xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 98743fa77af0c0fafff8af648fdaf054ba231c29)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpander.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 #include <algorithm>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-unroll"
46 
47 STATISTIC(NumRuntimeUnrolled,
48           "Number of loops unrolled with run-time trip counts");
49 static cl::opt<bool> UnrollRuntimeMultiExit(
50     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
51     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
52              "epilog is generated"));
53 
54 /// Connect the unrolling prolog code to the original loop.
55 /// The unrolling prolog code contains code to execute the
56 /// 'extra' iterations if the run-time trip count modulo the
57 /// unroll count is non-zero.
58 ///
59 /// This function performs the following:
60 /// - Create PHI nodes at prolog end block to combine values
61 ///   that exit the prolog code and jump around the prolog.
62 /// - Add a PHI operand to a PHI node at the loop exit block
63 ///   for values that exit the prolog and go around the loop.
64 /// - Branch around the original loop if the trip count is less
65 ///   than the unroll factor.
66 ///
67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
68                           BasicBlock *PrologExit,
69                           BasicBlock *OriginalLoopLatchExit,
70                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
71                           ValueToValueMapTy &VMap, DominatorTree *DT,
72                           LoopInfo *LI, bool PreserveLCSSA) {
73   // Loop structure should be the following:
74   // Preheader
75   //  PrologHeader
76   //  ...
77   //  PrologLatch
78   //  PrologExit
79   //   NewPreheader
80   //    Header
81   //    ...
82   //    Latch
83   //      LatchExit
84   BasicBlock *Latch = L->getLoopLatch();
85   assert(Latch && "Loop must have a latch");
86   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
87 
88   // Create a PHI node for each outgoing value from the original loop
89   // (which means it is an outgoing value from the prolog code too).
90   // The new PHI node is inserted in the prolog end basic block.
91   // The new PHI node value is added as an operand of a PHI node in either
92   // the loop header or the loop exit block.
93   for (BasicBlock *Succ : successors(Latch)) {
94     for (PHINode &PN : Succ->phis()) {
95       // Add a new PHI node to the prolog end block and add the
96       // appropriate incoming values.
97       // TODO: This code assumes that the PrologExit (or the LatchExit block for
98       // prolog loop) contains only one predecessor from the loop, i.e. the
99       // PrologLatch. When supporting multiple-exiting block loops, we can have
100       // two or more blocks that have the LatchExit as the target in the
101       // original loop.
102       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
103                                        PrologExit->getFirstNonPHI());
104       // Adding a value to the new PHI node from the original loop preheader.
105       // This is the value that skips all the prolog code.
106       if (L->contains(&PN)) {
107         // Succ is loop header.
108         NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
109                            PreHeader);
110       } else {
111         // Succ is LatchExit.
112         NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
113       }
114 
115       Value *V = PN.getIncomingValueForBlock(Latch);
116       if (Instruction *I = dyn_cast<Instruction>(V)) {
117         if (L->contains(I)) {
118           V = VMap.lookup(I);
119         }
120       }
121       // Adding a value to the new PHI node from the last prolog block
122       // that was created.
123       NewPN->addIncoming(V, PrologLatch);
124 
125       // Update the existing PHI node operand with the value from the
126       // new PHI node.  How this is done depends on if the existing
127       // PHI node is in the original loop block, or the exit block.
128       if (L->contains(&PN)) {
129         PN.setIncomingValue(PN.getBasicBlockIndex(NewPreHeader), NewPN);
130       } else {
131         PN.addIncoming(NewPN, PrologExit);
132       }
133     }
134   }
135 
136   // Make sure that created prolog loop is in simplified form
137   SmallVector<BasicBlock *, 4> PrologExitPreds;
138   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
139   if (PrologLoop) {
140     for (BasicBlock *PredBB : predecessors(PrologExit))
141       if (PrologLoop->contains(PredBB))
142         PrologExitPreds.push_back(PredBB);
143 
144     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
145                            nullptr, PreserveLCSSA);
146   }
147 
148   // Create a branch around the original loop, which is taken if there are no
149   // iterations remaining to be executed after running the prologue.
