1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpander.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include <algorithm> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-unroll" 46 47 STATISTIC(NumRuntimeUnrolled, 48 "Number of loops unrolled with run-time trip counts"); 49 static cl::opt<bool> UnrollRuntimeMultiExit( 50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 52 "epilog is generated")); 53 54 /// Connect the unrolling prolog code to the original loop. 55 /// The unrolling prolog code contains code to execute the 56 /// 'extra' iterations if the run-time trip count modulo the 57 /// unroll count is non-zero. 58 /// 59 /// This function performs the following: 60 /// - Create PHI nodes at prolog end block to combine values 61 /// that exit the prolog code and jump around the prolog. 62 /// - Add a PHI operand to a PHI node at the loop exit block 63 /// for values that exit the prolog and go around the loop. 64 /// - Branch around the original loop if the trip count is less 65 /// than the unroll factor. 66 /// 67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 68 BasicBlock *PrologExit, 69 BasicBlock *OriginalLoopLatchExit, 70 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 71 ValueToValueMapTy &VMap, DominatorTree *DT, 72 LoopInfo *LI, bool PreserveLCSSA) { 73 // Loop structure should be the following: 74 // Preheader 75 // PrologHeader 76 // ... 77 // PrologLatch 78 // PrologExit 79 // NewPreheader 80 // Header 81 // ... 82 // Latch 83 // LatchExit 84 BasicBlock *Latch = L->getLoopLatch(); 85 assert(Latch && "Loop must have a latch"); 86 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 87 88 // Create a PHI node for each outgoing value from the original loop 89 // (which means it is an outgoing value from the prolog code too). 90 // The new PHI node is inserted in the prolog end basic block. 91 // The new PHI node value is added as an operand of a PHI node in either 92 // the loop header or the loop exit block. 93 for (BasicBlock *Succ : successors(Latch)) { 94 for (PHINode &PN : Succ->phis()) { 95 // Add a new PHI node to the prolog end block and add the 96 // appropriate incoming values. 97 // TODO: This code assumes that the PrologExit (or the LatchExit block for 98 // prolog loop) contains only one predecessor from the loop, i.e. the 99 // PrologLatch. When supporting multiple-exiting block loops, we can have 100 // two or more blocks that have the LatchExit as the target in the 101 // original loop. 102 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 103 PrologExit->getFirstNonPHI()); 104 // Adding a value to the new PHI node from the original loop preheader. 105 // This is the value that skips all the prolog code. 106 if (L->contains(&PN)) { 107 // Succ is loop header. 108 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), 109 PreHeader); 110 } else { 111 // Succ is LatchExit. 112 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); 113 } 114 115 Value *V = PN.getIncomingValueForBlock(Latch); 116 if (Instruction *I = dyn_cast<Instruction>(V)) { 117 if (L->contains(I)) { 118 V = VMap.lookup(I); 119 } 120 } 121 // Adding a value to the new PHI node from the last prolog block 122 // that was created. 123 NewPN->addIncoming(V, PrologLatch); 124 125 // Update the existing PHI node operand with the value from the 126 // new PHI node. How this is done depends on if the existing 127 // PHI node is in the original loop block, or the exit block. 128 if (L->contains(&PN)) { 129 PN.setIncomingValue(PN.getBasicBlockIndex(NewPreHeader), NewPN); 130 } else { 131 PN.addIncoming(NewPN, PrologExit); 132 } 133 } 134 } 135 136 // Make sure that created prolog loop is in simplified form 137 SmallVector<BasicBlock *, 4> PrologExitPreds; 138 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 139 if (PrologLoop) { 140 for (BasicBlock *PredBB : predecessors(PrologExit)) 141 if (PrologLoop->contains(PredBB)) 142 PrologExitPreds.push_back(PredBB); 143 144 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 145 nullptr, PreserveLCSSA); 146 } 147 148 // Create a branch around the original loop, which is taken if there are no 149 // iterations remaining to be executed after running the prologue. 150 Instruction *InsertPt = PrologExit->getTerminator(); 151 IRBuilder<> B(InsertPt); 152 153 assert(Count != 0 && "nonsensical Count!"); 154 155 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 156 // This means %xtraiter is (BECount + 1) and all of the iterations of this 157 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 158 // then (BECount + 1) cannot unsigned-overflow. 