->getType()); 1300 Type *SrcEltTy = SrcTy->getElementType(); 1301 Value *Iden = getRecurrenceIdentity(Kind, SrcEltTy, Desc.getFastMathFlags()); 1302 Value *Ops[] = {Iden, Src}; 1303 return VBuilder.createSimpleReduction(Id, SrcTy, Ops); 1304 } 1305 1306 Value *llvm::createReduction(IRBuilderBase &B, 1307 const RecurrenceDescriptor &Desc, Value *Src, 1308 PHINode *OrigPhi) { 1309 // TODO: Support in-order reductions based on the recurrence descriptor. 1310 // All ops in the reduction inherit fast-math-flags from the recurrence 1311 // descriptor. 1312 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1313 B.setFastMathFlags(Desc.getFastMathFlags()); 1314 1315 RecurKind RK = Desc.getRecurrenceKind(); 1316 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) 1317 return createAnyOfReduction(B, Src, Desc, OrigPhi); 1318 1319 return createSimpleReduction(B, Src, RK); 1320 } 1321 1322 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1323 const RecurrenceDescriptor &Desc, 1324 Value *Src, Value *Start) { 1325 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1326 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1327 "Unexpected reduction kind"); 1328 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1329 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1330 1331 return B.CreateFAddReduce(Start, Src); 1332 } 1333 1334 Value *llvm::createOrderedReduction(VectorBuilder &VBuilder, 1335 const RecurrenceDescriptor &Desc, 1336 Value *Src, Value *Start) { 1337 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1338 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1339 "Unexpected reduction kind"); 1340 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1341 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1342 1343 Intrinsic::ID Id = getReductionIntrinsicID(RecurKind::FAdd); 1344 auto *SrcTy = cast<VectorType>(Src->getType()); 1345 Value *Ops[] = {Start, Src}; 1346 return VBuilder.createSimpleReduction(Id, SrcTy, Ops); 1347 } 1348 1349 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue, 1350 bool IncludeWrapFlags) { 1351 auto *VecOp = dyn_cast<Instruction>(I); 1352 if (!VecOp) 1353 return; 1354 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1355 : dyn_cast<Instruction>(OpValue); 1356 if (!Intersection) 1357 return; 1358 const unsigned Opcode = Intersection->getOpcode(); 1359 VecOp->copyIRFlags(Intersection, IncludeWrapFlags); 1360 for (auto *V : VL) { 1361 auto *Instr = dyn_cast<Instruction>(V); 1362 if (!Instr) 1363 continue; 1364 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1365 VecOp->andIRFlags(V); 1366 } 1367 } 1368 1369 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1370 ScalarEvolution &SE) { 1371 const SCEV *Zero = SE.getZero(S->getType()); 1372 return SE.isAvailableAtLoopEntry(S, L) && 1373 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1374 } 1375 1376 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1377 ScalarEvolution &SE) { 1378 const SCEV *Zero = SE.getZero(S->getType()); 1379 return SE.isAvailableAtLoopEntry(S, L) && 1380 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1381 } 1382 1383 bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L, 1384 ScalarEvolution &SE) { 1385 const SCEV *Zero = SE.getZero(S->getType()); 1386 return SE.isAvailableAtLoopEntry(S, L) && 1387 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero); 1388 } 1389 1390 bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, 1391 ScalarEvolution &SE) { 1392 const SCEV *Zero = SE.getZero(S->getType()); 1393 return SE.isAvailableAtLoopEntry(S, L) && 1394 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero); 1395 } 1396 1397 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1398 bool Signed) { 1399 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1400 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1401 APInt::getMinValue(BitWidth); 1402 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1403 return SE.isAvailableAtLoopEntry(S, L) && 1404 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1405 SE.getConstant(Min)); 1406 } 1407 1408 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1409 bool Signed) { 1410 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1411 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1412 APInt::getMaxValue(BitWidth); 1413 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1414 return SE.isAvailableAtLoopEntry(S, L) && 1415 