1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities for loops with run-time 10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 11 // trip counts. 12 // 13 // The functions in this file are used to generate extra code when the 14 // run-time trip count modulo the unroll factor is not 0. When this is the 15 // case, we need to generate code to execute these 'left over' iterations. 16 // 17 // The current strategy generates an if-then-else sequence prior to the 18 // unrolled loop to execute the 'left over' iterations before or after the 19 // unrolled loop. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/DomTreeUpdater.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 41 #include "llvm/Transforms/Utils/UnrollLoop.h" 42 #include <algorithm> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "loop-unroll" 47 48 STATISTIC(NumRuntimeUnrolled, 49 "Number of loops unrolled with run-time trip counts"); 50 static cl::opt<bool> UnrollRuntimeMultiExit( 51 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 52 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 53 "epilog is generated")); 54 static cl::opt<bool> UnrollRuntimeOtherExitPredictable( 55 "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, 56 cl::desc("Assume the non latch exit block to be predictable")); 57 58 /// Connect the unrolling prolog code to the original loop. 59 /// The unrolling prolog code contains code to execute the 60 /// 'extra' iterations if the run-time trip count modulo the 61 /// unroll count is non-zero. 62 /// 63 /// This function performs the following: 64 /// - Create PHI nodes at prolog end block to combine values 65 /// that exit the prolog code and jump around the prolog. 66 /// - Add a PHI operand to a PHI node at the loop exit block 67 /// for values that exit the prolog and go around the loop. 68 /// - Branch around the original loop if the trip count is less 69 /// than the unroll factor. 70 /// 71 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 72 BasicBlock *PrologExit, 73 BasicBlock *OriginalLoopLatchExit, 74 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 75 ValueToValueMapTy &VMap, DominatorTree *DT, 76 LoopInfo *LI, bool PreserveLCSSA) { 77 // Loop structure should be the following: 78 // Preheader 79 // PrologHeader 80 // ... 81 // PrologLatch 82 // PrologExit 83 // NewPreheader 84 // Header 85 // ... 86 // Latch 87 // LatchExit 88 BasicBlock *Latch = L->getLoopLatch(); 89 assert(Latch && "Loop must have a latch"); 90 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 91 92 // Create a PHI node for each outgoing value from the original loop 93 // (which means it is an outgoing value from the prolog code too). 94 // The new PHI node is inserted in the prolog end basic block. 95 // The new PHI node value is added as an operand of a PHI node in either 96 // the loop header or the loop exit block. 97 for (BasicBlock *Succ : successors(Latch)) { 98 for (PHINode &PN : Succ->phis()) { 99 // Add a new PHI node to the prolog end block and add the 100 // appropriate incoming values. 101 // TODO: This code assumes that the PrologExit (or the LatchExit block for 102 // prolog loop) contains only one predecessor from the loop, i.e. the 103 // PrologLatch. When supporting multiple-exiting block loops, we can have 104 // two or more blocks that have the LatchExit as the target in the 105 // original loop. 106 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 107 PrologExit->getFirstNonPHI()); 108 // Adding a value to the new PHI node from the original loop preheader. 109 // This is the value that skips all the prolog code. 110 if (L->contains(&PN)) { 111 // Succ is loop header. 112 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), 113 PreHeader); 114 } else { 115 // Succ is LatchExit. 116 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); 117 } 118 119 Value *V = PN.getIncomingValueForBlock(Latch); 120 if (Instruction *I = dyn_cast<Instruction>(V)) { 121 if (L->contains(I)) { 122 V = VMap.lookup(I); 123 } 124 } 125 // Adding a value to the new PHI node from the last prolog block 126 // that was created. 127 NewPN->addIncoming(V, PrologLatch); 128 129 // Update the existing PHI node operand with the value from the 130 // new PHI node. How this is done depends on if the existing 131 // PHI node is in the original loop block, or the exit block. 132 if (L->contains(&PN)) 133 PN.setIncomingValueForBlock(NewPreHeader, NewPN); 134 else 135 PN.addIncoming(NewPN, PrologExit); 136 } 137 } 138 139 // Make sure that created prolog loop is in simplified form 140 SmallVector<BasicBlock *, 4> PrologExitPreds; 141 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 142 if (PrologLoop) { 143 for (BasicBlock *PredBB : predecessors(PrologExit)) 144 if (PrologLoop->contains(PredBB)) 145 PrologExitPreds.push_back(PredBB); 146 147 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 148 nullptr, PreserveLCSSA); 149 } 150 151 // Create a branch around the original loop, which is taken if there are no 152 // iterations remaining to be executed after running the prologue. 