1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities for loops with run-time 10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 11 // trip counts. 12 // 13 // The functions in this file are used to generate extra code when the 14 // run-time trip count modulo the unroll factor is not 0. When this is the 15 // case, we need to generate code to execute these 'left over' iterations. 16 // 17 // The current strategy generates an if-then-else sequence prior to the 18 // unrolled loop to execute the 'left over' iterations before or after the 19 // unrolled loop. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include <algorithm> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-unroll" 46 47 STATISTIC(NumRuntimeUnrolled, 48 "Number of loops unrolled with run-time trip counts"); 49 static cl::opt<bool> UnrollRuntimeMultiExit( 50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 52 "epilog is generated")); 53 static cl::opt<bool> UnrollRuntimeOtherExitPredictable( 54 "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, 55 cl::desc("Assume the non latch exit block to be predictable")); 56 57 /// Connect the unrolling prolog code to the original loop. 58 /// The unrolling prolog code contains code to execute the 59 /// 'extra' iterations if the run-time trip count modulo the 60 /// unroll count is non-zero. 61 /// 62 /// This function performs the following: 63 /// - Create PHI nodes at prolog end block to combine values 64 /// that exit the prolog code and jump around the prolog. 65 /// - Add a PHI operand to a PHI node at the loop exit block 66 /// for values that exit the prolog and go around the loop. 67 /// - Branch around the original loop if the trip count is less 68 /// than the unroll factor. 69 /// 70 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 71 BasicBlock *PrologExit, 72 BasicBlock *OriginalLoopLatchExit, 73 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 74 ValueToValueMapTy &VMap, DominatorTree *DT, 75 LoopInfo *LI, bool PreserveLCSSA) { 76 // Loop structure should be the following: 77 // Preheader 78 // PrologHeader 79 // ... 80 // PrologLatch 81 // PrologExit 82 // NewPreheader 83 // Header 84 // ... 85 // Latch 86 // LatchExit 87 BasicBlock *Latch = L->getLoopLatch(); 88 assert(Latch && "Loop must have a latch"); 89 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 90 91 // Create a PHI node for each outgoing value from the original loop 92 // (which means it is an outgoing value from the prolog code too). 93 // The new PHI node is inserted in the prolog end basic block. 94 // The new PHI node value is added as an operand of a PHI node in either 95 // the loop header or the loop exit block. 96 for (BasicBlock *Succ : successors(Latch)) { 97 for (PHINode &PN : Succ->phis()) { 98 // Add a new PHI node to the prolog end block and add the 99 // appropriate incoming values. 100 // TODO: This code assumes that the PrologExit (or the LatchExit block for 101 // prolog loop) contains only one predecessor from the loop, i.e. the 102 // PrologLatch. When supporting multiple-exiting block loops, we can have 103 // two or more blocks that have the LatchExit as the target in the 104 // original loop. 105 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 106 PrologExit->getFirstNonPHI()); 107 // Adding a value to the new PHI node from the original loop preheader. 108 // This is the value that skips all the prolog code. 109 if (L->contains(&PN)) { 110 // Succ is loop header. 111 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), 112 PreHeader); 113 } else { 114 // Succ is LatchExit. 115 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); 116 } 117 118 Value *V = PN.getIncomingValueForBlock(Latch); 119 if (Instruction *I = dyn_cast<Instruction>(V)) { 120 if (L->contains(I)) { 121 V = VMap.lookup(I); 122 } 123 } 124 // Adding a value to the new PHI node from the last prolog block 125 // that was created. 126 NewPN->addIncoming(V, PrologLatch); 127 128 // Update the existing PHI node operand with the value from the 129 // new PHI node. How this is done depends on if the existing 130 // PHI node is in the original loop block, or the exit block. 131 if (L->contains(&PN)) 132 PN.setIncomingValueForBlock(NewPreHeader, NewPN); 133 else 134 PN.addIncoming(NewPN, PrologExit); 135 } 136 } 137 138 // Make sure that created prolog loop is in simplified form 139 SmallVector<BasicBlock *, 4> PrologExitPreds; 140 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 141 if (PrologLoop) { 142 for (BasicBlock *PredBB : predecessors(PrologExit)) 143 if (PrologLoop->contains(PredBB)) 144 PrologExitPreds.push_back(PredBB); 145 146 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 147 nullptr, PreserveLCSSA); 148 } 149 150 // Create a branch around the original loop, which is taken if there are no 151 // iterations remaining to be executed after running the prologue. 