1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations. Other strategies 20 // include generate a loop before or after the unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/Utils/UnrollLoop.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionExpander.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include <algorithm> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 STATISTIC(NumRuntimeUnrolled, 47 "Number of loops unrolled with run-time trip counts"); 48 49 /// Connect the unrolling prolog code to the original loop. 50 /// The unrolling prolog code contains code to execute the 51 /// 'extra' iterations if the run-time trip count modulo the 52 /// unroll count is non-zero. 53 /// 54 /// This function performs the following: 55 /// - Create PHI nodes at prolog end block to combine values 56 /// that exit the prolog code and jump around the prolog. 57 /// - Add a PHI operand to a PHI node at the loop exit block 58 /// for values that exit the prolog and go around the loop. 59 /// - Branch around the original loop if the trip count is less 60 /// than the unroll factor. 61 /// 62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 63 BasicBlock *LastPrologBB, BasicBlock *PrologEnd, 64 BasicBlock *OrigPH, BasicBlock *NewPH, 65 ValueToValueMapTy &VMap, AliasAnalysis *AA, 66 DominatorTree *DT, LoopInfo *LI, Pass *P) { 67 BasicBlock *Latch = L->getLoopLatch(); 68 assert(Latch && "Loop must have a latch"); 69 70 // Create a PHI node for each outgoing value from the original loop 71 // (which means it is an outgoing value from the prolog code too). 72 // The new PHI node is inserted in the prolog end basic block. 73 // The new PHI name is added as an operand of a PHI node in either 74 // the loop header or the loop exit block. 75 for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch); 76 SBI != SBE; ++SBI) { 77 for (BasicBlock::iterator BBI = (*SBI)->begin(); 78 PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) { 79 80 // Add a new PHI node to the prolog end block and add the 81 // appropriate incoming values. 82 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr", 83 PrologEnd->getTerminator()); 84 // Adding a value to the new PHI node from the original loop preheader. 85 // This is the value that skips all the prolog code. 86 if (L->contains(PN)) { 87 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH); 88 } else { 89 NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH); 90 } 91 92 Value *V = PN->getIncomingValueForBlock(Latch); 93 if (Instruction *I = dyn_cast<Instruction>(V)) { 94 if (L->contains(I)) { 95 V = VMap[I]; 96 } 97 } 98 // Adding a value to the new PHI node from the last prolog block 99 // that was created. 100 NewPN->addIncoming(V, LastPrologBB); 101 102 // Update the existing PHI node operand with the value from the 103 // new PHI node. How this is done depends on if the existing 104 // PHI node is in the original loop block, or the exit block. 105 if (L->contains(PN)) { 106 PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN); 107 } else { 108 PN->addIncoming(NewPN, PrologEnd); 109 } 110 } 111 } 112 113 // Create a branch around the orignal loop, which is taken if there are no 114 // iterations remaining to be executed after running the prologue. 115 Instruction *InsertPt = PrologEnd->getTerminator(); 116 117 assert(Count != 0 && "nonsensical Count!"); 118 119 // If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1) 120 // (since Count is a power of 2). This means %xtraiter is (BECount + 1) and 121 // and all of the iterations of this loop were executed by the prologue. Note 122 // that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow. 123 Instruction *BrLoopExit = 124 new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, BECount, 125 ConstantInt::get(BECount->getType(), Count - 1)); 126 BasicBlock *Exit = L->getUniqueExitBlock(); 127 assert(Exit && "Loop must have a single exit block only"); 128 // Split the exit to maintain loop canonicalization guarantees 129 SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit)); 130 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", AA, DT, LI, 131 P->mustPreserveAnalysisID(LCSSAID)); 132 // Add the branch to the exit block (around the unrolled loop) 133 BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt); 134 InsertPt->eraseFromParent(); 135 } 136 137 /// Create a clone of the blocks in a loop and connect them together. 138 /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new 139 /// loop will be created including all cloned blocks, and the iterator of it 140 /// switches to count NewIter down to 0. 141 /// 142 static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog, 143 BasicBlock *InsertTop, BasicBlock *InsertBot, 144 std::vector<BasicBlock *> &NewBlocks, 145 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, 146 LoopInfo *LI) { 147 BasicBlock *Preheader = L->getLoopPreheader(); 148 BasicBlock *Header = L->getHeader(); 149 BasicBlock *Latch = L->getLoopLatch(); 150 Function *F = Header->getParent(); 151 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 152 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 153 Loop *NewLoop = 0; 154 Loop *ParentLoop = L->getParentLoop(); 155 if (!UnrollProlog) { 156 NewLoop = new Loop(); 157 if (ParentLoop) 158 ParentLoop->addChildLoop(NewLoop); 159 else 160 LI->addTopLevelLoop(NewLoop); 161 } 162 163 // For each block in the original loop, create a new copy, 164 // and update the value map with the newly created values. 