150   Instruction *InsertPt = PrologExit->getTerminator();
151   IRBuilder<> B(InsertPt);
152 
153   assert(Count != 0 && "nonsensical Count!");
154 
155   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
156   // This means %xtraiter is (BECount + 1) and all of the iterations of this
157   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
158   // then (BECount + 1) cannot unsigned-overflow.
159   Value *BrLoopExit =
160       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
161   // Split the exit to maintain loop canonicalization guarantees
162   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
163   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
164                          nullptr, PreserveLCSSA);
165   // Add the branch to the exit block (around the unrolled loop)
166   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
167   InsertPt->eraseFromParent();
168   if (DT)
169     DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
170 }
171 
172 /// Connect the unrolling epilog code to the original loop.
173 /// The unrolling epilog code contains code to execute the
174 /// 'extra' iterations if the run-time trip count modulo the
175 /// unroll count is non-zero.
176 ///
177 /// This function performs the following:
178 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
179 /// - Create PHI nodes at the unrolling loop exit to combine
180 ///   values that exit the unrolling loop code and jump around it.
181 /// - Update PHI operands in the epilog loop by the new PHI nodes
182 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
183 ///
184 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
185                           BasicBlock *Exit, BasicBlock *PreHeader,
186                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
187                           ValueToValueMapTy &VMap, DominatorTree *DT,
188                           LoopInfo *LI, bool PreserveLCSSA)  {
189   BasicBlock *Latch = L->getLoopLatch();
190   assert(Latch && "Loop must have a latch");
191   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
192 
193   // Loop structure should be the following:
194   //
195   // PreHeader
196   // NewPreHeader
197   //   Header
198   //   ...
199   //   Latch
200   // NewExit (PN)
201   // EpilogPreHeader
202   //   EpilogHeader
203   //   ...
204   //   EpilogLatch
205   // Exit (EpilogPN)
206 
207   // Update PHI nodes at NewExit and Exit.
208   for (PHINode &PN : NewExit->phis()) {
209     // PN should be used in another PHI located in Exit block as
210     // Exit was split by SplitBlockPredecessors into Exit and NewExit
211     // Basicaly it should look like:
212     // NewExit:
213     //   PN = PHI [I, Latch]
214     // ...
215     // Exit:
216     //   EpilogPN = PHI [PN, EpilogPreHeader]
217     //
218     // There is EpilogPreHeader incoming block instead of NewExit as
219     // NewExit was spilt 1 more time to get EpilogPreHeader.
220     assert(PN.hasOneUse() && "The phi should have 1 use");
221     PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
222     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
223 
224     // Add incoming PreHeader from branch around the Loop
225     PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
226 
227     Value *V = PN.getIncomingValueForBlock(Latch);
228     Instruction *I = dyn_cast<Instruction>(V);
229     if (I && L->contains(I))
230       // If value comes from an instruction in the loop add VMap value.
231       V = VMap.lookup(I);
232     // For the instruction out of the loop, constant or undefined value
233     // insert value itself.
234     EpilogPN->addIncoming(V, EpilogLatch);
235 
236     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
237           "EpilogPN should have EpilogPreHeader incoming block");
238     // Change EpilogPreHeader incoming block to NewExit.
239     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
240                                NewExit);
241     // Now PHIs should look like:
242     // NewExit:
243     //   PN = PHI [I, Latch], [undef, PreHeader]
244     // ...
245     // Exit:
246     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
247   }
248 
249   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
250   // Update corresponding PHI nodes in epilog loop.
251   for (BasicBlock *Succ : successors(Latch)) {
252     // Skip this as we already updated phis in exit blocks.
253     if (!L->contains(Succ))
254       continue;
255     for (PHINode &PN : Succ->phis()) {
256       // Add new PHI nodes to the loop exit block and update epilog
257       // PHIs with the new PHI values.
258       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
259                                        NewExit->getFirstNonPHI());
260       // Adding a value to the new PHI node from the unrolling loop preheader.
261       NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
262       // Adding a value to the new PHI node from the unrolling loop latch.
263       NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
264 
265       // Update the existing PHI node operand with the value from the new PHI
266       // node.  Corresponding instruction in epilog loop should be PHI.