153 Instruction *InsertPt = PrologExit->getTerminator(); 154 IRBuilder<> B(InsertPt); 155 156 assert(Count != 0 && "nonsensical Count!"); 157 158 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 159 // This means %xtraiter is (BECount + 1) and all of the iterations of this 160 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 161 // then (BECount + 1) cannot unsigned-overflow. 162 Value *BrLoopExit = 163 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 164 // Split the exit to maintain loop canonicalization guarantees 165 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 166 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 167 nullptr, PreserveLCSSA); 168 // Add the branch to the exit block (around the unrolled loop) 169 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 170 InsertPt->eraseFromParent(); 171 if (DT) { 172 auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit, 173 PrologExit); 174 DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom); 175 } 176 } 177 178 /// Connect the unrolling epilog code to the original loop. 179 /// The unrolling epilog code contains code to execute the 180 /// 'extra' iterations if the run-time trip count modulo the 181 /// unroll count is non-zero. 182 /// 183 /// This function performs the following: 184 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 185 /// - Create PHI nodes at the unrolling loop exit to combine 186 /// values that exit the unrolling loop code and jump around it. 187 /// - Update PHI operands in the epilog loop by the new PHI nodes 188 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 189 /// 190 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 191 BasicBlock *Exit, BasicBlock *PreHeader, 192 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 193 ValueToValueMapTy &VMap, DominatorTree *DT, 194 LoopInfo *LI, bool PreserveLCSSA, 195 ScalarEvolution &SE) { 196 BasicBlock *Latch = L->getLoopLatch(); 197 assert(Latch && "Loop must have a latch"); 198 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 199 200 // Loop structure should be the following: 201 // 202 // PreHeader 203 // NewPreHeader 204 // Header 205 // ... 206 // Latch 207 // NewExit (PN) 208 // EpilogPreHeader 209 // EpilogHeader 210 // ... 211 // EpilogLatch 212 // Exit (EpilogPN) 213 214 // Update PHI nodes at NewExit and Exit. 215 for (PHINode &PN : NewExit->phis()) { 216 // PN should be used in another PHI located in Exit block as 217 // Exit was split by SplitBlockPredecessors into Exit and NewExit 218 // Basicaly it should look like: 219 // NewExit: 220 // PN = PHI [I, Latch] 221 // ... 222 // Exit: 223 // EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil] 224 // 225 // Exits from non-latch blocks point to the original exit block and the 226 // epilogue edges have already been added. 227 // 228 // There is EpilogPreHeader incoming block instead of NewExit as 229 // NewExit was spilt 1 more time to get EpilogPreHeader. 230 assert(PN.hasOneUse() && "The phi should have 1 use"); 231 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); 232 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 233 234 // Add incoming PreHeader from branch around the Loop 235 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); 236 SE.forgetValue(&PN); 237 238 Value *V = PN.getIncomingValueForBlock(Latch); 239 Instruction *I = dyn_cast<Instruction>(V); 240 if (I && L->contains(I)) 241 // If value comes from an instruction in the loop add VMap value. 242 V = VMap.lookup(I); 243 // For the instruction out of the loop, constant or undefined value 244 // insert value itself. 245 EpilogPN->addIncoming(V, EpilogLatch); 246 247 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 248 "EpilogPN should have EpilogPreHeader incoming block"); 249 // Change EpilogPreHeader incoming block to NewExit. 250 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 251 NewExit); 252 // Now PHIs should look like: 253 // NewExit: 254 // PN = PHI [I, Latch], [undef, PreHeader] 255 // ... 256 // Exit: 257 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 258 } 259 260 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 261 // Update corresponding PHI nodes in epilog loop. 262 for (BasicBlock *Succ : successors(Latch)) { 263 // Skip this as we already updated phis in exit blocks. 264 if (!L->contains(Succ)) 265 continue; 266 for (PHINode &PN : Succ->phis()) { 267 // Add new PHI nodes to the loop exit block and update epilog 268 // PHIs with the new PHI values. 269 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 270 NewExit->getFirstNonPHI()); 271 // Adding a value to the new PHI node from the unrolling loop preheader. 272 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); 273 // Adding a value to the new PHI node from the unrolling loop latch. 