1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpander.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include <algorithm> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-unroll" 46 47 STATISTIC(NumRuntimeUnrolled, 48 "Number of loops unrolled with run-time trip counts"); 49 static cl::opt<bool> UnrollRuntimeMultiExit( 50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 52 "epilog is generated")); 53 54 /// Connect the unrolling prolog code to the original loop. 55 /// The unrolling prolog code contains code to execute the 56 /// 'extra' iterations if the run-time trip count modulo the 57 /// unroll count is non-zero. 58 /// 59 /// This function performs the following: 60 /// - Create PHI nodes at prolog end block to combine values 61 /// that exit the prolog code and jump around the prolog. 62 /// - Add a PHI operand to a PHI node at the loop exit block 63 /// for values that exit the prolog and go around the loop. 64 /// - Branch around the original loop if the trip count is less 65 /// than the unroll factor. 66 /// 67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 68 BasicBlock *PrologExit, 69 BasicBlock *OriginalLoopLatchExit, 70 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 71 ValueToValueMapTy &VMap, DominatorTree *DT, 72 LoopInfo *LI, bool PreserveLCSSA) { 73 BasicBlock *Latch = L->getLoopLatch(); 74 assert(Latch && "Loop must have a latch"); 75 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 76 77 // Create a PHI node for each outgoing value from the original loop 78 // (which means it is an outgoing value from the prolog code too). 79 // The new PHI node is inserted in the prolog end basic block. 80 // The new PHI node value is added as an operand of a PHI node in either 81 // the loop header or the loop exit block. 82 for (BasicBlock *Succ : successors(Latch)) { 83 for (PHINode &PN : Succ->phis()) { 84 // Add a new PHI node to the prolog end block and add the 85 // appropriate incoming values. 86 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 87 PrologExit->getFirstNonPHI()); 88 // Adding a value to the new PHI node from the original loop preheader. 89 // This is the value that skips all the prolog code. 90 if (L->contains(&PN)) { 91 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), 92 PreHeader); 93 } else { 94 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); 95 } 96 97 Value *V = PN.getIncomingValueForBlock(Latch); 98 if (Instruction *I = dyn_cast<Instruction>(V)) { 99 if (L->contains(I)) { 100 V = VMap.lookup(I); 101 } 102 } 103 // Adding a value to the new PHI node from the last prolog block 104 // that was created. 105 NewPN->addIncoming(V, PrologLatch); 106 107 // Update the existing PHI node operand with the value from the 108 // new PHI node. How this is done depends on if the existing 109 // PHI node is in the original loop block, or the exit block. 110 if (L->contains(&PN)) { 111 PN.setIncomingValue(PN.getBasicBlockIndex(NewPreHeader), NewPN); 112 } else { 113 PN.addIncoming(NewPN, PrologExit); 114 } 115 } 116 } 117 118 // Make sure that created prolog loop is in simplified form 119 SmallVector<BasicBlock *, 4> PrologExitPreds; 120 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 121 if (PrologLoop) { 122 for (BasicBlock *PredBB : predecessors(PrologExit)) 123 if (PrologLoop->contains(PredBB)) 124 PrologExitPreds.push_back(PredBB); 125 126 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 127 nullptr, PreserveLCSSA); 128 } 129 130 // Create a branch around the original loop, which is taken if there are no 131 // iterations remaining to be executed after running the prologue. 132 Instruction *InsertPt = PrologExit->getTerminator(); 133 IRBuilder<> B(InsertPt); 134 135 assert(Count != 0 && "nonsensical Count!"); 136 137 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 138 // This means %xtraiter is (BECount + 1) and all of the iterations of this 139 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 140 // then (BECount + 1) cannot unsigned-overflow. 