159 Value *BrLoopExit = 160 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 161 // Split the exit to maintain loop canonicalization guarantees 162 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 163 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 164 nullptr, PreserveLCSSA); 165 // Add the branch to the exit block (around the unrolled loop) 166 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 167 InsertPt->eraseFromParent(); 168 if (DT) 169 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); 170 } 171 172 /// Connect the unrolling epilog code to the original loop. 173 /// The unrolling epilog code contains code to execute the 174 /// 'extra' iterations if the run-time trip count modulo the 175 /// unroll count is non-zero. 176 /// 177 /// This function performs the following: 178 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 179 /// - Create PHI nodes at the unrolling loop exit to combine 180 /// values that exit the unrolling loop code and jump around it. 181 /// - Update PHI operands in the epilog loop by the new PHI nodes 182 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 183 /// 184 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 185 BasicBlock *Exit, BasicBlock *PreHeader, 186 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 187 ValueToValueMapTy &VMap, DominatorTree *DT, 188 LoopInfo *LI, bool PreserveLCSSA) { 189 BasicBlock *Latch = L->getLoopLatch(); 190 assert(Latch && "Loop must have a latch"); 191 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 192 193 // Loop structure should be the following: 194 // 195 // PreHeader 196 // NewPreHeader 197 // Header 198 // ... 199 // Latch 200 // NewExit (PN) 201 // EpilogPreHeader 202 // EpilogHeader 203 // ... 204 // EpilogLatch 205 // Exit (EpilogPN) 206 207 // Update PHI nodes at NewExit and Exit. 208 for (PHINode &PN : NewExit->phis()) { 209 // PN should be used in another PHI located in Exit block as 210 // Exit was split by SplitBlockPredecessors into Exit and NewExit 211 // Basicaly it should look like: 212 // NewExit: 213 // PN = PHI [I, Latch] 214 // ... 215 // Exit: 216 // EpilogPN = PHI [PN, EpilogPreHeader] 217 // 218 // There is EpilogPreHeader incoming block instead of NewExit as 219 // NewExit was spilt 1 more time to get EpilogPreHeader. 220 assert(PN.hasOneUse() && "The phi should have 1 use"); 221 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); 222 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 223 224 // Add incoming PreHeader from branch around the Loop 225 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); 226 227 Value *V = PN.getIncomingValueForBlock(Latch); 228 Instruction *I = dyn_cast<Instruction>(V); 229 if (I && L->contains(I)) 230 // If value comes from an instruction in the loop add VMap value. 231 V = VMap.lookup(I); 232 // For the instruction out of the loop, constant or undefined value 233 // insert value itself. 234 EpilogPN->addIncoming(V, EpilogLatch); 235 236 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 237 "EpilogPN should have EpilogPreHeader incoming block"); 238 // Change EpilogPreHeader incoming block to NewExit. 239 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 240 NewExit); 241 // Now PHIs should look like: 242 // NewExit: 243 // PN = PHI [I, Latch], [undef, PreHeader] 244 // ... 245 // Exit: 246 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 247 } 248 249 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 250 // Update corresponding PHI nodes in epilog loop. 251 for (BasicBlock *Succ : successors(Latch)) { 252 // Skip this as we already updated phis in exit blocks. 253 if (!L->contains(Succ)) 254 continue; 255 for (PHINode &PN : Succ->phis()) { 256 // Add new PHI nodes to the loop exit block and update epilog 257 // PHIs with the new PHI values. 258 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 259 NewExit->getFirstNonPHI()); 260 // Adding a value to the new PHI node from the unrolling loop preheader. 261 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); 262 // Adding a value to the new PHI node from the unrolling loop latch. 