152 Instruction *InsertPt = PrologExit->getTerminator(); 153 IRBuilder<> B(InsertPt); 154 155 assert(Count != 0 && "nonsensical Count!"); 156 157 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 158 // This means %xtraiter is (BECount + 1) and all of the iterations of this 159 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 160 // then (BECount + 1) cannot unsigned-overflow. 161 Value *BrLoopExit = 162 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 163 // Split the exit to maintain loop canonicalization guarantees 164 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 165 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 166 nullptr, PreserveLCSSA); 167 // Add the branch to the exit block (around the unrolled loop) 168 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 169 InsertPt->eraseFromParent(); 170 if (DT) 171 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); 172 } 173 174 /// Connect the unrolling epilog code to the original loop. 175 /// The unrolling epilog code contains code to execute the 176 /// 'extra' iterations if the run-time trip count modulo the 177 /// unroll count is non-zero. 178 /// 179 /// This function performs the following: 180 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 181 /// - Create PHI nodes at the unrolling loop exit to combine 182 /// values that exit the unrolling loop code and jump around it. 183 /// - Update PHI operands in the epilog loop by the new PHI nodes 184 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 185 /// 186 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 187 BasicBlock *Exit, BasicBlock *PreHeader, 188 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 189 ValueToValueMapTy &VMap, DominatorTree *DT, 190 LoopInfo *LI, bool PreserveLCSSA) { 191 BasicBlock *Latch = L->getLoopLatch(); 192 assert(Latch && "Loop must have a latch"); 193 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 194 195 // Loop structure should be the following: 196 // 197 // PreHeader 198 // NewPreHeader 199 // Header 200 // ... 201 // Latch 202 // NewExit (PN) 203 // EpilogPreHeader 204 // EpilogHeader 205 // ... 206 // EpilogLatch 207 // Exit (EpilogPN) 208 209 // Update PHI nodes at NewExit and Exit. 210 for (PHINode &PN : NewExit->phis()) { 211 // PN should be used in another PHI located in Exit block as 212 // Exit was split by SplitBlockPredecessors into Exit and NewExit 213 // Basicaly it should look like: 214 // NewExit: 215 // PN = PHI [I, Latch] 216 // ... 217 // Exit: 218 // EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil] 219 // 220 // Exits from non-latch blocks point to the original exit block and the 221 // epilogue edges have already been added. 222 // 223 // There is EpilogPreHeader incoming block instead of NewExit as 224 // NewExit was spilt 1 more time to get EpilogPreHeader. 225 assert(PN.hasOneUse() && "The phi should have 1 use"); 226 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); 227 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 228 229 // Add incoming PreHeader from branch around the Loop 230 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); 231 232 Value *V = PN.getIncomingValueForBlock(Latch); 233 Instruction *I = dyn_cast<Instruction>(V); 234 if (I && L->contains(I)) 235 // If value comes from an instruction in the loop add VMap value. 236 V = VMap.lookup(I); 237 // For the instruction out of the loop, constant or undefined value 238 // insert value itself. 239 EpilogPN->addIncoming(V, EpilogLatch); 240 241 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 242 "EpilogPN should have EpilogPreHeader incoming block"); 243 // Change EpilogPreHeader incoming block to NewExit. 244 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 245 NewExit); 246 // Now PHIs should look like: 247 // NewExit: 248 // PN = PHI [I, Latch], [undef, PreHeader] 249 // ... 250 // Exit: 251 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 252 } 253 254 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 255 // Update corresponding PHI nodes in epilog loop. 256 for (BasicBlock *Succ : successors(Latch)) { 257 // Skip this as we already updated phis in exit blocks. 258 if (!L->contains(Succ)) 259 continue; 260 for (PHINode &PN : Succ->phis()) { 261 // Add new PHI nodes to the loop exit block and update epilog 262 // PHIs with the new PHI values. 263 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 264 NewExit->getFirstNonPHI()); 265 // Adding a value to the new PHI node from the unrolling loop preheader. 266 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); 267 // Adding a value to the new PHI node from the unrolling loop latch. 