1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations. Other strategies 20 // include generate a loop before or after the unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/Utils/UnrollLoop.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionExpander.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include <algorithm> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 STATISTIC(NumRuntimeUnrolled, 46 "Number of loops unrolled with run-time trip counts"); 47 48 /// Connect the unrolling prolog code to the original loop. 49 /// The unrolling prolog code contains code to execute the 50 /// 'extra' iterations if the run-time trip count modulo the 51 /// unroll count is non-zero. 52 /// 53 /// This function performs the following: 54 /// - Create PHI nodes at prolog end block to combine values 55 /// that exit the prolog code and jump around the prolog. 56 /// - Add a PHI operand to a PHI node at the loop exit block 57 /// for values that exit the prolog and go around the loop. 58 /// - Branch around the original loop if the trip count is less 59 /// than the unroll factor. 60 /// 61 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 62 BasicBlock *LastPrologBB, BasicBlock *PrologEnd, 63 BasicBlock *OrigPH, BasicBlock *NewPH, 64 ValueToValueMapTy &VMap, AliasAnalysis *AA, 65 DominatorTree *DT, LoopInfo *LI, Pass *P) { 66 BasicBlock *Latch = L->getLoopLatch(); 67 assert(Latch && "Loop must have a latch"); 68 69 // Create a PHI node for each outgoing value from the original loop 70 // (which means it is an outgoing value from the prolog code too). 71 // The new PHI node is inserted in the prolog end basic block. 72 // The new PHI name is added as an operand of a PHI node in either 73 // the loop header or the loop exit block. 74 for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch); 75 SBI != SBE; ++SBI) { 76 for (BasicBlock::iterator BBI = (*SBI)->begin(); 77 PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) { 78 79 // Add a new PHI node to the prolog end block and add the 80 // appropriate incoming values. 81 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr", 82 PrologEnd->getTerminator()); 83 // Adding a value to the new PHI node from the original loop preheader. 84 // This is the value that skips all the prolog code. 85 if (L->contains(PN)) { 86 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH); 87 } else { 88 NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH); 89 } 90 91 Value *V = PN->getIncomingValueForBlock(Latch); 92 if (Instruction *I = dyn_cast<Instruction>(V)) { 93 if (L->contains(I)) { 94 V = VMap[I]; 95 } 96 } 97 // Adding a value to the new PHI node from the last prolog block 98 // that was created. 99 NewPN->addIncoming(V, LastPrologBB); 100 101 // Update the existing PHI node operand with the value from the 102 // new PHI node. How this is done depends on if the existing 103 // PHI node is in the original loop block, or the exit block. 104 if (L->contains(PN)) { 105 PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN); 106 } else { 107 PN->addIncoming(NewPN, PrologEnd); 108 } 109 } 110 } 111 112 // Create a branch around the orignal loop, which is taken if there are no 113 // iterations remaining to be executed after running the prologue. 114 Instruction *InsertPt = PrologEnd->getTerminator(); 115 116 assert(Count != 0 && "nonsensical Count!"); 117 118 // If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1) 119 // (since Count is a power of 2). This means %xtraiter is (BECount + 1) and 120 // and all of the iterations of this loop were executed by the prologue. Note 121 // that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow. 122 Instruction *BrLoopExit = 123 new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, BECount, 124 ConstantInt::get(BECount->getType(), Count - 1)); 125 BasicBlock *Exit = L->getUniqueExitBlock(); 126 assert(Exit && "Loop must have a single exit block only"); 127 // Split the exit to maintain loop canonicalization guarantees 128 SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit)); 129 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", AA, DT, LI, 130 P->mustPreserveAnalysisID(LCSSAID)); 131 // Add the branch to the exit block (around the unrolled loop) 132 BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt); 133 InsertPt->eraseFromParent(); 134 } 135 136 /// Create a clone of the blocks in a loop and connect them together. 137 /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new 138 /// loop will be created including all cloned blocks, and the iterator of it 139 /// switches to count NewIter down to 0. 140 /// 141 static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog, 142 BasicBlock *InsertTop, BasicBlock *InsertBot, 143 std::vector<BasicBlock *> &NewBlocks, 144 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, 145 LoopInfo *LI, LPPassManager *LPM) { 146 BasicBlock *Preheader = L->getLoopPreheader(); 147 BasicBlock *Header = L->getHeader(); 148 BasicBlock *Latch = L->getLoopLatch(); 149 Function *F = Header->getParent(); 150 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 151 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 152 Loop *NewLoop = 0; 153 Loop *ParentLoop = L->getParentLoop(); 154 if (!UnrollProlog) { 155 NewLoop = new Loop(); 156 LPM->insertLoop(NewLoop, ParentLoop); 157 } 158 159 // For each block in the original loop, create a new copy, 160 // and update the value map with the newly created values. 