263 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); 264 265 // Update the existing PHI node operand with the value from the new PHI 266 // node. Corresponding instruction in epilog loop should be PHI. 267 PHINode *VPN = cast<PHINode>(VMap[&PN]); 268 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 269 } 270 } 271 272 Instruction *InsertPt = NewExit->getTerminator(); 273 IRBuilder<> B(InsertPt); 274 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 275 assert(Exit && "Loop must have a single exit block only"); 276 // Split the epilogue exit to maintain loop canonicalization guarantees 277 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 278 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, 279 PreserveLCSSA); 280 // Add the branch to the exit block (around the unrolling loop) 281 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 282 InsertPt->eraseFromParent(); 283 if (DT) 284 DT->changeImmediateDominator(Exit, NewExit); 285 286 // Split the main loop exit to maintain canonicalization guarantees. 287 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 288 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, 289 PreserveLCSSA); 290 } 291 292 /// Create a clone of the blocks in a loop and connect them together. 293 /// If CreateRemainderLoop is false, loop structure will not be cloned, 294 /// otherwise a new loop will be created including all cloned blocks, and the 295 /// iterator of it switches to count NewIter down to 0. 296 /// The cloned blocks should be inserted between InsertTop and InsertBot. 297 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 298 /// new loop exit. 299 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 300 static Loop * 301 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 302 const bool UseEpilogRemainder, const bool UnrollRemainder, 303 BasicBlock *InsertTop, 304 BasicBlock *InsertBot, BasicBlock *Preheader, 305 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 306 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 307 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 308 BasicBlock *Header = L->getHeader(); 309 BasicBlock *Latch = L->getLoopLatch(); 310 Function *F = Header->getParent(); 311 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 312 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 313 Loop *ParentLoop = L->getParentLoop(); 314 NewLoopsMap NewLoops; 315 NewLoops[ParentLoop] = ParentLoop; 316 if (!CreateRemainderLoop) 317 NewLoops[L] = ParentLoop; 318 319 // For each block in the original loop, create a new copy, 320 // and update the value map with the newly created values. 321 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 322 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 323 NewBlocks.push_back(NewBB); 324 325 // If we're unrolling the outermost loop, there's no remainder loop, 326 // and this block isn't in a nested loop, then the new block is not 327 // in any loop. Otherwise, add it to loopinfo. 328 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 329 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 330 331 VMap[*BB] = NewBB; 332 if (Header == *BB) { 333 // For the first block, add a CFG connection to this newly 334 // created block. 335 InsertTop->getTerminator()->setSuccessor(0, NewBB); 336 } 337 338 if (DT) { 339 if (Header == *BB) { 340 // The header is dominated by the preheader. 341 DT->addNewBlock(NewBB, InsertTop); 342 } else { 343 // Copy information from original loop to unrolled loop. 344 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 345 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 346 } 347 } 348 349 if (Latch == *BB) { 350 // For the last block, if CreateRemainderLoop is false, create a direct 351 // jump to InsertBot. If not, create a loop back to cloned head. 352 VMap.erase((*BB)->getTerminator()); 353 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 354 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 355 IRBuilder<> Builder(LatchBR); 356 if (!CreateRemainderLoop) { 357 Builder.CreateBr(InsertBot); 358 } else { 359 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 360 suffix + ".iter", 361 FirstLoopBB->getFirstNonPHI()); 362 Value *IdxSub = 363 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 364 NewIdx->getName() + ".sub"); 365 Value *IdxCmp = 366 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 367 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 368 NewIdx->addIncoming(NewIter, InsertTop); 369 NewIdx->addIncoming(IdxSub, NewBB); 370 } 371 LatchBR->eraseFromParent(); 372 } 373 } 374 375 // Change the incoming values to the ones defined in the preheader or 376 // cloned loop. 377 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 378 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 379 if (!CreateRemainderLoop) { 380 if (UseEpilogRemainder) { 381 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 382 NewPHI->setIncomingBlock(idx, InsertTop); 383 NewPHI->removeIncomingValue(Latch, false); 384 } else { 385 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 386 