1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities for loops with run-time 10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 11 // trip counts. 12 // 13 // The functions in this file are used to generate extra code when the 14 // run-time trip count modulo the unroll factor is not 0. When this is the 15 // case, we need to generate code to execute these 'left over' iterations. 16 // 17 // The current strategy generates an if-then-else sequence prior to the 18 // unrolled loop to execute the 'left over' iterations before or after the 19 // unrolled loop. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/DomTreeUpdater.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include <algorithm> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-unroll" 46 47 STATISTIC(NumRuntimeUnrolled, 48 "Number of loops unrolled with run-time trip counts"); 49 static cl::opt<bool> UnrollRuntimeMultiExit( 50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 52 "epilog is generated")); 53 static cl::opt<bool> UnrollRuntimeOtherExitPredictable( 54 "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, 55 cl::desc("Assume the non latch exit block to be predictable")); 56 57 /// Connect the unrolling prolog code to the original loop. 58 /// The unrolling prolog code contains code to execute the 59 /// 'extra' iterations if the run-time trip count modulo the 60 /// unroll count is non-zero. 61 /// 62 /// This function performs the following: 63 /// - Create PHI nodes at prolog end block to combine values 64 /// that exit the prolog code and jump around the prolog. 65 /// - Add a PHI operand to a PHI node at the loop exit block 66 /// for values that exit the prolog and go around the loop. 67 /// - Branch around the original loop if the trip count is less 68 /// than the unroll factor. 69 /// 70 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 71 BasicBlock *PrologExit, 72 BasicBlock *OriginalLoopLatchExit, 73 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 74 ValueToValueMapTy &VMap, DominatorTree *DT, 75 LoopInfo *LI, bool PreserveLCSSA) { 76 // Loop structure should be the following: 77 // Preheader 78 // PrologHeader 79 // ... 80 // PrologLatch 81 // PrologExit 82 // NewPreheader 83 // Header 84 // ... 85 // Latch 86 // LatchExit 87 BasicBlock *Latch = L->getLoopLatch(); 88 assert(Latch && "Loop must have a latch"); 89 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 90 91 // Create a PHI node for each outgoing value from the original loop 92 // (which means it is an outgoing value from the prolog code too). 93 // The new PHI node is inserted in the prolog end basic block. 94 // The new PHI node value is added as an operand of a PHI node in either 95 // the loop header or the loop exit block. 96 for (BasicBlock *Succ : successors(Latch)) { 97 for (PHINode &PN : Succ->phis()) { 98 // Add a new PHI node to the prolog end block and add the 99 // appropriate incoming values. 100 // TODO: This code assumes that the PrologExit (or the LatchExit block for 101 // prolog loop) contains only one predecessor from the loop, i.e. the 102 // PrologLatch. When supporting multiple-exiting block loops, we can have 103 // two or more blocks that have the LatchExit as the target in the 104 // original loop. 105 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 106 PrologExit->getFirstNonPHI()); 107 // Adding a value to the new PHI node from the original loop preheader. 108 // This is the value that skips all the prolog code. 109 if (L->contains(&PN)) { 110 // Succ is loop header. 111 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), 112 PreHeader); 113 } else { 114 // Succ is LatchExit. 115 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); 116 } 117 118 Value *V = PN.getIncomingValueForBlock(Latch); 119 if (Instruction *I = dyn_cast<Instruction>(V)) { 120 if (L->contains(I)) { 121 V = VMap.lookup(I); 122 } 123 } 124 // Adding a value to the new PHI node from the last prolog block 125 // that was created. 126 NewPN->addIncoming(V, PrologLatch); 127 128 // Update the existing PHI node operand with the value from the 129 // new PHI node. How this is done depends on if the existing 130 // PHI node is in the original loop block, or the exit block. 131 if (L->contains(&PN)) 132 PN.setIncomingValueForBlock(NewPreHeader, NewPN); 133 else 134 PN.addIncoming(NewPN, PrologExit); 135 } 136 } 137 138 // Make sure that created prolog loop is in simplified form 139 SmallVector<BasicBlock *, 4> PrologExitPreds; 140 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 141 if (PrologLoop) { 142 for (BasicBlock *PredBB : predecessors(PrologExit)) 143 if (PrologLoop->contains(PredBB)) 144 PrologExitPreds.push_back(PredBB); 145 146 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 147 nullptr, PreserveLCSSA); 148 } 149 150 // Create a branch around the original loop, which is taken if there are no 151 // iterations remaining to be executed after running the prologue. 