xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 6af4f232b5d1cf44d94f60fa29b3840218bed2b2)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpander.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 #include <algorithm>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-unroll"
46 
47 STATISTIC(NumRuntimeUnrolled,
48           "Number of loops unrolled with run-time trip counts");
49 static cl::opt<bool> UnrollRuntimeMultiExit(
50     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
51     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
52              "epilog is generated"));
53 
54 /// Connect the unrolling prolog code to the original loop.
55 /// The unrolling prolog code contains code to execute the
56 /// 'extra' iterations if the run-time trip count modulo the
57 /// unroll count is non-zero.
58 ///
59 /// This function performs the following:
60 /// - Create PHI nodes at prolog end block to combine values
61 ///   that exit the prolog code and jump around the prolog.
62 /// - Add a PHI operand to a PHI node at the loop exit block
63 ///   for values that exit the prolog and go around the loop.
64 /// - Branch around the original loop if the trip count is less
65 ///   than the unroll factor.
66 ///
67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
68                           BasicBlock *PrologExit,
69                           BasicBlock *OriginalLoopLatchExit,
70                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
71                           ValueToValueMapTy &VMap, DominatorTree *DT,
72                           LoopInfo *LI, bool PreserveLCSSA) {
73   BasicBlock *Latch = L->getLoopLatch();
74   assert(Latch && "Loop must have a latch");
75   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
76 
77   // Create a PHI node for each outgoing value from the original loop
78   // (which means it is an outgoing value from the prolog code too).
79   // The new PHI node is inserted in the prolog end basic block.
80   // The new PHI node value is added as an operand of a PHI node in either
81   // the loop header or the loop exit block.
82   for (BasicBlock *Succ : successors(Latch)) {
83     for (Instruction &BBI : *Succ) {
84       PHINode *PN = dyn_cast<PHINode>(&BBI);
85       // Exit when we passed all PHI nodes.
86       if (!PN)
87         break;
88       // Add a new PHI node to the prolog end block and add the
89       // appropriate incoming values.
90       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
91                                        PrologExit->getFirstNonPHI());
92       // Adding a value to the new PHI node from the original loop preheader.
93       // This is the value that skips all the prolog code.
94       if (L->contains(PN)) {
95         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
96                            PreHeader);
97       } else {
98         NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
99       }
100 
101       Value *V = PN->getIncomingValueForBlock(Latch);
102       if (Instruction *I = dyn_cast<Instruction>(V)) {
103         if (L->contains(I)) {
104           V = VMap.lookup(I);
105         }
106       }
107       // Adding a value to the new PHI node from the last prolog block
108       // that was created.
109       NewPN->addIncoming(V, PrologLatch);
110 
111       // Update the existing PHI node operand with the value from the
112       // new PHI node.  How this is done depends on if the existing
113       // PHI node is in the original loop block, or the exit block.
114       if (L->contains(PN)) {
115         PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
116       } else {
117         PN->addIncoming(NewPN, PrologExit);
118       }
119     }
120   }
121 
122   // Make sure that created prolog loop is in simplified form
123   SmallVector<BasicBlock *, 4> PrologExitPreds;
124   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
125   if (PrologLoop) {
126     for (BasicBlock *PredBB : predecessors(PrologExit))
127       if (PrologLoop->contains(PredBB))
128         PrologExitPreds.push_back(PredBB);
129 
130     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
131                            PreserveLCSSA);
132   }
133 
134   // Create a branch around the original loop, which is taken if there are no
135   // iterations remaining to be executed after running the prologue.
136   Instruction *InsertPt = PrologExit->getTerminator();
137   IRBuilder<> B(InsertPt);
138 
139   assert(Count != 0 && "nonsensical Count!");
140 
141   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
142   // This means %xtraiter is (BECount + 1) and all of the iterations of this
143   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
144   // then (BECount + 1) cannot unsigned-overflow.