141 Value *BrLoopExit = 142 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 143 // Split the exit to maintain loop canonicalization guarantees 144 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 145 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 146 nullptr, PreserveLCSSA); 147 // Add the branch to the exit block (around the unrolled loop) 148 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 149 InsertPt->eraseFromParent(); 150 if (DT) 151 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); 152 } 153 154 /// Connect the unrolling epilog code to the original loop. 155 /// The unrolling epilog code contains code to execute the 156 /// 'extra' iterations if the run-time trip count modulo the 157 /// unroll count is non-zero. 158 /// 159 /// This function performs the following: 160 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 161 /// - Create PHI nodes at the unrolling loop exit to combine 162 /// values that exit the unrolling loop code and jump around it. 163 /// - Update PHI operands in the epilog loop by the new PHI nodes 164 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 165 /// 166 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 167 BasicBlock *Exit, BasicBlock *PreHeader, 168 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 169 ValueToValueMapTy &VMap, DominatorTree *DT, 170 LoopInfo *LI, bool PreserveLCSSA) { 171 BasicBlock *Latch = L->getLoopLatch(); 172 assert(Latch && "Loop must have a latch"); 173 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 174 175 // Loop structure should be the following: 176 // 177 // PreHeader 178 // NewPreHeader 179 // Header 180 // ... 181 // Latch 182 // NewExit (PN) 183 // EpilogPreHeader 184 // EpilogHeader 185 // ... 186 // EpilogLatch 187 // Exit (EpilogPN) 188 189 // Update PHI nodes at NewExit and Exit. 190 for (PHINode &PN : NewExit->phis()) { 191 // PN should be used in another PHI located in Exit block as 192 // Exit was split by SplitBlockPredecessors into Exit and NewExit 193 // Basicaly it should look like: 194 // NewExit: 195 // PN = PHI [I, Latch] 196 // ... 197 // Exit: 198 // EpilogPN = PHI [PN, EpilogPreHeader] 199 // 200 // There is EpilogPreHeader incoming block instead of NewExit as 201 // NewExit was spilt 1 more time to get EpilogPreHeader. 202 assert(PN.hasOneUse() && "The phi should have 1 use"); 203 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); 204 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 205 206 // Add incoming PreHeader from branch around the Loop 207 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); 208 209 Value *V = PN.getIncomingValueForBlock(Latch); 210 Instruction *I = dyn_cast<Instruction>(V); 211 if (I && L->contains(I)) 212 // If value comes from an instruction in the loop add VMap value. 213 V = VMap.lookup(I); 214 // For the instruction out of the loop, constant or undefined value 215 // insert value itself. 216 EpilogPN->addIncoming(V, EpilogLatch); 217 218 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 219 "EpilogPN should have EpilogPreHeader incoming block"); 220 // Change EpilogPreHeader incoming block to NewExit. 221 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 222 NewExit); 223 // Now PHIs should look like: 224 // NewExit: 225 // PN = PHI [I, Latch], [undef, PreHeader] 226 // ... 227 // Exit: 228 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 229 } 230 231 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 232 // Update corresponding PHI nodes in epilog loop. 233 for (BasicBlock *Succ : successors(Latch)) { 234 // Skip this as we already updated phis in exit blocks. 235 if (!L->contains(Succ)) 236 continue; 237 for (PHINode &PN : Succ->phis()) { 238 // Add new PHI nodes to the loop exit block and update epilog 239 // PHIs with the new PHI values. 240 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 241 NewExit->getFirstNonPHI()); 242 // Adding a value to the new PHI node from the unrolling loop preheader. 243 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); 244 // Adding a value to the new PHI node from the unrolling loop latch. 245 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); 246 247 // Update the existing PHI node operand with the value from the new PHI 248 // node. Corresponding instruction in epilog loop should be PHI. 249 PHINode *VPN = cast<PHINode>(VMap[&PN]); 250 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 251 } 252 } 253 254 Instruction *InsertPt = NewExit->getTerminator(); 255 IRBuilder<> B(InsertPt); 256 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 257 assert(Exit && "Loop must have a single exit block only"); 258 // Split the epilogue exit to maintain loop canonicalization guarantees 259 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 260 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, 261 PreserveLCSSA); 262 // Add the branch to the exit block (around the unrolling loop) 263 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 264 InsertPt->eraseFromParent(); 265 if (DT) 266 DT->changeImmediateDominator(Exit, NewExit); 267 268 // Split the main loop exit to maintain canonicalization guarantees. 