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 387 } 388 } else { 389 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 390 NewPHI->setIncomingBlock(idx, InsertTop); 391 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 392 idx = NewPHI->getBasicBlockIndex(Latch); 393 Value *InVal = NewPHI->getIncomingValue(idx); 394 NewPHI->setIncomingBlock(idx, NewLatch); 395 if (Value *V = VMap.lookup(InVal)) 396 NewPHI->setIncomingValue(idx, V); 397 } 398 } 399 if (CreateRemainderLoop) { 400 Loop *NewLoop = NewLoops[L]; 401 MDNode *LoopID = NewLoop->getLoopID(); 402 assert(NewLoop && "L should have been cloned"); 403 404 // Only add loop metadata if the loop is not going to be completely 405 // unrolled. 406 if (UnrollRemainder) 407 return NewLoop; 408 409 Optional<MDNode *> NewLoopID = makeFollowupLoopID( 410 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); 411 if (NewLoopID.hasValue()) { 412 NewLoop->setLoopID(NewLoopID.getValue()); 413 414 // Do not setLoopAlreadyUnrolled if loop attributes have been defined 415 // explicitly. 416 return NewLoop; 417 } 418 419 // Add unroll disable metadata to disable future unrolling for this loop. 420 NewLoop->setLoopAlreadyUnrolled(); 421 return NewLoop; 422 } 423 else 424 return nullptr; 425 } 426 427 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits 428 /// is populated with all the loop exit blocks other than the LatchExit block. 429 static bool 430 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, 431 BasicBlock *LatchExit, bool PreserveLCSSA, 432 bool UseEpilogRemainder) { 433 434 // We currently have some correctness constrains in unrolling a multi-exit 435 // loop. Check for these below. 436 437 // We rely on LCSSA form being preserved when the exit blocks are transformed. 438 if (!PreserveLCSSA) 439 return false; 440 SmallVector<BasicBlock *, 4> Exits; 441 L->getUniqueExitBlocks(Exits); 442 for (auto *BB : Exits) 443 if (BB != LatchExit) 444 OtherExits.push_back(BB); 445 446 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when 447 // UnrollRuntimeMultiExit is true. This will need updating the logic in 448 // connectEpilog/connectProlog. 449 if (!LatchExit->getSinglePredecessor()) { 450 LLVM_DEBUG( 451 dbgs() << "Bailout for multi-exit handling when latch exit has >1 " 452 "predecessor.\n"); 453 return false; 454 } 455 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated 456 // and L is an inner loop. This is because in presence of multiple exits, the 457 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the 458 // outer loop. This is automatically handled in the prolog case, so we do not 459 // have that bug in prolog generation. 460 if (UseEpilogRemainder && L->getParentLoop()) 461 return false; 462 463 // All constraints have been satisfied. 464 return true; 465 } 466 467 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 468 /// we return true only if UnrollRuntimeMultiExit is set to true. 469 static bool canProfitablyUnrollMultiExitLoop( 470 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 471 bool PreserveLCSSA, bool UseEpilogRemainder) { 472 473 #if !defined(NDEBUG) 474 SmallVector<BasicBlock *, 8> OtherExitsDummyCheck; 475 assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit, 476 PreserveLCSSA, UseEpilogRemainder) && 477 "Should be safe to unroll before checking profitability!"); 478 #endif 479 480 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 481 if (UnrollRuntimeMultiExit.getNumOccurrences()) 482 return UnrollRuntimeMultiExit; 483 484 // The main pain point with multi-exit loop unrolling is that once unrolled, 485 // we will not be able to merge all blocks into a straight line code. 486 // There are branches within the unrolled loop that go to the OtherExits. 487 // The second point is the increase in code size, but this is true 488 // irrespective of multiple exits. 489 490 // Note: Both the heuristics below are coarse grained. We are essentially 491 // enabling unrolling of loops that have a single side exit other than the 492 // normal LatchExit (i.e. exiting into a deoptimize block). 493 // The heuristics considered are: 494 // 1. low number of branches in the unrolled version. 495 // 2. high predictability of these extra branches. 496 // We avoid unrolling loops that have more than two exiting blocks. This 497 // limits the total number of branches in the unrolled loop to be atmost 498 // the unroll factor (since one of the exiting blocks is the latch block). 