145   Value *BrLoopExit =
146       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
147   // Split the exit to maintain loop canonicalization guarantees
148   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
149   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
150                          PreserveLCSSA);
151   // Add the branch to the exit block (around the unrolled loop)
152   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
153   InsertPt->eraseFromParent();
154   if (DT)
155     DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
156 }
157 
158 /// Connect the unrolling epilog code to the original loop.
159 /// The unrolling epilog code contains code to execute the
160 /// 'extra' iterations if the run-time trip count modulo the
161 /// unroll count is non-zero.
162 ///
163 /// This function performs the following:
164 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
165 /// - Create PHI nodes at the unrolling loop exit to combine
166 ///   values that exit the unrolling loop code and jump around it.
167 /// - Update PHI operands in the epilog loop by the new PHI nodes
168 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
169 ///
170 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
171                           BasicBlock *Exit, BasicBlock *PreHeader,
172                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
173                           ValueToValueMapTy &VMap, DominatorTree *DT,
174                           LoopInfo *LI, bool PreserveLCSSA)  {
175   BasicBlock *Latch = L->getLoopLatch();
176   assert(Latch && "Loop must have a latch");
177   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
178 
179   // Loop structure should be the following:
180   //
181   // PreHeader
182   // NewPreHeader
183   //   Header
184   //   ...
185   //   Latch
186   // NewExit (PN)
187   // EpilogPreHeader
188   //   EpilogHeader
189   //   ...
190   //   EpilogLatch
191   // Exit (EpilogPN)
192 
193   // Update PHI nodes at NewExit and Exit.
194   for (Instruction &BBI : *NewExit) {
195     PHINode *PN = dyn_cast<PHINode>(&BBI);
196     // Exit when we passed all PHI nodes.
197     if (!PN)
198       break;
199     // PN should be used in another PHI located in Exit block as
200     // Exit was split by SplitBlockPredecessors into Exit and NewExit
201     // Basicaly it should look like:
202     // NewExit:
203     //   PN = PHI [I, Latch]
204     // ...
205     // Exit:
206     //   EpilogPN = PHI [PN, EpilogPreHeader]
207     //
208     // There is EpilogPreHeader incoming block instead of NewExit as
209     // NewExit was spilt 1 more time to get EpilogPreHeader.
210     assert(PN->hasOneUse() && "The phi should have 1 use");
211     PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
212     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
213 
214     // Add incoming PreHeader from branch around the Loop
215     PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
216 
217     Value *V = PN->getIncomingValueForBlock(Latch);
218     Instruction *I = dyn_cast<Instruction>(V);
219     if (I && L->contains(I))
220       // If value comes from an instruction in the loop add VMap value.
221       V = VMap.lookup(I);
222     // For the instruction out of the loop, constant or undefined value
223     // insert value itself.
224     EpilogPN->addIncoming(V, EpilogLatch);
225 
226     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
227           "EpilogPN should have EpilogPreHeader incoming block");
228     // Change EpilogPreHeader incoming block to NewExit.
229     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
230                                NewExit);
231     // Now PHIs should look like:
232     // NewExit:
233     //   PN = PHI [I, Latch], [undef, PreHeader]
234     // ...
235     // Exit:
236     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
237   }
238 
239   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
240   // Update corresponding PHI nodes in epilog loop.
241   for (BasicBlock *Succ : successors(Latch)) {
242     // Skip this as we already updated phis in exit blocks.
243     if (!L->contains(Succ))
244       continue;
245     for (Instruction &BBI : *Succ) {
246       PHINode *PN = dyn_cast<PHINode>(&BBI);
247       // Exit when we passed all PHI nodes.
248       if (!PN)
249         break;
250       // Add new PHI nodes to the loop exit block and update epilog
251       // PHIs with the new PHI values.
252       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
253                                        NewExit->getFirstNonPHI());
254       // Adding a value to the new PHI node from the unrolling loop preheader.
255       NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
256       // Adding a value to the new PHI node from the unrolling loop latch.
257       NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
258 
259       // Update the existing PHI node operand with the value from the new PHI
260       // node.  Corresponding instruction in epilog loop should be PHI.
