1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionExpander.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/UnrollLoop.h" 42 #include <algorithm> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "loop-unroll" 47 48 STATISTIC(NumRuntimeUnrolled, 49 "Number of loops unrolled with run-time trip counts"); 50 static cl::opt<bool> UnrollRuntimeMultiExit( 51 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 52 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 53 "epilog is generated")); 54 55 /// Connect the unrolling prolog code to the original loop. 56 /// The unrolling prolog code contains code to execute the 57 /// 'extra' iterations if the run-time trip count modulo the 58 /// unroll count is non-zero. 59 /// 60 /// This function performs the following: 61 /// - Create PHI nodes at prolog end block to combine values 62 /// that exit the prolog code and jump around the prolog. 63 /// - Add a PHI operand to a PHI node at the loop exit block 64 /// for values that exit the prolog and go around the loop. 65 /// - Branch around the original loop if the trip count is less 66 /// than the unroll factor. 67 /// 68 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 69 BasicBlock *PrologExit, 70 BasicBlock *OriginalLoopLatchExit, 71 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 72 ValueToValueMapTy &VMap, DominatorTree *DT, 73 LoopInfo *LI, bool PreserveLCSSA) { 74 BasicBlock *Latch = L->getLoopLatch(); 75 assert(Latch && "Loop must have a latch"); 76 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 77 78 // Create a PHI node for each outgoing value from the original loop 79 // (which means it is an outgoing value from the prolog code too). 80 // The new PHI node is inserted in the prolog end basic block. 81 // The new PHI node value is added as an operand of a PHI node in either 82 // the loop header or the loop exit block. 83 for (BasicBlock *Succ : successors(Latch)) { 84 for (Instruction &BBI : *Succ) { 85 PHINode *PN = dyn_cast<PHINode>(&BBI); 86 // Exit when we passed all PHI nodes. 87 if (!PN) 88 break; 89 // Add a new PHI node to the prolog end block and add the 90 // appropriate incoming values. 91 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 92 PrologExit->getFirstNonPHI()); 93 // Adding a value to the new PHI node from the original loop preheader. 94 // This is the value that skips all the prolog code. 95 if (L->contains(PN)) { 96 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), 97 PreHeader); 98 } else { 99 NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 100 } 101 102 Value *V = PN->getIncomingValueForBlock(Latch); 103 if (Instruction *I = dyn_cast<Instruction>(V)) { 104 if (L->contains(I)) { 105 V = VMap.lookup(I); 106 } 107 } 108 // Adding a value to the new PHI node from the last prolog block 109 // that was created. 110 NewPN->addIncoming(V, PrologLatch); 111 112 // Update the existing PHI node operand with the value from the 113 // new PHI node. How this is done depends on if the existing 114 // PHI node is in the original loop block, or the exit block. 115 if (L->contains(PN)) { 116 PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN); 117 } else { 118 PN->addIncoming(NewPN, PrologExit); 119 } 120 } 121 } 122 123 // Make sure that created prolog loop is in simplified form 124 SmallVector<BasicBlock *, 4> PrologExitPreds; 125 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 126 if (PrologLoop) { 127 for (BasicBlock *PredBB : predecessors(PrologExit)) 128 if (PrologLoop->contains(PredBB)) 129 PrologExitPreds.push_back(PredBB); 130 131 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 132 PreserveLCSSA); 133 } 134 135 // Create a branch around the original loop, which is taken if there are no 136 // iterations remaining to be executed after running the prologue. 137 Instruction *InsertPt = PrologExit->getTerminator(); 138 IRBuilder<> B(InsertPt); 139 140 assert(Count != 0 && "nonsensical Count!"); 141 142 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 143 // This means %xtraiter is (BECount + 1) and all of the iterations of this 144 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 145 // then (BECount + 1) cannot unsigned-overflow. 