161 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 162 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F); 163 NewBlocks.push_back(NewBB); 164 165 if (NewLoop) 166 NewLoop->addBasicBlockToLoop(NewBB, *LI); 167 else if (ParentLoop) 168 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 169 170 VMap[*BB] = NewBB; 171 if (Header == *BB) { 172 // For the first block, add a CFG connection to this newly 173 // created block. 174 InsertTop->getTerminator()->setSuccessor(0, NewBB); 175 176 } 177 if (Latch == *BB) { 178 // For the last block, if UnrollProlog is true, create a direct jump to 179 // InsertBot. If not, create a loop back to cloned head. 180 VMap.erase((*BB)->getTerminator()); 181 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 182 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 183 if (UnrollProlog) { 184 LatchBR->eraseFromParent(); 185 BranchInst::Create(InsertBot, NewBB); 186 } else { 187 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter", 188 FirstLoopBB->getFirstNonPHI()); 189 IRBuilder<> Builder(LatchBR); 190 Value *IdxSub = 191 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 192 NewIdx->getName() + ".sub"); 193 Value *IdxCmp = 194 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 195 BranchInst::Create(FirstLoopBB, InsertBot, IdxCmp, NewBB); 196 NewIdx->addIncoming(NewIter, InsertTop); 197 NewIdx->addIncoming(IdxSub, NewBB); 198 LatchBR->eraseFromParent(); 199 } 200 } 201 } 202 203 // Change the incoming values to the ones defined in the preheader or 204 // cloned loop. 205 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 206 PHINode *NewPHI = cast<PHINode>(VMap[I]); 207 if (UnrollProlog) { 208 VMap[I] = NewPHI->getIncomingValueForBlock(Preheader); 209 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 210 } else { 211 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 212 NewPHI->setIncomingBlock(idx, InsertTop); 213 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 214 idx = NewPHI->getBasicBlockIndex(Latch); 215 Value *InVal = NewPHI->getIncomingValue(idx); 216 NewPHI->setIncomingBlock(idx, NewLatch); 217 if (VMap[InVal]) 218 NewPHI->setIncomingValue(idx, VMap[InVal]); 219 } 220 } 221 if (NewLoop) { 222 // Add unroll disable metadata to disable future unrolling for this loop. 223 SmallVector<Metadata *, 4> MDs; 224 // Reserve first location for self reference to the LoopID metadata node. 225 MDs.push_back(nullptr); 226 MDNode *LoopID = NewLoop->getLoopID(); 227 if (LoopID) { 228 // First remove any existing loop unrolling metadata. 229 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 230 bool IsUnrollMetadata = false; 231 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 232 if (MD) { 233 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 234 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 235 } 236 if (!IsUnrollMetadata) 237 MDs.push_back(LoopID->getOperand(i)); 238 } 239 } 240 241 LLVMContext &Context = NewLoop->getHeader()->getContext(); 242 SmallVector<Metadata *, 1> DisableOperands; 243 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 244 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 245 MDs.push_back(DisableNode); 246 247 MDNode *NewLoopID = MDNode::get(Context, MDs); 248 // Set operand 0 to refer to the loop id itself. 249 NewLoopID->replaceOperandWith(0, NewLoopID); 250 NewLoop->setLoopID(NewLoopID); 251 } 252 } 253 254 /// Insert code in the prolog code when unrolling a loop with a 255 /// run-time trip-count. 256 /// 257 /// This method assumes that the loop unroll factor is total number 258 /// of loop bodes in the loop after unrolling. (Some folks refer 259 /// to the unroll factor as the number of *extra* copies added). 260 /// We assume also that the loop unroll factor is a power-of-two. So, after 261 /// unrolling the loop, the number of loop bodies executed is 2, 262 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 263 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 264 /// the switch instruction is generated. 265 /// 266 /// extraiters = tripcount % loopfactor 267 /// if (extraiters == 0) jump Loop: 268 /// else jump Prol 269 /// Prol: LoopBody; 270 /// extraiters -= 1 // Omitted if unroll factor is 2. 271 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 272 /// if (tripcount < loopfactor) jump End 273 /// Loop: 274 /// ... 