267       PHINode *VPN = cast<PHINode>(VMap[&PN]);
268       VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
269     }
270   }
271 
272   Instruction *InsertPt = NewExit->getTerminator();
273   IRBuilder<> B(InsertPt);
274   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
275   assert(Exit && "Loop must have a single exit block only");
276   // Split the epilogue exit to maintain loop canonicalization guarantees
277   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
278   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
279                          PreserveLCSSA);
280   // Add the branch to the exit block (around the unrolling loop)
281   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
282   InsertPt->eraseFromParent();
283   if (DT)
284     DT->changeImmediateDominator(Exit, NewExit);
285 
286   // Split the main loop exit to maintain canonicalization guarantees.
287   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
288   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
289                          PreserveLCSSA);
290 }
291 
292 /// Create a clone of the blocks in a loop and connect them together.
293 /// If CreateRemainderLoop is false, loop structure will not be cloned,
294 /// otherwise a new loop will be created including all cloned blocks, and the
295 /// iterator of it switches to count NewIter down to 0.
296 /// The cloned blocks should be inserted between InsertTop and InsertBot.
297 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
298 /// new loop exit.
299 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
300 static Loop *
301 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
302                 const bool UseEpilogRemainder, const bool UnrollRemainder,
303                 BasicBlock *InsertTop,
304                 BasicBlock *InsertBot, BasicBlock *Preheader,
305                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
306                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
307   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
308   BasicBlock *Header = L->getHeader();
309   BasicBlock *Latch = L->getLoopLatch();
310   Function *F = Header->getParent();
311   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
312   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
313   Loop *ParentLoop = L->getParentLoop();
314   NewLoopsMap NewLoops;
315   NewLoops[ParentLoop] = ParentLoop;
316   if (!CreateRemainderLoop)
317     NewLoops[L] = ParentLoop;
318 
319   // For each block in the original loop, create a new copy,
320   // and update the value map with the newly created values.
321   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
322     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
323     NewBlocks.push_back(NewBB);
324 
325     // If we're unrolling the outermost loop, there's no remainder loop,
326     // and this block isn't in a nested loop, then the new block is not
327     // in any loop. Otherwise, add it to loopinfo.
328     if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
329       addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
330 
331     VMap[*BB] = NewBB;
332     if (Header == *BB) {
333       // For the first block, add a CFG connection to this newly
334       // created block.
335       InsertTop->getTerminator()->setSuccessor(0, NewBB);
336     }
337 
338     if (DT) {
339       if (Header == *BB) {
340         // The header is dominated by the preheader.
341         DT->addNewBlock(NewBB, InsertTop);
342       } else {
343         // Copy information from original loop to unrolled loop.
344         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
345         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
346       }
347     }
348 
349     if (Latch == *BB) {
350       // For the last block, if CreateRemainderLoop is false, create a direct
351       // jump to InsertBot. If not, create a loop back to cloned head.
352       VMap.erase((*BB)->getTerminator());
353       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
354       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
355       IRBuilder<> Builder(LatchBR);
356       if (!CreateRemainderLoop) {
357         Builder.CreateBr(InsertBot);
358       } else {
359         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
360                                           suffix + ".iter",
361                                           FirstLoopBB->getFirstNonPHI());
362         Value *IdxSub =
363             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
364                               NewIdx->getName() + ".sub");
365         Value *IdxCmp =
366             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
367         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
368         NewIdx->addIncoming(NewIter, InsertTop);
369         NewIdx->addIncoming(IdxSub, NewBB);
370       }
371       LatchBR->eraseFromParent();
372     }
373   }
374 
375   // Change the incoming values to the ones defined in the preheader or
376   // cloned loop.
377   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
378     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
379     if (!CreateRemainderLoop) {
380       if (UseEpilogRemainder) {
381         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
382         NewPHI->setIncomingBlock(idx, InsertTop);
383         NewPHI->removeIncomingValue(Latch, false);
384       } else {
385         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
386         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
387       }
388     } else {
389       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
390       NewPHI->setIncomingBlock(idx, InsertTop);
391       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
392       idx = NewPHI->getBasicBlockIndex(Latch);
393       Value *InVal = NewPHI->getIncomingValue(idx);
394       NewPHI->setIncomingBlock(idx, NewLatch);
395       if (Value *V = VMap.lookup(InVal))
396         NewPHI->setIncomingValue(idx, V);
397     }
398   }
399   if (CreateRemainderLoop) {
400     Loop *NewLoop = NewLoops[L];
401     MDNode *LoopID = NewLoop->getLoopID();
402     assert(NewLoop && "L should have been cloned");
403 
404     // Only add loop metadata if the loop is not going to be completely
405     // unrolled.