146 Value *BrLoopExit = 147 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 148 // Split the exit to maintain loop canonicalization guarantees 149 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 150 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 151 PreserveLCSSA); 152 // Add the branch to the exit block (around the unrolled loop) 153 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 154 InsertPt->eraseFromParent(); 155 if (DT) 156 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); 157 } 158 159 /// Connect the unrolling epilog code to the original loop. 160 /// The unrolling epilog code contains code to execute the 161 /// 'extra' iterations if the run-time trip count modulo the 162 /// unroll count is non-zero. 163 /// 164 /// This function performs the following: 165 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 166 /// - Create PHI nodes at the unrolling loop exit to combine 167 /// values that exit the unrolling loop code and jump around it. 168 /// - Update PHI operands in the epilog loop by the new PHI nodes 169 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 170 /// 171 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 172 BasicBlock *Exit, BasicBlock *PreHeader, 173 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 174 ValueToValueMapTy &VMap, DominatorTree *DT, 175 LoopInfo *LI, bool PreserveLCSSA) { 176 BasicBlock *Latch = L->getLoopLatch(); 177 assert(Latch && "Loop must have a latch"); 178 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 179 180 // Loop structure should be the following: 181 // 182 // PreHeader 183 // NewPreHeader 184 // Header 185 // ... 186 // Latch 187 // NewExit (PN) 188 // EpilogPreHeader 189 // EpilogHeader 190 // ... 191 // EpilogLatch 192 // Exit (EpilogPN) 193 194 // Update PHI nodes at NewExit and Exit. 195 for (Instruction &BBI : *NewExit) { 196 PHINode *PN = dyn_cast<PHINode>(&BBI); 197 // Exit when we passed all PHI nodes. 198 if (!PN) 199 break; 200 // PN should be used in another PHI located in Exit block as 201 // Exit was split by SplitBlockPredecessors into Exit and NewExit 202 // Basicaly it should look like: 203 // NewExit: 204 // PN = PHI [I, Latch] 205 // ... 206 // Exit: 207 // EpilogPN = PHI [PN, EpilogPreHeader] 208 // 209 // There is EpilogPreHeader incoming block instead of NewExit as 210 // NewExit was spilt 1 more time to get EpilogPreHeader. 211 assert(PN->hasOneUse() && "The phi should have 1 use"); 212 PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser()); 213 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 214 215 // Add incoming PreHeader from branch around the Loop 216 PN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 217 218 Value *V = PN->getIncomingValueForBlock(Latch); 219 Instruction *I = dyn_cast<Instruction>(V); 220 if (I && L->contains(I)) 221 // If value comes from an instruction in the loop add VMap value. 222 V = VMap.lookup(I); 223 // For the instruction out of the loop, constant or undefined value 224 // insert value itself. 225 EpilogPN->addIncoming(V, EpilogLatch); 226 227 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 228 "EpilogPN should have EpilogPreHeader incoming block"); 229 // Change EpilogPreHeader incoming block to NewExit. 230 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 231 NewExit); 232 // Now PHIs should look like: 233 // NewExit: 234 // PN = PHI [I, Latch], [undef, PreHeader] 235 // ... 236 // Exit: 237 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 238 } 239 240 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 241 // Update corresponding PHI nodes in epilog loop. 242 for (BasicBlock *Succ : successors(Latch)) { 243 // Skip this as we already updated phis in exit blocks. 244 if (!L->contains(Succ)) 245 continue; 246 for (Instruction &BBI : *Succ) { 247 PHINode *PN = dyn_cast<PHINode>(&BBI); 248 // Exit when we passed all PHI nodes. 249 if (!PN) 250 break; 251 // Add new PHI nodes to the loop exit block and update epilog 252 // PHIs with the new PHI values. 253 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 254 NewExit->getFirstNonPHI()); 255 // Adding a value to the new PHI node from the unrolling loop preheader. 256 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader); 257 // Adding a value to the new PHI node from the unrolling loop latch. 