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1416 SE.getConstant(Max)); 1417 } 1418 1419 //===----------------------------------------------------------------------===// 1420 // rewriteLoopExitValues - Optimize IV users outside the loop. 1421 // As a side effect, reduces the amount of IV processing within the loop. 1422 //===----------------------------------------------------------------------===// 1423 1424 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1425 SmallPtrSet<const Instruction *, 8> Visited; 1426 SmallVector<const Instruction *, 8> WorkList; 1427 Visited.insert(I); 1428 WorkList.push_back(I); 1429 while (!WorkList.empty()) { 1430 const Instruction *Curr = WorkList.pop_back_val(); 1431 // This use is outside the loop, nothing to do. 1432 if (!L->contains(Curr)) 1433 continue; 1434 // Do we assume it is a "hard" use which will not be eliminated easily? 1435 if (Curr->mayHaveSideEffects()) 1436 return true; 1437 // Otherwise, add all its users to worklist. 1438 for (const auto *U : Curr->users()) { 1439 auto *UI = cast<Instruction>(U); 1440 if (Visited.insert(UI).second) 1441 WorkList.push_back(UI); 1442 } 1443 } 1444 return false; 1445 } 1446 1447 // Collect information about PHI nodes which can be transformed in 1448 // rewriteLoopExitValues. 1449 struct RewritePhi { 1450 PHINode *PN; // For which PHI node is this replacement? 1451 unsigned Ith; // For which incoming value? 1452 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1453 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1454 bool HighCost; // Is this expansion a high-cost? 1455 1456 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1457 bool H) 1458 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1459 HighCost(H) {} 1460 }; 1461 1462 // Check whether it is possible to delete the loop after rewriting exit 1463 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1464 // aggressively. 1465 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1466 BasicBlock *Preheader = L->getLoopPreheader(); 1467 // If there is no preheader, the loop will not be deleted. 1468 if (!Preheader) 1469 return false; 1470 1471 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1472 // We obviate multiple ExitingBlocks case for simplicity. 1473 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1474 // after exit value rewriting, we can enhance the logic here. 1475 SmallVector<BasicBlock *, 4> ExitingBlocks; 1476 L->getExitingBlocks(ExitingBlocks); 1477 SmallVector<BasicBlock *, 8> ExitBlocks; 1478 L->getUniqueExitBlocks(ExitBlocks); 1479 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1480 return false; 1481 1482 BasicBlock *ExitBlock = ExitBlocks[0]; 1483 BasicBlock::iterator BI = ExitBlock->begin(); 1484 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1485 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1486 1487 // If the Incoming value of P is found in RewritePhiSet, we know it 1488 // could be rewritten to use a loop invariant value in transformation 1489 // phase later. Skip it in the loop invariant check below. 1490 bool found = false; 1491 for (const RewritePhi &Phi : RewritePhiSet) { 1492 unsigned i = Phi.Ith; 1493 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1494 found = true; 1495 break; 1496 } 1497 } 1498 1499 Instruction *I; 1500 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1501 if (!L->hasLoopInvariantOperands(I)) 1502 return false; 1503 1504 ++BI; 1505 } 1506 1507 for (auto *BB : L->blocks()) 1508 if (llvm::any_of(*BB, [](Instruction &I) { 1509 return I.mayHaveSideEffects(); 1510 })) 1511 return false; 1512 1513 return true; 1514 } 1515 1516 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi, 1517 /// and returns true if this Phi is an induction phi in the loop. When 1518 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI. 1519 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, 1520 InductionDescriptor &ID) { 1521 if (!Phi) 1522 return false; 1523 if (!L->getLoopPreheader()) 1524 return false; 1525 if (Phi->getParent() != L->getHeader()) 1526 return false; 1527 return InductionDescriptor::isInductionPHI(Phi, L, SE, ID); 1528 } 1529 1530 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1531 ScalarEvolution *SE, 1532 const TargetTransformInfo *TTI, 1533 SCEVExpander &Rewriter, DominatorTree *DT, 1534 ReplaceExitVal ReplaceExitValue, 1535 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1536 // Check a pre-condition. 