xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 64f53b42144e36820a6a56c5fc08d1f5d4ded9bd)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpander.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/UnrollLoop.h"
42 #include <algorithm>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "loop-unroll"
47 
48 STATISTIC(NumRuntimeUnrolled,
49           "Number of loops unrolled with run-time trip counts");
50 static cl::opt<bool> UnrollRuntimeMultiExit(
51     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
52     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
53              "epilog is generated"));
54 
55 /// Connect the unrolling prolog code to the original loop.
56 /// The unrolling prolog code contains code to execute the
57 /// 'extra' iterations if the run-time trip count modulo the
58 /// unroll count is non-zero.
59 ///
60 /// This function performs the following:
61 /// - Create PHI nodes at prolog end block to combine values
62 ///   that exit the prolog code and jump around the prolog.
63 /// - Add a PHI operand to a PHI node at the loop exit block
64 ///   for values that exit the prolog and go around the loop.
65 /// - Branch around the original loop if the trip count is less
66 ///   than the unroll factor.
67 ///
68 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
69                           BasicBlock *PrologExit,
70                           BasicBlock *OriginalLoopLatchExit,
71                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
72                           ValueToValueMapTy &VMap, DominatorTree *DT,
73                           LoopInfo *LI, bool PreserveLCSSA) {
74   BasicBlock *Latch = L->getLoopLatch();
75   assert(Latch && "Loop must have a latch");
76   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
77 
78   // Create a PHI node for each outgoing value from the original loop
79   // (which means it is an outgoing value from the prolog code too).
80   // The new PHI node is inserted in the prolog end basic block.
81   // The new PHI node value is added as an operand of a PHI node in either
82   // the loop header or the loop exit block.
83   for (BasicBlock *Succ : successors(Latch)) {
84     for (Instruction &BBI : *Succ) {
85       PHINode *PN = dyn_cast<PHINode>(&BBI);
86       // Exit when we passed all PHI nodes.
87       if (!PN)
88         break;
89       // Add a new PHI node to the prolog end block and add the
90       // appropriate incoming values.
91       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
92                                        PrologExit->getFirstNonPHI());
93       // Adding a value to the new PHI node from the original loop preheader.
94       // This is the value that skips all the prolog code.
95       if (L->contains(PN)) {
96         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
97                            PreHeader);
98       } else {
99         NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
100       }
101 
102       Value *V = PN->getIncomingValueForBlock(Latch);
103       if (Instruction *I = dyn_cast<Instruction>(V)) {
104         if (L->contains(I)) {
105           V = VMap.lookup(I);
106         }
107       }
108       // Adding a value to the new PHI node from the last prolog block
109       // that was created.
110       NewPN->addIncoming(V, PrologLatch);
111 
112       // Update the existing PHI node operand with the value from the
113       // new PHI node.  How this is done depends on if the existing
114       // PHI node is in the original loop block, or the exit block.
115       if (L->contains(PN)) {
116         PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
117       } else {
118         PN->addIncoming(NewPN, PrologExit);
119       }
120     }
121   }
122 
123   // Make sure that created prolog loop is in simplified form
124   SmallVector<BasicBlock *, 4> PrologExitPreds;
125   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
126   if (PrologLoop) {
127     for (BasicBlock *PredBB : predecessors(PrologExit))
128       if (PrologLoop->contains(PredBB))
129         PrologExitPreds.push_back(PredBB);
130 
131     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
132                            PreserveLCSSA);
133   }
134 
135   // Create a branch around the original loop, which is taken if there are no
136   // iterations remaining to be executed after running the prologue.
137   Instruction *InsertPt = PrologExit->getTerminator();
138   IRBuilder<> B(InsertPt);
139 
140   assert(Count != 0 && "nonsensical Count!");
141 
142   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
143   // This means %xtraiter is (BECount + 1) and all of the iterations of this
144   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
145   // then (BECount + 1) cannot unsigned-overflow.