261       PHINode *VPN = cast<PHINode>(VMap[&BBI]);
262       VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
263     }
264   }
265 
266   Instruction *InsertPt = NewExit->getTerminator();
267   IRBuilder<> B(InsertPt);
268   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
269   assert(Exit && "Loop must have a single exit block only");
270   // Split the epilogue exit to maintain loop canonicalization guarantees
271   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
272   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
273                          PreserveLCSSA);
274   // Add the branch to the exit block (around the unrolling loop)
275   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
276   InsertPt->eraseFromParent();
277   if (DT)
278     DT->changeImmediateDominator(Exit, NewExit);
279 
280   // Split the main loop exit to maintain canonicalization guarantees.
281   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
282   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI,
283                          PreserveLCSSA);
284 }
285 
286 /// Create a clone of the blocks in a loop and connect them together.
287 /// If CreateRemainderLoop is false, loop structure will not be cloned,
288 /// otherwise a new loop will be created including all cloned blocks, and the
289 /// iterator of it switches to count NewIter down to 0.
290 /// The cloned blocks should be inserted between InsertTop and InsertBot.
291 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
292 /// new loop exit.
293 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
294 static Loop *
295 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
296                 const bool UseEpilogRemainder, const bool UnrollRemainder,
297                 BasicBlock *InsertTop,
298                 BasicBlock *InsertBot, BasicBlock *Preheader,
299                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
300                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
301   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
302   BasicBlock *Header = L->getHeader();
303   BasicBlock *Latch = L->getLoopLatch();
304   Function *F = Header->getParent();
305   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
306   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
307   Loop *ParentLoop = L->getParentLoop();
308   NewLoopsMap NewLoops;
309   NewLoops[ParentLoop] = ParentLoop;
310   if (!CreateRemainderLoop)
311     NewLoops[L] = ParentLoop;
312 
313   // For each block in the original loop, create a new copy,
314   // and update the value map with the newly created values.
315   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
316     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
317     NewBlocks.push_back(NewBB);
318 
319     // If we're unrolling the outermost loop, there's no remainder loop,
320     // and this block isn't in a nested loop, then the new block is not
321     // in any loop. Otherwise, add it to loopinfo.
322     if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
323       addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
324 
325     VMap[*BB] = NewBB;
326     if (Header == *BB) {
327       // For the first block, add a CFG connection to this newly
328       // created block.
329       InsertTop->getTerminator()->setSuccessor(0, NewBB);
330     }
331 
332     if (DT) {
333       if (Header == *BB) {
334         // The header is dominated by the preheader.
335         DT->addNewBlock(NewBB, InsertTop);
336       } else {
337         // Copy information from original loop to unrolled loop.
338         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
339         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
340       }
341     }
342 
343     if (Latch == *BB) {
344       // For the last block, if CreateRemainderLoop is false, create a direct
345       // jump to InsertBot. If not, create a loop back to cloned head.
346       VMap.erase((*BB)->getTerminator());
347       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
348       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
349       IRBuilder<> Builder(LatchBR);
350       if (!CreateRemainderLoop) {
351         Builder.CreateBr(InsertBot);
352       } else {
353         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
354                                           suffix + ".iter",
355                                           FirstLoopBB->getFirstNonPHI());
356         Value *IdxSub =
357             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
358                               NewIdx->getName() + ".sub");
359         Value *IdxCmp =
360             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
361         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
362         NewIdx->addIncoming(NewIter, InsertTop);
363         NewIdx->addIncoming(IdxSub, NewBB);
364       }
365       LatchBR->eraseFromParent();
366     }
367   }
368 
369   // Change the incoming values to the ones defined in the preheader or
370   // cloned loop.