258 NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch); 259 260 // Update the existing PHI node operand with the value from the new PHI 261 // node. Corresponding instruction in epilog loop should be PHI. 262 PHINode *VPN = cast<PHINode>(VMap[&BBI]); 263 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 264 } 265 } 266 267 Instruction *InsertPt = NewExit->getTerminator(); 268 IRBuilder<> B(InsertPt); 269 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 270 assert(Exit && "Loop must have a single exit block only"); 271 // Split the epilogue exit to maintain loop canonicalization guarantees 272 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 273 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, 274 PreserveLCSSA); 275 // Add the branch to the exit block (around the unrolling loop) 276 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 277 InsertPt->eraseFromParent(); 278 if (DT) 279 DT->changeImmediateDominator(Exit, NewExit); 280 281 // Split the main loop exit to maintain canonicalization guarantees. 282 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 283 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, 284 PreserveLCSSA); 285 } 286 287 /// Create a clone of the blocks in a loop and connect them together. 288 /// If CreateRemainderLoop is false, loop structure will not be cloned, 289 /// otherwise a new loop will be created including all cloned blocks, and the 290 /// iterator of it switches to count NewIter down to 0. 291 /// The cloned blocks should be inserted between InsertTop and InsertBot. 292 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 293 /// new loop exit. 294 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 295 static Loop * 296 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 297 const bool UseEpilogRemainder, const bool UnrollRemainder, 298 BasicBlock *InsertTop, 299 BasicBlock *InsertBot, BasicBlock *Preheader, 300 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 301 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 302 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 303 BasicBlock *Header = L->getHeader(); 304 BasicBlock *Latch = L->getLoopLatch(); 305 Function *F = Header->getParent(); 306 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 307 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 308 Loop *ParentLoop = L->getParentLoop(); 309 NewLoopsMap NewLoops; 310 NewLoops[ParentLoop] = ParentLoop; 311 if (!CreateRemainderLoop) 312 NewLoops[L] = ParentLoop; 313 314 // For each block in the original loop, create a new copy, 315 // and update the value map with the newly created values. 316 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 317 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 318 NewBlocks.push_back(NewBB); 319 320 // If we're unrolling the outermost loop, there's no remainder loop, 321 // and this block isn't in a nested loop, then the new block is not 322 // in any loop. Otherwise, add it to loopinfo. 323 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 324 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 325 326 VMap[*BB] = NewBB; 327 if (Header == *BB) { 328 // For the first block, add a CFG connection to this newly 329 // created block. 330 InsertTop->getTerminator()->setSuccessor(0, NewBB); 331 } 332 333 if (DT) { 334 if (Header == *BB) { 335 // The header is dominated by the preheader. 336 DT->addNewBlock(NewBB, InsertTop); 337 } else { 338 // Copy information from original loop to unrolled loop. 339 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 340 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 341 } 342 } 343 344 if (Latch == *BB) { 345 // For the last block, if CreateRemainderLoop is false, create a direct 346 // jump to InsertBot. If not, create a loop back to cloned head. 347 VMap.erase((*BB)->getTerminator()); 348 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 349 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 350 IRBuilder<> Builder(LatchBR); 351 if (!CreateRemainderLoop) { 352 Builder.CreateBr(InsertBot); 353 } else { 354 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 355 suffix + ".iter", 356 FirstLoopBB->getFirstNonPHI()); 357 Value *IdxSub = 358 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 359 NewIdx->getName() + ".sub"); 360 Value *IdxCmp = 361 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 362 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 363 NewIdx->addIncoming(NewIter, InsertTop); 364 NewIdx->addIncoming(IdxSub, NewBB); 365 } 366 LatchBR->eraseFromParent(); 367 } 368 } 369 370 // Change the incoming values to the ones defined in the preheader or 371 // cloned loop. 372 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 373 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 374 if (!CreateRemainderLoop) { 375 if (UseEpilogRemainder) { 376 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 377 NewPHI->setIncomingBlock(idx, InsertTop); 378 NewPHI->removeIncomingValue(Latch, false); 379 } else { 380 