152 Instruction *InsertPt = PrologExit->getTerminator(); 153 IRBuilder<> B(InsertPt); 154 155 assert(Count != 0 && "nonsensical Count!"); 156 157 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 158 // This means %xtraiter is (BECount + 1) and all of the iterations of this 159 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 160 // then (BECount + 1) cannot unsigned-overflow. 161 Value *BrLoopExit = 162 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 163 // Split the exit to maintain loop canonicalization guarantees 164 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 165 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 166 nullptr, PreserveLCSSA); 167 // Add the branch to the exit block (around the unrolled loop) 168 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 169 InsertPt->eraseFromParent(); 170 if (DT) { 171 auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit, 172 PrologExit); 173 DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom); 174 } 175 } 176 177 /// Connect the unrolling epilog code to the original loop. 178 /// The unrolling epilog code contains code to execute the 179 /// 'extra' iterations if the run-time trip count modulo the 180 /// unroll count is non-zero. 181 /// 182 /// This function performs the following: 183 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 184 /// - Create PHI nodes at the unrolling loop exit to combine 185 /// values that exit the unrolling loop code and jump around it. 186 /// - Update PHI operands in the epilog loop by the new PHI nodes 187 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 188 /// 189 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 190 BasicBlock *Exit, BasicBlock *PreHeader, 191 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 192 ValueToValueMapTy &VMap, DominatorTree *DT, 193 LoopInfo *LI, bool PreserveLCSSA) { 194 BasicBlock *Latch = L->getLoopLatch(); 195 assert(Latch && "Loop must have a latch"); 196 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 197 198 // Loop structure should be the following: 199 // 200 // PreHeader 201 // NewPreHeader 202 // Header 203 // ... 204 // Latch 205 // NewExit (PN) 206 // EpilogPreHeader 207 // EpilogHeader 208 // ... 209 // EpilogLatch 210 // Exit (EpilogPN) 211 212 // Update PHI nodes at NewExit and Exit. 213 for (PHINode &PN : NewExit->phis()) { 214 // PN should be used in another PHI located in Exit block as 215 // Exit was split by SplitBlockPredecessors into Exit and NewExit 216 // Basicaly it should look like: 217 // NewExit: 218 // PN = PHI [I, Latch] 219 // ... 220 // Exit: 221 // EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil] 222 // 223 // Exits from non-latch blocks point to the original exit block and the 224 // epilogue edges have already been added. 225 // 226 // There is EpilogPreHeader incoming block instead of NewExit as 227 // NewExit was spilt 1 more time to get EpilogPreHeader. 228 assert(PN.hasOneUse() && "The phi should have 1 use"); 229 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); 230 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 231 232 // Add incoming PreHeader from branch around the Loop 233 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); 234 235 Value *V = PN.getIncomingValueForBlock(Latch); 236 Instruction *I = dyn_cast<Instruction>(V); 237 if (I && L->contains(I)) 238 // If value comes from an instruction in the loop add VMap value. 239 V = VMap.lookup(I); 240 // For the instruction out of the loop, constant or undefined value 241 // insert value itself. 242 EpilogPN->addIncoming(V, EpilogLatch); 243 244 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 245 "EpilogPN should have EpilogPreHeader incoming block"); 246 // Change EpilogPreHeader incoming block to NewExit. 247 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 248 NewExit); 249 // Now PHIs should look like: 250 // NewExit: 251 // PN = PHI [I, Latch], [undef, PreHeader] 252 // ... 253 // Exit: 254 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 255 } 256 257 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 258 // Update corresponding PHI nodes in epilog loop. 259 for (BasicBlock *Succ : successors(Latch)) { 260 // Skip this as we already updated phis in exit blocks. 261 if (!L->contains(Succ)) 262 continue; 263 for (PHINode &PN : Succ->phis()) { 264 // Add new PHI nodes to the loop exit block and update epilog 265 // PHIs with the new PHI values. 266 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 267 NewExit->getFirstNonPHI()); 268 // Adding a value to the new PHI node from the unrolling loop preheader. 269 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); 270 // Adding a value to the new PHI node from the unrolling loop latch. 