274 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); 275 276 // Update the existing PHI node operand with the value from the new PHI 277 // node. Corresponding instruction in epilog loop should be PHI. 278 PHINode *VPN = cast<PHINode>(VMap[&PN]); 279 VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); 280 } 281 } 282 283 Instruction *InsertPt = NewExit->getTerminator(); 284 IRBuilder<> B(InsertPt); 285 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 286 assert(Exit && "Loop must have a single exit block only"); 287 // Split the epilogue exit to maintain loop canonicalization guarantees 288 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 289 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, 290 PreserveLCSSA); 291 // Add the branch to the exit block (around the unrolling loop) 292 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 293 InsertPt->eraseFromParent(); 294 if (DT) { 295 auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit); 296 DT->changeImmediateDominator(Exit, NewDom); 297 } 298 299 // Split the main loop exit to maintain canonicalization guarantees. 300 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 301 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, 302 PreserveLCSSA); 303 } 304 305 /// Create a clone of the blocks in a loop and connect them together. A new 306 /// loop will be created including all cloned blocks, and the iterator of the 307 /// new loop switched to count NewIter down to 0. 308 /// The cloned blocks should be inserted between InsertTop and InsertBot. 309 /// InsertTop should be new preheader, InsertBot new loop exit. 310 /// Returns the new cloned loop that is created. 311 static Loop * 312 CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder, 313 const bool UnrollRemainder, 314 BasicBlock *InsertTop, 315 BasicBlock *InsertBot, BasicBlock *Preheader, 316 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 317 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 318 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 319 BasicBlock *Header = L->getHeader(); 320 BasicBlock *Latch = L->getLoopLatch(); 321 Function *F = Header->getParent(); 322 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 323 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 324 Loop *ParentLoop = L->getParentLoop(); 325 NewLoopsMap NewLoops; 326 NewLoops[ParentLoop] = ParentLoop; 327 328 // For each block in the original loop, create a new copy, 329 // and update the value map with the newly created values. 330 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 331 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 332 NewBlocks.push_back(NewBB); 333 334 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 335 336 VMap[*BB] = NewBB; 337 if (Header == *BB) { 338 // For the first block, add a CFG connection to this newly 339 // created block. 340 InsertTop->getTerminator()->setSuccessor(0, NewBB); 341 } 342 343 if (DT) { 344 if (Header == *BB) { 345 // The header is dominated by the preheader. 346 DT->addNewBlock(NewBB, InsertTop); 347 } else { 348 // Copy information from original loop to unrolled loop. 349 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 350 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 351 } 352 } 353 354 if (Latch == *BB) { 355 // For the last block, create a loop back to cloned head. 356 VMap.erase((*BB)->getTerminator()); 357 // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. 358 // Subtle: NewIter can be 0 if we wrapped when computing the trip count, 359 // thus we must compare the post-increment (wrapping) value. 360 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 361 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 362 IRBuilder<> Builder(LatchBR); 363 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 364 suffix + ".iter", 365 FirstLoopBB->getFirstNonPHI()); 366 auto *Zero = ConstantInt::get(NewIdx->getType(), 0); 367 auto *One = ConstantInt::get(NewIdx->getType(), 1); 368 Value *IdxNext = Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); 369 Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp"); 370 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 371 NewIdx->addIncoming(Zero, InsertTop); 372 NewIdx->addIncoming(IdxNext, NewBB); 373 LatchBR->eraseFromParent(); 374 } 375 } 376 377 // Change the incoming values to the ones defined in the preheader or 378 // cloned loop. 379 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 380 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 381 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 382 NewPHI->setIncomingBlock(idx, InsertTop); 383 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 384 idx = NewPHI->getBasicBlockIndex(Latch); 385 Value *InVal = NewPHI->getIncomingValue(idx); 386 NewPHI->setIncomingBlock(idx, NewLatch); 387 if (Value *V = VMap.lookup(InVal)) 388 NewPHI->setIncomingValue(idx, V); 389 } 390 391 Loop *NewLoop = NewLoops[L]; 392 assert(NewLoop && "L should have been cloned"); 393 MDNode *LoopID = NewLoop->getLoopID(); 394 395 // Only add loop metadata if the loop is not going to be completely 396 // unrolled. 