499 SmallVector<BasicBlock*, 4> ExitingBlocks; 500 L->getExitingBlocks(ExitingBlocks); 501 if (ExitingBlocks.size() > 2) 502 return false; 503 504 // The second heuristic is that L has one exit other than the latchexit and 505 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 506 // taken, which also implies the branch leading to the deoptimize block is 507 // highly predictable. 508 return (OtherExits.size() == 1 && 509 OtherExits[0]->getTerminatingDeoptimizeCall()); 510 // TODO: These can be fine-tuned further to consider code size or deopt states 511 // that are captured by the deoptimize exit block. 512 // Also, we can extend this to support more cases, if we actually 513 // know of kinds of multiexit loops that would benefit from unrolling. 514 } 515 516 /// Insert code in the prolog/epilog code when unrolling a loop with a 517 /// run-time trip-count. 518 /// 519 /// This method assumes that the loop unroll factor is total number 520 /// of loop bodies in the loop after unrolling. (Some folks refer 521 /// to the unroll factor as the number of *extra* copies added). 522 /// We assume also that the loop unroll factor is a power-of-two. So, after 523 /// unrolling the loop, the number of loop bodies executed is 2, 524 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 525 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 526 /// the switch instruction is generated. 527 /// 528 /// ***Prolog case*** 529 /// extraiters = tripcount % loopfactor 530 /// if (extraiters == 0) jump Loop: 531 /// else jump Prol: 532 /// Prol: LoopBody; 533 /// extraiters -= 1 // Omitted if unroll factor is 2. 534 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 535 /// if (tripcount < loopfactor) jump End: 536 /// Loop: 537 /// ... 538 /// End: 539 /// 540 /// ***Epilog case*** 541 /// extraiters = tripcount % loopfactor 542 /// if (tripcount < loopfactor) jump LoopExit: 543 /// unroll_iters = tripcount - extraiters 544 /// Loop: LoopBody; (executes unroll_iter times); 545 /// unroll_iter -= 1 546 /// if (unroll_iter != 0) jump Loop: 547 /// LoopExit: 548 /// if (extraiters == 0) jump EpilExit: 549 /// Epil: LoopBody; (executes extraiters times) 550 /// extraiters -= 1 // Omitted if unroll factor is 2. 551 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 552 /// EpilExit: 553 554 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 555 bool AllowExpensiveTripCount, 556 bool UseEpilogRemainder, 557 bool UnrollRemainder, LoopInfo *LI, 558 ScalarEvolution *SE, DominatorTree *DT, 559 AssumptionCache *AC, bool PreserveLCSSA, 560 Loop **ResultLoop) { 561 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 562 LLVM_DEBUG(L->dump()); 563 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" 564 : dbgs() << "Using prolog remainder.\n"); 565 566 // Make sure the loop is in canonical form. 567 if (!L->isLoopSimplifyForm()) { 568 LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); 569 return false; 570 } 571 572 // Guaranteed by LoopSimplifyForm. 573 BasicBlock *Latch = L->getLoopLatch(); 574 BasicBlock *Header = L->getHeader(); 575 576 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 577 578 if (!LatchBR || LatchBR->isUnconditional()) { 579 // The loop-rotate pass can be helpful to avoid this in many cases. 580 LLVM_DEBUG( 581 dbgs() 582 << "Loop latch not terminated by a conditional branch.\n"); 583 return false; 584 } 585 586 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 587 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 588 589 if (L->contains(LatchExit)) { 590 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 591 // targets of the Latch be an exit block out of the loop. 592 LLVM_DEBUG( 593 dbgs() 594 << "One of the loop latch successors must be the exit block.\n"); 595 return false; 596 } 597 598 // These are exit blocks other than the target of the latch exiting block. 599 SmallVector<BasicBlock *, 4> OtherExits; 600 bool isMultiExitUnrollingEnabled = 601 canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 602 UseEpilogRemainder) && 603 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 604 UseEpilogRemainder); 605 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. 606 if (!isMultiExitUnrollingEnabled && 607 (!L->getExitingBlock() || OtherExits.size())) { 608 LLVM_DEBUG( 609 dbgs() 610 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 611 "enabled!\n"); 612 return false; 613 } 614 // Use Scalar Evolution to compute the trip count. This allows more loops to 615 // be unrolled than relying on induction var simplification. 616 if (!SE) 617 return false; 618 619 // Only unroll loops with a computable trip count, and the trip count needs 620 // to be an int value (allowing a pointer type is a TODO item). 