xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision b5797b659f879474b4081c4e1a00e955c38a4dcb)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations.  Other strategies
20 // include generate a loop before or after the unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/Utils/UnrollLoop.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpander.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include <algorithm>
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-unroll"
44 
45 STATISTIC(NumRuntimeUnrolled,
46           "Number of loops unrolled with run-time trip counts");
47 
48 /// Connect the unrolling prolog code to the original loop.
49 /// The unrolling prolog code contains code to execute the
50 /// 'extra' iterations if the run-time trip count modulo the
51 /// unroll count is non-zero.
52 ///
53 /// This function performs the following:
54 /// - Create PHI nodes at prolog end block to combine values
55 ///   that exit the prolog code and jump around the prolog.
56 /// - Add a PHI operand to a PHI node at the loop exit block
57 ///   for values that exit the prolog and go around the loop.
58 /// - Branch around the original loop if the trip count is less
59 ///   than the unroll factor.
60 ///
61 static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
62                           BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
63                           BasicBlock *OrigPH, BasicBlock *NewPH,
64                           ValueToValueMapTy &VMap, AliasAnalysis *AA,
65                           DominatorTree *DT, LoopInfo *LI, Pass *P) {
66   BasicBlock *Latch = L->getLoopLatch();
67   assert(Latch && "Loop must have a latch");
68 
69   // Create a PHI node for each outgoing value from the original loop
70   // (which means it is an outgoing value from the prolog code too).
71   // The new PHI node is inserted in the prolog end basic block.
72   // The new PHI name is added as an operand of a PHI node in either
73   // the loop header or the loop exit block.
74   for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
75        SBI != SBE; ++SBI) {
76     for (BasicBlock::iterator BBI = (*SBI)->begin();
77          PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
78 
79       // Add a new PHI node to the prolog end block and add the
80       // appropriate incoming values.
81       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
82                                        PrologEnd->getTerminator());
83       // Adding a value to the new PHI node from the original loop preheader.
84       // This is the value that skips all the prolog code.
85       if (L->contains(PN)) {
86         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
87       } else {
88         NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
89       }
90 
91       Value *V = PN->getIncomingValueForBlock(Latch);
92       if (Instruction *I = dyn_cast<Instruction>(V)) {
93         if (L->contains(I)) {
94           V = VMap[I];
95         }
96       }
97       // Adding a value to the new PHI node from the last prolog block
98       // that was created.
99       NewPN->addIncoming(V, LastPrologBB);
100 
101       // Update the existing PHI node operand with the value from the
102       // new PHI node.  How this is done depends on if the existing
103       // PHI node is in the original loop block, or the exit block.
104       if (L->contains(PN)) {
105         PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
106       } else {
107         PN->addIncoming(NewPN, PrologEnd);
108       }
109     }
110   }
111 
112   // Create a branch around the orignal loop, which is taken if the
113   // trip count is less than the unroll factor.
114   Instruction *InsertPt = PrologEnd->getTerminator();
115   Instruction *BrLoopExit =
116     new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
117                  ConstantInt::get(TripCount->getType(), Count));
118   BasicBlock *Exit = L->getUniqueExitBlock();
119   assert(Exit && "Loop must have a single exit block only");
120   // Split the exit to maintain loop canonicalization guarantees
121   SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
122   if (!Exit->isLandingPad()) {
123     SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", AA, DT, LI,
124                            P->mustPreserveAnalysisID(LCSSAID));
125   } else {
126     SmallVector<BasicBlock*, 2> NewBBs;
127     SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
128                                 P, NewBBs);
129   }
130   // Add the branch to the exit block (around the unrolled loop)
131   BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
132   InsertPt->eraseFromParent();
133 }
134 
135 /// Create a clone of the blocks in a loop and connect them together.
136 /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
137 /// loop will be created including all cloned blocks, and the iterator of it
138 /// switches to count NewIter down to 0.
139 ///
140 static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
141                             BasicBlock *InsertTop, BasicBlock *InsertBot,
142                             std::vector<BasicBlock *> &NewBlocks,
143                             LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
144                             LoopInfo *LI) {
145   BasicBlock *Preheader = L->getLoopPreheader();
146   BasicBlock *Header = L->getHeader();
147   BasicBlock *Latch = L->getLoopLatch();
148   Function *F = Header->getParent();
149   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
150   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
151   Loop *NewLoop = 0;
152   Loop *ParentLoop = L->getParentLoop();
153   if (!UnrollProlog) {
154     NewLoop = new Loop();
155     if (ParentLoop)
156       ParentLoop->addChildLoop(NewLoop);
157     else
158       LI->addTopLevelLoop(NewLoop);
159   }
160 
161   // For each block in the original loop, create a new copy,
162   // and update the value map with the newly created values.