269 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 270 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, 271 PreserveLCSSA); 272 } 273 274 /// Create a clone of the blocks in a loop and connect them together. 275 /// If CreateRemainderLoop is false, loop structure will not be cloned, 276 /// otherwise a new loop will be created including all cloned blocks, and the 277 /// iterator of it switches to count NewIter down to 0. 278 /// The cloned blocks should be inserted between InsertTop and InsertBot. 279 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 280 /// new loop exit. 281 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 282 static Loop * 283 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 284 const bool UseEpilogRemainder, const bool UnrollRemainder, 285 BasicBlock *InsertTop, 286 BasicBlock *InsertBot, BasicBlock *Preheader, 287 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 288 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 289 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 290 BasicBlock *Header = L->getHeader(); 291 BasicBlock *Latch = L->getLoopLatch(); 292 Function *F = Header->getParent(); 293 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 294 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 295 Loop *ParentLoop = L->getParentLoop(); 296 NewLoopsMap NewLoops; 297 NewLoops[ParentLoop] = ParentLoop; 298 if (!CreateRemainderLoop) 299 NewLoops[L] = ParentLoop; 300 301 // For each block in the original loop, create a new copy, 302 // and update the value map with the newly created values. 303 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 304 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 305 NewBlocks.push_back(NewBB); 306 307 // If we're unrolling the outermost loop, there's no remainder loop, 308 // and this block isn't in a nested loop, then the new block is not 309 // in any loop. Otherwise, add it to loopinfo. 310 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 311 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 312 313 VMap[*BB] = NewBB; 314 if (Header == *BB) { 315 // For the first block, add a CFG connection to this newly 316 // created block. 317 InsertTop->getTerminator()->setSuccessor(0, NewBB); 318 } 319 320 if (DT) { 321 if (Header == *BB) { 322 // The header is dominated by the preheader. 323 DT->addNewBlock(NewBB, InsertTop); 324 } else { 325 // Copy information from original loop to unrolled loop. 326 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 327 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 328 } 329 } 330 331 if (Latch == *BB) { 332 // For the last block, if CreateRemainderLoop is false, create a direct 333 // jump to InsertBot. If not, create a loop back to cloned head. 334 VMap.erase((*BB)->getTerminator()); 335 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 336 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 337 IRBuilder<> Builder(LatchBR); 338 if (!CreateRemainderLoop) { 339 Builder.CreateBr(InsertBot); 340 } else { 341 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 342 suffix + ".iter", 343 FirstLoopBB->getFirstNonPHI()); 344 Value *IdxSub = 345 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 346 NewIdx->getName() + ".sub"); 347 Value *IdxCmp = 348 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 349 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 350 NewIdx->addIncoming(NewIter, InsertTop); 351 NewIdx->addIncoming(IdxSub, NewBB); 352 } 353 LatchBR->eraseFromParent(); 354 } 355 } 356 357 // Change the incoming values to the ones defined in the preheader or 358 // cloned loop. 359 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 360 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 361 if (!CreateRemainderLoop) { 362 if (UseEpilogRemainder) { 363 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 364 NewPHI->setIncomingBlock(idx, InsertTop); 365 NewPHI->removeIncomingValue(Latch, false); 366 } else { 367 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 368 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 369 } 370 } else { 371 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 372 NewPHI->setIncomingBlock(idx, InsertTop); 373 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 374 idx = NewPHI->getBasicBlockIndex(Latch); 375 Value *InVal = NewPHI->getIncomingValue(idx); 376 NewPHI->setIncomingBlock(idx, NewLatch); 377 if (Value *V = VMap.lookup(InVal)) 378 NewPHI->setIncomingValue(idx, V); 379 } 380 } 381 if (CreateRemainderLoop) { 382 Loop *NewLoop = NewLoops[L]; 383 assert(NewLoop && "L should have been cloned"); 384 385 // Only add loop metadata if the loop is not going to be completely 386 // unrolled. 