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 381 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 382 } 383 } else { 384 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 385 NewPHI->setIncomingBlock(idx, InsertTop); 386 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 387 idx = NewPHI->getBasicBlockIndex(Latch); 388 Value *InVal = NewPHI->getIncomingValue(idx); 389 NewPHI->setIncomingBlock(idx, NewLatch); 390 if (Value *V = VMap.lookup(InVal)) 391 NewPHI->setIncomingValue(idx, V); 392 } 393 } 394 if (CreateRemainderLoop) { 395 Loop *NewLoop = NewLoops[L]; 396 assert(NewLoop && "L should have been cloned"); 397 398 // Only add loop metadata if the loop is not going to be completely 399 // unrolled. 400 if (UnrollRemainder) 401 return NewLoop; 402 403 // Add unroll disable metadata to disable future unrolling for this loop. 404 NewLoop->setLoopAlreadyUnrolled(); 405 return NewLoop; 406 } 407 else 408 return nullptr; 409 } 410 411 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits 412 /// is populated with all the loop exit blocks other than the LatchExit block. 413 static bool 414 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, 415 BasicBlock *LatchExit, bool PreserveLCSSA, 416 bool UseEpilogRemainder) { 417 418 // We currently have some correctness constrains in unrolling a multi-exit 419 // loop. Check for these below. 420 421 // We rely on LCSSA form being preserved when the exit blocks are transformed. 422 if (!PreserveLCSSA) 423 return false; 424 SmallVector<BasicBlock *, 4> Exits; 425 L->getUniqueExitBlocks(Exits); 426 for (auto *BB : Exits) 427 if (BB != LatchExit) 428 OtherExits.push_back(BB); 429 430 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when 431 // UnrollRuntimeMultiExit is true. This will need updating the logic in 432 // connectEpilog/connectProlog. 433 if (!LatchExit->getSinglePredecessor()) { 434 DEBUG(dbgs() << "Bailout for multi-exit handling when latch exit has >1 " 435 "predecessor.\n"); 436 return false; 437 } 438 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated 439 // and L is an inner loop. This is because in presence of multiple exits, the 440 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the 441 // outer loop. This is automatically handled in the prolog case, so we do not 442 // have that bug in prolog generation. 443 if (UseEpilogRemainder && L->getParentLoop()) 444 return false; 445 446 // All constraints have been satisfied. 447 return true; 448 } 449 450 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 451 /// we return true only if UnrollRuntimeMultiExit is set to true. 452 static bool canProfitablyUnrollMultiExitLoop( 453 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 454 bool PreserveLCSSA, bool UseEpilogRemainder) { 455 456 #if !defined(NDEBUG) 457 SmallVector<BasicBlock *, 8> OtherExitsDummyCheck; 458 assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit, 459 PreserveLCSSA, UseEpilogRemainder) && 460 "Should be safe to unroll before checking profitability!"); 461 #endif 462 463 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 464 if (UnrollRuntimeMultiExit.getNumOccurrences()) 465 return UnrollRuntimeMultiExit; 466 467 // The main pain point with multi-exit loop unrolling is that once unrolled, 468 // we will not be able to merge all blocks into a straight line code. 469 // There are branches within the unrolled loop that go to the OtherExits. 470 // The second point is the increase in code size, but this is true 471 // irrespective of multiple exits. 472 473 // Note: Both the heuristics below are coarse grained. We are essentially 474 // enabling unrolling of loops that have a single side exit other than the 475 // normal LatchExit (i.e. exiting into a deoptimize block). 476 // The heuristics considered are: 477 // 1. low number of branches in the unrolled version. 478 // 2. high predictability of these extra branches. 479 // We avoid unrolling loops that have more than two exiting blocks. This 480 // limits the total number of branches in the unrolled loop to be atmost 481 // the unroll factor (since one of the exiting blocks is the latch block). 482 SmallVector<BasicBlock*, 4> ExitingBlocks; 483 L->getExitingBlocks(ExitingBlocks); 484 if (ExitingBlocks.size() > 2) 485 return false; 486 487 // The second heuristic is that L has one exit other than the latchexit and 488 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 489 // taken, which also implies the branch leading to the deoptimize block is 490 // highly predictable. 