163   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
164     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
165     NewBlocks.push_back(NewBB);
166 
167     if (NewLoop)
168       NewLoop->addBasicBlockToLoop(NewBB, *LI);
169     else if (ParentLoop)
170       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
171 
172     VMap[*BB] = NewBB;
173     if (Header == *BB) {
174       // For the first block, add a CFG connection to this newly
175       // created block.
176       InsertTop->getTerminator()->setSuccessor(0, NewBB);
177 
178     }
179     if (Latch == *BB) {
180       // For the last block, if UnrollProlog is true, create a direct jump to
181       // InsertBot. If not, create a loop back to cloned head.
182       VMap.erase((*BB)->getTerminator());
183       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
184       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
185       if (UnrollProlog) {
186         LatchBR->eraseFromParent();
187         BranchInst::Create(InsertBot, NewBB);
188       } else {
189         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
190                                           FirstLoopBB->getFirstNonPHI());
191         IRBuilder<> Builder(LatchBR);
192         Value *IdxSub =
193             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
194                               NewIdx->getName() + ".sub");
195         Value *IdxCmp =
196             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
197         BranchInst::Create(FirstLoopBB, InsertBot, IdxCmp, NewBB);
198         NewIdx->addIncoming(NewIter, InsertTop);
199         NewIdx->addIncoming(IdxSub, NewBB);
200         LatchBR->eraseFromParent();
201       }
202     }
203   }
204 
205   // Change the incoming values to the ones defined in the preheader or
206   // cloned loop.
207   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
208     PHINode *NewPHI = cast<PHINode>(VMap[I]);
209     if (UnrollProlog) {
210       VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
211       cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
212     } else {
213       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
214       NewPHI->setIncomingBlock(idx, InsertTop);
215       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
216       idx = NewPHI->getBasicBlockIndex(Latch);
217       Value *InVal = NewPHI->getIncomingValue(idx);
218       NewPHI->setIncomingBlock(idx, NewLatch);
219       if (VMap[InVal])
220         NewPHI->setIncomingValue(idx, VMap[InVal]);
221     }
222   }
223   if (NewLoop) {
224     // Add unroll disable metadata to disable future unrolling for this loop.
225     SmallVector<Metadata *, 4> MDs;
226     // Reserve first location for self reference to the LoopID metadata node.
227     MDs.push_back(nullptr);
228     MDNode *LoopID = NewLoop->getLoopID();
229     if (LoopID) {
230       // First remove any existing loop unrolling metadata.
231       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
232         bool IsUnrollMetadata = false;
233         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
234         if (MD) {
235           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
236           IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
237         }
238         if (!IsUnrollMetadata)
239           MDs.push_back(LoopID->getOperand(i));
240       }
241     }
242 
243     LLVMContext &Context = NewLoop->getHeader()->getContext();
244     SmallVector<Metadata *, 1> DisableOperands;
245     DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
246     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
247     MDs.push_back(DisableNode);
248 
249     MDNode *NewLoopID = MDNode::get(Context, MDs);
250     // Set operand 0 to refer to the loop id itself.
251     NewLoopID->replaceOperandWith(0, NewLoopID);
252     NewLoop->setLoopID(NewLoopID);
253   }
254 }
255 
256 /// Insert code in the prolog code when unrolling a loop with a
257 /// run-time trip-count.
258 ///
259 /// This method assumes that the loop unroll factor is total number
260 /// of loop bodes in the loop after unrolling. (Some folks refer
261 /// to the unroll factor as the number of *extra* copies added).
262 /// We assume also that the loop unroll factor is a power-of-two. So, after
263 /// unrolling the loop, the number of loop bodies executed is 2,
264 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
265 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
266 /// the switch instruction is generated.
267 ///
268 ///        extraiters = tripcount % loopfactor
269 ///        if (extraiters == 0) jump Loop:
270 ///        else jump Prol
271 /// Prol:  LoopBody;
272 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
273 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
274 ///        if (tripcount < loopfactor) jump End
275 /// Loop:
276 /// ...
277 /// End:
278 ///
279 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
280                                    LPPassManager *LPM) {
281   // for now, only unroll loops that contain a single exit
282   if (!L->getExitingBlock())
283     return false;
284 
285   // Make sure the loop is in canonical form, and there is a single
286   // exit block only.