271 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); 272 273 // Update the existing PHI node operand with the value from the new PHI 274 // node. Corresponding instruction in epilog loop should be PHI. 275 PHINode *VPN = cast<PHINode>(VMap[&PN]); 276 VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); 277 } 278 } 279 280 Instruction *InsertPt = NewExit->getTerminator(); 281 IRBuilder<> B(InsertPt); 282 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 283 assert(Exit && "Loop must have a single exit block only"); 284 // Split the epilogue exit to maintain loop canonicalization guarantees 285 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 286 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, 287 PreserveLCSSA); 288 // Add the branch to the exit block (around the unrolling loop) 289 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 290 InsertPt->eraseFromParent(); 291 if (DT) { 292 auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit); 293 DT->changeImmediateDominator(Exit, NewDom); 294 } 295 296 // Split the main loop exit to maintain canonicalization guarantees. 297 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 298 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, 299 PreserveLCSSA); 300 } 301 302 /// Create a clone of the blocks in a loop and connect them together. A new 303 /// loop will be created including all cloned blocks, and the iterator of the 304 /// new loop switched to count NewIter down to 0. 305 /// The cloned blocks should be inserted between InsertTop and InsertBot. 306 /// InsertTop should be new preheader, InsertBot new loop exit. 307 /// Returns the new cloned loop that is created. 308 static Loop * 309 CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder, 310 const bool UnrollRemainder, 311 BasicBlock *InsertTop, 312 BasicBlock *InsertBot, BasicBlock *Preheader, 313 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 314 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 315 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 316 BasicBlock *Header = L->getHeader(); 317 BasicBlock *Latch = L->getLoopLatch(); 318 Function *F = Header->getParent(); 319 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 320 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 321 Loop *ParentLoop = L->getParentLoop(); 322 NewLoopsMap NewLoops; 323 NewLoops[ParentLoop] = ParentLoop; 324 325 // For each block in the original loop, create a new copy, 326 // and update the value map with the newly created values. 327 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 328 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 329 NewBlocks.push_back(NewBB); 330 331 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 332 333 VMap[*BB] = NewBB; 334 if (Header == *BB) { 335 // For the first block, add a CFG connection to this newly 336 // created block. 337 InsertTop->getTerminator()->setSuccessor(0, NewBB); 338 } 339 340 if (DT) { 341 if (Header == *BB) { 342 // The header is dominated by the preheader. 343 DT->addNewBlock(NewBB, InsertTop); 344 } else { 345 // Copy information from original loop to unrolled loop. 346 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 347 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 348 } 349 } 350 351 if (Latch == *BB) { 352 // For the last block, create a loop back to cloned head. 353 VMap.erase((*BB)->getTerminator()); 354 // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. 355 // Subtle: NewIter can be 0 if we wrapped when computing the trip count, 356 // thus we must compare the post-increment (wrapping) value. 357 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 358 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 359 IRBuilder<> Builder(LatchBR); 360 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 361 suffix + ".iter", 362 FirstLoopBB->getFirstNonPHI()); 363 auto *Zero = ConstantInt::get(NewIdx->getType(), 0); 364 auto *One = ConstantInt::get(NewIdx->getType(), 1); 365 Value *IdxNext = Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); 366 Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp"); 367 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 368 NewIdx->addIncoming(Zero, InsertTop); 369 NewIdx->addIncoming(IdxNext, NewBB); 370 LatchBR->eraseFromParent(); 371 } 372 } 373 374 // Change the incoming values to the ones defined in the preheader or 375 // cloned loop. 376 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 377 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 378 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 379 NewPHI->setIncomingBlock(idx, InsertTop); 380 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 381 idx = NewPHI->getBasicBlockIndex(Latch); 382 Value *InVal = NewPHI->getIncomingValue(idx); 383 NewPHI->setIncomingBlock(idx, NewLatch); 384 if (Value *V = VMap.lookup(InVal)) 385 NewPHI->setIncomingValue(idx, V); 386 } 387 388 Loop *NewLoop = NewLoops[L]; 389 assert(NewLoop && "L should have been cloned"); 390 MDNode *LoopID = NewLoop->getLoopID(); 391 392 // Only add loop metadata if the loop is not going to be completely 393 // unrolled. 