621 // We calculate the backedge count by using getExitCount on the Latch block, 622 // which is proven to be the only exiting block in this loop. This is same as 623 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 624 // exiting blocks). 625 const SCEV *BECountSC = SE->getExitCount(L, Latch); 626 if (isa<SCEVCouldNotCompute>(BECountSC) || 627 !BECountSC->getType()->isIntegerTy()) { 628 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 629 return false; 630 } 631 632 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 633 634 // Add 1 since the backedge count doesn't include the first loop iteration. 635 const SCEV *TripCountSC = 636 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 637 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 638 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 639 return false; 640 } 641 642 BasicBlock *PreHeader = L->getLoopPreheader(); 643 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 644 const DataLayout &DL = Header->getModule()->getDataLayout(); 645 SCEVExpander Expander(*SE, DL, "loop-unroll"); 646 if (!AllowExpensiveTripCount && 647 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) { 648 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 649 return false; 650 } 651 652 // This constraint lets us deal with an overflowing trip count easily; see the 653 // comment on ModVal below. 654 if (Log2_32(Count) > BEWidth) { 655 LLVM_DEBUG( 656 dbgs() 657 << "Count failed constraint on overflow trip count calculation.\n"); 658 return false; 659 } 660 661 // Loop structure is the following: 662 // 663 // PreHeader 664 // Header 665 // ... 666 // Latch 667 // LatchExit 668 669 BasicBlock *NewPreHeader; 670 BasicBlock *NewExit = nullptr; 671 BasicBlock *PrologExit = nullptr; 672 BasicBlock *EpilogPreHeader = nullptr; 673 BasicBlock *PrologPreHeader = nullptr; 674 675 if (UseEpilogRemainder) { 676 // If epilog remainder 677 // Split PreHeader to insert a branch around loop for unrolling. 678 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 679 NewPreHeader->setName(PreHeader->getName() + ".new"); 680 // Split LatchExit to create phi nodes from branch above. 681 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); 682 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI, 683 nullptr, PreserveLCSSA); 684 // NewExit gets its DebugLoc from LatchExit, which is not part of the 685 // original Loop. 686 // Fix this by setting Loop's DebugLoc to NewExit. 687 auto *NewExitTerminator = NewExit->getTerminator(); 688 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); 689 // Split NewExit to insert epilog remainder loop. 690 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); 691 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 692 } else { 693 // If prolog remainder 694 // Split the original preheader twice to insert prolog remainder loop 695 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 696 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 697 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 698 DT, LI); 699 PrologExit->setName(Header->getName() + ".prol.loopexit"); 700 // Split PrologExit to get NewPreHeader. 701 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 702 NewPreHeader->setName(PreHeader->getName() + ".new"); 703 } 704 // Loop structure should be the following: 705 // Epilog Prolog 706 // 707 // PreHeader PreHeader 708 // *NewPreHeader *PrologPreHeader 709 // Header *PrologExit 710 // ... *NewPreHeader 711 // Latch Header 712 // *NewExit ... 713 // *EpilogPreHeader Latch 714 // LatchExit LatchExit 715 716 // Calculate conditions for branch around loop for unrolling 717 // in epilog case and around prolog remainder loop in prolog case. 718 // Compute the number of extra iterations required, which is: 719 // extra iterations = run-time trip count % loop unroll factor 720 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 721 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 722 PreHeaderBR); 723 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 724 PreHeaderBR); 725 IRBuilder<> B(PreHeaderBR); 726 Value *ModVal; 727 // Calculate ModVal = (BECount + 1) % Count. 728 // Note that TripCount is BECount + 1. 729 if (isPowerOf2_32(Count)) { 730 // When Count is power of 2 we don't BECount for epilog case, however we'll 731 // need it for a branch around unrolling loop for prolog case. 732 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 733 // 1. There are no iterations to be run in the prolog/epilog loop. 734 // OR 735 // 2. The addition computing TripCount overflowed. 