146   Value *BrLoopExit =
147       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
148   // Split the exit to maintain loop canonicalization guarantees
149   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
150   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
151                          PreserveLCSSA);
152   // Add the branch to the exit block (around the unrolled loop)
153   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
154   InsertPt->eraseFromParent();
155   if (DT)
156     DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
157 }
158 
159 /// Connect the unrolling epilog code to the original loop.
160 /// The unrolling epilog code contains code to execute the
161 /// 'extra' iterations if the run-time trip count modulo the
162 /// unroll count is non-zero.
163 ///
164 /// This function performs the following:
165 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
166 /// - Create PHI nodes at the unrolling loop exit to combine
167 ///   values that exit the unrolling loop code and jump around it.
168 /// - Update PHI operands in the epilog loop by the new PHI nodes
169 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
170 ///
171 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
172                           BasicBlock *Exit, BasicBlock *PreHeader,
173                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
174                           ValueToValueMapTy &VMap, DominatorTree *DT,
175                           LoopInfo *LI, bool PreserveLCSSA)  {
176   BasicBlock *Latch = L->getLoopLatch();
177   assert(Latch && "Loop must have a latch");
178   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
179 
180   // Loop structure should be the following:
181   //
182   // PreHeader
183   // NewPreHeader
184   //   Header
185   //   ...
186   //   Latch
187   // NewExit (PN)
188   // EpilogPreHeader
189   //   EpilogHeader
190   //   ...
191   //   EpilogLatch
192   // Exit (EpilogPN)
193 
194   // Update PHI nodes at NewExit and Exit.
195   for (Instruction &BBI : *NewExit) {
196     PHINode *PN = dyn_cast<PHINode>(&BBI);
197     // Exit when we passed all PHI nodes.
198     if (!PN)
199       break;
200     // PN should be used in another PHI located in Exit block as
201     // Exit was split by SplitBlockPredecessors into Exit and NewExit
202     // Basicaly it should look like:
203     // NewExit:
204     //   PN = PHI [I, Latch]
205     // ...
206     // Exit:
207     //   EpilogPN = PHI [PN, EpilogPreHeader]
208     //
209     // There is EpilogPreHeader incoming block instead of NewExit as
210     // NewExit was spilt 1 more time to get EpilogPreHeader.
211     assert(PN->hasOneUse() && "The phi should have 1 use");
212     PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
213     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
214 
215     // Add incoming PreHeader from branch around the Loop
216     PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
217 
218     Value *V = PN->getIncomingValueForBlock(Latch);
219     Instruction *I = dyn_cast<Instruction>(V);
220     if (I && L->contains(I))
221       // If value comes from an instruction in the loop add VMap value.
222       V = VMap.lookup(I);
223     // For the instruction out of the loop, constant or undefined value
224     // insert value itself.
225     EpilogPN->addIncoming(V, EpilogLatch);
226 
227     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
228           "EpilogPN should have EpilogPreHeader incoming block");
229     // Change EpilogPreHeader incoming block to NewExit.
230     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
231                                NewExit);
232     // Now PHIs should look like:
233     // NewExit:
234     //   PN = PHI [I, Latch], [undef, PreHeader]
235     // ...
236     // Exit:
237     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
238   }
239 
240   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
241   // Update corresponding PHI nodes in epilog loop.
242   for (BasicBlock *Succ : successors(Latch)) {
243     // Skip this as we already updated phis in exit blocks.
244     if (!L->contains(Succ))
245       continue;
246     for (Instruction &BBI : *Succ) {
247       PHINode *PN = dyn_cast<PHINode>(&BBI);
248       // Exit when we passed all PHI nodes.
249       if (!PN)
250         break;
251       // Add new PHI nodes to the loop exit block and update epilog
252       // PHIs with the new PHI values.
253       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
254                                        NewExit->getFirstNonPHI());
255       // Adding a value to the new PHI node from the unrolling loop preheader.
256       NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
257       // Adding a value to the new PHI node from the unrolling loop latch.
258       NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
259 
260       // Update the existing PHI node operand with the value from the new PHI
261       // node.  Corresponding instruction in epilog loop should be PHI.