1537 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1538 "Indvars did not preserve LCSSA!"); 1539 1540 SmallVector<BasicBlock*, 8> ExitBlocks; 1541 L->getUniqueExitBlocks(ExitBlocks); 1542 1543 SmallVector<RewritePhi, 8> RewritePhiSet; 1544 // Find all values that are computed inside the loop, but used outside of it. 1545 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1546 // the exit blocks of the loop to find them. 1547 for (BasicBlock *ExitBB : ExitBlocks) { 1548 // If there are no PHI nodes in this exit block, then no values defined 1549 // inside the loop are used on this path, skip it. 1550 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1551 if (!PN) continue; 1552 1553 unsigned NumPreds = PN->getNumIncomingValues(); 1554 1555 // Iterate over all of the PHI nodes. 1556 BasicBlock::iterator BBI = ExitBB->begin(); 1557 while ((PN = dyn_cast<PHINode>(BBI++))) { 1558 if (PN->use_empty()) 1559 continue; // dead use, don't replace it 1560 1561 if (!SE->isSCEVable(PN->getType())) 1562 continue; 1563 1564 // Iterate over all of the values in all the PHI nodes. 1565 for (unsigned i = 0; i != NumPreds; ++i) { 1566 // If the value being merged in is not integer or is not defined 1567 // in the loop, skip it. 1568 Value *InVal = PN->getIncomingValue(i); 1569 if (!isa<Instruction>(InVal)) 1570 continue; 1571 1572 // If this pred is for a subloop, not L itself, skip it. 1573 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1574 continue; // The Block is in a subloop, skip it. 1575 1576 // Check that InVal is defined in the loop. 1577 Instruction *Inst = cast<Instruction>(InVal); 1578 if (!L->contains(Inst)) 1579 continue; 1580 1581 // Find exit values which are induction variables in the loop, and are 1582 // unused in the loop, with the only use being the exit block PhiNode, 1583 // and the induction variable update binary operator. 1584 // The exit value can be replaced with the final value when it is cheap 1585 // to do so. 1586 if (ReplaceExitValue == UnusedIndVarInLoop) { 1587 InductionDescriptor ID; 1588 PHINode *IndPhi = dyn_cast<PHINode>(Inst); 1589 if (IndPhi) { 1590 if (!checkIsIndPhi(IndPhi, L, SE, ID)) 1591 continue; 1592 // This is an induction PHI. Check that the only users are PHI 1593 // nodes, and induction variable update binary operators. 1594 if (llvm::any_of(Inst->users(), [&](User *U) { 1595 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U)) 1596 return true; 1597 BinaryOperator *B = dyn_cast<BinaryOperator>(U); 1598 if (B && B != ID.getInductionBinOp()) 1599 return true; 1600 return false; 1601 })) 1602 continue; 1603 } else { 1604 // If it is not an induction phi, it must be an induction update 1605 // binary operator with an induction phi user. 1606 BinaryOperator *B = dyn_cast<BinaryOperator>(Inst); 1607 if (!B) 1608 continue; 1609 if (llvm::any_of(Inst->users(), [&](User *U) { 1610 PHINode *Phi = dyn_cast<PHINode>(U); 1611 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID)) 1612 return true; 1613 return false; 1614 })) 1615 continue; 1616 if (B != ID.getInductionBinOp()) 1617 continue; 1618 } 1619 } 1620 1621 // Okay, this instruction has a user outside of the current loop 1622 // and varies predictably *inside* the loop. Evaluate the value it 1623 // contains when the loop exits, if possible. We prefer to start with 1624 // expressions which are true for all exits (so as to maximize 1625 // expression reuse by the SCEVExpander), but resort to per-exit 1626 // evaluation if that fails. 1627 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1628 if (isa<SCEVCouldNotCompute>(ExitValue) || 1629 !SE->isLoopInvariant(ExitValue, L) || 1630 !Rewriter.isSafeToExpand(ExitValue)) { 1631 // TODO: This should probably be sunk into SCEV in some way; maybe a 1632 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1633 // most SCEV expressions and other recurrence types (e.g. shift 1634 // recurrences). Is there existing code we can reuse? 1635 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1636 if (isa<SCEVCouldNotCompute>(ExitCount)) 1637 continue; 1638 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1639 if (AddRec->getLoop() == L) 1640 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1641 if (isa<SCEVCouldNotCompute>(ExitValue) || 1642 !SE->isLoopInvariant(ExitValue, L) || 1643 !Rewriter.isSafeToExpand(ExitValue)) 1644 continue; 1645 } 1646 1647 // Computing the value outside of the loop brings no benefit if it is 1648 // definitely used inside the loop in a way which can not be optimized 1649 // away. Avoid doing so unless we know we have a value which computes 1650 // the ExitValue already. TODO: This should be merged into SCEV 1651 // expander to leverage its knowledge of existing expressions. 