387 if (UnrollRemainder) 388 return NewLoop; 389 390 // Add unroll disable metadata to disable future unrolling for this loop. 391 NewLoop->setLoopAlreadyUnrolled(); 392 return NewLoop; 393 } 394 else 395 return nullptr; 396 } 397 398 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits 399 /// is populated with all the loop exit blocks other than the LatchExit block. 400 static bool 401 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, 402 BasicBlock *LatchExit, bool PreserveLCSSA, 403 bool UseEpilogRemainder) { 404 405 // We currently have some correctness constrains in unrolling a multi-exit 406 // loop. Check for these below. 407 408 // We rely on LCSSA form being preserved when the exit blocks are transformed. 409 if (!PreserveLCSSA) 410 return false; 411 SmallVector<BasicBlock *, 4> Exits; 412 L->getUniqueExitBlocks(Exits); 413 for (auto *BB : Exits) 414 if (BB != LatchExit) 415 OtherExits.push_back(BB); 416 417 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when 418 // UnrollRuntimeMultiExit is true. This will need updating the logic in 419 // connectEpilog/connectProlog. 420 if (!LatchExit->getSinglePredecessor()) { 421 LLVM_DEBUG( 422 dbgs() << "Bailout for multi-exit handling when latch exit has >1 " 423 "predecessor.\n"); 424 return false; 425 } 426 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated 427 // and L is an inner loop. This is because in presence of multiple exits, the 428 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the 429 // outer loop. This is automatically handled in the prolog case, so we do not 430 // have that bug in prolog generation. 431 if (UseEpilogRemainder && L->getParentLoop()) 432 return false; 433 434 // All constraints have been satisfied. 435 return true; 436 } 437 438 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 439 /// we return true only if UnrollRuntimeMultiExit is set to true. 440 static bool canProfitablyUnrollMultiExitLoop( 441 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 442 bool PreserveLCSSA, bool UseEpilogRemainder) { 443 444 #if !defined(NDEBUG) 445 SmallVector<BasicBlock *, 8> OtherExitsDummyCheck; 446 assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit, 447 PreserveLCSSA, UseEpilogRemainder) && 448 "Should be safe to unroll before checking profitability!"); 449 #endif 450 451 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 452 if (UnrollRuntimeMultiExit.getNumOccurrences()) 453 return UnrollRuntimeMultiExit; 454 455 // The main pain point with multi-exit loop unrolling is that once unrolled, 456 // we will not be able to merge all blocks into a straight line code. 457 // There are branches within the unrolled loop that go to the OtherExits. 458 // The second point is the increase in code size, but this is true 459 // irrespective of multiple exits. 460 461 // Note: Both the heuristics below are coarse grained. We are essentially 462 // enabling unrolling of loops that have a single side exit other than the 463 // normal LatchExit (i.e. exiting into a deoptimize block). 464 // The heuristics considered are: 465 // 1. low number of branches in the unrolled version. 466 // 2. high predictability of these extra branches. 467 // We avoid unrolling loops that have more than two exiting blocks. This 468 // limits the total number of branches in the unrolled loop to be atmost 469 // the unroll factor (since one of the exiting blocks is the latch block). 470 SmallVector<BasicBlock*, 4> ExitingBlocks; 471 L->getExitingBlocks(ExitingBlocks); 472 if (ExitingBlocks.size() > 2) 473 return false; 474 475 // The second heuristic is that L has one exit other than the latchexit and 476 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 477 // taken, which also implies the branch leading to the deoptimize block is 478 // highly predictable. 479 return (OtherExits.size() == 1 && 480 OtherExits[0]->getTerminatingDeoptimizeCall()); 481 // TODO: These can be fine-tuned further to consider code size or deopt states 482 // that are captured by the deoptimize exit block. 