262       PHINode *VPN = cast<PHINode>(VMap[&BBI]);
263       VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
264     }
265   }
266 
267   Instruction *InsertPt = NewExit->getTerminator();
268   IRBuilder<> B(InsertPt);
269   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
270   assert(Exit && "Loop must have a single exit block only");
271   // Split the epilogue exit to maintain loop canonicalization guarantees
272   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
273   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
274                          PreserveLCSSA);
275   // Add the branch to the exit block (around the unrolling loop)
276   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
277   InsertPt->eraseFromParent();
278   if (DT)
279     DT->changeImmediateDominator(Exit, NewExit);
280 
281   // Split the main loop exit to maintain canonicalization guarantees.
282   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
283   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI,
284                          PreserveLCSSA);
285 }
286 
287 /// Create a clone of the blocks in a loop and connect them together.
288 /// If CreateRemainderLoop is false, loop structure will not be cloned,
289 /// otherwise a new loop will be created including all cloned blocks, and the
290 /// iterator of it switches to count NewIter down to 0.
291 /// The cloned blocks should be inserted between InsertTop and InsertBot.
292 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
293 /// new loop exit.
294 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
295 static Loop *
296 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
297                 const bool UseEpilogRemainder, const bool UnrollRemainder,
298                 BasicBlock *InsertTop,
299                 BasicBlock *InsertBot, BasicBlock *Preheader,
300                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
301                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
302   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
303   BasicBlock *Header = L->getHeader();
304   BasicBlock *Latch = L->getLoopLatch();
305   Function *F = Header->getParent();
306   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
307   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
308   Loop *ParentLoop = L->getParentLoop();
309   NewLoopsMap NewLoops;
310   NewLoops[ParentLoop] = ParentLoop;
311   if (!CreateRemainderLoop)
312     NewLoops[L] = ParentLoop;
313 
314   // For each block in the original loop, create a new copy,
315   // and update the value map with the newly created values.
316   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
317     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
318     NewBlocks.push_back(NewBB);
319 
320     // If we're unrolling the outermost loop, there's no remainder loop,
321     // and this block isn't in a nested loop, then the new block is not
322     // in any loop. Otherwise, add it to loopinfo.
323     if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
324       addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
325 
326     VMap[*BB] = NewBB;
327     if (Header == *BB) {
328       // For the first block, add a CFG connection to this newly
329       // created block.
330       InsertTop->getTerminator()->setSuccessor(0, NewBB);
331     }
332 
333     if (DT) {
334       if (Header == *BB) {
335         // The header is dominated by the preheader.
336         DT->addNewBlock(NewBB, InsertTop);
337       } else {
338         // Copy information from original loop to unrolled loop.
339         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
340         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
341       }
342     }
343 
344     if (Latch == *BB) {
345       // For the last block, if CreateRemainderLoop is false, create a direct
346       // jump to InsertBot. If not, create a loop back to cloned head.
347       VMap.erase((*BB)->getTerminator());
348       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
349       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
350       IRBuilder<> Builder(LatchBR);
351       if (!CreateRemainderLoop) {
352         Builder.CreateBr(InsertBot);
353       } else {
354         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
355                                           suffix + ".iter",
356                                           FirstLoopBB->getFirstNonPHI());
357         Value *IdxSub =
358             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
359                               NewIdx->getName() + ".sub");
360         Value *IdxCmp =
361             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
362         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
363         NewIdx->addIncoming(NewIter, InsertTop);
364         NewIdx->addIncoming(IdxSub, NewBB);
365       }
366       LatchBR->eraseFromParent();
367     }
368   }
369 
370   // Change the incoming values to the ones defined in the preheader or
371   // cloned loop.