1652 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1653 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1654 continue; 1655 1656 // Check if expansions of this SCEV would count as being high cost. 1657 bool HighCost = Rewriter.isHighCostExpansion( 1658 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1659 1660 // Note that we must not perform expansions until after 1661 // we query *all* the costs, because if we perform temporary expansion 1662 // inbetween, one that we might not intend to keep, said expansion 1663 // *may* affect cost calculation of the next SCEV's we'll query, 1664 // and next SCEV may errneously get smaller cost. 1665 1666 // Collect all the candidate PHINodes to be rewritten. 1667 Instruction *InsertPt = 1668 (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ? 1669 &*Inst->getParent()->getFirstInsertionPt() : Inst; 1670 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost); 1671 } 1672 } 1673 } 1674 1675 // TODO: evaluate whether it is beneficial to change how we calculate 1676 // high-cost: if we have SCEV 'A' which we know we will expand, should we 1677 // calculate the cost of other SCEV's after expanding SCEV 'A', thus 1678 // potentially giving cost bonus to those other SCEV's? 1679 1680 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1681 int NumReplaced = 0; 1682 1683 // Transformation. 1684 for (const RewritePhi &Phi : RewritePhiSet) { 1685 PHINode *PN = Phi.PN; 1686 1687 // Only do the rewrite when the ExitValue can be expanded cheaply. 1688 // If LoopCanBeDel is true, rewrite exit value aggressively. 1689 if ((ReplaceExitValue == OnlyCheapRepl || 1690 ReplaceExitValue == UnusedIndVarInLoop) && 1691 !LoopCanBeDel && Phi.HighCost) 1692 continue; 1693 1694 Value *ExitVal = Rewriter.expandCodeFor( 1695 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint); 1696 1697 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal 1698 << '\n' 1699 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1700 1701 #ifndef NDEBUG 1702 // If we reuse an instruction from a loop which is neither L nor one of 1703 // its containing loops, we end up breaking LCSSA form for this loop by 1704 // creating a new use of its instruction. 1705 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1706 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1707 if (EVL != L) 1708 assert(EVL->contains(L) && "LCSSA breach detected!"); 1709 #endif 1710 1711 NumReplaced++; 1712 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1713 PN->setIncomingValue(Phi.Ith, ExitVal); 1714 // It's necessary to tell ScalarEvolution about this explicitly so that 1715 // it can walk the def-use list and forget all SCEVs, as it may not be 1716 // watching the PHI itself. Once the new exit value is in place, there 1717 // may not be a def-use connection between the loop and every instruction 1718 // which got a SCEVAddRecExpr for that loop. 1719 SE->forgetValue(PN); 1720 1721 // If this instruction is dead now, delete it. Don't do it now to avoid 1722 // invalidating iterators. 1723 if (isInstructionTriviallyDead(Inst, TLI)) 1724 DeadInsts.push_back(Inst); 1725 1726 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1727 if (PN->getNumIncomingValues() == 1 && 1728 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1729 PN->replaceAllUsesWith(ExitVal); 1730 PN->eraseFromParent(); 1731 } 1732 } 1733 1734 // The insertion point instruction may have been deleted; clear it out 1735 // so that the rewriter doesn't trip over it later. 1736 Rewriter.clearInsertPoint(); 1737 return NumReplaced; 1738 } 1739 1740 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1741 /// \p OrigLoop. 