483 // Also, we can extend this to support more cases, if we actually 484 // know of kinds of multiexit loops that would benefit from unrolling. 485 } 486 487 /// Insert code in the prolog/epilog code when unrolling a loop with a 488 /// run-time trip-count. 489 /// 490 /// This method assumes that the loop unroll factor is total number 491 /// of loop bodies in the loop after unrolling. (Some folks refer 492 /// to the unroll factor as the number of *extra* copies added). 493 /// We assume also that the loop unroll factor is a power-of-two. So, after 494 /// unrolling the loop, the number of loop bodies executed is 2, 495 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 496 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 497 /// the switch instruction is generated. 498 /// 499 /// ***Prolog case*** 500 /// extraiters = tripcount % loopfactor 501 /// if (extraiters == 0) jump Loop: 502 /// else jump Prol: 503 /// Prol: LoopBody; 504 /// extraiters -= 1 // Omitted if unroll factor is 2. 505 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 506 /// if (tripcount < loopfactor) jump End: 507 /// Loop: 508 /// ... 509 /// End: 510 /// 511 /// ***Epilog case*** 512 /// extraiters = tripcount % loopfactor 513 /// if (tripcount < loopfactor) jump LoopExit: 514 /// unroll_iters = tripcount - extraiters 515 /// Loop: LoopBody; (executes unroll_iter times); 516 /// unroll_iter -= 1 517 /// if (unroll_iter != 0) jump Loop: 518 /// LoopExit: 519 /// if (extraiters == 0) jump EpilExit: 520 /// Epil: LoopBody; (executes extraiters times) 521 /// extraiters -= 1 // Omitted if unroll factor is 2. 522 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 523 /// EpilExit: 524 525 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 526 bool AllowExpensiveTripCount, 527 bool UseEpilogRemainder, 528 bool UnrollRemainder, 529 LoopInfo *LI, ScalarEvolution *SE, 530 DominatorTree *DT, AssumptionCache *AC, 531 bool PreserveLCSSA) { 532 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 533 LLVM_DEBUG(L->dump()); 534 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" 535 : dbgs() << "Using prolog remainder.\n"); 536 537 // Make sure the loop is in canonical form. 538 if (!L->isLoopSimplifyForm()) { 539 LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); 540 return false; 541 } 542 543 // Guaranteed by LoopSimplifyForm. 544 BasicBlock *Latch = L->getLoopLatch(); 545 BasicBlock *Header = L->getHeader(); 546 547 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 548 549 if (!LatchBR || LatchBR->isUnconditional()) { 550 // The loop-rotate pass can be helpful to avoid this in many cases. 551 LLVM_DEBUG( 552 dbgs() 553 << "Loop latch not terminated by a conditional branch.\n"); 554 return false; 555 } 556 557 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 558 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 559 560 if (L->contains(LatchExit)) { 561 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 562 // targets of the Latch be an exit block out of the loop. 563 LLVM_DEBUG( 564 dbgs() 565 << "One of the loop latch successors must be the exit block.\n"); 566 return false; 567 } 568 569 // These are exit blocks other than the target of the latch exiting block. 570 SmallVector<BasicBlock *, 4> OtherExits; 571 bool isMultiExitUnrollingEnabled = 572 canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 573 UseEpilogRemainder) && 574 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 575 UseEpilogRemainder); 576 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. 577 if (!isMultiExitUnrollingEnabled && 578 (!L->getExitingBlock() || OtherExits.size())) { 579 LLVM_DEBUG( 580 dbgs() 581 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 582 "enabled!\n"); 583 return false; 584 } 585 // Use Scalar Evolution to compute the trip count. This allows more loops to 586 // be unrolled than relying on induction var simplification. 587 if (!SE) 588 return false; 589 590 // Only unroll loops with a computable trip count, and the trip count needs 591 // to be an int value (allowing a pointer type is a TODO item). 592 // We calculate the backedge count by using getExitCount on the Latch block, 593 // which is proven to be the only exiting block in this loop. This is same as 594 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 595 // exiting blocks). 