394 if (UnrollRemainder) 395 return NewLoop; 396 397 Optional<MDNode *> NewLoopID = makeFollowupLoopID( 398 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); 399 if (NewLoopID.hasValue()) { 400 NewLoop->setLoopID(NewLoopID.getValue()); 401 402 // Do not setLoopAlreadyUnrolled if loop attributes have been defined 403 // explicitly. 404 return NewLoop; 405 } 406 407 // Add unroll disable metadata to disable future unrolling for this loop. 408 NewLoop->setLoopAlreadyUnrolled(); 409 return NewLoop; 410 } 411 412 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 413 /// we return true only if UnrollRuntimeMultiExit is set to true. 414 static bool canProfitablyUnrollMultiExitLoop( 415 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 416 bool UseEpilogRemainder) { 417 418 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 419 if (UnrollRuntimeMultiExit.getNumOccurrences()) 420 return UnrollRuntimeMultiExit; 421 422 // The main pain point with multi-exit loop unrolling is that once unrolled, 423 // we will not be able to merge all blocks into a straight line code. 424 // There are branches within the unrolled loop that go to the OtherExits. 425 // The second point is the increase in code size, but this is true 426 // irrespective of multiple exits. 427 428 // Note: Both the heuristics below are coarse grained. We are essentially 429 // enabling unrolling of loops that have a single side exit other than the 430 // normal LatchExit (i.e. exiting into a deoptimize block). 431 // The heuristics considered are: 432 // 1. low number of branches in the unrolled version. 433 // 2. high predictability of these extra branches. 434 // We avoid unrolling loops that have more than two exiting blocks. This 435 // limits the total number of branches in the unrolled loop to be atmost 436 // the unroll factor (since one of the exiting blocks is the latch block). 437 SmallVector<BasicBlock*, 4> ExitingBlocks; 438 L->getExitingBlocks(ExitingBlocks); 439 if (ExitingBlocks.size() > 2) 440 return false; 441 442 // Allow unrolling of loops with no non latch exit blocks. 443 if (OtherExits.size() == 0) 444 return true; 445 446 // The second heuristic is that L has one exit other than the latchexit and 447 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 448 // taken, which also implies the branch leading to the deoptimize block is 449 // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we 450 // assume the other exit branch is predictable even if it has no deoptimize 451 // call. 452 return (OtherExits.size() == 1 && 453 (UnrollRuntimeOtherExitPredictable || 454 OtherExits[0]->getTerminatingDeoptimizeCall())); 455 // TODO: These can be fine-tuned further to consider code size or deopt states 456 // that are captured by the deoptimize exit block. 457 // Also, we can extend this to support more cases, if we actually 458 // know of kinds of multiexit loops that would benefit from unrolling. 459 } 460 461 // Assign the maximum possible trip count as the back edge weight for the 462 // remainder loop if the original loop comes with a branch weight. 463 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop, 464 Loop *RemainderLoop, 465 uint64_t UnrollFactor) { 466 uint64_t TrueWeight, FalseWeight; 467 BranchInst *LatchBR = 468 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 469 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) 470 return; 471 uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader() 472 ? FalseWeight 473 : TrueWeight; 474 assert(UnrollFactor > 1); 475 uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight; 476 BasicBlock *Header = RemainderLoop->getHeader(); 477 BasicBlock *Latch = RemainderLoop->getLoopLatch(); 478 auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator()); 479 unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1); 480 MDBuilder MDB(RemainderLatchBR->getContext()); 481 MDNode *WeightNode = 482 HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) 483 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); 484 RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 485 } 486 487 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain 488 /// accounting for the possibility of unsigned overflow in the 2s complement 489 /// domain. Preconditions: 490 /// 1) TripCount = BECount + 1 (allowing overflow) 491 /// 2) Log2(Count) <= BitWidth(BECount) 492 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount, 493 Value *TripCount, unsigned Count) { 494 // Note that TripCount is BECount + 1. 495 if (isPowerOf2_32(Count)) 496 // If the expression is zero, then either: 497 // 1. There are no iterations to be run in the prolog/epilog loop. 498 // OR 499 // 2. The addition computing TripCount overflowed. 