268 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); 269 270 // Update the existing PHI node operand with the value from the new PHI 271 // node. Corresponding instruction in epilog loop should be PHI. 272 PHINode *VPN = cast<PHINode>(VMap[&PN]); 273 VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); 274 } 275 } 276 277 Instruction *InsertPt = NewExit->getTerminator(); 278 IRBuilder<> B(InsertPt); 279 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 280 assert(Exit && "Loop must have a single exit block only"); 281 // Split the epilogue exit to maintain loop canonicalization guarantees 282 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 283 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, 284 PreserveLCSSA); 285 // Add the branch to the exit block (around the unrolling loop) 286 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 287 InsertPt->eraseFromParent(); 288 if (DT) 289 DT->changeImmediateDominator(Exit, NewExit); 290 291 // Split the main loop exit to maintain canonicalization guarantees. 292 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 293 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, 294 PreserveLCSSA); 295 } 296 297 /// Create a clone of the blocks in a loop and connect them together. 298 /// If CreateRemainderLoop is false, loop structure will not be cloned, 299 /// otherwise a new loop will be created including all cloned blocks, and the 300 /// iterator of it switches to count NewIter down to 0. 301 /// The cloned blocks should be inserted between InsertTop and InsertBot. 302 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 303 /// new loop exit. 304 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 305 static Loop * 306 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 307 const bool UseEpilogRemainder, const bool UnrollRemainder, 308 BasicBlock *InsertTop, 309 BasicBlock *InsertBot, BasicBlock *Preheader, 310 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 311 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 312 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 313 BasicBlock *Header = L->getHeader(); 314 BasicBlock *Latch = L->getLoopLatch(); 315 Function *F = Header->getParent(); 316 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 317 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 318 Loop *ParentLoop = L->getParentLoop(); 319 NewLoopsMap NewLoops; 320 NewLoops[ParentLoop] = ParentLoop; 321 if (!CreateRemainderLoop) 322 NewLoops[L] = ParentLoop; 323 324 // For each block in the original loop, create a new copy, 325 // and update the value map with the newly created values. 326 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 327 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 328 NewBlocks.push_back(NewBB); 329 330 // If we're unrolling the outermost loop, there's no remainder loop, 331 // and this block isn't in a nested loop, then the new block is not 332 // in any loop. Otherwise, add it to loopinfo. 333 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 334 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 335 336 VMap[*BB] = NewBB; 337 if (Header == *BB) { 338 // For the first block, add a CFG connection to this newly 339 // created block. 340 InsertTop->getTerminator()->setSuccessor(0, NewBB); 341 } 342 343 if (DT) { 344 if (Header == *BB) { 345 // The header is dominated by the preheader. 346 DT->addNewBlock(NewBB, InsertTop); 347 } else { 348 // Copy information from original loop to unrolled loop. 349 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 350 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 351 } 352 } 353 354 if (Latch == *BB) { 355 // For the last block, if CreateRemainderLoop is false, create a direct 356 // jump to InsertBot. If not, create a loop back to cloned head. 357 VMap.erase((*BB)->getTerminator()); 358 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 359 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 360 IRBuilder<> Builder(LatchBR); 361 if (!CreateRemainderLoop) { 362 Builder.CreateBr(InsertBot); 363 } else { 364 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 365 suffix + ".iter", 366 FirstLoopBB->getFirstNonPHI()); 367 Value *IdxSub = 368 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 369 NewIdx->getName() + ".sub"); 370 Value *IdxCmp = 371 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 372 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 373 NewIdx->addIncoming(NewIter, InsertTop); 374 NewIdx->addIncoming(IdxSub, NewBB); 375 } 376 LatchBR->eraseFromParent(); 377 } 378 } 379 380 // Change the incoming values to the ones defined in the preheader or 381 // cloned loop. 382 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 383 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 384 if (!CreateRemainderLoop) { 385 if (UseEpilogRemainder) { 386 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 387 NewPHI->setIncomingBlock(idx, InsertTop); 388 NewPHI->removeIncomingValue(Latch, false); 389 } else { 390 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 391 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 392 } 393 } else { 394 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 395 NewPHI->setIncomingBlock(idx, InsertTop); 396 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 397 idx = NewPHI->getBasicBlockIndex(Latch); 398 Value *InVal = NewPHI->getIncomingValue(idx); 399 NewPHI->setIncomingBlock(idx, NewLatch); 400 if (Value *V = VMap.lookup(InVal)) 401 NewPHI->setIncomingValue(idx, V); 402 } 403 } 404 if (CreateRemainderLoop) { 405 Loop *NewLoop = NewLoops[L]; 406 assert(NewLoop && "L should have been cloned"); 407 MDNode *LoopID = NewLoop->getLoopID(); 408 409 // Only add loop metadata if the loop is not going to be completely 410 // unrolled. 