491 return (OtherExits.size() == 1 && 492 OtherExits[0]->getTerminatingDeoptimizeCall()); 493 // TODO: These can be fine-tuned further to consider code size or deopt states 494 // that are captured by the deoptimize exit block. 495 // Also, we can extend this to support more cases, if we actually 496 // know of kinds of multiexit loops that would benefit from unrolling. 497 } 498 499 /// Insert code in the prolog/epilog code when unrolling a loop with a 500 /// run-time trip-count. 501 /// 502 /// This method assumes that the loop unroll factor is total number 503 /// of loop bodies in the loop after unrolling. (Some folks refer 504 /// to the unroll factor as the number of *extra* copies added). 505 /// We assume also that the loop unroll factor is a power-of-two. So, after 506 /// unrolling the loop, the number of loop bodies executed is 2, 507 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 508 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 509 /// the switch instruction is generated. 510 /// 511 /// ***Prolog case*** 512 /// extraiters = tripcount % loopfactor 513 /// if (extraiters == 0) jump Loop: 514 /// else jump Prol: 515 /// Prol: LoopBody; 516 /// extraiters -= 1 // Omitted if unroll factor is 2. 517 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 518 /// if (tripcount < loopfactor) jump End: 519 /// Loop: 520 /// ... 521 /// End: 522 /// 523 /// ***Epilog case*** 524 /// extraiters = tripcount % loopfactor 525 /// if (tripcount < loopfactor) jump LoopExit: 526 /// unroll_iters = tripcount - extraiters 527 /// Loop: LoopBody; (executes unroll_iter times); 528 /// unroll_iter -= 1 529 /// if (unroll_iter != 0) jump Loop: 530 /// LoopExit: 531 /// if (extraiters == 0) jump EpilExit: 532 /// Epil: LoopBody; (executes extraiters times) 533 /// extraiters -= 1 // Omitted if unroll factor is 2. 534 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 535 /// EpilExit: 536 537 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 538 bool AllowExpensiveTripCount, 539 bool UseEpilogRemainder, 540 bool UnrollRemainder, 541 LoopInfo *LI, ScalarEvolution *SE, 542 DominatorTree *DT, AssumptionCache *AC, 543 bool PreserveLCSSA) { 544 DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 545 DEBUG(L->dump()); 546 DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" : 547 dbgs() << "Using prolog remainder.\n"); 548 549 // Make sure the loop is in canonical form. 550 if (!L->isLoopSimplifyForm()) { 551 DEBUG(dbgs() << "Not in simplify form!\n"); 552 return false; 553 } 554 555 // Guaranteed by LoopSimplifyForm. 556 BasicBlock *Latch = L->getLoopLatch(); 557 BasicBlock *Header = L->getHeader(); 558 559 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 560 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 561 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 562 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 563 // targets of the Latch be an exit block out of the loop. This needs 564 // to be guaranteed by the callers of UnrollRuntimeLoopRemainder. 565 assert(!L->contains(LatchExit) && 566 "one of the loop latch successors should be the exit block!"); 567 // These are exit blocks other than the target of the latch exiting block. 568 SmallVector<BasicBlock *, 4> OtherExits; 569 bool isMultiExitUnrollingEnabled = 570 canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 571 UseEpilogRemainder) && 572 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 573 UseEpilogRemainder); 574 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. 575 if (!isMultiExitUnrollingEnabled && 576 (!L->getExitingBlock() || OtherExits.size())) { 577 DEBUG( 578 dbgs() 579 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 580 "enabled!\n"); 581 return false; 582 } 583 // Use Scalar Evolution to compute the trip count. This allows more loops to 584 // be unrolled than relying on induction var simplification. 585 if (!SE) 586 return false; 587 588 // Only unroll loops with a computable trip count, and the trip count needs 589 // to be an int value (allowing a pointer type is a TODO item). 590 // We calculate the backedge count by using getExitCount on the Latch block, 591 // which is proven to be the only exiting block in this loop. This is same as 592 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 593 // exiting blocks). 594 const SCEV *BECountSC = SE->getExitCount(L, Latch); 595 if (isa<SCEVCouldNotCompute>(BECountSC) || 596 !BECountSC->getType()->isIntegerTy()) { 597 DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 598 return false; 599 } 600 601 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 602 603 // Add 1 since the backedge count doesn't include the first loop iteration. 