1742 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1743 Loop *RemainderLoop, uint64_t UF) { 1744 assert(UF > 0 && "Zero unrolled factor is not supported"); 1745 assert(UnrolledLoop != RemainderLoop && 1746 "Unrolled and Remainder loops are expected to distinct"); 1747 1748 // Get number of iterations in the original scalar loop. 1749 unsigned OrigLoopInvocationWeight = 0; 1750 std::optional<unsigned> OrigAverageTripCount = 1751 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1752 if (!OrigAverageTripCount) 1753 return; 1754 1755 // Calculate number of iterations in unrolled loop. 1756 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1757 // Calculate number of iterations for remainder loop. 1758 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1759 1760 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1761 OrigLoopInvocationWeight); 1762 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1763 OrigLoopInvocationWeight); 1764 } 1765 1766 /// Utility that implements appending of loops onto a worklist. 1767 /// Loops are added in preorder (analogous for reverse postorder for trees), 1768 /// and the worklist is processed LIFO. 1769 template <typename RangeT> 1770 void llvm::appendReversedLoopsToWorklist( 1771 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1772 // We use an internal worklist to build up the preorder traversal without 1773 // recursion. 1774 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1775 1776 // We walk the initial sequence of loops in reverse because we generally want 1777 // to visit defs before uses and the worklist is LIFO. 1778 for (Loop *RootL : Loops) { 1779 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1780 assert(PreOrderWorklist.empty() && 1781 "Must start with an empty preorder walk worklist."); 1782 PreOrderWorklist.push_back(RootL); 1783 do { 1784 Loop *L = PreOrderWorklist.pop_back_val(); 1785 PreOrderWorklist.append(L->begin(), L->end()); 1786 PreOrderLoops.push_back(L); 1787 } while (!PreOrderWorklist.empty()); 1788 1789 Worklist.insert(std::move(PreOrderLoops)); 1790 PreOrderLoops.clear(); 1791 } 1792 } 1793 1794 template <typename RangeT> 1795 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1796 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1797 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1798 } 1799 1800 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1801 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1802 1803 template void 1804 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1805 SmallPriorityWorklist<Loop *, 4> &Worklist); 1806 1807 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1808 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1809 appendReversedLoopsToWorklist(LI, Worklist); 1810 } 1811 1812 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1813 LoopInfo *LI, LPPassManager *LPM) { 1814 Loop &New = *LI->AllocateLoop(); 1815 if (PL) 1816 PL->addChildLoop(&New); 1817 else 1818 LI->addTopLevelLoop(&New); 1819 1820 if (LPM) 1821 LPM->addLoop(New); 1822 1823 // Add all of the blocks in L to the new loop. 1824 for (BasicBlock *BB : L->blocks()) 1825 if (LI->getLoopFor(BB) == L) 1826 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI); 1827 1828 // Add all of the subloops to the new loop. 1829 for (Loop *I : *L) 1830 cloneLoop(I, &New, VM, LI, LPM); 1831 1832 return &New; 1833 } 1834 1835 /// IR Values for the lower and upper bounds of a pointer evolution. We 1836 /// need to use value-handles because SCEV expansion can invalidate previously 1837 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1838 /// a previous one. 1839 struct PointerBounds { 1840 TrackingVH<Value> Start; 1841 TrackingVH<Value> End; 1842 Value *StrideToCheck; 1843 }; 1844 1845 /// Expand code for the lower and upper bound of the pointer group \p CG 1846 /// in \p TheLoop. \return the values for the bounds. 1847 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1848 Loop *TheLoop, Instruction *Loc, 1849 SCEVExpander &Exp, bool HoistRuntimeChecks) { 1850 LLVMContext &Ctx = Loc->getContext(); 1851 Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace); 1852 1853 Value *Start = nullptr, *End = nullptr; 1854 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1855 const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr; 1856 1857 // If the Low and High values are themselves loop-variant, then we may want 1858 // to expand the range to include those covered by the outer loop as well. 1859 // There is a trade-off here with the advantage being that creating checks 1860 // using the expanded range permits the runtime memory checks to be hoisted 1861 // out of the outer loop. This reduces the cost of entering the inner loop, 1862 // which can be significant for low trip counts. The disadvantage is that 1863 // there is a chance we may now never enter the vectorized inner loop, 1864 // whereas using a restricted range check could have allowed us to enter at 1865 // least once. This is why the behaviour is not currently the default and is 1866 // controlled by the parameter 'HoistRuntimeChecks'. 