411 if (UnrollRemainder) 412 return NewLoop; 413 414 Optional<MDNode *> NewLoopID = makeFollowupLoopID( 415 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); 416 if (NewLoopID.hasValue()) { 417 NewLoop->setLoopID(NewLoopID.getValue()); 418 419 // Do not setLoopAlreadyUnrolled if loop attributes have been defined 420 // explicitly. 421 return NewLoop; 422 } 423 424 // Add unroll disable metadata to disable future unrolling for this loop. 425 NewLoop->setLoopAlreadyUnrolled(); 426 return NewLoop; 427 } 428 else 429 return nullptr; 430 } 431 432 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits 433 /// is populated with all the loop exit blocks other than the LatchExit block. 434 static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit, 435 bool PreserveLCSSA, 436 bool UseEpilogRemainder) { 437 438 // We currently have some correctness constrains in unrolling a multi-exit 439 // loop. Check for these below. 440 441 // We rely on LCSSA form being preserved when the exit blocks are transformed. 442 // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.) 443 if (!PreserveLCSSA) 444 return false; 445 446 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when 447 // using a prolog loop. 448 if (!UseEpilogRemainder && !LatchExit->getSinglePredecessor()) { 449 LLVM_DEBUG( 450 dbgs() << "Bailout for multi-exit handling when latch exit has >1 " 451 "predecessor.\n"); 452 return false; 453 } 454 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated 455 // and L is an inner loop. This is because in presence of multiple exits, the 456 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the 457 // outer loop. This is automatically handled in the prolog case, so we do not 458 // have that bug in prolog generation. 459 if (UseEpilogRemainder && L->getParentLoop()) 460 return false; 461 462 // All constraints have been satisfied. 463 return true; 464 } 465 466 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 467 /// we return true only if UnrollRuntimeMultiExit is set to true. 468 static bool canProfitablyUnrollMultiExitLoop( 469 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 470 bool PreserveLCSSA, bool UseEpilogRemainder) { 471 472 #if !defined(NDEBUG) 473 assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA, 474 UseEpilogRemainder) && 475 "Should be safe to unroll before checking profitability!"); 476 #endif 477 478 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 479 if (UnrollRuntimeMultiExit.getNumOccurrences()) 480 return UnrollRuntimeMultiExit; 481 482 // TODO: We used to bail out for correctness (now fixed). Under what 483 // circumstances is this case profitable to allow? 484 if (!LatchExit->getSinglePredecessor()) 485 return false; 486 487 // The main pain point with multi-exit loop unrolling is that once unrolled, 488 // we will not be able to merge all blocks into a straight line code. 489 // There are branches within the unrolled loop that go to the OtherExits. 490 // The second point is the increase in code size, but this is true 491 // irrespective of multiple exits. 492 493 // Note: Both the heuristics below are coarse grained. We are essentially 494 // enabling unrolling of loops that have a single side exit other than the 495 // normal LatchExit (i.e. exiting into a deoptimize block). 496 // The heuristics considered are: 497 // 1. low number of branches in the unrolled version. 498 // 2. high predictability of these extra branches. 499 // We avoid unrolling loops that have more than two exiting blocks. This 500 // limits the total number of branches in the unrolled loop to be atmost 501 // the unroll factor (since one of the exiting blocks is the latch block). 502 SmallVector<BasicBlock*, 4> ExitingBlocks; 503 L->getExitingBlocks(ExitingBlocks); 504 if (ExitingBlocks.size() > 2) 505 return false; 506 507 // Allow unrolling of loops with no non latch exit blocks. 508 if (OtherExits.size() == 0) 509 return true; 510 511 // The second heuristic is that L has one exit other than the latchexit and 512 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 513 // taken, which also implies the branch leading to the deoptimize block is 514 // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we 515 // assume the other exit branch is predictable even if it has no deoptimize 516 // call. 517 return (OtherExits.size() == 1 && 518 (UnrollRuntimeOtherExitPredictable || 519 OtherExits[0]->getTerminatingDeoptimizeCall())); 520 // TODO: These can be fine-tuned further to consider code size or deopt states 521 // that are captured by the deoptimize exit block. 