371   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
372     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
373     if (!CreateRemainderLoop) {
374       if (UseEpilogRemainder) {
375         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
376         NewPHI->setIncomingBlock(idx, InsertTop);
377         NewPHI->removeIncomingValue(Latch, false);
378       } else {
379         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
380         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
381       }
382     } else {
383       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
384       NewPHI->setIncomingBlock(idx, InsertTop);
385       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
386       idx = NewPHI->getBasicBlockIndex(Latch);
387       Value *InVal = NewPHI->getIncomingValue(idx);
388       NewPHI->setIncomingBlock(idx, NewLatch);
389       if (Value *V = VMap.lookup(InVal))
390         NewPHI->setIncomingValue(idx, V);
391     }
392   }
393   if (CreateRemainderLoop) {
394     Loop *NewLoop = NewLoops[L];
395     assert(NewLoop && "L should have been cloned");
396 
397     // Only add loop metadata if the loop is not going to be completely
398     // unrolled.
399     if (UnrollRemainder)
400       return NewLoop;
401 
402     // Add unroll disable metadata to disable future unrolling for this loop.
403     NewLoop->setLoopAlreadyUnrolled();
404     return NewLoop;
405   }
406   else
407     return nullptr;
408 }
409 
410 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
411 /// is populated with all the loop exit blocks other than the LatchExit block.
412 static bool
413 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits,
414                              BasicBlock *LatchExit, bool PreserveLCSSA,
415                              bool UseEpilogRemainder) {
416 
417   // We currently have some correctness constrains in unrolling a multi-exit
418   // loop. Check for these below.
419 
420   // We rely on LCSSA form being preserved when the exit blocks are transformed.
421   if (!PreserveLCSSA)
422     return false;
423   SmallVector<BasicBlock *, 4> Exits;
424   L->getUniqueExitBlocks(Exits);
425   for (auto *BB : Exits)
426     if (BB != LatchExit)
427       OtherExits.push_back(BB);
428 
429   // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
430   // UnrollRuntimeMultiExit is true. This will need updating the logic in
431   // connectEpilog/connectProlog.
432   if (!LatchExit->getSinglePredecessor()) {
433     DEBUG(dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
434                     "predecessor.\n");
435     return false;
436   }
437   // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
438   // and L is an inner loop. This is because in presence of multiple exits, the
439   // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
440   // outer loop. This is automatically handled in the prolog case, so we do not
441   // have that bug in prolog generation.
442   if (UseEpilogRemainder && L->getParentLoop())
443     return false;
444 
445   // All constraints have been satisfied.
446   return true;
447 }
448 
449 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
450 /// we return true only if UnrollRuntimeMultiExit is set to true.
451 static bool canProfitablyUnrollMultiExitLoop(
452     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
453     bool PreserveLCSSA, bool UseEpilogRemainder) {
454 
455 #if !defined(NDEBUG)
456   SmallVector<BasicBlock *, 8> OtherExitsDummyCheck;
457   assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit,
458                                       PreserveLCSSA, UseEpilogRemainder) &&
459          "Should be safe to unroll before checking profitability!");
460 #endif
461 
462   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
463   if (UnrollRuntimeMultiExit.getNumOccurrences())
464     return UnrollRuntimeMultiExit;
465 
466   // The main pain point with multi-exit loop unrolling is that once unrolled,
467   // we will not be able to merge all blocks into a straight line code.
468   // There are branches within the unrolled loop that go to the OtherExits.
469   // The second point is the increase in code size, but this is true
470   // irrespective of multiple exits.
471 
472   // Note: Both the heuristics below are coarse grained. We are essentially
473   // enabling unrolling of loops that have a single side exit other than the
474   // normal LatchExit (i.e. exiting into a deoptimize block).
475   // The heuristics considered are:
476   // 1. low number of branches in the unrolled version.
477   // 2. high predictability of these extra branches.
478   // We avoid unrolling loops that have more than two exiting blocks. This
479   // limits the total number of branches in the unrolled loop to be atmost
480   // the unroll factor (since one of the exiting blocks is the latch block).
481   SmallVector<BasicBlock*, 4> ExitingBlocks;
482   L->getExitingBlocks(ExitingBlocks);
483   if (ExitingBlocks.size() > 2)
484     return false;
485 
486   // The second heuristic is that L has one exit other than the latchexit and
487   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
488   // taken, which also implies the branch leading to the deoptimize block is
489   // highly predictable.