736 // 737 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 738 // the number of iterations that remain to be run in the original loop is a 739 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 740 // explicitly check this above). 741 } else { 742 // As (BECount + 1) can potentially unsigned overflow we count 743 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 744 Value *ModValTmp = B.CreateURem(BECount, 745 ConstantInt::get(BECount->getType(), 746 Count)); 747 Value *ModValAdd = B.CreateAdd(ModValTmp, 748 ConstantInt::get(ModValTmp->getType(), 1)); 749 // At that point (BECount % Count) + 1 could be equal to Count. 750 // To handle this case we need to take mod by Count one more time. 751 ModVal = B.CreateURem(ModValAdd, 752 ConstantInt::get(BECount->getType(), Count), 753 "xtraiter"); 754 } 755 Value *BranchVal = 756 UseEpilogRemainder ? B.CreateICmpULT(BECount, 757 ConstantInt::get(BECount->getType(), 758 Count - 1)) : 759 B.CreateIsNotNull(ModVal, "lcmp.mod"); 760 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 761 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 762 // Branch to either remainder (extra iterations) loop or unrolling loop. 763 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 764 PreHeaderBR->eraseFromParent(); 765 if (DT) { 766 if (UseEpilogRemainder) 767 DT->changeImmediateDominator(NewExit, PreHeader); 768 else 769 DT->changeImmediateDominator(PrologExit, PreHeader); 770 } 771 Function *F = Header->getParent(); 772 // Get an ordered list of blocks in the loop to help with the ordering of the 773 // cloned blocks in the prolog/epilog code 774 LoopBlocksDFS LoopBlocks(L); 775 LoopBlocks.perform(LI); 776 777 // 778 // For each extra loop iteration, create a copy of the loop's basic blocks 779 // and generate a condition that branches to the copy depending on the 780 // number of 'left over' iterations. 781 // 782 std::vector<BasicBlock *> NewBlocks; 783 ValueToValueMapTy VMap; 784 785 // For unroll factor 2 remainder loop will have 1 iterations. 786 // Do not create 1 iteration loop. 787 bool CreateRemainderLoop = (Count != 2); 788 789 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 790 // the loop, otherwise we create a cloned loop to execute the extra 791 // iterations. This function adds the appropriate CFG connections. 792 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 793 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 794 Loop *remainderLoop = CloneLoopBlocks( 795 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder, 796 InsertTop, InsertBot, 797 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 798 799 // Insert the cloned blocks into the function. 800 F->getBasicBlockList().splice(InsertBot->getIterator(), 801 F->getBasicBlockList(), 802 NewBlocks[0]->getIterator(), 803 F->end()); 804 805 // Now the loop blocks are cloned and the other exiting blocks from the 806 // remainder are connected to the original Loop's exit blocks. The remaining 807 // work is to update the phi nodes in the original loop, and take in the 808 // values from the cloned region. Also update the dominator info for 809 // OtherExits and their immediate successors, since we have new edges into 810 // OtherExits. 811 SmallPtrSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks; 812 for (auto *BB : OtherExits) { 813 for (auto &II : *BB) { 814 815 // Given we preserve LCSSA form, we know that the values used outside the 816 // loop will be used through these phi nodes at the exit blocks that are 817 // transformed below. 818 if (!isa<PHINode>(II)) 819 break; 820 PHINode *Phi = cast<PHINode>(&II); 821 unsigned oldNumOperands = Phi->getNumIncomingValues(); 822 // Add the incoming values from the remainder code to the end of the phi 823 // node. 824 for (unsigned i =0; i < oldNumOperands; i++){ 825 Value *newVal = VMap.lookup(Phi->getIncomingValue(i)); 826 // newVal can be a constant or derived from values outside the loop, and 827 // hence need not have a VMap value. Also, since lookup already generated 828 // a default "null" VMap entry for this value, we need to populate that 829 // VMap entry correctly, with the mapped entry being itself. 830 if (!newVal) { 831 newVal = Phi->getIncomingValue(i); 832 VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i); 833 } 834 Phi->addIncoming(newVal, 835 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); 836 } 837 } 838 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 839 for (BasicBlock *SuccBB : successors(BB)) { 840 assert(!