500 // 501 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 502 // the number of iterations that remain to be run in the original loop is a 503 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a 504 // precondition of this method). 505 return B.CreateAnd(TripCount, Count - 1, "xtraiter"); 506 507 // As (BECount + 1) can potentially unsigned overflow we count 508 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 509 Constant *CountC = ConstantInt::get(BECount->getType(), Count); 510 Value *ModValTmp = B.CreateURem(BECount, CountC); 511 Value *ModValAdd = B.CreateAdd(ModValTmp, 512 ConstantInt::get(ModValTmp->getType(), 1)); 513 // At that point (BECount % Count) + 1 could be equal to Count. 514 // To handle this case we need to take mod by Count one more time. 515 return B.CreateURem(ModValAdd, CountC, "xtraiter"); 516 } 517 518 519 /// Insert code in the prolog/epilog code when unrolling a loop with a 520 /// run-time trip-count. 521 /// 522 /// This method assumes that the loop unroll factor is total number 523 /// of loop bodies in the loop after unrolling. (Some folks refer 524 /// to the unroll factor as the number of *extra* copies added). 525 /// We assume also that the loop unroll factor is a power-of-two. So, after 526 /// unrolling the loop, the number of loop bodies executed is 2, 527 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 528 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 529 /// the switch instruction is generated. 530 /// 531 /// ***Prolog case*** 532 /// extraiters = tripcount % loopfactor 533 /// if (extraiters == 0) jump Loop: 534 /// else jump Prol: 535 /// Prol: LoopBody; 536 /// extraiters -= 1 // Omitted if unroll factor is 2. 537 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 538 /// if (tripcount < loopfactor) jump End: 539 /// Loop: 540 /// ... 541 /// End: 542 /// 543 /// ***Epilog case*** 544 /// extraiters = tripcount % loopfactor 545 /// if (tripcount < loopfactor) jump LoopExit: 546 /// unroll_iters = tripcount - extraiters 547 /// Loop: LoopBody; (executes unroll_iter times); 548 /// unroll_iter -= 1 549 /// if (unroll_iter != 0) jump Loop: 550 /// LoopExit: 551 /// if (extraiters == 0) jump EpilExit: 552 /// Epil: LoopBody; (executes extraiters times) 553 /// extraiters -= 1 // Omitted if unroll factor is 2. 554 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 555 /// EpilExit: 556 557 bool llvm::UnrollRuntimeLoopRemainder( 558 Loop *L, unsigned Count, bool AllowExpensiveTripCount, 559 bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, 560 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 561 const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { 562 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 563 LLVM_DEBUG(L->dump()); 564 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" 565 : dbgs() << "Using prolog remainder.\n"); 566 567 // Make sure the loop is in canonical form. 568 if (!L->isLoopSimplifyForm()) { 569 LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); 570 return false; 571 } 572 573 // Guaranteed by LoopSimplifyForm. 574 BasicBlock *Latch = L->getLoopLatch(); 575 BasicBlock *Header = L->getHeader(); 576 577 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 578 579 if (!LatchBR || LatchBR->isUnconditional()) { 580 // The loop-rotate pass can be helpful to avoid this in many cases. 581 LLVM_DEBUG( 582 dbgs() 583 << "Loop latch not terminated by a conditional branch.\n"); 584 return false; 585 } 586 587 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 588 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 589 590 if (L->contains(LatchExit)) { 591 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 592 // targets of the Latch be an exit block out of the loop. 593 LLVM_DEBUG( 594 dbgs() 595 << "One of the loop latch successors must be the exit block.\n"); 596 return false; 597 } 598 599 // These are exit blocks other than the target of the latch exiting block. 600 SmallVector<BasicBlock *, 4> OtherExits; 601 L->getUniqueNonLatchExitBlocks(OtherExits); 602 // Support only single exit and exiting block unless multi-exit loop 603 // unrolling is enabled. 604 if (!L->getExitingBlock() || OtherExits.size()) { 605 // We rely on LCSSA form being preserved when the exit blocks are transformed. 606 // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.) 607 if (!PreserveLCSSA) 608 return false; 609 610 if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, 611 UseEpilogRemainder)) { 612 LLVM_DEBUG( 613 dbgs() 614 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 615 "enabled!\n"); 616 return false; 617 } 618 } 619 // Use Scalar Evolution to compute the trip count. This allows more loops to 620 // be unrolled than relying on induction var simplification. 621 if (!SE) 622 return false; 623 624 // Only unroll loops with a computable trip count. 625 // We calculate the backedge count by using getExitCount on the Latch block, 626 // which is proven to be the only exiting block in this loop. This is same as 627 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 628 // exiting blocks). 