604 const SCEV *TripCountSC = 605 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 606 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 607 DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 608 return false; 609 } 610 611 BasicBlock *PreHeader = L->getLoopPreheader(); 612 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 613 const DataLayout &DL = Header->getModule()->getDataLayout(); 614 SCEVExpander Expander(*SE, DL, "loop-unroll"); 615 if (!AllowExpensiveTripCount && 616 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) { 617 DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 618 return false; 619 } 620 621 // This constraint lets us deal with an overflowing trip count easily; see the 622 // comment on ModVal below. 623 if (Log2_32(Count) > BEWidth) { 624 DEBUG(dbgs() 625 << "Count failed constraint on overflow trip count calculation.\n"); 626 return false; 627 } 628 629 // Loop structure is the following: 630 // 631 // PreHeader 632 // Header 633 // ... 634 // Latch 635 // LatchExit 636 637 BasicBlock *NewPreHeader; 638 BasicBlock *NewExit = nullptr; 639 BasicBlock *PrologExit = nullptr; 640 BasicBlock *EpilogPreHeader = nullptr; 641 BasicBlock *PrologPreHeader = nullptr; 642 643 if (UseEpilogRemainder) { 644 // If epilog remainder 645 // Split PreHeader to insert a branch around loop for unrolling. 646 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 647 NewPreHeader->setName(PreHeader->getName() + ".new"); 648 // Split LatchExit to create phi nodes from branch above. 649 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); 650 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", 651 DT, LI, PreserveLCSSA); 652 // Split NewExit to insert epilog remainder loop. 653 EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI); 654 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 655 } else { 656 // If prolog remainder 657 // Split the original preheader twice to insert prolog remainder loop 658 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 659 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 660 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 661 DT, LI); 662 PrologExit->setName(Header->getName() + ".prol.loopexit"); 663 // Split PrologExit to get NewPreHeader. 664 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 665 NewPreHeader->setName(PreHeader->getName() + ".new"); 666 } 667 // Loop structure should be the following: 668 // Epilog Prolog 669 // 670 // PreHeader PreHeader 671 // *NewPreHeader *PrologPreHeader 672 // Header *PrologExit 673 // ... *NewPreHeader 674 // Latch Header 675 // *NewExit ... 676 // *EpilogPreHeader Latch 677 // LatchExit LatchExit 678 679 // Calculate conditions for branch around loop for unrolling 680 // in epilog case and around prolog remainder loop in prolog case. 681 // Compute the number of extra iterations required, which is: 682 // extra iterations = run-time trip count % loop unroll factor 683 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 684 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 685 PreHeaderBR); 686 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 687 PreHeaderBR); 688 IRBuilder<> B(PreHeaderBR); 689 Value *ModVal; 690 // Calculate ModVal = (BECount + 1) % Count. 691 // Note that TripCount is BECount + 1. 692 if (isPowerOf2_32(Count)) { 693 // When Count is power of 2 we don't BECount for epilog case, however we'll 694 // need it for a branch around unrolling loop for prolog case. 695 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 696 // 1. There are no iterations to be run in the prolog/epilog loop. 697 // OR 698 // 2. The addition computing TripCount overflowed. 699 // 700 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 701 // the number of iterations that remain to be run in the original loop is a 702 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 703 // explicitly check this above). 704 } else { 705 // As (BECount + 1) can potentially unsigned overflow we count 706 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 707 Value *ModValTmp = B.CreateURem(BECount, 708 ConstantInt::get(BECount->getType(), 709 Count)); 710 Value *ModValAdd = B.CreateAdd(ModValTmp, 711 ConstantInt::get(ModValTmp->getType(), 1)); 712 // At that point (BECount % Count) + 1 could be equal to Count. 