372   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
373     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
374     if (!CreateRemainderLoop) {
375       if (UseEpilogRemainder) {
376         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
377         NewPHI->setIncomingBlock(idx, InsertTop);
378         NewPHI->removeIncomingValue(Latch, false);
379       } else {
380         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
381         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
382       }
383     } else {
384       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
385       NewPHI->setIncomingBlock(idx, InsertTop);
386       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
387       idx = NewPHI->getBasicBlockIndex(Latch);
388       Value *InVal = NewPHI->getIncomingValue(idx);
389       NewPHI->setIncomingBlock(idx, NewLatch);
390       if (Value *V = VMap.lookup(InVal))
391         NewPHI->setIncomingValue(idx, V);
392     }
393   }
394   if (CreateRemainderLoop) {
395     Loop *NewLoop = NewLoops[L];
396     assert(NewLoop && "L should have been cloned");
397 
398     // Only add loop metadata if the loop is not going to be completely
399     // unrolled.
400     if (UnrollRemainder)
401       return NewLoop;
402 
403     // Add unroll disable metadata to disable future unrolling for this loop.
404     NewLoop->setLoopAlreadyUnrolled();
405     return NewLoop;
406   }
407   else
408     return nullptr;
409 }
410 
411 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
412 /// is populated with all the loop exit blocks other than the LatchExit block.
413 static bool
414 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits,
415                              BasicBlock *LatchExit, bool PreserveLCSSA,
416                              bool UseEpilogRemainder) {
417 
418   // We currently have some correctness constrains in unrolling a multi-exit
419   // loop. Check for these below.
420 
421   // We rely on LCSSA form being preserved when the exit blocks are transformed.
422   if (!PreserveLCSSA)
423     return false;
424   SmallVector<BasicBlock *, 4> Exits;
425   L->getUniqueExitBlocks(Exits);
426   for (auto *BB : Exits)
427     if (BB != LatchExit)
428       OtherExits.push_back(BB);
429 
430   // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
431   // UnrollRuntimeMultiExit is true. This will need updating the logic in
432   // connectEpilog/connectProlog.
433   if (!LatchExit->getSinglePredecessor()) {
434     DEBUG(dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
435                     "predecessor.\n");
436     return false;
437   }
438   // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
439   // and L is an inner loop. This is because in presence of multiple exits, the
440   // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
441   // outer loop. This is automatically handled in the prolog case, so we do not
442   // have that bug in prolog generation.
443   if (UseEpilogRemainder && L->getParentLoop())
444     return false;
445 
446   // All constraints have been satisfied.
447   return true;
448 }
449 
450 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
451 /// we return true only if UnrollRuntimeMultiExit is set to true.
452 static bool canProfitablyUnrollMultiExitLoop(
453     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
454     bool PreserveLCSSA, bool UseEpilogRemainder) {
455 
456 #if !defined(NDEBUG)
457   SmallVector<BasicBlock *, 8> OtherExitsDummyCheck;
458   assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit,
459                                       PreserveLCSSA, UseEpilogRemainder) &&
460          "Should be safe to unroll before checking profitability!");
461 #endif
462 
463   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
464   if (UnrollRuntimeMultiExit.getNumOccurrences())
465     return UnrollRuntimeMultiExit;
466 
467   // The main pain point with multi-exit loop unrolling is that once unrolled,
468   // we will not be able to merge all blocks into a straight line code.
469   // There are branches within the unrolled loop that go to the OtherExits.
470   // The second point is the increase in code size, but this is true
471   // irrespective of multiple exits.
472 
473   // Note: Both the heuristics below are coarse grained. We are essentially
474   // enabling unrolling of loops that have a single side exit other than the
475   // normal LatchExit (i.e. exiting into a deoptimize block).
476   // The heuristics considered are:
477   // 1. low number of branches in the unrolled version.
478   // 2. high predictability of these extra branches.
479   // We avoid unrolling loops that have more than two exiting blocks. This
480   // limits the total number of branches in the unrolled loop to be atmost
481   // the unroll factor (since one of the exiting blocks is the latch block).
482   SmallVector<BasicBlock*, 4> ExitingBlocks;
483   L->getExitingBlocks(ExitingBlocks);
484   if (ExitingBlocks.size() > 2)
485     return false;
486 
487   // The second heuristic is that L has one exit other than the latchexit and
488   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
489   // taken, which also implies the branch leading to the deoptimize block is
490   // highly predictable.