397 if (UnrollRemainder) 398 return NewLoop; 399 400 Optional<MDNode *> NewLoopID = makeFollowupLoopID( 401 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); 402 if (NewLoopID) { 403 NewLoop->setLoopID(NewLoopID.getValue()); 404 405 // Do not setLoopAlreadyUnrolled if loop attributes have been defined 406 // explicitly. 407 return NewLoop; 408 } 409 410 // Add unroll disable metadata to disable future unrolling for this loop. 411 NewLoop->setLoopAlreadyUnrolled(); 412 return NewLoop; 413 } 414 415 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 416 /// we return true only if UnrollRuntimeMultiExit is set to true. 417 static bool canProfitablyUnrollMultiExitLoop( 418 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 419 bool UseEpilogRemainder) { 420 421 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 422 if (UnrollRuntimeMultiExit.getNumOccurrences()) 423 return UnrollRuntimeMultiExit; 424 425 // The main pain point with multi-exit loop unrolling is that once unrolled, 426 // we will not be able to merge all blocks into a straight line code. 427 // There are branches within the unrolled loop that go to the OtherExits. 428 // The second point is the increase in code size, but this is true 429 // irrespective of multiple exits. 430 431 // Note: Both the heuristics below are coarse grained. We are essentially 432 // enabling unrolling of loops that have a single side exit other than the 433 // normal LatchExit (i.e. exiting into a deoptimize block). 434 // The heuristics considered are: 435 // 1. low number of branches in the unrolled version. 436 // 2. high predictability of these extra branches. 437 // We avoid unrolling loops that have more than two exiting blocks. This 438 // limits the total number of branches in the unrolled loop to be atmost 439 // the unroll factor (since one of the exiting blocks is the latch block). 440 SmallVector<BasicBlock*, 4> ExitingBlocks; 441 L->getExitingBlocks(ExitingBlocks); 442 if (ExitingBlocks.size() > 2) 443 return false; 444 445 // Allow unrolling of loops with no non latch exit blocks. 446 if (OtherExits.size() == 0) 447 return true; 448 449 // The second heuristic is that L has one exit other than the latchexit and 450 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 451 // taken, which also implies the branch leading to the deoptimize block is 452 // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we 453 // assume the other exit branch is predictable even if it has no deoptimize 454 // call. 455 return (OtherExits.size() == 1 && 456 (UnrollRuntimeOtherExitPredictable || 457 OtherExits[0]->getTerminatingDeoptimizeCall())); 458 // TODO: These can be fine-tuned further to consider code size or deopt states 459 // that are captured by the deoptimize exit block. 460 // Also, we can extend this to support more cases, if we actually 461 // know of kinds of multiexit loops that would benefit from unrolling. 462 } 463 464 // Assign the maximum possible trip count as the back edge weight for the 465 // remainder loop if the original loop comes with a branch weight. 466 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop, 467 Loop *RemainderLoop, 468 uint64_t UnrollFactor) { 469 uint64_t TrueWeight, FalseWeight; 470 BranchInst *LatchBR = 471 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 472 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) 473 return; 474 uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader() 475 ? FalseWeight 476 : TrueWeight; 477 assert(UnrollFactor > 1); 478 uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight; 479 BasicBlock *Header = RemainderLoop->getHeader(); 480 BasicBlock *Latch = RemainderLoop->getLoopLatch(); 481 auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator()); 482 unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1); 483 MDBuilder MDB(RemainderLatchBR->getContext()); 484 MDNode *WeightNode = 485 HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) 486 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); 487 RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 488 } 489 490 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain 491 /// accounting for the possibility of unsigned overflow in the 2s complement 492 /// domain. Preconditions: 493 /// 1) TripCount = BECount + 1 (allowing overflow) 494 /// 2) Log2(Count) <= BitWidth(BECount) 495 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount, 496 Value *TripCount, unsigned Count) { 497 // Note that TripCount is BECount + 1. 498 if (isPowerOf2_32(Count)) 499 // If the expression is zero, then either: 500 // 1. There are no iterations to be run in the prolog/epilog loop. 501 // OR 502 // 2. The addition computing TripCount overflowed. 503 // 504 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 505 // the number of iterations that remain to be run in the original loop is a 506 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a 507 // precondition of this method). 