1867 if (HoistRuntimeChecks && TheLoop->getParentLoop() && 1868 isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) { 1869 auto *HighAR = cast<SCEVAddRecExpr>(High); 1870 auto *LowAR = cast<SCEVAddRecExpr>(Low); 1871 const Loop *OuterLoop = TheLoop->getParentLoop(); 1872 ScalarEvolution &SE = *Exp.getSE(); 1873 const SCEV *Recur = LowAR->getStepRecurrence(SE); 1874 if (Recur == HighAR->getStepRecurrence(SE) && 1875 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) { 1876 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1877 const SCEV *OuterExitCount = SE.getExitCount(OuterLoop, OuterLoopLatch); 1878 if (!isa<SCEVCouldNotCompute>(OuterExitCount) && 1879 OuterExitCount->getType()->isIntegerTy()) { 1880 const SCEV *NewHigh = 1881 cast<SCEVAddRecExpr>(High)->evaluateAtIteration(OuterExitCount, SE); 1882 if (!isa<SCEVCouldNotCompute>(NewHigh)) { 1883 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include " 1884 "outer loop in order to permit hoisting\n"); 1885 High = NewHigh; 1886 Low = cast<SCEVAddRecExpr>(Low)->getStart(); 1887 // If there is a possibility that the stride is negative then we have 1888 // to generate extra checks to ensure the stride is positive. 1889 if (!SE.isKnownNonNegative( 1890 SE.applyLoopGuards(Recur, HighAR->getLoop()))) { 1891 Stride = Recur; 1892 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is " 1893 "positive: " 1894 << *Stride << '\n'); 1895 } 1896 } 1897 } 1898 } 1899 } 1900 1901 Start = Exp.expandCodeFor(Low, PtrArithTy, Loc); 1902 End = Exp.expandCodeFor(High, PtrArithTy, Loc); 1903 if (CG->NeedsFreeze) { 1904 IRBuilder<> Builder(Loc); 1905 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr"); 1906 End = Builder.CreateFreeze(End, End->getName() + ".fr"); 1907 } 1908 Value *StrideVal = 1909 Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr; 1910 LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n"); 1911 return {Start, End, StrideVal}; 1912 } 1913 1914 /// Turns a collection of checks into a collection of expanded upper and 1915 /// lower bounds for both pointers in the check. 1916 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1917 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1918 Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) { 1919 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1920 1921 // Here we're relying on the SCEV Expander's cache to only emit code for the 1922 // same bounds once. 1923 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1924 [&](const RuntimePointerCheck &Check) { 1925 PointerBounds First = expandBounds(Check.first, L, Loc, Exp, 1926 HoistRuntimeChecks), 1927 Second = expandBounds(Check.second, L, Loc, Exp, 1928 HoistRuntimeChecks); 1929 return std::make_pair(First, Second); 1930 }); 1931 1932 return ChecksWithBounds; 1933 } 1934 1935 Value *llvm::addRuntimeChecks( 1936 Instruction *Loc, Loop *TheLoop, 1937 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1938 SCEVExpander &Exp, bool HoistRuntimeChecks) { 1939 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1940 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1941 auto ExpandedChecks = 1942 expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks); 1943 1944 LLVMContext &Ctx = Loc->getContext(); 1945 IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout())); 1946 ChkBuilder.SetInsertPoint(Loc); 1947 // Our instructions might fold to a constant. 1948 Value *MemoryRuntimeCheck = nullptr; 1949 1950 for (const auto &[A, B] : ExpandedChecks) { 1951 // Check if two pointers (A and B) conflict where conflict is computed as: 1952 // start(A) <= end(B) && start(B) <= end(A) 1953 1954 assert((A.Start->getType()->getPointerAddressSpace() == 1955 B.End->getType()->getPointerAddressSpace()) && 1956 (B.Start->getType()->getPointerAddressSpace() == 1957 A.End->getType()->getPointerAddressSpace()) && 1958 "Trying to bounds check pointers with different address spaces"); 1959 1960 // [A|B].Start points to the first accessed byte under base [A|B]. 