406     if (UnrollRemainder)
407       return NewLoop;
408 
409     Optional<MDNode *> NewLoopID = makeFollowupLoopID(
410         LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
411     if (NewLoopID.hasValue()) {
412       NewLoop->setLoopID(NewLoopID.getValue());
413 
414       // Do not setLoopAlreadyUnrolled if loop attributes have been defined
415       // explicitly.
416       return NewLoop;
417     }
418 
419     // Add unroll disable metadata to disable future unrolling for this loop.
420     NewLoop->setLoopAlreadyUnrolled();
421     return NewLoop;
422   }
423   else
424     return nullptr;
425 }
426 
427 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
428 /// is populated with all the loop exit blocks other than the LatchExit block.
429 static bool
430 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits,
431                              BasicBlock *LatchExit, bool PreserveLCSSA,
432                              bool UseEpilogRemainder) {
433 
434   // We currently have some correctness constrains in unrolling a multi-exit
435   // loop. Check for these below.
436 
437   // We rely on LCSSA form being preserved when the exit blocks are transformed.
438   if (!PreserveLCSSA)
439     return false;
440   SmallVector<BasicBlock *, 4> Exits;
441   L->getUniqueExitBlocks(Exits);
442   for (auto *BB : Exits)
443     if (BB != LatchExit)
444       OtherExits.push_back(BB);
445 
446   // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
447   // UnrollRuntimeMultiExit is true. This will need updating the logic in
448   // connectEpilog/connectProlog.
449   if (!LatchExit->getSinglePredecessor()) {
450     LLVM_DEBUG(
451         dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
452                   "predecessor.\n");
453     return false;
454   }
455   // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
456   // and L is an inner loop. This is because in presence of multiple exits, the
457   // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
458   // outer loop. This is automatically handled in the prolog case, so we do not
459   // have that bug in prolog generation.
460   if (UseEpilogRemainder && L->getParentLoop())
461     return false;
462 
463   // All constraints have been satisfied.
464   return true;
465 }
466 
467 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
468 /// we return true only if UnrollRuntimeMultiExit is set to true.
469 static bool canProfitablyUnrollMultiExitLoop(
470     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
471     bool PreserveLCSSA, bool UseEpilogRemainder) {
472 
473 #if !defined(NDEBUG)
474   SmallVector<BasicBlock *, 8> OtherExitsDummyCheck;
475   assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit,
476                                       PreserveLCSSA, UseEpilogRemainder) &&
477          "Should be safe to unroll before checking profitability!");
478 #endif
479 
480   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
481   if (UnrollRuntimeMultiExit.getNumOccurrences())
482     return UnrollRuntimeMultiExit;
483 
484   // The main pain point with multi-exit loop unrolling is that once unrolled,
485   // we will not be able to merge all blocks into a straight line code.
486   // There are branches within the unrolled loop that go to the OtherExits.
487   // The second point is the increase in code size, but this is true
488   // irrespective of multiple exits.
489 
490   // Note: Both the heuristics below are coarse grained. We are essentially
491   // enabling unrolling of loops that have a single side exit other than the
492   // normal LatchExit (i.e. exiting into a deoptimize block).
493   // The heuristics considered are:
494   // 1. low number of branches in the unrolled version.
495   // 2. high predictability of these extra branches.
496   // We avoid unrolling loops that have more than two exiting blocks. This
497   // limits the total number of branches in the unrolled loop to be atmost
498   // the unroll factor (since one of the exiting blocks is the latch block).