508 return B.CreateAnd(TripCount, Count - 1, "xtraiter"); 509 510 // As (BECount + 1) can potentially unsigned overflow we count 511 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 512 Constant *CountC = ConstantInt::get(BECount->getType(), Count); 513 Value *ModValTmp = B.CreateURem(BECount, CountC); 514 Value *ModValAdd = B.CreateAdd(ModValTmp, 515 ConstantInt::get(ModValTmp->getType(), 1)); 516 // At that point (BECount % Count) + 1 could be equal to Count. 517 // To handle this case we need to take mod by Count one more time. 518 return B.CreateURem(ModValAdd, CountC, "xtraiter"); 519 } 520 521 522 /// Insert code in the prolog/epilog code when unrolling a loop with a 523 /// run-time trip-count. 524 /// 525 /// This method assumes that the loop unroll factor is total number 526 /// of loop bodies in the loop after unrolling. (Some folks refer 527 /// to the unroll factor as the number of *extra* copies added). 528 /// We assume also that the loop unroll factor is a power-of-two. So, after 529 /// unrolling the loop, the number of loop bodies executed is 2, 530 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 531 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 532 /// the switch instruction is generated. 533 /// 534 /// ***Prolog case*** 535 /// extraiters = tripcount % loopfactor 536 /// if (extraiters == 0) jump Loop: 537 /// else jump Prol: 538 /// Prol: LoopBody; 539 /// extraiters -= 1 // Omitted if unroll factor is 2. 540 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 541 /// if (tripcount < loopfactor) jump End: 542 /// Loop: 543 /// ... 544 /// End: 545 /// 546 /// ***Epilog case*** 547 /// extraiters = tripcount % loopfactor 548 /// if (tripcount < loopfactor) jump LoopExit: 549 /// unroll_iters = tripcount - extraiters 550 /// Loop: LoopBody; (executes unroll_iter times); 551 /// unroll_iter -= 1 552 /// if (unroll_iter != 0) jump Loop: 553 /// LoopExit: 554 /// if (extraiters == 0) jump EpilExit: 555 /// Epil: LoopBody; (executes extraiters times) 556 /// extraiters -= 1 // Omitted if unroll factor is 2. 557 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 558 /// EpilExit: 559 560 bool llvm::UnrollRuntimeLoopRemainder( 561 Loop *L, unsigned Count, bool AllowExpensiveTripCount, 562 bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, 563 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 564 const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { 565 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 566 LLVM_DEBUG(L->dump()); 567 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" 568 : dbgs() << "Using prolog remainder.\n"); 569 570 // Make sure the loop is in canonical form. 571 if (!L->isLoopSimplifyForm()) { 572 LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); 573 return false; 574 } 575 576 // Guaranteed by LoopSimplifyForm. 577 BasicBlock *Latch = L->getLoopLatch(); 578 BasicBlock *Header = L->getHeader(); 579 580 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 581 582 if (!LatchBR || LatchBR->isUnconditional()) { 583 // The loop-rotate pass can be helpful to avoid this in many cases. 584 LLVM_DEBUG( 585 dbgs() 586 << "Loop latch not terminated by a conditional branch.\n"); 587 return false; 588 } 589 590 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 591 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 592 593 if (L->contains(LatchExit)) { 594 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 595 // targets of the Latch be an exit block out of the loop. 596 LLVM_DEBUG( 597 dbgs() 598 << "One of the loop latch successors must be the exit block.\n"); 599 return false; 600 } 601 602 // These are exit blocks other than the target of the latch exiting block. 603 SmallVector<BasicBlock *, 4> OtherExits; 604 L->getUniqueNonLatchExitBlocks(OtherExits); 605 // Support only single exit and exiting block unless multi-exit loop 606 // unrolling is enabled. 607 if (!L->getExitingBlock() || OtherExits.size()) { 608 // We rely on LCSSA form being preserved when the exit blocks are transformed. 609 // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.) 610 if (!PreserveLCSSA) 611 return false; 612 613 if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, 614 UseEpilogRemainder)) { 615 LLVM_DEBUG( 616 dbgs() 617 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 618 "enabled!\n"); 619 return false; 620 } 621 } 622 // Use Scalar Evolution to compute the trip count. This allows more loops to 623 // be unrolled than relying on induction var simplification. 624 if (!SE) 625 return false; 626 627 // Only unroll loops with a computable trip count. 628 // We calculate the backedge count by using getExitCount on the Latch block, 629 // which is proven to be the only exiting block in this loop. This is same as 630 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 631 // exiting blocks). 632 const SCEV *BECountSC = SE->getExitCount(L, Latch); 633 if (isa<SCEVCouldNotCompute>(BECountSC)) { 634 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 635 return false; 636 } 637 638 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 639 640 // Add 1 since the backedge count doesn't include the first loop iteration. 