490   return (OtherExits.size() == 1 &&
491           OtherExits[0]->getTerminatingDeoptimizeCall());
492   // TODO: These can be fine-tuned further to consider code size or deopt states
493   // that are captured by the deoptimize exit block.
494   // Also, we can extend this to support more cases, if we actually
495   // know of kinds of multiexit loops that would benefit from unrolling.
496 }
497 
498 /// Insert code in the prolog/epilog code when unrolling a loop with a
499 /// run-time trip-count.
500 ///
501 /// This method assumes that the loop unroll factor is total number
502 /// of loop bodies in the loop after unrolling. (Some folks refer
503 /// to the unroll factor as the number of *extra* copies added).
504 /// We assume also that the loop unroll factor is a power-of-two. So, after
505 /// unrolling the loop, the number of loop bodies executed is 2,
506 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
507 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
508 /// the switch instruction is generated.
509 ///
510 /// ***Prolog case***
511 ///        extraiters = tripcount % loopfactor
512 ///        if (extraiters == 0) jump Loop:
513 ///        else jump Prol:
514 /// Prol:  LoopBody;
515 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
516 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
517 ///        if (tripcount < loopfactor) jump End:
518 /// Loop:
519 /// ...
520 /// End:
521 ///
522 /// ***Epilog case***
523 ///        extraiters = tripcount % loopfactor
524 ///        if (tripcount < loopfactor) jump LoopExit:
525 ///        unroll_iters = tripcount - extraiters
526 /// Loop:  LoopBody; (executes unroll_iter times);
527 ///        unroll_iter -= 1
528 ///        if (unroll_iter != 0) jump Loop:
529 /// LoopExit:
530 ///        if (extraiters == 0) jump EpilExit:
531 /// Epil:  LoopBody; (executes extraiters times)
532 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
533 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
534 /// EpilExit:
535 
536 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
537                                       bool AllowExpensiveTripCount,
538                                       bool UseEpilogRemainder,
539                                       bool UnrollRemainder,
540                                       LoopInfo *LI, ScalarEvolution *SE,
541                                       DominatorTree *DT, AssumptionCache *AC,
542                                       bool PreserveLCSSA) {
543   DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
544   DEBUG(L->dump());
545   DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" :
546         dbgs() << "Using prolog remainder.\n");
547 
548   // Make sure the loop is in canonical form.
549   if (!L->isLoopSimplifyForm()) {
550     DEBUG(dbgs() << "Not in simplify form!\n");
551     return false;
552   }
553 
554   // Guaranteed by LoopSimplifyForm.
555   BasicBlock *Latch = L->getLoopLatch();
556   BasicBlock *Header = L->getHeader();
557 
558   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
559   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
560   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
561   // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
562   // targets of the Latch be an exit block out of the loop. This needs
563   // to be guaranteed by the callers of UnrollRuntimeLoopRemainder.
564   assert(!L->contains(LatchExit) &&
565          "one of the loop latch successors should be the exit block!");
566   // These are exit blocks other than the target of the latch exiting block.
567   SmallVector<BasicBlock *, 4> OtherExits;
568   bool isMultiExitUnrollingEnabled =
569       canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
570                                    UseEpilogRemainder) &&
571       canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
572                                        UseEpilogRemainder);
573   // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
574   if (!isMultiExitUnrollingEnabled &&
575       (!L->getExitingBlock() || OtherExits.size())) {
576     DEBUG(
577         dbgs()
578         << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
579            "enabled!\n");
580     return false;
581   }
582   // Use Scalar Evolution to compute the trip count. This allows more loops to
583   // be unrolled than relying on induction var simplification.
584   if (!SE)
585     return false;
586 
587   // Only unroll loops with a computable trip count, and the trip count needs
588   // to be an int value (allowing a pointer type is a TODO item).
589   // We calculate the backedge count by using getExitCount on the Latch block,
590   // which is proven to be the only exiting block in this loop. This is same as
591   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
592   // exiting blocks).