499   SmallVector<BasicBlock*, 4> ExitingBlocks;
500   L->getExitingBlocks(ExitingBlocks);
501   if (ExitingBlocks.size() > 2)
502     return false;
503 
504   // The second heuristic is that L has one exit other than the latchexit and
505   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
506   // taken, which also implies the branch leading to the deoptimize block is
507   // highly predictable.
508   return (OtherExits.size() == 1 &&
509           OtherExits[0]->getTerminatingDeoptimizeCall());
510   // TODO: These can be fine-tuned further to consider code size or deopt states
511   // that are captured by the deoptimize exit block.
512   // Also, we can extend this to support more cases, if we actually
513   // know of kinds of multiexit loops that would benefit from unrolling.
514 }
515 
516 /// Insert code in the prolog/epilog code when unrolling a loop with a
517 /// run-time trip-count.
518 ///
519 /// This method assumes that the loop unroll factor is total number
520 /// of loop bodies in the loop after unrolling. (Some folks refer
521 /// to the unroll factor as the number of *extra* copies added).
522 /// We assume also that the loop unroll factor is a power-of-two. So, after
523 /// unrolling the loop, the number of loop bodies executed is 2,
524 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
525 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
526 /// the switch instruction is generated.
527 ///
528 /// ***Prolog case***
529 ///        extraiters = tripcount % loopfactor
530 ///        if (extraiters == 0) jump Loop:
531 ///        else jump Prol:
532 /// Prol:  LoopBody;
533 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
534 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
535 ///        if (tripcount < loopfactor) jump End:
536 /// Loop:
537 /// ...
538 /// End:
539 ///
540 /// ***Epilog case***
541 ///        extraiters = tripcount % loopfactor
542 ///        if (tripcount < loopfactor) jump LoopExit:
543 ///        unroll_iters = tripcount - extraiters
544 /// Loop:  LoopBody; (executes unroll_iter times);
545 ///        unroll_iter -= 1
546 ///        if (unroll_iter != 0) jump Loop:
547 /// LoopExit:
548 ///        if (extraiters == 0) jump EpilExit:
549 /// Epil:  LoopBody; (executes extraiters times)
550 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
551 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
552 /// EpilExit:
553 
554 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
555                                       bool AllowExpensiveTripCount,
556                                       bool UseEpilogRemainder,
557                                       bool UnrollRemainder, LoopInfo *LI,
558                                       ScalarEvolution *SE, DominatorTree *DT,
559                                       AssumptionCache *AC, bool PreserveLCSSA,
560                                       Loop **ResultLoop) {
561   LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
562   LLVM_DEBUG(L->dump());
563   LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
564                                 : dbgs() << "Using prolog remainder.\n");
565 
566   // Make sure the loop is in canonical form.
567   if (!L->isLoopSimplifyForm()) {
568     LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
569     return false;
570   }
571 
572   // Guaranteed by LoopSimplifyForm.
573   BasicBlock *Latch = L->getLoopLatch();
574   BasicBlock *Header = L->getHeader();
575 
576   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
577 
578   if (!LatchBR || LatchBR->isUnconditional()) {
579     // The loop-rotate pass can be helpful to avoid this in many cases.
580     LLVM_DEBUG(
581         dbgs()
582         << "Loop latch not terminated by a conditional branch.\n");
583     return false;
584   }
585 
586   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
587   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
588 
589   if (L->contains(LatchExit)) {
590     // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
591     // targets of the Latch be an exit block out of the loop.
592     LLVM_DEBUG(
593         dbgs()
594         << "One of the loop latch successors must be the exit block.\n");
595     return false;
596   }
597 
598   // These are exit blocks other than the target of the latch exiting block.
599   SmallVector<BasicBlock *, 4> OtherExits;
600   bool isMultiExitUnrollingEnabled =
601       canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
602                                    UseEpilogRemainder) &&
603       canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
604                                        UseEpilogRemainder);
605   // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
606   if (!isMultiExitUnrollingEnabled &&
607       (!L->getExitingBlock() || OtherExits.size())) {
608     LLVM_DEBUG(
609         dbgs()
610         << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
611            "enabled!\n");
612     return false;
613   }
614   // Use Scalar Evolution to compute the trip count. This allows more loops to
615   // be unrolled than relying on induction var simplification.