629 const SCEV *BECountSC = SE->getExitCount(L, Latch); 630 if (isa<SCEVCouldNotCompute>(BECountSC)) { 631 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 632 return false; 633 } 634 635 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 636 637 // Add 1 since the backedge count doesn't include the first loop iteration. 638 // (Note that overflow can occur, this is handled explicitly below) 639 const SCEV *TripCountSC = 640 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 641 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 642 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 643 return false; 644 } 645 646 BasicBlock *PreHeader = L->getLoopPreheader(); 647 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 648 const DataLayout &DL = Header->getModule()->getDataLayout(); 649 SCEVExpander Expander(*SE, DL, "loop-unroll"); 650 if (!AllowExpensiveTripCount && 651 Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, 652 TTI, PreHeaderBR)) { 653 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 654 return false; 655 } 656 657 // This constraint lets us deal with an overflowing trip count easily; see the 658 // comment on ModVal below. 659 if (Log2_32(Count) > BEWidth) { 660 LLVM_DEBUG( 661 dbgs() 662 << "Count failed constraint on overflow trip count calculation.\n"); 663 return false; 664 } 665 666 // Loop structure is the following: 667 // 668 // PreHeader 669 // Header 670 // ... 671 // Latch 672 // LatchExit 673 674 BasicBlock *NewPreHeader; 675 BasicBlock *NewExit = nullptr; 676 BasicBlock *PrologExit = nullptr; 677 BasicBlock *EpilogPreHeader = nullptr; 678 BasicBlock *PrologPreHeader = nullptr; 679 680 if (UseEpilogRemainder) { 681 // If epilog remainder 682 // Split PreHeader to insert a branch around loop for unrolling. 683 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 684 NewPreHeader->setName(PreHeader->getName() + ".new"); 685 // Split LatchExit to create phi nodes from branch above. 686 NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI, 687 nullptr, PreserveLCSSA); 688 // NewExit gets its DebugLoc from LatchExit, which is not part of the 689 // original Loop. 690 // Fix this by setting Loop's DebugLoc to NewExit. 691 auto *NewExitTerminator = NewExit->getTerminator(); 692 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); 693 // Split NewExit to insert epilog remainder loop. 694 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); 695 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 696 697 // If the latch exits from multiple level of nested loops, then 698 // by assumption there must be another loop exit which branches to the 699 // outer loop and we must adjust the loop for the newly inserted blocks 700 // to account for the fact that our epilogue is still in the same outer 701 // loop. Note that this leaves loopinfo temporarily out of sync with the 702 // CFG until the actual epilogue loop is inserted. 703 if (auto *ParentL = L->getParentLoop()) 704 if (LI->getLoopFor(LatchExit) != ParentL) { 705 LI->removeBlock(NewExit); 706 ParentL->addBasicBlockToLoop(NewExit, *LI); 707 LI->removeBlock(EpilogPreHeader); 708 ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI); 709 } 710 711 } else { 712 // If prolog remainder 713 // Split the original preheader twice to insert prolog remainder loop 714 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 715 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 716 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 717 DT, LI); 718 PrologExit->setName(Header->getName() + ".prol.loopexit"); 719 // Split PrologExit to get NewPreHeader. 720 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 721 NewPreHeader->setName(PreHeader->getName() + ".new"); 722 } 723 // Loop structure should be the following: 724 // Epilog Prolog 725 // 726 // PreHeader PreHeader 727 // *NewPreHeader *PrologPreHeader 728 // Header *PrologExit 729 // ... *NewPreHeader 730 // Latch Header 731 // *NewExit ... 732 // *EpilogPreHeader Latch 733 // LatchExit LatchExit 734 735 // Calculate conditions for branch around loop for unrolling 736 // in epilog case and around prolog remainder loop in prolog case. 737 // Compute the number of extra iterations required, which is: 738 // extra iterations = run-time trip count % loop unroll factor 739 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 740 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 741 PreHeaderBR); 742 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 743 PreHeaderBR); 744 IRBuilder<> B(PreHeaderBR); 745 Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count); 746 747 Value *BranchVal = 748 UseEpilogRemainder ? B.CreateICmpULT(BECount, 749 ConstantInt::get(BECount->getType(), 750 Count - 1)) : 751 B.CreateIsNotNull(ModVal, "lcmp.mod"); 752 