593   const SCEV *BECountSC = SE->getExitCount(L, Latch);
594   if (isa<SCEVCouldNotCompute>(BECountSC) ||
595       !BECountSC->getType()->isIntegerTy()) {
596     DEBUG(dbgs() << "Could not compute exit block SCEV\n");
597     return false;
598   }
599 
600   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
601 
602   // Add 1 since the backedge count doesn't include the first loop iteration.
603   const SCEV *TripCountSC =
604       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
605   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
606     DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
607     return false;
608   }
609 
610   BasicBlock *PreHeader = L->getLoopPreheader();
611   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
612   const DataLayout &DL = Header->getModule()->getDataLayout();
613   SCEVExpander Expander(*SE, DL, "loop-unroll");
614   if (!AllowExpensiveTripCount &&
615       Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) {
616     DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
617     return false;
618   }
619 
620   // This constraint lets us deal with an overflowing trip count easily; see the
621   // comment on ModVal below.
622   if (Log2_32(Count) > BEWidth) {
623     DEBUG(dbgs()
624           << "Count failed constraint on overflow trip count calculation.\n");
625     return false;
626   }
627 
628   // Loop structure is the following:
629   //
630   // PreHeader
631   //   Header
632   //   ...
633   //   Latch
634   // LatchExit
635 
636   BasicBlock *NewPreHeader;
637   BasicBlock *NewExit = nullptr;
638   BasicBlock *PrologExit = nullptr;
639   BasicBlock *EpilogPreHeader = nullptr;
640   BasicBlock *PrologPreHeader = nullptr;
641 
642   if (UseEpilogRemainder) {
643     // If epilog remainder
644     // Split PreHeader to insert a branch around loop for unrolling.
645     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
646     NewPreHeader->setName(PreHeader->getName() + ".new");
647     // Split LatchExit to create phi nodes from branch above.
648     SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
649     NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa",
650                                      DT, LI, PreserveLCSSA);
651     // Split NewExit to insert epilog remainder loop.
652     EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
653     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
654   } else {
655     // If prolog remainder
656     // Split the original preheader twice to insert prolog remainder loop
657     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
658     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
659     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
660                             DT, LI);
661     PrologExit->setName(Header->getName() + ".prol.loopexit");
662     // Split PrologExit to get NewPreHeader.
663     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
664     NewPreHeader->setName(PreHeader->getName() + ".new");
665   }
666   // Loop structure should be the following:
667   //  Epilog             Prolog
668   //
669   // PreHeader         PreHeader
670   // *NewPreHeader     *PrologPreHeader
671   //   Header          *PrologExit
672   //   ...             *NewPreHeader
673   //   Latch             Header
674   // *NewExit            ...
675   // *EpilogPreHeader    Latch
676   // LatchExit              LatchExit
677 
678   // Calculate conditions for branch around loop for unrolling
679   // in epilog case and around prolog remainder loop in prolog case.
680   // Compute the number of extra iterations required, which is:
681   //  extra iterations = run-time trip count % loop unroll factor
682   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
683   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
684                                             PreHeaderBR);
685   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
686                                           PreHeaderBR);
687   IRBuilder<> B(PreHeaderBR);
688   Value *ModVal;
689   // Calculate ModVal = (BECount + 1) % Count.
690   // Note that TripCount is BECount + 1.
691   if (isPowerOf2_32(Count)) {
692     // When Count is power of 2 we don't BECount for epilog case, however we'll
693     // need it for a branch around unrolling loop for prolog case.
694     ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
695     //  1. There are no iterations to be run in the prolog/epilog loop.
696     // OR
697     //  2. The addition computing TripCount overflowed.
698     //
699     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
700     // the number of iterations that remain to be run in the original loop is a
701     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
702     // explicitly check this above).