522 // Also, we can extend this to support more cases, if we actually 523 // know of kinds of multiexit loops that would benefit from unrolling. 524 } 525 526 // Assign the maximum possible trip count as the back edge weight for the 527 // remainder loop if the original loop comes with a branch weight. 528 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop, 529 Loop *RemainderLoop, 530 uint64_t UnrollFactor) { 531 uint64_t TrueWeight, FalseWeight; 532 BranchInst *LatchBR = 533 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 534 if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) { 535 uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader() 536 ? FalseWeight 537 : TrueWeight; 538 assert(UnrollFactor > 1); 539 uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight; 540 BasicBlock *Header = RemainderLoop->getHeader(); 541 BasicBlock *Latch = RemainderLoop->getLoopLatch(); 542 auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator()); 543 unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1); 544 MDBuilder MDB(RemainderLatchBR->getContext()); 545 MDNode *WeightNode = 546 HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) 547 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); 548 RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 549 } 550 } 551 552 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain 553 /// accounting for the possibility of unsigned overflow in the 2s complement 554 /// domain. Preconditions: 555 /// 1) TripCount = BECount + 1 (allowing overflow) 556 /// 2) Log2(Count) <= BitWidth(BECount) 557 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount, 558 Value *TripCount, unsigned Count) { 559 // Note that TripCount is BECount + 1. 560 if (isPowerOf2_32(Count)) 561 // If the expression is zero, then either: 562 // 1. There are no iterations to be run in the prolog/epilog loop. 563 // OR 564 // 2. The addition computing TripCount overflowed. 565 // 566 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 567 // the number of iterations that remain to be run in the original loop is a 568 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a 569 // precondition of this method). 570 return B.CreateAnd(TripCount, Count - 1, "xtraiter"); 571 572 // As (BECount + 1) can potentially unsigned overflow we count 573 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 574 Constant *CountC = ConstantInt::get(BECount->getType(), Count); 575 Value *ModValTmp = B.CreateURem(BECount, CountC); 576 Value *ModValAdd = B.CreateAdd(ModValTmp, 577 ConstantInt::get(ModValTmp->getType(), 1)); 578 // At that point (BECount % Count) + 1 could be equal to Count. 579 // To handle this case we need to take mod by Count one more time. 580 return B.CreateURem(ModValAdd, CountC, "xtraiter"); 581 } 582 583 584 /// Insert code in the prolog/epilog code when unrolling a loop with a 585 /// run-time trip-count. 586 /// 587 /// This method assumes that the loop unroll factor is total number 588 /// of loop bodies in the loop after unrolling. (Some folks refer 589 /// to the unroll factor as the number of *extra* copies added). 590 /// We assume also that the loop unroll factor is a power-of-two. So, after 591 /// unrolling the loop, the number of loop bodies executed is 2, 592 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 593 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 594 /// the switch instruction is generated. 595 /// 596 /// ***Prolog case*** 597 /// extraiters = tripcount % loopfactor 598 /// if (extraiters == 0) jump Loop: 599 /// else jump Prol: 600 /// Prol: LoopBody; 601 /// extraiters -= 1 // Omitted if unroll factor is 2. 602 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 603 /// if (tripcount < loopfactor) jump End: 604 /// Loop: 605 /// ... 606 /// End: 607 /// 608 /// ***Epilog case*** 609 /// extraiters = tripcount % loopfactor 610 /// if (tripcount < loopfactor) jump LoopExit: 611 /// unroll_iters = tripcount - extraiters 612 /// Loop: LoopBody; (executes unroll_iter times); 613 /// unroll_iter -= 1 614 /// if (unroll_iter != 0) jump Loop: 615 /// LoopExit: 616 /// if (extraiters == 0) jump EpilExit: 617 /// Epil: LoopBody; (executes extraiters times) 618 /// extraiters -= 1 // Omitted if unroll factor is 2. 619 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 620 /// EpilExit: 621 622 bool llvm::UnrollRuntimeLoopRemainder( 623 Loop *L, unsigned Count, bool AllowExpensiveTripCount, 624 bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, 625 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 626 const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { 627 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 628 LLVM_DEBUG(L->dump()); 629 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" 630 : dbgs() << "Using prolog remainder.