596 const SCEV *BECountSC = SE->getExitCount(L, Latch); 597 if (isa<SCEVCouldNotCompute>(BECountSC) || 598 !BECountSC->getType()->isIntegerTy()) { 599 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 600 return false; 601 } 602 603 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 604 605 // Add 1 since the backedge count doesn't include the first loop iteration. 606 const SCEV *TripCountSC = 607 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 608 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 609 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 610 return false; 611 } 612 613 BasicBlock *PreHeader = L->getLoopPreheader(); 614 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 615 const DataLayout &DL = Header->getModule()->getDataLayout(); 616 SCEVExpander Expander(*SE, DL, "loop-unroll"); 617 if (!AllowExpensiveTripCount && 618 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) { 619 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 620 return false; 621 } 622 623 // This constraint lets us deal with an overflowing trip count easily; see the 624 // comment on ModVal below. 625 if (Log2_32(Count) > BEWidth) { 626 LLVM_DEBUG( 627 dbgs() 628 << "Count failed constraint on overflow trip count calculation.\n"); 629 return false; 630 } 631 632 // Loop structure is the following: 633 // 634 // PreHeader 635 // Header 636 // ... 637 // Latch 638 // LatchExit 639 640 BasicBlock *NewPreHeader; 641 BasicBlock *NewExit = nullptr; 642 BasicBlock *PrologExit = nullptr; 643 BasicBlock *EpilogPreHeader = nullptr; 644 BasicBlock *PrologPreHeader = nullptr; 645 646 if (UseEpilogRemainder) { 647 // If epilog remainder 648 // Split PreHeader to insert a branch around loop for unrolling. 649 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 650 NewPreHeader->setName(PreHeader->getName() + ".new"); 651 // Split LatchExit to create phi nodes from branch above. 652 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); 653 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI, 654 nullptr, PreserveLCSSA); 655 // NewExit gets its DebugLoc from LatchExit, which is not part of the 656 // original Loop. 657 // Fix this by setting Loop's DebugLoc to NewExit. 658 auto *NewExitTerminator = NewExit->getTerminator(); 659 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); 660 // Split NewExit to insert epilog remainder loop. 661 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); 662 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 663 } else { 664 // If prolog remainder 665 // Split the original preheader twice to insert prolog remainder loop 666 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 667 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 668 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 669 DT, LI); 670 PrologExit->setName(Header->getName() + ".prol.loopexit"); 671 // Split PrologExit to get NewPreHeader. 672 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 673 NewPreHeader->setName(PreHeader->getName() + ".new"); 674 } 675 // Loop structure should be the following: 676 // Epilog Prolog 677 // 678 // PreHeader PreHeader 679 // *NewPreHeader *PrologPreHeader 680 // Header *PrologExit 681 // ... *NewPreHeader 682 // Latch Header 683 // *NewExit ... 684 // *EpilogPreHeader Latch 685 // LatchExit LatchExit 686 687 // Calculate conditions for branch around loop for unrolling 688 // in epilog case and around prolog remainder loop in prolog case. 689 // Compute the number of extra iterations required, which is: 690 // extra iterations = run-time trip count % loop unroll factor 691 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 692 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 693 PreHeaderBR); 694 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 695 PreHeaderBR); 696 IRBuilder<> B(PreHeaderBR); 697 Value *ModVal; 698 // Calculate ModVal = (BECount + 1) % Count. 699 // Note that TripCount is BECount + 1. 700 if (isPowerOf2_32(Count)) { 701 // When Count is power of 2 we don't BECount for epilog case, however we'll 702 // need it for a branch around unrolling loop for prolog case. 703 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 704 // 1. There are no iterations to be run in the prolog/epilog loop. 705 // OR 706 // 2. The addition computing TripCount overflowed. 707 // 708 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 709 // the number of iterations that remain to be run in the original loop is a 710 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 711 // explicitly check this above). 