616   if (!SE)
617     return false;
618 
619   // Only unroll loops with a computable trip count, and the trip count needs
620   // to be an int value (allowing a pointer type is a TODO item).
621   // We calculate the backedge count by using getExitCount on the Latch block,
622   // which is proven to be the only exiting block in this loop. This is same as
623   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
624   // exiting blocks).
625   const SCEV *BECountSC = SE->getExitCount(L, Latch);
626   if (isa<SCEVCouldNotCompute>(BECountSC) ||
627       !BECountSC->getType()->isIntegerTy()) {
628     LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
629     return false;
630   }
631 
632   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
633 
634   // Add 1 since the backedge count doesn't include the first loop iteration.
635   const SCEV *TripCountSC =
636       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
637   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
638     LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
639     return false;
640   }
641 
642   BasicBlock *PreHeader = L->getLoopPreheader();
643   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
644   const DataLayout &DL = Header->getModule()->getDataLayout();
645   SCEVExpander Expander(*SE, DL, "loop-unroll");
646   if (!AllowExpensiveTripCount &&
647       Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) {
648     LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
649     return false;
650   }
651 
652   // This constraint lets us deal with an overflowing trip count easily; see the
653   // comment on ModVal below.
654   if (Log2_32(Count) > BEWidth) {
655     LLVM_DEBUG(
656         dbgs()
657         << "Count failed constraint on overflow trip count calculation.\n");
658     return false;
659   }
660 
661   // Loop structure is the following:
662   //
663   // PreHeader
664   //   Header
665   //   ...
666   //   Latch
667   // LatchExit
668 
669   BasicBlock *NewPreHeader;
670   BasicBlock *NewExit = nullptr;
671   BasicBlock *PrologExit = nullptr;
672   BasicBlock *EpilogPreHeader = nullptr;
673   BasicBlock *PrologPreHeader = nullptr;
674 
675   if (UseEpilogRemainder) {
676     // If epilog remainder
677     // Split PreHeader to insert a branch around loop for unrolling.
678     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
679     NewPreHeader->setName(PreHeader->getName() + ".new");
680     // Split LatchExit to create phi nodes from branch above.
681     SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
682     NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI,
683                                      nullptr, PreserveLCSSA);
684     // NewExit gets its DebugLoc from LatchExit, which is not part of the
685     // original Loop.
686     // Fix this by setting Loop's DebugLoc to NewExit.
687     auto *NewExitTerminator = NewExit->getTerminator();
688     NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
689     // Split NewExit to insert epilog remainder loop.
690     EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
691     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
692   } else {
693     // If prolog remainder
694     // Split the original preheader twice to insert prolog remainder loop
695     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
696     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
697     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
698                             DT, LI);
699     PrologExit->setName(Header->getName() + ".prol.loopexit");
700     // Split PrologExit to get NewPreHeader.
701     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
702     NewPreHeader->setName(PreHeader->getName() + ".new");
703   }
704   // Loop structure should be the following:
705   //  Epilog             Prolog
706   //
707   // PreHeader         PreHeader
708   // *NewPreHeader     *PrologPreHeader
709   //   Header          *PrologExit
710   //   ...             *NewPreHeader
711   //   Latch             Header
712   // *NewExit            ...
713   // *EpilogPreHeader    Latch
714   // LatchExit              LatchExit
715 
716   // Calculate conditions for branch around loop for unrolling
717   // in epilog case and around prolog remainder loop in prolog case.
718   // Compute the number of extra iterations required, which is:
719   //  extra iterations = run-time trip count % loop unroll factor
720   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
721   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
722                                             PreHeaderBR);
723   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
724                                           PreHeaderBR);
725   IRBuilder<> B(PreHeaderBR);
726   Value *ModVal;
727   // Calculate ModVal = (BECount + 1) % Count.
728   // Note that TripCount is BECount + 1.
729   if (isPowerOf2_32(Count)) {
730     // When Count is power of 2 we don't BECount for epilog case, however we'll
731     // need it for a branch around unrolling loop for prolog case.
732     ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
733     //  1. There are no iterations to be run in the prolog/epilog loop.
734     // OR
735     //  2. The addition computing TripCount overflowed.