\n"); 631 632 // Make sure the loop is in canonical form. 633 if (!L->isLoopSimplifyForm()) { 634 LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); 635 return false; 636 } 637 638 // Guaranteed by LoopSimplifyForm. 639 BasicBlock *Latch = L->getLoopLatch(); 640 BasicBlock *Header = L->getHeader(); 641 642 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 643 644 if (!LatchBR || LatchBR->isUnconditional()) { 645 // The loop-rotate pass can be helpful to avoid this in many cases. 646 LLVM_DEBUG( 647 dbgs() 648 << "Loop latch not terminated by a conditional branch.\n"); 649 return false; 650 } 651 652 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 653 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 654 655 if (L->contains(LatchExit)) { 656 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 657 // targets of the Latch be an exit block out of the loop. 658 LLVM_DEBUG( 659 dbgs() 660 << "One of the loop latch successors must be the exit block.\n"); 661 return false; 662 } 663 664 // These are exit blocks other than the target of the latch exiting block. 665 SmallVector<BasicBlock *, 4> OtherExits; 666 L->getUniqueNonLatchExitBlocks(OtherExits); 667 bool isMultiExitUnrollingEnabled = 668 canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA, 669 UseEpilogRemainder) && 670 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 671 UseEpilogRemainder); 672 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. 673 if (!isMultiExitUnrollingEnabled && 674 (!L->getExitingBlock() || OtherExits.size())) { 675 LLVM_DEBUG( 676 dbgs() 677 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 678 "enabled!\n"); 679 return false; 680 } 681 // Use Scalar Evolution to compute the trip count. This allows more loops to 682 // be unrolled than relying on induction var simplification. 683 if (!SE) 684 return false; 685 686 // Only unroll loops with a computable trip count, and the trip count needs 687 // to be an int value (allowing a pointer type is a TODO item). 688 // We calculate the backedge count by using getExitCount on the Latch block, 689 // which is proven to be the only exiting block in this loop. This is same as 690 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 691 // exiting blocks). 692 const SCEV *BECountSC = SE->getExitCount(L, Latch); 693 if (isa<SCEVCouldNotCompute>(BECountSC) || 694 !BECountSC->getType()->isIntegerTy()) { 695 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 696 return false; 697 } 698 699 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 700 701 // Add 1 since the backedge count doesn't include the first loop iteration. 702 // (Note that overflow can occur, this is handled explicitly below) 703 const SCEV *TripCountSC = 704 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 705 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 706 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 707 return false; 708 } 709 710 BasicBlock *PreHeader = L->getLoopPreheader(); 711 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 712 const DataLayout &DL = Header->getModule()->getDataLayout(); 713 SCEVExpander Expander(*SE, DL, "loop-unroll"); 714 if (!AllowExpensiveTripCount && 715 Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, 716 TTI, PreHeaderBR)) { 717 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 718 return false; 719 } 720 721 // This constraint lets us deal with an overflowing trip count easily; see the 722 // comment on ModVal below. 723 if (Log2_32(Count) > BEWidth) { 724 LLVM_DEBUG( 725 dbgs() 726 << "Count failed constraint on overflow trip count calculation.\n"); 727 return false; 728 } 729 730 // Loop structure is the following: 731 // 732 // PreHeader 733 // Header 734 // ... 735 // Latch 736 // LatchExit 737 738 BasicBlock *NewPreHeader; 739 BasicBlock *NewExit = nullptr; 740 BasicBlock *PrologExit = nullptr; 741 BasicBlock *EpilogPreHeader = nullptr; 742 BasicBlock *PrologPreHeader = nullptr; 743 744 if (UseEpilogRemainder) { 745 // If epilog remainder 746 // Split PreHeader to insert a branch around loop for unrolling. 747 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 748 NewPreHeader->setName(PreHeader->getName() + ".new"); 749 // Split LatchExit to create phi nodes from branch above. 750 NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI, 751 nullptr, PreserveLCSSA); 752 // NewExit gets its DebugLoc from LatchExit, which is not part of the 753 // original Loop. 754 // Fix this by setting Loop's DebugLoc to NewExit. 