165 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 166 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F); 167 NewBlocks.push_back(NewBB); 168 169 if (NewLoop) 170 NewLoop->addBasicBlockToLoop(NewBB, *LI); 171 else if (ParentLoop) 172 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 173 174 VMap[*BB] = NewBB; 175 if (Header == *BB) { 176 // For the first block, add a CFG connection to this newly 177 // created block. 178 InsertTop->getTerminator()->setSuccessor(0, NewBB); 179 180 } 181 if (Latch == *BB) { 182 // For the last block, if UnrollProlog is true, create a direct jump to 183 // InsertBot. If not, create a loop back to cloned head. 184 VMap.erase((*BB)->getTerminator()); 185 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 186 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 187 if (UnrollProlog) { 188 LatchBR->eraseFromParent(); 189 BranchInst::Create(InsertBot, NewBB); 190 } else { 191 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter", 192 FirstLoopBB->getFirstNonPHI()); 193 IRBuilder<> Builder(LatchBR); 194 Value *IdxSub = 195 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 196 NewIdx->getName() + ".sub"); 197 Value *IdxCmp = 198 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 199 BranchInst::Create(FirstLoopBB, InsertBot, IdxCmp, NewBB); 200 NewIdx->addIncoming(NewIter, InsertTop); 201 NewIdx->addIncoming(IdxSub, NewBB); 202 LatchBR->eraseFromParent(); 203 } 204 } 205 } 206 207 // Change the incoming values to the ones defined in the preheader or 208 // cloned loop. 209 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 210 PHINode *NewPHI = cast<PHINode>(VMap[I]); 211 if (UnrollProlog) { 212 VMap[I] = NewPHI->getIncomingValueForBlock(Preheader); 213 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 214 } else { 215 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 216 NewPHI->setIncomingBlock(idx, InsertTop); 217 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 218 idx = NewPHI->getBasicBlockIndex(Latch); 219 Value *InVal = NewPHI->getIncomingValue(idx); 220 NewPHI->setIncomingBlock(idx, NewLatch); 221 if (VMap[InVal]) 222 NewPHI->setIncomingValue(idx, VMap[InVal]); 223 } 224 } 225 if (NewLoop) { 226 // Add unroll disable metadata to disable future unrolling for this loop. 227 SmallVector<Metadata *, 4> MDs; 228 // Reserve first location for self reference to the LoopID metadata node. 229 MDs.push_back(nullptr); 230 MDNode *LoopID = NewLoop->getLoopID(); 231 if (LoopID) { 232 // First remove any existing loop unrolling metadata. 233 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 234 bool IsUnrollMetadata = false; 235 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 236 if (MD) { 237 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 238 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 239 } 240 if (!IsUnrollMetadata) 241 MDs.push_back(LoopID->getOperand(i)); 242 } 243 } 244 245 LLVMContext &Context = NewLoop->getHeader()->getContext(); 246 SmallVector<Metadata *, 1> DisableOperands; 247 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 248 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 249 MDs.push_back(DisableNode); 250 251 MDNode *NewLoopID = MDNode::get(Context, MDs); 252 // Set operand 0 to refer to the loop id itself. 253 NewLoopID->replaceOperandWith(0, NewLoopID); 254 NewLoop->setLoopID(NewLoopID); 255 } 256 } 257 258 /// Insert code in the prolog code when unrolling a loop with a 259 /// run-time trip-count. 260 /// 261 /// This method assumes that the loop unroll factor is total number 262 /// of loop bodes in the loop after unrolling. (Some folks refer 263 /// to the unroll factor as the number of *extra* copies added). 264 /// We assume also that the loop unroll factor is a power-of-two. So, after 265 /// unrolling the loop, the number of loop bodies executed is 2, 266 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 267 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 268 /// the switch instruction is generated. 269 /// 270 /// extraiters = tripcount % loopfactor 271 /// if (extraiters == 0) jump Loop: 272 /// else jump Prol 273 /// Prol: LoopBody; 274 /// extraiters -= 1 // Omitted if unroll factor is 2. 275 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 276 /// if (tripcount < loopfactor) jump End 277 /// Loop: 278 /// ... 