641 // (Note that overflow can occur, this is handled explicitly below) 642 const SCEV *TripCountSC = 643 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 644 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 645 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 646 return false; 647 } 648 649 BasicBlock *PreHeader = L->getLoopPreheader(); 650 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 651 const DataLayout &DL = Header->getModule()->getDataLayout(); 652 SCEVExpander Expander(*SE, DL, "loop-unroll"); 653 if (!AllowExpensiveTripCount && 654 Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, 655 TTI, PreHeaderBR)) { 656 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 657 return false; 658 } 659 660 // This constraint lets us deal with an overflowing trip count easily; see the 661 // comment on ModVal below. 662 if (Log2_32(Count) > BEWidth) { 663 LLVM_DEBUG( 664 dbgs() 665 << "Count failed constraint on overflow trip count calculation.\n"); 666 return false; 667 } 668 669 // Loop structure is the following: 670 // 671 // PreHeader 672 // Header 673 // ... 674 // Latch 675 // LatchExit 676 677 BasicBlock *NewPreHeader; 678 BasicBlock *NewExit = nullptr; 679 BasicBlock *PrologExit = nullptr; 680 BasicBlock *EpilogPreHeader = nullptr; 681 BasicBlock *PrologPreHeader = nullptr; 682 683 if (UseEpilogRemainder) { 684 // If epilog remainder 685 // Split PreHeader to insert a branch around loop for unrolling. 686 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 687 NewPreHeader->setName(PreHeader->getName() + ".new"); 688 // Split LatchExit to create phi nodes from branch above. 689 NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI, 690 nullptr, PreserveLCSSA); 691 // NewExit gets its DebugLoc from LatchExit, which is not part of the 692 // original Loop. 693 // Fix this by setting Loop's DebugLoc to NewExit. 694 auto *NewExitTerminator = NewExit->getTerminator(); 695 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); 696 // Split NewExit to insert epilog remainder loop. 697 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); 698 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 699 700 // If the latch exits from multiple level of nested loops, then 701 // by assumption there must be another loop exit which branches to the 702 // outer loop and we must adjust the loop for the newly inserted blocks 703 // to account for the fact that our epilogue is still in the same outer 704 // loop. Note that this leaves loopinfo temporarily out of sync with the 705 // CFG until the actual epilogue loop is inserted. 706 if (auto *ParentL = L->getParentLoop()) 707 if (LI->getLoopFor(LatchExit) != ParentL) { 708 LI->removeBlock(NewExit); 709 ParentL->addBasicBlockToLoop(NewExit, *LI); 710 LI->removeBlock(EpilogPreHeader); 711 ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI); 712 } 713 714 } else { 715 // If prolog remainder 716 // Split the original preheader twice to insert prolog remainder loop 717 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 718 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 719 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 720 DT, LI); 721 PrologExit->setName(Header->getName() + ".prol.loopexit"); 722 // Split PrologExit to get NewPreHeader. 723 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 724 NewPreHeader->setName(PreHeader->getName() + ".new"); 725 } 726 // Loop structure should be the following: 727 // Epilog Prolog 728 // 729 // PreHeader PreHeader 730 // *NewPreHeader *PrologPreHeader 731 // Header *PrologExit 732 // ... *NewPreHeader 733 // Latch Header 734 // *NewExit ... 735 // *EpilogPreHeader Latch 736 // LatchExit LatchExit 737 738 // Calculate conditions for branch around loop for unrolling 739 // in epilog case and around prolog remainder loop in prolog case. 740 // Compute the number of extra iterations required, which is: 741 // extra iterations = run-time trip count % loop unroll factor 742 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 743 IRBuilder<> B(PreHeaderBR); 744 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 745 PreHeaderBR); 746 Value *BECount; 747 // If there are other exits before the latch, that may cause the latch exit 748 // branch to never be executed, and the latch exit count may be poison. 749 // In this case, freeze the TripCount and base BECount on the frozen 750 // TripCount. We will introduce two branches using these values, and it's 751 // important that they see a consistent value (which would not be guaranteed 752 // if were frozen independently.) 753 if ((!OtherExits.empty() || !SE->loopHasNoAbnormalExits(L)) && 754 !isGuaranteedNotToBeUndefOrPoison(TripCount, AC, PreHeaderBR, DT)) { 755 TripCount = B.CreateFreeze(TripCount); 756 BECount = 757 B.CreateAdd(TripCount, ConstantInt::get(TripCount->getType(), -1)); 758 } else { 759 // If we don't need to freeze, use SCEVExpander for BECount as well, to 760 // allow slightly better value reuse. 