755 auto *NewExitTerminator = NewExit->getTerminator(); 756 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); 757 // Split NewExit to insert epilog remainder loop. 758 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); 759 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 760 } else { 761 // If prolog remainder 762 // Split the original preheader twice to insert prolog remainder loop 763 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 764 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 765 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 766 DT, LI); 767 PrologExit->setName(Header->getName() + ".prol.loopexit"); 768 // Split PrologExit to get NewPreHeader. 769 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 770 NewPreHeader->setName(PreHeader->getName() + ".new"); 771 } 772 // Loop structure should be the following: 773 // Epilog Prolog 774 // 775 // PreHeader PreHeader 776 // *NewPreHeader *PrologPreHeader 777 // Header *PrologExit 778 // ... *NewPreHeader 779 // Latch Header 780 // *NewExit ... 781 // *EpilogPreHeader Latch 782 // LatchExit LatchExit 783 784 // Calculate conditions for branch around loop for unrolling 785 // in epilog case and around prolog remainder loop in prolog case. 786 // Compute the number of extra iterations required, which is: 787 // extra iterations = run-time trip count % loop unroll factor 788 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 789 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 790 PreHeaderBR); 791 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 792 PreHeaderBR); 793 IRBuilder<> B(PreHeaderBR); 794 Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count); 795 796 Value *BranchVal = 797 UseEpilogRemainder ? B.CreateICmpULT(BECount, 798 ConstantInt::get(BECount->getType(), 799 Count - 1)) : 800 B.CreateIsNotNull(ModVal, "lcmp.mod"); 801 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 802 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 803 // Branch to either remainder (extra iterations) loop or unrolling loop. 804 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 805 PreHeaderBR->eraseFromParent(); 806 if (DT) { 807 if (UseEpilogRemainder) 808 DT->changeImmediateDominator(NewExit, PreHeader); 809 else 810 DT->changeImmediateDominator(PrologExit, PreHeader); 811 } 812 Function *F = Header->getParent(); 813 // Get an ordered list of blocks in the loop to help with the ordering of the 814 // cloned blocks in the prolog/epilog code 815 LoopBlocksDFS LoopBlocks(L); 816 LoopBlocks.perform(LI); 817 818 // 819 // For each extra loop iteration, create a copy of the loop's basic blocks 820 // and generate a condition that branches to the copy depending on the 821 // number of 'left over' iterations. 822 // 823 std::vector<BasicBlock *> NewBlocks; 824 ValueToValueMapTy VMap; 825 826 // For unroll factor 2 remainder loop will have 1 iterations. 827 // Do not create 1 iteration loop. 828 bool CreateRemainderLoop = (Count != 2); 829 830 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 831 // the loop, otherwise we create a cloned loop to execute the extra 832 // iterations. This function adds the appropriate CFG connections. 833 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 834 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 835 Loop *remainderLoop = CloneLoopBlocks( 836 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder, 837 InsertTop, InsertBot, 838 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 839 840 // Assign the maximum possible trip count as the back edge weight for the 841 // remainder loop if the original loop comes with a branch weight. 842 if (remainderLoop && !UnrollRemainder) 843 updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count); 844 845 // Insert the cloned blocks into the function. 846 F->getBasicBlockList().splice(InsertBot->getIterator(), 847 F->getBasicBlockList(), 848 NewBlocks[0]->getIterator(), 849 F->end()); 850 851 // Now the loop blocks are cloned and the other exiting blocks from the 852 // remainder are connected to the original Loop's exit blocks. The remaining 853 // work is to update the phi nodes in the original loop, and take in the 854 // values from the cloned region. 855 for (auto *BB : OtherExits) { 856 // Given we preserve LCSSA form, we know that the values used outside the 857 // loop will be used through these phi nodes at the exit blocks that are 858 // transformed below. 859 for (PHINode &PN : BB->phis()) { 860 unsigned oldNumOperands = PN.getNumIncomingValues(); 861 // Add the incoming values from the remainder code to the end of the phi 862 // node. 863 for (unsigned i = 0; i < oldNumOperands; i++){ 864 auto *PredBB =PN.getIncomingBlock(i); 865 if (PredBB == Latch) 866 // The latch exit is handled seperately, see connectX 867 continue; 868 if (!L->contains(PredBB)) 869 // Even if we had dedicated exits, the code above inserted an 870 // extra branch which can reach the latch exit. 871 continue; 872 873 auto *V = PN.getIncomingValue(i); 874 if (Instruction *I = dyn_cast<Instruction>(V)) 875 if (L->contains(I)) 876 V = VMap.lookup(I); 877 PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB])); 878 } 879 } 880 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 881 for (BasicBlock *SuccBB : successors(BB)) { 882 assert(!