(any_of(OtherExits, 841 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) || 842 SuccBB == LatchExit) && 843 "Breaks the definition of dedicated exits!"); 844 } 845 #endif 846 // Update the dominator info because the immediate dominator is no longer the 847 // header of the original Loop. BB has edges both from L and remainder code. 848 // Since the preheader determines which loop is run (L or directly jump to 849 // the remainder code), we set the immediate dominator as the preheader. 850 if (DT) { 851 DT->changeImmediateDominator(BB, PreHeader); 852 // Also update the IDom for immediate successors of BB. If the current 853 // IDom is the header, update the IDom to be the preheader because that is 854 // the nearest common dominator of all predecessors of SuccBB. We need to 855 // check for IDom being the header because successors of exit blocks can 856 // have edges from outside the loop, and we should not incorrectly update 857 // the IDom in that case. 858 for (BasicBlock *SuccBB: successors(BB)) 859 if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) { 860 if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) { 861 assert(!SuccBB->getSinglePredecessor() && 862 "BB should be the IDom then!"); 863 DT->changeImmediateDominator(SuccBB, PreHeader); 864 } 865 } 866 } 867 } 868 869 // Loop structure should be the following: 870 // Epilog Prolog 871 // 872 // PreHeader PreHeader 873 // NewPreHeader PrologPreHeader 874 // Header PrologHeader 875 // ... ... 876 // Latch PrologLatch 877 // NewExit PrologExit 878 // EpilogPreHeader NewPreHeader 879 // EpilogHeader Header 880 // ... ... 881 // EpilogLatch Latch 882 // LatchExit LatchExit 883 884 // Rewrite the cloned instruction operands to use the values created when the 885 // clone is created. 886 for (BasicBlock *BB : NewBlocks) { 887 for (Instruction &I : *BB) { 888 RemapInstruction(&I, VMap, 889 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 890 } 891 } 892 893 if (UseEpilogRemainder) { 894 // Connect the epilog code to the original loop and update the 895 // PHI functions. 896 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 897 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 898 PreserveLCSSA); 899 900 // Update counter in loop for unrolling. 901 // I should be multiply of Count. 902 IRBuilder<> B2(NewPreHeader->getTerminator()); 903 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 904 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 905 B2.SetInsertPoint(LatchBR); 906 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 907 Header->getFirstNonPHI()); 908 Value *IdxSub = 909 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 910 NewIdx->getName() + ".nsub"); 911 Value *IdxCmp; 912 if (LatchBR->getSuccessor(0) == Header) 913 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 914 else 915 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 916 NewIdx->addIncoming(TestVal, NewPreHeader); 917 NewIdx->addIncoming(IdxSub, Latch); 918 LatchBR->setCondition(IdxCmp); 919 } else { 920 // Connect the prolog code to the original loop and update the 921 // PHI functions. 922 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 923 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 924 } 925 926 // If this loop is nested, then the loop unroller changes the code in the any 927 // of its parent loops, so the Scalar Evolution pass needs to be run again. 928 SE->forgetTopmostLoop(L); 929 930 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 931 // cannot rely on the LoopUnrollPass to do this because it only does 932 // canonicalization for parent/subloops and not the sibling loops. 933 if (OtherExits.size() > 0) { 934 // Generate dedicated exit blocks for the original loop, to preserve 935 // LoopSimplifyForm. 936 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA); 937 // Generate dedicated exit blocks for the remainder loop if one exists, to 938 // preserve LoopSimplifyForm. 939 if (remainderLoop) 940 formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA); 941 } 942 943 auto UnrollResult = LoopUnrollResult::Unmodified; 944 if (remainderLoop && UnrollRemainder) { 945 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); 946 UnrollResult = 947 UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1, 948 /*Force*/ false, /*AllowRuntime*/ false, 949 /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true, 950 /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1, 951 /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC, 952 /*ORE*/ nullptr, PreserveLCSSA); 953 } 954 955 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) 956 *ResultLoop = remainderLoop; 957 NumRuntimeUnrolled++; 958 return true; 959 } 960