703   } else {
704     // As (BECount + 1) can potentially unsigned overflow we count
705     // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
706     Value *ModValTmp = B.CreateURem(BECount,
707                                     ConstantInt::get(BECount->getType(),
708                                                      Count));
709     Value *ModValAdd = B.CreateAdd(ModValTmp,
710                                    ConstantInt::get(ModValTmp->getType(), 1));
711     // At that point (BECount % Count) + 1 could be equal to Count.
712     // To handle this case we need to take mod by Count one more time.
713     ModVal = B.CreateURem(ModValAdd,
714                           ConstantInt::get(BECount->getType(), Count),
715                           "xtraiter");
716   }
717   Value *BranchVal =
718       UseEpilogRemainder ? B.CreateICmpULT(BECount,
719                                            ConstantInt::get(BECount->getType(),
720                                                             Count - 1)) :
721                            B.CreateIsNotNull(ModVal, "lcmp.mod");
722   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
723   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
724   // Branch to either remainder (extra iterations) loop or unrolling loop.
725   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
726   PreHeaderBR->eraseFromParent();
727   if (DT) {
728     if (UseEpilogRemainder)
729       DT->changeImmediateDominator(NewExit, PreHeader);
730     else
731       DT->changeImmediateDominator(PrologExit, PreHeader);
732   }
733   Function *F = Header->getParent();
734   // Get an ordered list of blocks in the loop to help with the ordering of the
735   // cloned blocks in the prolog/epilog code
736   LoopBlocksDFS LoopBlocks(L);
737   LoopBlocks.perform(LI);
738 
739   //
740   // For each extra loop iteration, create a copy of the loop's basic blocks
741   // and generate a condition that branches to the copy depending on the
742   // number of 'left over' iterations.
743   //
744   std::vector<BasicBlock *> NewBlocks;
745   ValueToValueMapTy VMap;
746 
747   // For unroll factor 2 remainder loop will have 1 iterations.
748   // Do not create 1 iteration loop.
749   bool CreateRemainderLoop = (Count != 2);
750 
751   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
752   // the loop, otherwise we create a cloned loop to execute the extra
753   // iterations. This function adds the appropriate CFG connections.
754   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
755   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
756   Loop *remainderLoop = CloneLoopBlocks(
757       L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
758       InsertTop, InsertBot,
759       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
760 
761   // Insert the cloned blocks into the function.
762   F->getBasicBlockList().splice(InsertBot->getIterator(),
763                                 F->getBasicBlockList(),
764                                 NewBlocks[0]->getIterator(),
765                                 F->end());
766 
767   // Now the loop blocks are cloned and the other exiting blocks from the
768   // remainder are connected to the original Loop's exit blocks. The remaining
769   // work is to update the phi nodes in the original loop, and take in the
770   // values from the cloned region. Also update the dominator info for
771   // OtherExits and their immediate successors, since we have new edges into
772   // OtherExits.
773   SmallSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks;
774   for (auto *BB : OtherExits) {
775    for (auto &II : *BB) {
776 
777      // Given we preserve LCSSA form, we know that the values used outside the
778      // loop will be used through these phi nodes at the exit blocks that are
779      // transformed below.
780      if (!isa<PHINode>(II))
781        break;
782      PHINode *Phi = cast<PHINode>(&II);
783      unsigned oldNumOperands = Phi->getNumIncomingValues();
784      // Add the incoming values from the remainder code to the end of the phi
785      // node.
786      for (unsigned i =0; i < oldNumOperands; i++){
787        Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
788        // newVal can be a constant or derived from values outside the loop, and
789        // hence need not have a VMap value. Also, since lookup already generated
790        // a default "null" VMap entry for this value, we need to populate that
791        // VMap entry correctly, with the mapped entry being itself.
792        if (!newVal) {
793          newVal = Phi->getIncomingValue(i);
794          VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
795        }
796        Phi->addIncoming(newVal,
797                            cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
798      }
799    }
800 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
801     for (BasicBlock *SuccBB : successors(BB)) {
802       assert(!(any_of(OtherExits,
803                       [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
804                SuccBB == LatchExit) &&
805              "Breaks the definition of dedicated exits!");
806     }
807 #endif
808    // Update the dominator info because the immediate dominator is no longer the
809    // header of the original Loop. BB has edges both from L and remainder code.