(any_of(OtherExits, 883 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) || 884 SuccBB == LatchExit) && 885 "Breaks the definition of dedicated exits!"); 886 } 887 #endif 888 } 889 890 // Update the immediate dominator of the exit blocks and blocks that are 891 // reachable from the exit blocks. This is needed because we now have paths 892 // from both the original loop and the remainder code reaching the exit 893 // blocks. While the IDom of these exit blocks were from the original loop, 894 // now the IDom is the preheader (which decides whether the original loop or 895 // remainder code should run). 896 if (DT && !L->getExitingBlock()) { 897 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 898 // NB! We have to examine the dom children of all loop blocks, not just 899 // those which are the IDom of the exit blocks. This is because blocks 900 // reachable from the exit blocks can have their IDom as the nearest common 901 // dominator of the exit blocks. 902 for (auto *BB : L->blocks()) { 903 auto *DomNodeBB = DT->getNode(BB); 904 for (auto *DomChild : DomNodeBB->children()) { 905 auto *DomChildBB = DomChild->getBlock(); 906 if (!L->contains(LI->getLoopFor(DomChildBB))) 907 ChildrenToUpdate.push_back(DomChildBB); 908 } 909 } 910 for (auto *BB : ChildrenToUpdate) 911 DT->changeImmediateDominator(BB, PreHeader); 912 } 913 914 // Loop structure should be the following: 915 // Epilog Prolog 916 // 917 // PreHeader PreHeader 918 // NewPreHeader PrologPreHeader 919 // Header PrologHeader 920 // ... ... 921 // Latch PrologLatch 922 // NewExit PrologExit 923 // EpilogPreHeader NewPreHeader 924 // EpilogHeader Header 925 // ... ... 926 // EpilogLatch Latch 927 // LatchExit LatchExit 928 929 // Rewrite the cloned instruction operands to use the values created when the 930 // clone is created. 931 for (BasicBlock *BB : NewBlocks) { 932 for (Instruction &I : *BB) { 933 RemapInstruction(&I, VMap, 934 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 935 } 936 } 937 938 if (UseEpilogRemainder) { 939 // Connect the epilog code to the original loop and update the 940 // PHI functions. 941 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 942 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 943 PreserveLCSSA); 944 945 // Update counter in loop for unrolling. 946 // I should be multiply of Count. 947 IRBuilder<> B2(NewPreHeader->getTerminator()); 948 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 949 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 950 B2.SetInsertPoint(LatchBR); 951 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 952 Header->getFirstNonPHI()); 953 Value *IdxSub = 954 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 955 NewIdx->getName() + ".nsub"); 956 Value *IdxCmp; 957 if (LatchBR->getSuccessor(0) == Header) 958 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 959 else 960 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 961 NewIdx->addIncoming(TestVal, NewPreHeader); 962 NewIdx->addIncoming(IdxSub, Latch); 963 LatchBR->setCondition(IdxCmp); 964 } else { 965 // Connect the prolog code to the original loop and update the 966 // PHI functions. 967 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 968 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 969 } 970 971 // If this loop is nested, then the loop unroller changes the code in the any 972 // of its parent loops, so the Scalar Evolution pass needs to be run again. 973 SE->forgetTopmostLoop(L); 974 975 // Verify that the Dom Tree is correct. 976 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 977 if (DT) 978 assert(DT->verify(DominatorTree::VerificationLevel::Full)); 979 #endif 980 981 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 982 // cannot rely on the LoopUnrollPass to do this because it only does 983 // canonicalization for parent/subloops and not the sibling loops. 984 if (OtherExits.size() > 0) { 985 // Generate dedicated exit blocks for the original loop, to preserve 986 // LoopSimplifyForm. 987 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); 988 // Generate dedicated exit blocks for the remainder loop if one exists, to 989 // preserve LoopSimplifyForm. 990 if (remainderLoop) 991 formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); 992 } 993 994 auto UnrollResult = LoopUnrollResult::Unmodified; 995 if (remainderLoop && UnrollRemainder) { 996 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); 997 UnrollResult = 998 UnrollLoop(remainderLoop, 999 {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false, 1000 /*AllowExpensiveTripCount*/ false, 1001 /*UnrollRemainder*/ false, ForgetAllSCEV}, 1002 LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); 1003 } 1004 1005 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) 1006 *ResultLoop = remainderLoop; 1007 NumRuntimeUnrolled++; 1008 return true; 1009 } 1010