491   return (OtherExits.size() == 1 &&
492           OtherExits[0]->getTerminatingDeoptimizeCall());
493   // TODO: These can be fine-tuned further to consider code size or deopt states
494   // that are captured by the deoptimize exit block.
495   // Also, we can extend this to support more cases, if we actually
496   // know of kinds of multiexit loops that would benefit from unrolling.
497 }
498 
499 /// Insert code in the prolog/epilog code when unrolling a loop with a
500 /// run-time trip-count.
501 ///
502 /// This method assumes that the loop unroll factor is total number
503 /// of loop bodies in the loop after unrolling. (Some folks refer
504 /// to the unroll factor as the number of *extra* copies added).
505 /// We assume also that the loop unroll factor is a power-of-two. So, after
506 /// unrolling the loop, the number of loop bodies executed is 2,
507 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
508 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
509 /// the switch instruction is generated.
510 ///
511 /// ***Prolog case***
512 ///        extraiters = tripcount % loopfactor
513 ///        if (extraiters == 0) jump Loop:
514 ///        else jump Prol:
515 /// Prol:  LoopBody;
516 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
517 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
518 ///        if (tripcount < loopfactor) jump End:
519 /// Loop:
520 /// ...
521 /// End:
522 ///
523 /// ***Epilog case***
524 ///        extraiters = tripcount % loopfactor
525 ///        if (tripcount < loopfactor) jump LoopExit:
526 ///        unroll_iters = tripcount - extraiters
527 /// Loop:  LoopBody; (executes unroll_iter times);
528 ///        unroll_iter -= 1
529 ///        if (unroll_iter != 0) jump Loop:
530 /// LoopExit:
531 ///        if (extraiters == 0) jump EpilExit:
532 /// Epil:  LoopBody; (executes extraiters times)
533 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
534 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
535 /// EpilExit:
536 
537 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
538                                       bool AllowExpensiveTripCount,
539                                       bool UseEpilogRemainder,
540                                       bool UnrollRemainder,
541                                       LoopInfo *LI, ScalarEvolution *SE,
542                                       DominatorTree *DT, AssumptionCache *AC,
543                                       bool PreserveLCSSA) {
544   DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
545   DEBUG(L->dump());
546   DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" :
547         dbgs() << "Using prolog remainder.\n");
548 
549   // Make sure the loop is in canonical form.
550   if (!L->isLoopSimplifyForm()) {
551     DEBUG(dbgs() << "Not in simplify form!\n");
552     return false;
553   }
554 
555   // Guaranteed by LoopSimplifyForm.
556   BasicBlock *Latch = L->getLoopLatch();
557   BasicBlock *Header = L->getHeader();
558 
559   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
560   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
561   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
562   // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
563   // targets of the Latch be an exit block out of the loop. This needs
564   // to be guaranteed by the callers of UnrollRuntimeLoopRemainder.
565   assert(!L->contains(LatchExit) &&
566          "one of the loop latch successors should be the exit block!");
567   // These are exit blocks other than the target of the latch exiting block.
568   SmallVector<BasicBlock *, 4> OtherExits;
569   bool isMultiExitUnrollingEnabled =
570       canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
571                                    UseEpilogRemainder) &&
572       canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
573                                        UseEpilogRemainder);
574   // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
575   if (!isMultiExitUnrollingEnabled &&
576       (!L->getExitingBlock() || OtherExits.size())) {
577     DEBUG(
578         dbgs()
579         << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
580            "enabled!\n");
581     return false;
582   }
583   // Use Scalar Evolution to compute the trip count. This allows more loops to
584   // be unrolled than relying on induction var simplification.
585   if (!SE)
586     return false;
587 
588   // Only unroll loops with a computable trip count, and the trip count needs
589   // to be an int value (allowing a pointer type is a TODO item).