275 /// End: 276 /// 277 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI, 278 LPPassManager *LPM) { 279 // for now, only unroll loops that contain a single exit 280 if (!L->getExitingBlock()) 281 return false; 282 283 // Make sure the loop is in canonical form, and there is a single 284 // exit block only. 285 if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock()) 286 return false; 287 288 // Use Scalar Evolution to compute the trip count. This allows more 289 // loops to be unrolled than relying on induction var simplification 290 if (!LPM) 291 return false; 292 ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); 293 if (!SE) 294 return false; 295 296 // Only unroll loops with a computable trip count and the trip count needs 297 // to be an int value (allowing a pointer type is a TODO item) 298 const SCEV *BECountSC = SE->getBackedgeTakenCount(L); 299 if (isa<SCEVCouldNotCompute>(BECountSC) || 300 !BECountSC->getType()->isIntegerTy()) 301 return false; 302 303 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 304 305 // Add 1 since the backedge count doesn't include the first loop iteration 306 const SCEV *TripCountSC = 307 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 308 if (isa<SCEVCouldNotCompute>(TripCountSC)) 309 return false; 310 311 // We only handle cases when the unroll factor is a power of 2. 312 // Count is the loop unroll factor, the number of extra copies added + 1. 313 if (!isPowerOf2_32(Count)) 314 return false; 315 316 // This constraint lets us deal with an overflowing trip count easily; see the 317 // comment on ModVal below. This check is equivalent to `Log2(Count) < 318 // BEWidth`. 319 if (static_cast<uint64_t>(Count) > (1ULL << BEWidth)) 320 return false; 321 322 // If this loop is nested, then the loop unroller changes the code in 323 // parent loop, so the Scalar Evolution pass needs to be run again 324 if (Loop *ParentLoop = L->getParentLoop()) 325 SE->forgetLoop(ParentLoop); 326 327 // Grab analyses that we preserve. 328 auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 329 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 330 331 BasicBlock *PH = L->getLoopPreheader(); 332 BasicBlock *Header = L->getHeader(); 333 BasicBlock *Latch = L->getLoopLatch(); 334 // It helps to splits the original preheader twice, one for the end of the 335 // prolog code and one for a new loop preheader 336 BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI); 337 BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI); 338 BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator()); 339 340 // Compute the number of extra iterations required, which is: 341 // extra iterations = run-time trip count % (loop unroll factor + 1) 342 SCEVExpander Expander(*SE, "loop-unroll"); 343 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 344 PreHeaderBR); 345 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 346 PreHeaderBR); 347 348 IRBuilder<> B(PreHeaderBR); 349 Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 350 351 // If ModVal is zero, we know that either 352 // 1. there are no iteration to be run in the prologue loop 353 // OR 354 // 2. the addition computing TripCount overflowed 355 // 356 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the 357 // number of iterations that remain to be run in the original loop is a 358 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 359 // explicitly check this above). 360 361 Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod"); 362 363 // Branch to either the extra iterations or the cloned/unrolled loop 364 // We will fix up the true branch label when adding loop body copies 365 BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR); 366 assert(PreHeaderBR->isUnconditional() && 367 PreHeaderBR->getSuccessor(0) == PEnd && 368 "CFG edges in Preheader are not correct"); 369 PreHeaderBR->eraseFromParent(); 370 Function *F = Header->getParent(); 371 // Get an ordered list of blocks in the loop to help with the ordering of the 372 // cloned blocks in the prolog code 373 LoopBlocksDFS LoopBlocks(L); 374 LoopBlocks.perform(LI); 375 376 // 377 // For each extra loop iteration, create a copy of the loop's basic blocks 378 // and generate a condition that branches to the copy depending on the 379 // number of 'left over' iterations. 380 // 381 std::vector<BasicBlock *> NewBlocks; 382 ValueToValueMapTy VMap; 383 384 bool UnrollPrologue = Count == 2; 385 386 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 387 // the loop, otherwise we create a cloned loop to execute the extra 388 // iterations. This function adds the appropriate CFG connections. 389 CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks, 390 VMap, LI, LPM); 391 392 // Insert the cloned blocks into function just before the original loop 393 F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0], 394 F->end()); 395 396 // Rewrite the cloned instruction operands to use the values 397 // created when the clone is created. 398 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { 399 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 400 E = NewBlocks[i]->end(); 401 I != E; ++I) { 402 RemapInstruction(I, VMap, 403 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 404 } 405 } 406 407 // Connect the prolog code to the original loop and update the 408 // PHI functions. 409 BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]); 410 ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap, 411 /*AliasAnalysis*/ nullptr, DT, LI, LPM->getAsPass()); 412 NumRuntimeUnrolled++; 413 return true; 414 } 415