287   if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
288     return false;
289 
290   // Use Scalar Evolution to compute the trip count.  This allows more
291   // loops to be unrolled than relying on induction var simplification
292   if (!LPM)
293     return false;
294   ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
295   if (!SE)
296     return false;
297 
298   // Only unroll loops with a computable trip count and the trip count needs
299   // to be an int value (allowing a pointer type is a TODO item)
300   const SCEV *BECount = SE->getBackedgeTakenCount(L);
301   if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
302     return false;
303 
304   // If BECount is INT_MAX, we can't compute trip-count without overflow.
305   if (BECount->isAllOnesValue())
306     return false;
307 
308   // Add 1 since the backedge count doesn't include the first loop iteration
309   const SCEV *TripCountSC =
310     SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
311   if (isa<SCEVCouldNotCompute>(TripCountSC))
312     return false;
313 
314   // We only handle cases when the unroll factor is a power of 2.
315   // Count is the loop unroll factor, the number of extra copies added + 1.
316   if ((Count & (Count-1)) != 0)
317     return false;
318 
319   // If this loop is nested, then the loop unroller changes the code in
320   // parent loop, so the Scalar Evolution pass needs to be run again
321   if (Loop *ParentLoop = L->getParentLoop())
322     SE->forgetLoop(ParentLoop);
323 
324   // Grab analyses that we preserve.
325   auto *AA = LPM->getAnalysisIfAvailable<AliasAnalysis>();
326   auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
327   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
328 
329   BasicBlock *PH = L->getLoopPreheader();
330   BasicBlock *Header = L->getHeader();
331   BasicBlock *Latch = L->getLoopLatch();
332   // It helps to splits the original preheader twice, one for the end of the
333   // prolog code and one for a new loop preheader
334   BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
335   BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
336   BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
337 
338   // Compute the number of extra iterations required, which is:
339   //  extra iterations = run-time trip count % (loop unroll factor + 1)
340   SCEVExpander Expander(*SE, "loop-unroll");
341   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
342                                             PreHeaderBR);
343 
344   IRBuilder<> B(PreHeaderBR);
345   Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
346 
347   // Check if for no extra iterations, then jump to cloned/unrolled loop.
348   // We have to check that the trip count computation didn't overflow when
349   // adding one to the backedge taken count.
350   Value *LCmp = B.CreateIsNotNull(ModVal, "lcmp.mod");
351   Value *OverflowCheck = B.CreateIsNull(TripCount, "lcmp.overflow");
352   Value *BranchVal = B.CreateOr(OverflowCheck, LCmp, "lcmp.or");
353 
354   // Branch to either the extra iterations or the cloned/unrolled loop
355   // We will fix up the true branch label when adding loop body copies
356   BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
357   assert(PreHeaderBR->isUnconditional() &&
358          PreHeaderBR->getSuccessor(0) == PEnd &&
359          "CFG edges in Preheader are not correct");
360   PreHeaderBR->eraseFromParent();
361   Function *F = Header->getParent();
362   // Get an ordered list of blocks in the loop to help with the ordering of the
363   // cloned blocks in the prolog code
364   LoopBlocksDFS LoopBlocks(L);
365   LoopBlocks.perform(LI);
366 
367   //
368   // For each extra loop iteration, create a copy of the loop's basic blocks
369   // and generate a condition that branches to the copy depending on the
370   // number of 'left over' iterations.
371   //
372   std::vector<BasicBlock *> NewBlocks;
373   ValueToValueMapTy VMap;
374 
375   // If unroll count is 2 and we can't overflow in tripcount computation (which
376   // is BECount + 1), then we don't need a loop for prologue, and we can unroll
377   // it. We can be sure that we don't overflow only if tripcount is a constant.
378   bool UnrollPrologue = (Count == 2 && isa<ConstantInt>(TripCount));
379 
380   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
381   // the loop, otherwise we create a cloned loop to execute the extra
382   // iterations. This function adds the appropriate CFG connections.
383   CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
384                   VMap, LI);
385 
386   // Insert the cloned blocks into function just before the original loop
387   F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0],
388                                 F->end());
389 
390   // Rewrite the cloned instruction operands to use the values
391   // created when the clone is created.
392   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
393     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
394                               E = NewBlocks[i]->end();
395          I != E; ++I) {
396       RemapInstruction(I, VMap,
397                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
398     }
399   }
400 
401   // Connect the prolog code to the original loop and update the
402   // PHI functions.
403   BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
404   ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, VMap,
405                 AA, DT, LI, LPM->getAsPass());
406   NumRuntimeUnrolled++;
407   return true;
408 }
409