736     //
737     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
738     // the number of iterations that remain to be run in the original loop is a
739     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
740     // explicitly check this above).
741   } else {
742     // As (BECount + 1) can potentially unsigned overflow we count
743     // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
744     Value *ModValTmp = B.CreateURem(BECount,
745                                     ConstantInt::get(BECount->getType(),
746                                                      Count));
747     Value *ModValAdd = B.CreateAdd(ModValTmp,
748                                    ConstantInt::get(ModValTmp->getType(), 1));
749     // At that point (BECount % Count) + 1 could be equal to Count.
750     // To handle this case we need to take mod by Count one more time.
751     ModVal = B.CreateURem(ModValAdd,
752                           ConstantInt::get(BECount->getType(), Count),
753                           "xtraiter");
754   }
755   Value *BranchVal =
756       UseEpilogRemainder ? B.CreateICmpULT(BECount,
757                                            ConstantInt::get(BECount->getType(),
758                                                             Count - 1)) :
759                            B.CreateIsNotNull(ModVal, "lcmp.mod");
760   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
761   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
762   // Branch to either remainder (extra iterations) loop or unrolling loop.
763   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
764   PreHeaderBR->eraseFromParent();
765   if (DT) {
766     if (UseEpilogRemainder)
767       DT->changeImmediateDominator(NewExit, PreHeader);
768     else
769       DT->changeImmediateDominator(PrologExit, PreHeader);
770   }
771   Function *F = Header->getParent();
772   // Get an ordered list of blocks in the loop to help with the ordering of the
773   // cloned blocks in the prolog/epilog code
774   LoopBlocksDFS LoopBlocks(L);
775   LoopBlocks.perform(LI);
776 
777   //
778   // For each extra loop iteration, create a copy of the loop's basic blocks
779   // and generate a condition that branches to the copy depending on the
780   // number of 'left over' iterations.
781   //
782   std::vector<BasicBlock *> NewBlocks;
783   ValueToValueMapTy VMap;
784 
785   // For unroll factor 2 remainder loop will have 1 iterations.
786   // Do not create 1 iteration loop.
787   bool CreateRemainderLoop = (Count != 2);
788 
789   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
790   // the loop, otherwise we create a cloned loop to execute the extra
791   // iterations. This function adds the appropriate CFG connections.
792   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
793   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
794   Loop *remainderLoop = CloneLoopBlocks(
795       L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
796       InsertTop, InsertBot,
797       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
798 
799   // Insert the cloned blocks into the function.
800   F->getBasicBlockList().splice(InsertBot->getIterator(),
801                                 F->getBasicBlockList(),
802                                 NewBlocks[0]->getIterator(),
803                                 F->end());
804 
805   // Now the loop blocks are cloned and the other exiting blocks from the
806   // remainder are connected to the original Loop's exit blocks. The remaining
807   // work is to update the phi nodes in the original loop, and take in the
808   // values from the cloned region. Also update the dominator info for
809   // OtherExits and their immediate successors, since we have new edges into
810   // OtherExits.
811   SmallPtrSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks;
812   for (auto *BB : OtherExits) {
813    for (auto &II : *BB) {
814 
815      // Given we preserve LCSSA form, we know that the values used outside the
816      // loop will be used through these phi nodes at the exit blocks that are
817      // transformed below.
818      if (!isa<PHINode>(II))
819        break;
820      PHINode *Phi = cast<PHINode>(&II);
821      unsigned oldNumOperands = Phi->getNumIncomingValues();
822      // Add the incoming values from the remainder code to the end of the phi
823      // node.
824      for (unsigned i =0; i < oldNumOperands; i++){
825        Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
826        // newVal can be a constant or derived from values outside the loop, and
827        // hence need not have a VMap value. Also, since lookup already generated
828        // a default "null" VMap entry for this value, we need to populate that
829        // VMap entry correctly, with the mapped entry being itself.
830        if (!newVal) {
831          newVal = Phi->getIncomingValue(i);
832          VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
833        }
834        Phi->addIncoming(newVal,
835                            cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
836      }
837    }
838 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
839     for (BasicBlock *SuccBB : successors(BB)) {
840       assert(!(any_of(OtherExits,
841                       [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
842                SuccBB == LatchExit) &&
843              "Breaks the definition of dedicated exits!");
844     }
845 #endif
846    // Update the dominator info because the immediate dominator is no longer the
847    // header of the original Loop. BB has edges both from L and remainder code.