590   // We calculate the backedge count by using getExitCount on the Latch block,
591   // which is proven to be the only exiting block in this loop. This is same as
592   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
593   // exiting blocks).
594   const SCEV *BECountSC = SE->getExitCount(L, Latch);
595   if (isa<SCEVCouldNotCompute>(BECountSC) ||
596       !BECountSC->getType()->isIntegerTy()) {
597     DEBUG(dbgs() << "Could not compute exit block SCEV\n");
598     return false;
599   }
600 
601   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
602 
603   // Add 1 since the backedge count doesn't include the first loop iteration.
604   const SCEV *TripCountSC =
605       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
606   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
607     DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
608     return false;
609   }
610 
611   BasicBlock *PreHeader = L->getLoopPreheader();
612   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
613   const DataLayout &DL = Header->getModule()->getDataLayout();
614   SCEVExpander Expander(*SE, DL, "loop-unroll");
615   if (!AllowExpensiveTripCount &&
616       Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) {
617     DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
618     return false;
619   }
620 
621   // This constraint lets us deal with an overflowing trip count easily; see the
622   // comment on ModVal below.
623   if (Log2_32(Count) > BEWidth) {
624     DEBUG(dbgs()
625           << "Count failed constraint on overflow trip count calculation.\n");
626     return false;
627   }
628 
629   // Loop structure is the following:
630   //
631   // PreHeader
632   //   Header
633   //   ...
634   //   Latch
635   // LatchExit
636 
637   BasicBlock *NewPreHeader;
638   BasicBlock *NewExit = nullptr;
639   BasicBlock *PrologExit = nullptr;
640   BasicBlock *EpilogPreHeader = nullptr;
641   BasicBlock *PrologPreHeader = nullptr;
642 
643   if (UseEpilogRemainder) {
644     // If epilog remainder
645     // Split PreHeader to insert a branch around loop for unrolling.
646     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
647     NewPreHeader->setName(PreHeader->getName() + ".new");
648     // Split LatchExit to create phi nodes from branch above.
649     SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
650     NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa",
651                                      DT, LI, PreserveLCSSA);
652     // Split NewExit to insert epilog remainder loop.
653     EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
654     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
655   } else {
656     // If prolog remainder
657     // Split the original preheader twice to insert prolog remainder loop
658     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
659     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
660     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
661                             DT, LI);
662     PrologExit->setName(Header->getName() + ".prol.loopexit");
663     // Split PrologExit to get NewPreHeader.
664     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
665     NewPreHeader->setName(PreHeader->getName() + ".new");
666   }
667   // Loop structure should be the following:
668   //  Epilog             Prolog
669   //
670   // PreHeader         PreHeader
671   // *NewPreHeader     *PrologPreHeader
672   //   Header          *PrologExit
673   //   ...             *NewPreHeader
674   //   Latch             Header
675   // *NewExit            ...
676   // *EpilogPreHeader    Latch
677   // LatchExit              LatchExit
678 
679   // Calculate conditions for branch around loop for unrolling
680   // in epilog case and around prolog remainder loop in prolog case.
681   // Compute the number of extra iterations required, which is:
682   //  extra iterations = run-time trip count % loop unroll factor
683   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
684   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
685                                             PreHeaderBR);
686   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
687                                           PreHeaderBR);
688   IRBuilder<> B(PreHeaderBR);
689   Value *ModVal;
690   // Calculate ModVal = (BECount + 1) % Count.
691   // Note that TripCount is BECount + 1.
692   if (isPowerOf2_32(Count)) {
693     // When Count is power of 2 we don't BECount for epilog case, however we'll
694     // need it for a branch around unrolling loop for prolog case.
695     ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
696     //  1. There are no iterations to be run in the prolog/epilog loop.
697     // OR
698     //  2. The addition computing TripCount overflowed.
699     //
700     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
701     // the number of iterations that remain to be run in the original loop is a
702     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
703     // explicitly check this above).