810    // Since the preheader determines which loop is run (L or directly jump to
811    // the remainder code), we set the immediate dominator as the preheader.
812    if (DT) {
813      DT->changeImmediateDominator(BB, PreHeader);
814      // Also update the IDom for immediate successors of BB.  If the current
815      // IDom is the header, update the IDom to be the preheader because that is
816      // the nearest common dominator of all predecessors of SuccBB.  We need to
817      // check for IDom being the header because successors of exit blocks can
818      // have edges from outside the loop, and we should not incorrectly update
819      // the IDom in that case.
820      for (BasicBlock *SuccBB: successors(BB))
821        if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) {
822          if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) {
823            assert(!SuccBB->getSinglePredecessor() &&
824                   "BB should be the IDom then!");
825            DT->changeImmediateDominator(SuccBB, PreHeader);
826          }
827        }
828     }
829   }
830 
831   // Loop structure should be the following:
832   //  Epilog             Prolog
833   //
834   // PreHeader         PreHeader
835   // NewPreHeader      PrologPreHeader
836   //   Header            PrologHeader
837   //   ...               ...
838   //   Latch             PrologLatch
839   // NewExit           PrologExit
840   // EpilogPreHeader   NewPreHeader
841   //   EpilogHeader      Header
842   //   ...               ...
843   //   EpilogLatch       Latch
844   // LatchExit              LatchExit
845 
846   // Rewrite the cloned instruction operands to use the values created when the
847   // clone is created.
848   for (BasicBlock *BB : NewBlocks) {
849     for (Instruction &I : *BB) {
850       RemapInstruction(&I, VMap,
851                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
852     }
853   }
854 
855   if (UseEpilogRemainder) {
856     // Connect the epilog code to the original loop and update the
857     // PHI functions.
858     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
859                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
860                   PreserveLCSSA);
861 
862     // Update counter in loop for unrolling.
863     // I should be multiply of Count.
864     IRBuilder<> B2(NewPreHeader->getTerminator());
865     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
866     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
867     B2.SetInsertPoint(LatchBR);
868     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
869                                       Header->getFirstNonPHI());
870     Value *IdxSub =
871         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
872                      NewIdx->getName() + ".nsub");
873     Value *IdxCmp;
874     if (LatchBR->getSuccessor(0) == Header)
875       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
876     else
877       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
878     NewIdx->addIncoming(TestVal, NewPreHeader);
879     NewIdx->addIncoming(IdxSub, Latch);
880     LatchBR->setCondition(IdxCmp);
881   } else {
882     // Connect the prolog code to the original loop and update the
883     // PHI functions.
884     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
885                   NewPreHeader, VMap, DT, LI, PreserveLCSSA);
886   }
887 
888   // If this loop is nested, then the loop unroller changes the code in the
889   // parent loop, so the Scalar Evolution pass needs to be run again.
890   if (Loop *ParentLoop = L->getParentLoop())
891     SE->forgetLoop(ParentLoop);
892 
893   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
894   // cannot rely on the LoopUnrollPass to do this because it only does
895   // canonicalization for parent/subloops and not the sibling loops.
896   if (OtherExits.size() > 0) {
897     // Generate dedicated exit blocks for the original loop, to preserve
898     // LoopSimplifyForm.
899     formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
900     // Generate dedicated exit blocks for the remainder loop if one exists, to
901     // preserve LoopSimplifyForm.
902     if (remainderLoop)
903       formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA);
904   }
905 
906   if (remainderLoop && UnrollRemainder) {
907     DEBUG(dbgs() << "Unrolling remainder loop\n");
908     UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1,
909                /*Force*/ false, /*AllowRuntime*/ false,
910                /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
911                /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
912                /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC,
913                /*ORE*/ nullptr, PreserveLCSSA);
914   }
915 
916   NumRuntimeUnrolled++;
917   return true;
918 }
919