279 /// End: 280 /// 281 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI, 282 LPPassManager *LPM) { 283 // for now, only unroll loops that contain a single exit 284 if (!L->getExitingBlock()) 285 return false; 286 287 // Make sure the loop is in canonical form, and there is a single 288 // exit block only. 289 if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock()) 290 return false; 291 292 // Use Scalar Evolution to compute the trip count. This allows more 293 // loops to be unrolled than relying on induction var simplification 294 if (!LPM) 295 return false; 296 ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); 297 if (!SE) 298 return false; 299 300 // Only unroll loops with a computable trip count and the trip count needs 301 // to be an int value (allowing a pointer type is a TODO item) 302 const SCEV *BECountSC = SE->getBackedgeTakenCount(L); 303 if (isa<SCEVCouldNotCompute>(BECountSC) || 304 !BECountSC->getType()->isIntegerTy()) 305 return false; 306 307 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 308 309 // Add 1 since the backedge count doesn't include the first loop iteration 310 const SCEV *TripCountSC = 311 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 312 if (isa<SCEVCouldNotCompute>(TripCountSC)) 313 return false; 314 315 // We only handle cases when the unroll factor is a power of 2. 316 // Count is the loop unroll factor, the number of extra copies added + 1. 317 if (!isPowerOf2_32(Count)) 318 return false; 319 320 // This constraint lets us deal with an overflowing trip count easily; see the 321 // comment on ModVal below. This check is equivalent to `Log2(Count) < 322 // BEWidth`. 323 if (BEWidth < 64 && static_cast<uint64_t>(Count) > (1ULL << BEWidth)) 324 return false; 325 326 // If this loop is nested, then the loop unroller changes the code in 327 // parent loop, so the Scalar Evolution pass needs to be run again 328 if (Loop *ParentLoop = L->getParentLoop()) 329 SE->forgetLoop(ParentLoop); 330 331 // Grab analyses that we preserve. 332 auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 333 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 334 335 BasicBlock *PH = L->getLoopPreheader(); 336 BasicBlock *Header = L->getHeader(); 337 BasicBlock *Latch = L->getLoopLatch(); 338 // It helps to splits the original preheader twice, one for the end of the 339 // prolog code and one for a new loop preheader 340 BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI); 341 BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI); 342 BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator()); 343 const DataLayout &DL = Header->getModule()->getDataLayout(); 344 345 // Compute the number of extra iterations required, which is: 346 // extra iterations = run-time trip count % (loop unroll factor + 1) 347 SCEVExpander Expander(*SE, DL, "loop-unroll"); 348 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 349 PreHeaderBR); 350 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 351 PreHeaderBR); 352 353 IRBuilder<> B(PreHeaderBR); 354 Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 355 356 // If ModVal is zero, we know that either 357 // 1. there are no iteration to be run in the prologue loop 358 // OR 359 // 2. the addition computing TripCount overflowed 360 // 361 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the 362 // number of iterations that remain to be run in the original loop is a 363 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 364 // explicitly check this above). 365 366 Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod"); 367 368 // Branch to either the extra iterations or the cloned/unrolled loop 369 // We will fix up the true branch label when adding loop body copies 370 BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR); 371 assert(PreHeaderBR->isUnconditional() && 372 PreHeaderBR->getSuccessor(0) == PEnd && 373 "CFG edges in Preheader are not correct"); 374 PreHeaderBR->eraseFromParent(); 375 Function *F = Header->getParent(); 376 // Get an ordered list of blocks in the loop to help with the ordering of the 377 // cloned blocks in the prolog code 378 LoopBlocksDFS LoopBlocks(L); 379 LoopBlocks.perform(LI); 380 381 // 382 // For each extra loop iteration, create a copy of the loop's basic blocks 383 // and generate a condition that branches to the copy depending on the 384 // number of 'left over' iterations. 385 // 386 std::vector<BasicBlock *> NewBlocks; 387 ValueToValueMapTy VMap; 388 389 bool UnrollPrologue = Count == 2; 390 391 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 392 // the loop, otherwise we create a cloned loop to execute the extra 393 // iterations. This function adds the appropriate CFG connections. 394 CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks, 395 VMap, LI); 396 397 // Insert the cloned blocks into function just before the original loop 398 F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0], 399 F->end()); 400 401 // Rewrite the cloned instruction operands to use the values 402 // created when the clone is created. 403 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { 404 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 405 E = NewBlocks[i]->end(); 406 I != E; ++I) { 407 RemapInstruction(I, VMap, 408 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 409 } 410 } 411 412 // Connect the prolog code to the original loop and update the 413 // PHI functions. 414 BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]); 415 ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap, 416 /*AliasAnalysis*/ nullptr, DT, LI, LPM->getAsPass()); 417 NumRuntimeUnrolled++; 418 return true; 419 } 420