761 BECount = 762 Expander.expandCodeFor(BECountSC, BECountSC->getType(), PreHeaderBR); 763 } 764 765 Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count); 766 767 Value *BranchVal = 768 UseEpilogRemainder ? B.CreateICmpULT(BECount, 769 ConstantInt::get(BECount->getType(), 770 Count - 1)) : 771 B.CreateIsNotNull(ModVal, "lcmp.mod"); 772 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 773 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 774 // Branch to either remainder (extra iterations) loop or unrolling loop. 775 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 776 PreHeaderBR->eraseFromParent(); 777 if (DT) { 778 if (UseEpilogRemainder) 779 DT->changeImmediateDominator(NewExit, PreHeader); 780 else 781 DT->changeImmediateDominator(PrologExit, PreHeader); 782 } 783 Function *F = Header->getParent(); 784 // Get an ordered list of blocks in the loop to help with the ordering of the 785 // cloned blocks in the prolog/epilog code 786 LoopBlocksDFS LoopBlocks(L); 787 LoopBlocks.perform(LI); 788 789 // 790 // For each extra loop iteration, create a copy of the loop's basic blocks 791 // and generate a condition that branches to the copy depending on the 792 // number of 'left over' iterations. 793 // 794 std::vector<BasicBlock *> NewBlocks; 795 ValueToValueMapTy VMap; 796 797 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 798 // the loop, otherwise we create a cloned loop to execute the extra 799 // iterations. This function adds the appropriate CFG connections. 800 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 801 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 802 Loop *remainderLoop = CloneLoopBlocks( 803 L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot, 804 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 805 806 // Assign the maximum possible trip count as the back edge weight for the 807 // remainder loop if the original loop comes with a branch weight. 808 if (remainderLoop && !UnrollRemainder) 809 updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count); 810 811 // Insert the cloned blocks into the function. 812 F->getBasicBlockList().splice(InsertBot->getIterator(), 813 F->getBasicBlockList(), 814 NewBlocks[0]->getIterator(), 815 F->end()); 816 817 // Now the loop blocks are cloned and the other exiting blocks from the 818 // remainder are connected to the original Loop's exit blocks. The remaining 819 // work is to update the phi nodes in the original loop, and take in the 820 // values from the cloned region. 821 for (auto *BB : OtherExits) { 822 // Given we preserve LCSSA form, we know that the values used outside the 823 // loop will be used through these phi nodes at the exit blocks that are 824 // transformed below. 825 for (PHINode &PN : BB->phis()) { 826 unsigned oldNumOperands = PN.getNumIncomingValues(); 827 // Add the incoming values from the remainder code to the end of the phi 828 // node. 829 for (unsigned i = 0; i < oldNumOperands; i++){ 830 auto *PredBB =PN.getIncomingBlock(i); 831 if (PredBB == Latch) 832 // The latch exit is handled seperately, see connectX 833 continue; 834 if (!L->contains(PredBB)) 835 // Even if we had dedicated exits, the code above inserted an 836 // extra branch which can reach the latch exit. 837 continue; 838 839 auto *V = PN.getIncomingValue(i); 840 if (Instruction *I = dyn_cast<Instruction>(V)) 841 if (L->contains(I)) 842 V = VMap.lookup(I); 843 PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB])); 844 } 845 } 846 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 847 for (BasicBlock *SuccBB : successors(BB)) { 848 assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) && 849 "Breaks the definition of dedicated exits!"); 850 } 851 #endif 852 } 853 854 // Update the immediate dominator of the exit blocks and blocks that are 855 // reachable from the exit blocks. This is needed because we now have paths 856 // from both the original loop and the remainder code reaching the exit 857 // blocks. While the IDom of these exit blocks were from the original loop, 858 // now the IDom is the preheader (which decides whether the original loop or 859 // remainder code should run). 860 if (DT && !L->getExitingBlock()) { 861 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 862 // NB! We have to examine the dom children of all loop blocks, not just 863 // those which are the IDom of the exit blocks. This is because blocks 864 // reachable from the exit blocks can have their IDom as the nearest common 865 // dominator of the exit blocks. 866 for (auto *BB : L->blocks()) { 867 auto *DomNodeBB = DT->getNode(BB); 868 for (auto *DomChild : DomNodeBB->children()) { 869 auto *DomChildBB = DomChild->getBlock(); 870 if (!L->contains(LI->getLoopFor(DomChildBB))) 871 ChildrenToUpdate.push_back(DomChildBB); 872 } 873 } 874 for (auto *BB : ChildrenToUpdate) 875 DT->changeImmediateDominator(BB, PreHeader); 876 } 877 878 // Loop structure should be the following: 879 // Epilog Prolog 880 // 881 // PreHeader PreHeader 882 // NewPreHeader PrologPreHeader 883 // Header PrologHeader 884 // ... ... 