712 } else { 713 // As (BECount + 1) can potentially unsigned overflow we count 714 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 715 Value *ModValTmp = B.CreateURem(BECount, 716 ConstantInt::get(BECount->getType(), 717 Count)); 718 Value *ModValAdd = B.CreateAdd(ModValTmp, 719 ConstantInt::get(ModValTmp->getType(), 1)); 720 // At that point (BECount % Count) + 1 could be equal to Count. 721 // To handle this case we need to take mod by Count one more time. 722 ModVal = B.CreateURem(ModValAdd, 723 ConstantInt::get(BECount->getType(), Count), 724 "xtraiter"); 725 } 726 Value *BranchVal = 727 UseEpilogRemainder ? B.CreateICmpULT(BECount, 728 ConstantInt::get(BECount->getType(), 729 Count - 1)) : 730 B.CreateIsNotNull(ModVal, "lcmp.mod"); 731 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 732 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 733 // Branch to either remainder (extra iterations) loop or unrolling loop. 734 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 735 PreHeaderBR->eraseFromParent(); 736 if (DT) { 737 if (UseEpilogRemainder) 738 DT->changeImmediateDominator(NewExit, PreHeader); 739 else 740 DT->changeImmediateDominator(PrologExit, PreHeader); 741 } 742 Function *F = Header->getParent(); 743 // Get an ordered list of blocks in the loop to help with the ordering of the 744 // cloned blocks in the prolog/epilog code 745 LoopBlocksDFS LoopBlocks(L); 746 LoopBlocks.perform(LI); 747 748 // 749 // For each extra loop iteration, create a copy of the loop's basic blocks 750 // and generate a condition that branches to the copy depending on the 751 // number of 'left over' iterations. 752 // 753 std::vector<BasicBlock *> NewBlocks; 754 ValueToValueMapTy VMap; 755 756 // For unroll factor 2 remainder loop will have 1 iterations. 757 // Do not create 1 iteration loop. 758 bool CreateRemainderLoop = (Count != 2); 759 760 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 761 // the loop, otherwise we create a cloned loop to execute the extra 762 // iterations. This function adds the appropriate CFG connections. 763 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 764 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 765 Loop *remainderLoop = CloneLoopBlocks( 766 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder, 767 InsertTop, InsertBot, 768 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 769 770 // Insert the cloned blocks into the function. 771 F->getBasicBlockList().splice(InsertBot->getIterator(), 772 F->getBasicBlockList(), 773 NewBlocks[0]->getIterator(), 774 F->end()); 775 776 // Now the loop blocks are cloned and the other exiting blocks from the 777 // remainder are connected to the original Loop's exit blocks. The remaining 778 // work is to update the phi nodes in the original loop, and take in the 779 // values from the cloned region. Also update the dominator info for 780 // OtherExits and their immediate successors, since we have new edges into 781 // OtherExits. 782 SmallPtrSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks; 783 for (auto *BB : OtherExits) { 784 for (auto &II : *BB) { 785 786 // Given we preserve LCSSA form, we know that the values used outside the 787 // loop will be used through these phi nodes at the exit blocks that are 788 // transformed below. 789 if (!isa<PHINode>(II)) 790 break; 791 PHINode *Phi = cast<PHINode>(&II); 792 unsigned oldNumOperands = Phi->getNumIncomingValues(); 793 // Add the incoming values from the remainder code to the end of the phi 794 // node. 795 for (unsigned i =0; i < oldNumOperands; i++){ 796 Value *newVal = VMap.lookup(Phi->getIncomingValue(i)); 797 // newVal can be a constant or derived from values outside the loop, and 798 // hence need not have a VMap value. Also, since lookup already generated 799 // a default "null" VMap entry for this value, we need to populate that 800 // VMap entry correctly, with the mapped entry being itself. 801 if (!newVal) { 802 newVal = Phi->getIncomingValue(i); 803 VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i); 804 } 805 Phi->addIncoming(newVal, 806 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); 807 } 808 } 809 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 810 for (BasicBlock *SuccBB : successors(BB)) { 811 assert(!