704   } else {
705     // As (BECount + 1) can potentially unsigned overflow we count
706     // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
707     Value *ModValTmp = B.CreateURem(BECount,
708                                     ConstantInt::get(BECount->getType(),
709                                                      Count));
710     Value *ModValAdd = B.CreateAdd(ModValTmp,
711                                    ConstantInt::get(ModValTmp->getType(), 1));
712     // At that point (BECount % Count) + 1 could be equal to Count.
713     // To handle this case we need to take mod by Count one more time.
714     ModVal = B.CreateURem(ModValAdd,
715                           ConstantInt::get(BECount->getType(), Count),
716                           "xtraiter");
717   }
718   Value *BranchVal =
719       UseEpilogRemainder ? B.CreateICmpULT(BECount,
720                                            ConstantInt::get(BECount->getType(),
721                                                             Count - 1)) :
722                            B.CreateIsNotNull(ModVal, "lcmp.mod");
723   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
724   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
725   // Branch to either remainder (extra iterations) loop or unrolling loop.
726   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
727   PreHeaderBR->eraseFromParent();
728   if (DT) {
729     if (UseEpilogRemainder)
730       DT->changeImmediateDominator(NewExit, PreHeader);
731     else
732       DT->changeImmediateDominator(PrologExit, PreHeader);
733   }
734   Function *F = Header->getParent();
735   // Get an ordered list of blocks in the loop to help with the ordering of the
736   // cloned blocks in the prolog/epilog code
737   LoopBlocksDFS LoopBlocks(L);
738   LoopBlocks.perform(LI);
739 
740   //
741   // For each extra loop iteration, create a copy of the loop's basic blocks
742   // and generate a condition that branches to the copy depending on the
743   // number of 'left over' iterations.
744   //
745   std::vector<BasicBlock *> NewBlocks;
746   ValueToValueMapTy VMap;
747 
748   // For unroll factor 2 remainder loop will have 1 iterations.
749   // Do not create 1 iteration loop.
750   bool CreateRemainderLoop = (Count != 2);
751 
752   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
753   // the loop, otherwise we create a cloned loop to execute the extra
754   // iterations. This function adds the appropriate CFG connections.
755   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
756   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
757   Loop *remainderLoop = CloneLoopBlocks(
758       L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
759       InsertTop, InsertBot,
760       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
761 
762   // Insert the cloned blocks into the function.
763   F->getBasicBlockList().splice(InsertBot->getIterator(),
764                                 F->getBasicBlockList(),
765                                 NewBlocks[0]->getIterator(),
766                                 F->end());
767 
768   // Now the loop blocks are cloned and the other exiting blocks from the
769   // remainder are connected to the original Loop's exit blocks. The remaining
770   // work is to update the phi nodes in the original loop, and take in the
771   // values from the cloned region. Also update the dominator info for
772   // OtherExits and their immediate successors, since we have new edges into
773   // OtherExits.
774   SmallSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks;
775   for (auto *BB : OtherExits) {
776    for (auto &II : *BB) {
777 
778      // Given we preserve LCSSA form, we know that the values used outside the
779      // loop will be used through these phi nodes at the exit blocks that are
780      // transformed below.
781      if (!isa<PHINode>(II))
782        break;
783      PHINode *Phi = cast<PHINode>(&II);
784      unsigned oldNumOperands = Phi->getNumIncomingValues();
785      // Add the incoming values from the remainder code to the end of the phi
786      // node.
787      for (unsigned i =0; i < oldNumOperands; i++){
788        Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
789        // newVal can be a constant or derived from values outside the loop, and
790        // hence need not have a VMap value. Also, since lookup already generated
791        // a default "null" VMap entry for this value, we need to populate that
792        // VMap entry correctly, with the mapped entry being itself.
793        if (!newVal) {
794          newVal = Phi->getIncomingValue(i);
795          VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
796        }
797        Phi->addIncoming(newVal,
798                            cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
799      }
800    }
801 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
802     for (BasicBlock *SuccBB : successors(BB)) {
803       assert(!(any_of(OtherExits,
804                       [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
805                SuccBB == LatchExit) &&
806              "Breaks the definition of dedicated exits!");
807     }
808 #endif
809    // Update the dominator info because the immediate dominator is no longer the
810    // header of the original Loop. BB has edges both from L and remainder code.