848    // Since the preheader determines which loop is run (L or directly jump to
849    // the remainder code), we set the immediate dominator as the preheader.
850    if (DT) {
851      DT->changeImmediateDominator(BB, PreHeader);
852      // Also update the IDom for immediate successors of BB.  If the current
853      // IDom is the header, update the IDom to be the preheader because that is
854      // the nearest common dominator of all predecessors of SuccBB.  We need to
855      // check for IDom being the header because successors of exit blocks can
856      // have edges from outside the loop, and we should not incorrectly update
857      // the IDom in that case.
858      for (BasicBlock *SuccBB: successors(BB))
859        if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) {
860          if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) {
861            assert(!SuccBB->getSinglePredecessor() &&
862                   "BB should be the IDom then!");
863            DT->changeImmediateDominator(SuccBB, PreHeader);
864          }
865        }
866     }
867   }
868 
869   // Loop structure should be the following:
870   //  Epilog             Prolog
871   //
872   // PreHeader         PreHeader
873   // NewPreHeader      PrologPreHeader
874   //   Header            PrologHeader
875   //   ...               ...
876   //   Latch             PrologLatch
877   // NewExit           PrologExit
878   // EpilogPreHeader   NewPreHeader
879   //   EpilogHeader      Header
880   //   ...               ...
881   //   EpilogLatch       Latch
882   // LatchExit              LatchExit
883 
884   // Rewrite the cloned instruction operands to use the values created when the
885   // clone is created.
886   for (BasicBlock *BB : NewBlocks) {
887     for (Instruction &I : *BB) {
888       RemapInstruction(&I, VMap,
889                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
890     }
891   }
892 
893   if (UseEpilogRemainder) {
894     // Connect the epilog code to the original loop and update the
895     // PHI functions.
896     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
897                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
898                   PreserveLCSSA);
899 
900     // Update counter in loop for unrolling.
901     // I should be multiply of Count.
902     IRBuilder<> B2(NewPreHeader->getTerminator());
903     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
904     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
905     B2.SetInsertPoint(LatchBR);
906     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
907                                       Header->getFirstNonPHI());
908     Value *IdxSub =
909         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
910                      NewIdx->getName() + ".nsub");
911     Value *IdxCmp;
912     if (LatchBR->getSuccessor(0) == Header)
913       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
914     else
915       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
916     NewIdx->addIncoming(TestVal, NewPreHeader);
917     NewIdx->addIncoming(IdxSub, Latch);
918     LatchBR->setCondition(IdxCmp);
919   } else {
920     // Connect the prolog code to the original loop and update the
921     // PHI functions.
922     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
923                   NewPreHeader, VMap, DT, LI, PreserveLCSSA);
924   }
925 
926   // If this loop is nested, then the loop unroller changes the code in the any
927   // of its parent loops, so the Scalar Evolution pass needs to be run again.
928   SE->forgetTopmostLoop(L);
929 
930   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
931   // cannot rely on the LoopUnrollPass to do this because it only does
932   // canonicalization for parent/subloops and not the sibling loops.
933   if (OtherExits.size() > 0) {
934     // Generate dedicated exit blocks for the original loop, to preserve
935     // LoopSimplifyForm.
936     formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
937     // Generate dedicated exit blocks for the remainder loop if one exists, to
938     // preserve LoopSimplifyForm.
939     if (remainderLoop)
940       formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA);
941   }
942 
943   auto UnrollResult = LoopUnrollResult::Unmodified;
944   if (remainderLoop && UnrollRemainder) {
945     LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
946     UnrollResult =
947         UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1,
948                    /*Force*/ false, /*AllowRuntime*/ false,
949                    /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
950                    /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
951                    /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC,
952                    /*ORE*/ nullptr, PreserveLCSSA);
953   }
954 
955   if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
956     *ResultLoop = remainderLoop;
957   NumRuntimeUnrolled++;
958   return true;
959 }
960