1961 // [A|B].End points to the last accessed byte, plus one. 1962 // There is no conflict when the intervals are disjoint: 1963 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1964 // 1965 // bound0 = (B.Start < A.End) 1966 // bound1 = (A.Start < B.End) 1967 // IsConflict = bound0 & bound1 1968 Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0"); 1969 Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1"); 1970 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1971 if (A.StrideToCheck) { 1972 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT( 1973 A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0), 1974 "stride.check"); 1975 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride); 1976 } 1977 if (B.StrideToCheck) { 1978 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT( 1979 B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0), 1980 "stride.check"); 1981 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride); 1982 } 1983 if (MemoryRuntimeCheck) { 1984 IsConflict = 1985 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1986 } 1987 MemoryRuntimeCheck = IsConflict; 1988 } 1989 1990 return MemoryRuntimeCheck; 1991 } 1992 1993 Value *llvm::addDiffRuntimeChecks( 1994 Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander, 1995 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) { 1996 1997 LLVMContext &Ctx = Loc->getContext(); 1998 IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout())); 1999 ChkBuilder.SetInsertPoint(Loc); 2000 // Our instructions might fold to a constant. 2001 Value *MemoryRuntimeCheck = nullptr; 2002 2003 auto &SE = *Expander.getSE(); 2004 // Map to keep track of created compares, The key is the pair of operands for 2005 // the compare, to allow detecting and re-using redundant compares. 2006 DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares; 2007 for (const auto &[SrcStart, SinkStart, AccessSize, NeedsFreeze] : Checks) { 2008 Type *Ty = SinkStart->getType(); 2009 // Compute VF * IC * AccessSize. 2010 auto *VFTimesUFTimesSize = 2011 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()), 2012 ConstantInt::get(Ty, IC * AccessSize)); 2013 Value *Diff = 2014 Expander.expandCodeFor(SE.getMinusSCEV(SinkStart, SrcStart), Ty, Loc); 2015 2016 // Check if the same compare has already been created earlier. In that case, 2017 // there is no need to check it again. 2018 Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize}); 2019 if (IsConflict) 2020 continue; 2021 2022 IsConflict = 2023 ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check"); 2024 SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict}); 2025 if (NeedsFreeze) 2026 IsConflict = 2027 ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr"); 2028 if (MemoryRuntimeCheck) { 2029 IsConflict = 2030 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 2031 } 2032 MemoryRuntimeCheck = IsConflict; 2033 } 2034 2035 return MemoryRuntimeCheck; 2036 } 2037 2038 std::optional<IVConditionInfo> 2039 llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, 2040 const MemorySSA &MSSA, AAResults &AA) { 2041 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 2042 if (!TI || !TI->isConditional()) 2043 return {}; 2044 2045 auto *CondI = dyn_cast<Instruction>(TI->getCondition()); 2046 // The case with the condition outside the loop should already be handled 2047 // earlier. 2048 // Allow CmpInst and TruncInsts as they may be users of load instructions 2049 // and have potential for partial unswitching 2050 if (!CondI || !isa<CmpInst, TruncInst>(CondI) || !L.contains(CondI)) 2051 return {}; 2052 2053 SmallVector<Instruction *> InstToDuplicate; 2054 InstToDuplicate.push_back(CondI); 2055 2056 SmallVector<Value *, 4> WorkList; 2057 WorkList.append(CondI->op_begin(), CondI->op_end()); 2058 2059 SmallVector<MemoryAccess *, 4> AccessesToCheck; 2060 SmallVector<MemoryLocation, 4> AccessedLocs; 2061 while (!WorkList.empty()) { 2062 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 2063 if (!I || !L.contains(I)) 2064 continue; 2065 2066 // TODO: support additional instructions. 2067 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 2068 return {}; 2069 2070 // Do not duplicate volatile and atomic loads. 2071 if (auto *LI = dyn_cast<LoadInst>(I)) 2072 if (LI->isVolatile() || LI->isAtomic()) 2073 return {}; 2074 2075 InstToDuplicate.push_back(I); 2076 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 2077 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 2078 // Queue the defining access to check for alias checks. 