(any_of(OtherExits, 812 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) || 813 SuccBB == LatchExit) && 814 "Breaks the definition of dedicated exits!"); 815 } 816 #endif 817 // Update the dominator info because the immediate dominator is no longer the 818 // header of the original Loop. BB has edges both from L and remainder code. 819 // Since the preheader determines which loop is run (L or directly jump to 820 // the remainder code), we set the immediate dominator as the preheader. 821 if (DT) { 822 DT->changeImmediateDominator(BB, PreHeader); 823 // Also update the IDom for immediate successors of BB. If the current 824 // IDom is the header, update the IDom to be the preheader because that is 825 // the nearest common dominator of all predecessors of SuccBB. We need to 826 // check for IDom being the header because successors of exit blocks can 827 // have edges from outside the loop, and we should not incorrectly update 828 // the IDom in that case. 829 for (BasicBlock *SuccBB: successors(BB)) 830 if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) { 831 if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) { 832 assert(!SuccBB->getSinglePredecessor() && 833 "BB should be the IDom then!"); 834 DT->changeImmediateDominator(SuccBB, PreHeader); 835 } 836 } 837 } 838 } 839 840 // Loop structure should be the following: 841 // Epilog Prolog 842 // 843 // PreHeader PreHeader 844 // NewPreHeader PrologPreHeader 845 // Header PrologHeader 846 // ... ... 847 // Latch PrologLatch 848 // NewExit PrologExit 849 // EpilogPreHeader NewPreHeader 850 // EpilogHeader Header 851 // ... ... 852 // EpilogLatch Latch 853 // LatchExit LatchExit 854 855 // Rewrite the cloned instruction operands to use the values created when the 856 // clone is created. 857 for (BasicBlock *BB : NewBlocks) { 858 for (Instruction &I : *BB) { 859 RemapInstruction(&I, VMap, 860 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 861 } 862 } 863 864 if (UseEpilogRemainder) { 865 // Connect the epilog code to the original loop and update the 866 // PHI functions. 867 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 868 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 869 PreserveLCSSA); 870 871 // Update counter in loop for unrolling. 872 // I should be multiply of Count. 873 IRBuilder<> B2(NewPreHeader->getTerminator()); 874 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 875 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 876 B2.SetInsertPoint(LatchBR); 877 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 878 Header->getFirstNonPHI()); 879 Value *IdxSub = 880 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 881 NewIdx->getName() + ".nsub"); 882 Value *IdxCmp; 883 if (LatchBR->getSuccessor(0) == Header) 884 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 885 else 886 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 887 NewIdx->addIncoming(TestVal, NewPreHeader); 888 NewIdx->addIncoming(IdxSub, Latch); 889 LatchBR->setCondition(IdxCmp); 890 } else { 891 // Connect the prolog code to the original loop and update the 892 // PHI functions. 893 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 894 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 895 } 896 897 // If this loop is nested, then the loop unroller changes the code in the any 898 // of its parent loops, so the Scalar Evolution pass needs to be run again. 899 SE->forgetTopmostLoop(L); 900 901 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 902 // cannot rely on the LoopUnrollPass to do this because it only does 903 // canonicalization for parent/subloops and not the sibling loops. 904 if (OtherExits.size() > 0) { 905 // Generate dedicated exit blocks for the original loop, to preserve 906 // LoopSimplifyForm. 907 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA); 908 // Generate dedicated exit blocks for the remainder loop if one exists, to 909 // preserve LoopSimplifyForm. 910 if (remainderLoop) 911 formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA); 912 } 913 914 if (remainderLoop && UnrollRemainder) { 915 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); 916 UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1, 917 /*Force*/ false, /*AllowRuntime*/ false, 918 /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true, 919 /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1, 920 /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC, 921 /*ORE*/ nullptr, PreserveLCSSA); 922 } 923 924 NumRuntimeUnrolled++; 925 return true; 926 } 927