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 753 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 754 // Branch to either remainder (extra iterations) loop or unrolling loop. 755 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 756 PreHeaderBR->eraseFromParent(); 757 if (DT) { 758 if (UseEpilogRemainder) 759 DT->changeImmediateDominator(NewExit, PreHeader); 760 else 761 DT->changeImmediateDominator(PrologExit, PreHeader); 762 } 763 Function *F = Header->getParent(); 764 // Get an ordered list of blocks in the loop to help with the ordering of the 765 // cloned blocks in the prolog/epilog code 766 LoopBlocksDFS LoopBlocks(L); 767 LoopBlocks.perform(LI); 768 769 // 770 // For each extra loop iteration, create a copy of the loop's basic blocks 771 // and generate a condition that branches to the copy depending on the 772 // number of 'left over' iterations. 773 // 774 std::vector<BasicBlock *> NewBlocks; 775 ValueToValueMapTy VMap; 776 777 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 778 // the loop, otherwise we create a cloned loop to execute the extra 779 // iterations. This function adds the appropriate CFG connections. 780 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 781 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 782 Loop *remainderLoop = CloneLoopBlocks( 783 L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot, 784 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 785 786 // Assign the maximum possible trip count as the back edge weight for the 787 // remainder loop if the original loop comes with a branch weight. 788 if (remainderLoop && !UnrollRemainder) 789 updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count); 790 791 // Insert the cloned blocks into the function. 792 F->getBasicBlockList().splice(InsertBot->getIterator(), 793 F->getBasicBlockList(), 794 NewBlocks[0]->getIterator(), 795 F->end()); 796 797 // Now the loop blocks are cloned and the other exiting blocks from the 798 // remainder are connected to the original Loop's exit blocks. The remaining 799 // work is to update the phi nodes in the original loop, and take in the 800 // values from the cloned region. 801 for (auto *BB : OtherExits) { 802 // Given we preserve LCSSA form, we know that the values used outside the 803 // loop will be used through these phi nodes at the exit blocks that are 804 // transformed below. 805 for (PHINode &PN : BB->phis()) { 806 unsigned oldNumOperands = PN.getNumIncomingValues(); 807 // Add the incoming values from the remainder code to the end of the phi 808 // node. 809 for (unsigned i = 0; i < oldNumOperands; i++){ 810 auto *PredBB =PN.getIncomingBlock(i); 811 if (PredBB == Latch) 812 // The latch exit is handled seperately, see connectX 813 continue; 814 if (!L->contains(PredBB)) 815 // Even if we had dedicated exits, the code above inserted an 816 // extra branch which can reach the latch exit. 817 continue; 818 819 auto *V = PN.getIncomingValue(i); 820 if (Instruction *I = dyn_cast<Instruction>(V)) 821 if (L->contains(I)) 822 V = VMap.lookup(I); 823 PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB])); 824 } 825 } 826 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 827 for (BasicBlock *SuccBB : successors(BB)) { 828 assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) && 829 "Breaks the definition of dedicated exits!"); 830 } 831 #endif 832 } 833 834 // Update the immediate dominator of the exit blocks and blocks that are 835 // reachable from the exit blocks. This is needed because we now have paths 836 // from both the original loop and the remainder code reaching the exit 837 // blocks. While the IDom of these exit blocks were from the original loop, 838 // now the IDom is the preheader (which decides whether the original loop or 839 // remainder code should run). 840 if (DT && !L->getExitingBlock()) { 841 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 842 // NB! We have to examine the dom children of all loop blocks, not just 843 // those which are the IDom of the exit blocks. This is because blocks 844 // reachable from the exit blocks can have their IDom as the nearest common 845 // dominator of the exit blocks. 846 for (auto *BB : L->blocks()) { 847 auto *DomNodeBB = DT->getNode(BB); 848 for (auto *DomChild : DomNodeBB->children()) { 849 auto *DomChildBB = DomChild->getBlock(); 850 if (!L->contains(LI->getLoopFor(DomChildBB))) 851 ChildrenToUpdate.push_back(DomChildBB); 852 } 853 } 854 for (auto *BB : ChildrenToUpdate) 855 DT->changeImmediateDominator(BB, PreHeader); 856 } 857 858 // Loop structure should be the following: 859 // Epilog Prolog 860 // 861 // PreHeader PreHeader 862 // NewPreHeader PrologPreHeader 863 // Header PrologHeader 864 // ... ... 865 // Latch PrologLatch 866 // NewExit PrologExit 867 // EpilogPreHeader NewPreHeader 868 // EpilogHeader Header 869 // ... ... 