2079 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 2080 AccessedLocs.push_back(MemoryLocation::get(I)); 2081 } else { 2082 // MemoryDefs may clobber the location or may be atomic memory 2083 // operations. Bail out. 2084 return {}; 2085 } 2086 } 2087 WorkList.append(I->op_begin(), I->op_end()); 2088 } 2089 2090 if (InstToDuplicate.empty()) 2091 return {}; 2092 2093 SmallVector<BasicBlock *, 4> ExitingBlocks; 2094 L.getExitingBlocks(ExitingBlocks); 2095 auto HasNoClobbersOnPath = 2096 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 2097 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 2098 SmallVector<MemoryAccess *, 4> AccessesToCheck) 2099 -> std::optional<IVConditionInfo> { 2100 IVConditionInfo Info; 2101 // First, collect all blocks in the loop that are on a patch from Succ 2102 // to the header. 2103 SmallVector<BasicBlock *, 4> WorkList; 2104 WorkList.push_back(Succ); 2105 WorkList.push_back(Header); 2106 SmallPtrSet<BasicBlock *, 4> Seen; 2107 Seen.insert(Header); 2108 Info.PathIsNoop &= 2109 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 2110 2111 while (!WorkList.empty()) { 2112 BasicBlock *Current = WorkList.pop_back_val(); 2113 if (!L.contains(Current)) 2114 continue; 2115 const auto &SeenIns = Seen.insert(Current); 2116 if (!SeenIns.second) 2117 continue; 2118 2119 Info.PathIsNoop &= all_of( 2120 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 2121 WorkList.append(succ_begin(Current), succ_end(Current)); 2122 } 2123 2124 // Require at least 2 blocks on a path through the loop. This skips 2125 // paths that directly exit the loop. 2126 if (Seen.size() < 2) 2127 return {}; 2128 2129 // Next, check if there are any MemoryDefs that are on the path through 2130 // the loop (in the Seen set) and they may-alias any of the locations in 2131 // AccessedLocs. If that is the case, they may modify the condition and 2132 // partial unswitching is not possible. 2133 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 2134 while (!AccessesToCheck.empty()) { 2135 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 2136 auto SeenI = SeenAccesses.insert(Current); 2137 if (!SeenI.second || !Seen.contains(Current->getBlock())) 2138 continue; 2139 2140 // Bail out if exceeded the threshold. 2141 if (SeenAccesses.size() >= MSSAThreshold) 2142 return {}; 2143 2144 // MemoryUse are read-only accesses. 2145 if (isa<MemoryUse>(Current)) 2146 continue; 2147 2148 // For a MemoryDef, check if is aliases any of the location feeding 2149 // the original condition. 2150 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 2151 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 2152 return isModSet( 2153 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 2154 })) 2155 return {}; 2156 } 2157 2158 for (Use &U : Current->uses()) 2159 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 2160 } 2161 2162 // We could also allow loops with known trip counts without mustprogress, 2163 // but ScalarEvolution may not be available. 2164 Info.PathIsNoop &= isMustProgress(&L); 2165 2166 // If the path is considered a no-op so far, check if it reaches a 2167 // single exit block without any phis. This ensures no values from the 2168 // loop are used outside of the loop. 2169 if (Info.PathIsNoop) { 2170 for (auto *Exiting : ExitingBlocks) { 2171 if (!Seen.contains(Exiting)) 2172 continue; 2173 for (auto *Succ : successors(Exiting)) { 2174 if (L.contains(Succ)) 2175 continue; 2176 2177 Info.PathIsNoop &= Succ->phis().empty() && 2178 (!Info.ExitForPath || Info.ExitForPath == Succ); 2179 if (!Info.PathIsNoop) 2180 break; 2181 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 2182 "cannot have multiple exit blocks"); 2183 Info.ExitForPath = Succ; 2184 } 2185 } 2186 } 2187 if (!Info.ExitForPath) 2188 Info.PathIsNoop = false; 2189 2190 Info.InstToDuplicate = InstToDuplicate; 2191 return Info; 2192 }; 2193 2194 // If we branch to the same successor, partial unswitching will not be 2195 // beneficial. 2196 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 2197 return {}; 2198 2199 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 2200 AccessesToCheck)) { 2201 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 2202 return Info; 2203 } 2204 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 2205 AccessesToCheck)) { 2206 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 2207 return Info; 2208 } 2209 2210 return {}; 2211 } 2212