885 // Latch PrologLatch 886 // NewExit PrologExit 887 // EpilogPreHeader NewPreHeader 888 // EpilogHeader Header 889 // ... ... 890 // EpilogLatch Latch 891 // LatchExit LatchExit 892 893 // Rewrite the cloned instruction operands to use the values created when the 894 // clone is created. 895 for (BasicBlock *BB : NewBlocks) { 896 for (Instruction &I : *BB) { 897 RemapInstruction(&I, VMap, 898 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 899 } 900 } 901 902 if (UseEpilogRemainder) { 903 // Connect the epilog code to the original loop and update the 904 // PHI functions. 905 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, EpilogPreHeader, 906 NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE); 907 908 // Update counter in loop for unrolling. 909 // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. 910 // Subtle: TestVal can be 0 if we wrapped when computing the trip count, 911 // thus we must compare the post-increment (wrapping) value. 912 IRBuilder<> B2(NewPreHeader->getTerminator()); 913 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 914 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 915 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 916 Header->getFirstNonPHI()); 917 B2.SetInsertPoint(LatchBR); 918 auto *Zero = ConstantInt::get(NewIdx->getType(), 0); 919 auto *One = ConstantInt::get(NewIdx->getType(), 1); 920 Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); 921 auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 922 Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp"); 923 NewIdx->addIncoming(Zero, NewPreHeader); 924 NewIdx->addIncoming(IdxNext, Latch); 925 LatchBR->setCondition(IdxCmp); 926 } else { 927 // Connect the prolog code to the original loop and update the 928 // PHI functions. 929 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 930 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 931 } 932 933 // If this loop is nested, then the loop unroller changes the code in the any 934 // of its parent loops, so the Scalar Evolution pass needs to be run again. 935 SE->forgetTopmostLoop(L); 936 937 // Verify that the Dom Tree and Loop Info are correct. 938 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 939 if (DT) { 940 assert(DT->verify(DominatorTree::VerificationLevel::Full)); 941 LI->verify(*DT); 942 } 943 #endif 944 945 // For unroll factor 2 remainder loop will have 1 iteration. 946 if (Count == 2 && DT && LI && SE) { 947 // TODO: This code could probably be pulled out into a helper function 948 // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion. 949 BasicBlock *RemainderLatch = remainderLoop->getLoopLatch(); 950 assert(RemainderLatch); 951 SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(), 952 remainderLoop->getBlocks().end()); 953 breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr); 954 remainderLoop = nullptr; 955 956 // Simplify loop values after breaking the backedge 957 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 958 SmallVector<WeakTrackingVH, 16> DeadInsts; 959 for (BasicBlock *BB : RemainderBlocks) { 960 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 961 if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC})) 962 if (LI->replacementPreservesLCSSAForm(&Inst, V)) 963 Inst.replaceAllUsesWith(V); 964 if (isInstructionTriviallyDead(&Inst)) 965 DeadInsts.emplace_back(&Inst); 966 } 967 // We can't do recursive deletion until we're done iterating, as we might 968 // have a phi which (potentially indirectly) uses instructions later in 969 // the block we're iterating through. 970 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 971 } 972 973 // Merge latch into exit block. 974 auto *ExitBB = RemainderLatch->getSingleSuccessor(); 975 assert(ExitBB && "required after breaking cond br backedge"); 976 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 977 MergeBlockIntoPredecessor(ExitBB, &DTU, LI); 978 } 979 980 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 981 // cannot rely on the LoopUnrollPass to do this because it only does 982 // canonicalization for parent/subloops and not the sibling loops. 983 if (OtherExits.size() > 0) { 984 // Generate dedicated exit blocks for the original loop, to preserve 985 // LoopSimplifyForm. 986 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); 987 // Generate dedicated exit blocks for the remainder loop if one exists, to 988 // preserve LoopSimplifyForm. 989 if (remainderLoop) 990 formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); 991 } 992 993 auto UnrollResult = LoopUnrollResult::Unmodified; 994 if (remainderLoop && UnrollRemainder) { 995 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); 996 UnrollResult = 997 UnrollLoop(remainderLoop, 998 {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false, 999 /*AllowExpensiveTripCount*/ false, 1000 /*UnrollRemainder*/ false, ForgetAllSCEV}, 1001 LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); 1002 } 1003 1004 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) 1005 *ResultLoop = remainderLoop; 1006 NumRuntimeUnrolled++; 1007 return true; 1008 } 1009