811    // Since the preheader determines which loop is run (L or directly jump to
812    // the remainder code), we set the immediate dominator as the preheader.
813    if (DT) {
814      DT->changeImmediateDominator(BB, PreHeader);
815      // Also update the IDom for immediate successors of BB.  If the current
816      // IDom is the header, update the IDom to be the preheader because that is
817      // the nearest common dominator of all predecessors of SuccBB.  We need to
818      // check for IDom being the header because successors of exit blocks can
819      // have edges from outside the loop, and we should not incorrectly update
820      // the IDom in that case.
821      for (BasicBlock *SuccBB: successors(BB))
822        if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) {
823          if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) {
824            assert(!SuccBB->getSinglePredecessor() &&
825                   "BB should be the IDom then!");
826            DT->changeImmediateDominator(SuccBB, PreHeader);
827          }
828        }
829     }
830   }
831 
832   // Loop structure should be the following:
833   //  Epilog             Prolog
834   //
835   // PreHeader         PreHeader
836   // NewPreHeader      PrologPreHeader
837   //   Header            PrologHeader
838   //   ...               ...
839   //   Latch             PrologLatch
840   // NewExit           PrologExit
841   // EpilogPreHeader   NewPreHeader
842   //   EpilogHeader      Header
843   //   ...               ...
844   //   EpilogLatch       Latch
845   // LatchExit              LatchExit
846 
847   // Rewrite the cloned instruction operands to use the values created when the
848   // clone is created.
849   for (BasicBlock *BB : NewBlocks) {
850     for (Instruction &I : *BB) {
851       RemapInstruction(&I, VMap,
852                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
853     }
854   }
855 
856   if (UseEpilogRemainder) {
857     // Connect the epilog code to the original loop and update the
858     // PHI functions.
859     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
860                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
861                   PreserveLCSSA);
862 
863     // Update counter in loop for unrolling.
864     // I should be multiply of Count.
865     IRBuilder<> B2(NewPreHeader->getTerminator());
866     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
867     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
868     B2.SetInsertPoint(LatchBR);
869     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
870                                       Header->getFirstNonPHI());
871     Value *IdxSub =
872         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
873                      NewIdx->getName() + ".nsub");
874     Value *IdxCmp;
875     if (LatchBR->getSuccessor(0) == Header)
876       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
877     else
878       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
879     NewIdx->addIncoming(TestVal, NewPreHeader);
880     NewIdx->addIncoming(IdxSub, Latch);
881     LatchBR->setCondition(IdxCmp);
882   } else {
883     // Connect the prolog code to the original loop and update the
884     // PHI functions.
885     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
886                   NewPreHeader, VMap, DT, LI, PreserveLCSSA);
887   }
888 
889   // If this loop is nested, then the loop unroller changes the code in the
890   // parent loop, so the Scalar Evolution pass needs to be run again.
891   if (Loop *ParentLoop = L->getParentLoop())
892     SE->forgetLoop(ParentLoop);
893 
894   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
895   // cannot rely on the LoopUnrollPass to do this because it only does
896   // canonicalization for parent/subloops and not the sibling loops.
897   if (OtherExits.size() > 0) {
898     // Generate dedicated exit blocks for the original loop, to preserve
899     // LoopSimplifyForm.
900     formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
901     // Generate dedicated exit blocks for the remainder loop if one exists, to
902     // preserve LoopSimplifyForm.
903     if (remainderLoop)
904       formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA);
905   }
906 
907   if (remainderLoop && UnrollRemainder) {
908     DEBUG(dbgs() << "Unrolling remainder loop\n");
909     UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1,
910                /*Force*/ false, /*AllowRuntime*/ false,
911                /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
912                /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
913                /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC,
914                /*ORE*/ nullptr, PreserveLCSSA);
915   }
916 
917   NumRuntimeUnrolled++;
918   return true;
919 }
920