870 // EpilogLatch Latch 871 // LatchExit LatchExit 872 873 // Rewrite the cloned instruction operands to use the values created when the 874 // clone is created. 875 for (BasicBlock *BB : NewBlocks) { 876 for (Instruction &I : *BB) { 877 RemapInstruction(&I, VMap, 878 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 879 } 880 } 881 882 if (UseEpilogRemainder) { 883 // Connect the epilog code to the original loop and update the 884 // PHI functions. 885 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 886 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 887 PreserveLCSSA); 888 889 // Update counter in loop for unrolling. 890 // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. 891 // Subtle: TestVal can be 0 if we wrapped when computing the trip count, 892 // thus we must compare the post-increment (wrapping) value. 893 IRBuilder<> B2(NewPreHeader->getTerminator()); 894 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 895 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 896 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 897 Header->getFirstNonPHI()); 898 B2.SetInsertPoint(LatchBR); 899 auto *Zero = ConstantInt::get(NewIdx->getType(), 0); 900 auto *One = ConstantInt::get(NewIdx->getType(), 1); 901 Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); 902 auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 903 Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp"); 904 NewIdx->addIncoming(Zero, NewPreHeader); 905 NewIdx->addIncoming(IdxNext, Latch); 906 LatchBR->setCondition(IdxCmp); 907 } else { 908 // Connect the prolog code to the original loop and update the 909 // PHI functions. 910 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 911 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 912 } 913 914 // If this loop is nested, then the loop unroller changes the code in the any 915 // of its parent loops, so the Scalar Evolution pass needs to be run again. 916 SE->forgetTopmostLoop(L); 917 918 // Verify that the Dom Tree and Loop Info are correct. 919 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 920 if (DT) { 921 assert(DT->verify(DominatorTree::VerificationLevel::Full)); 922 LI->verify(*DT); 923 } 924 #endif 925 926 // For unroll factor 2 remainder loop will have 1 iteration. 927 if (Count == 2 && DT && LI && SE) { 928 // TODO: This code could probably be pulled out into a helper function 929 // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion. 930 BasicBlock *RemainderLatch = remainderLoop->getLoopLatch(); 931 assert(RemainderLatch); 932 SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(), 933 remainderLoop->getBlocks().end()); 934 breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr); 935 remainderLoop = nullptr; 936 937 // Simplify loop values after breaking the backedge 938 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 939 SmallVector<WeakTrackingVH, 16> DeadInsts; 940 for (BasicBlock *BB : RemainderBlocks) { 941 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 942 if (Value *V = SimplifyInstruction(&Inst, {DL, nullptr, DT, AC})) 943 if (LI->replacementPreservesLCSSAForm(&Inst, V)) 944 Inst.replaceAllUsesWith(V); 945 if (isInstructionTriviallyDead(&Inst)) 946 DeadInsts.emplace_back(&Inst); 947 } 948 // We can't do recursive deletion until we're done iterating, as we might 949 // have a phi which (potentially indirectly) uses instructions later in 950 // the block we're iterating through. 951 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 952 } 953 954 // Merge latch into exit block. 955 auto *ExitBB = RemainderLatch->getSingleSuccessor(); 956 assert(ExitBB && "required after breaking cond br backedge"); 957 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 958 MergeBlockIntoPredecessor(ExitBB, &DTU, LI); 959 } 960 961 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 962 // cannot rely on the LoopUnrollPass to do this because it only does 963 // canonicalization for parent/subloops and not the sibling loops. 964 if (OtherExits.size() > 0) { 965 // Generate dedicated exit blocks for the original loop, to preserve 966 // LoopSimplifyForm. 967 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); 968 // Generate dedicated exit blocks for the remainder loop if one exists, to 969 // preserve LoopSimplifyForm. 970 if (remainderLoop) 971 formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); 972 } 973 974 auto UnrollResult = LoopUnrollResult::Unmodified; 975 if (remainderLoop && UnrollRemainder) { 976 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); 977 UnrollResult = 978 UnrollLoop(remainderLoop, 979 {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false, 980 /*AllowExpensiveTripCount*/ false, 981 /*UnrollRemainder*/ false, ForgetAllSCEV}, 982 LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); 983 } 984 985 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) 986 *ResultLoop = remainderLoop; 987 NumRuntimeUnrolled++; 988 return true; 989 } 990