713 // To handle this case we need to take mod by Count one more time. 714 ModVal = B.CreateURem(ModValAdd, 715 ConstantInt::get(BECount->getType(), Count), 716 "xtraiter"); 717 } 718 Value *BranchVal = 719 UseEpilogRemainder ? B.CreateICmpULT(BECount, 720 ConstantInt::get(BECount->getType(), 721 Count - 1)) : 722 B.CreateIsNotNull(ModVal, "lcmp.mod"); 723 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 724 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 725 // Branch to either remainder (extra iterations) loop or unrolling loop. 726 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 727 PreHeaderBR->eraseFromParent(); 728 if (DT) { 729 if (UseEpilogRemainder) 730 DT->changeImmediateDominator(NewExit, PreHeader); 731 else 732 DT->changeImmediateDominator(PrologExit, PreHeader); 733 } 734 Function *F = Header->getParent(); 735 // Get an ordered list of blocks in the loop to help with the ordering of the 736 // cloned blocks in the prolog/epilog code 737 LoopBlocksDFS LoopBlocks(L); 738 LoopBlocks.perform(LI); 739 740 // 741 // For each extra loop iteration, create a copy of the loop's basic blocks 742 // and generate a condition that branches to the copy depending on the 743 // number of 'left over' iterations. 744 // 745 std::vector<BasicBlock *> NewBlocks; 746 ValueToValueMapTy VMap; 747 748 // For unroll factor 2 remainder loop will have 1 iterations. 749 // Do not create 1 iteration loop. 750 bool CreateRemainderLoop = (Count != 2); 751 752 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 753 // the loop, otherwise we create a cloned loop to execute the extra 754 // iterations. This function adds the appropriate CFG connections. 755 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 756 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 757 Loop *remainderLoop = CloneLoopBlocks( 758 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder, 759 InsertTop, InsertBot, 760 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 761 762 // Insert the cloned blocks into the function. 763 F->getBasicBlockList().splice(InsertBot->getIterator(), 764 F->getBasicBlockList(), 765 NewBlocks[0]->getIterator(), 766 F->end()); 767 768 // Now the loop blocks are cloned and the other exiting blocks from the 769 // remainder are connected to the original Loop's exit blocks. The remaining 770 // work is to update the phi nodes in the original loop, and take in the 771 // values from the cloned region. Also update the dominator info for 772 // OtherExits and their immediate successors, since we have new edges into 773 // OtherExits. 774 SmallSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks; 775 for (auto *BB : OtherExits) { 776 for (auto &II : *BB) { 777 778 // Given we preserve LCSSA form, we know that the values used outside the 779 // loop will be used through these phi nodes at the exit blocks that are 780 // transformed below. 781 if (!isa<PHINode>(II)) 782 break; 783 PHINode *Phi = cast<PHINode>(&II); 784 unsigned oldNumOperands = Phi->getNumIncomingValues(); 785 // Add the incoming values from the remainder code to the end of the phi 786 // node. 787 for (unsigned i =0; i < oldNumOperands; i++){ 788 Value *newVal = VMap.lookup(Phi->getIncomingValue(i)); 789 // newVal can be a constant or derived from values outside the loop, and 790 // hence need not have a VMap value. Also, since lookup already generated 791 // a default "null" VMap entry for this value, we need to populate that 792 // VMap entry correctly, with the mapped entry being itself. 793 if (!newVal) { 794 newVal = Phi->getIncomingValue(i); 795 VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i); 796 } 797 Phi->addIncoming(newVal, 798 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); 799 } 800 } 801 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 802 for (BasicBlock *SuccBB : successors(BB)) { 803 assert(!(any_of(OtherExits, 804 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) || 805 SuccBB == LatchExit) && 806 "Breaks the definition of dedicated exits!"); 807 } 808 #endif 809 // Update the dominator info because the immediate dominator is no longer the 810 // header of the original Loop. BB has edges both from L and remainder code. 811 // Since the preheader determines which loop is run (L or directly jump to 812 // the remainder code), we set the immediate dominator as the preheader. 813 if (DT) { 814 DT->changeImmediateDominator(BB, PreHeader); 815 // Also update the IDom for immediate successors of BB. If the current 816 // IDom is the header, update the IDom to be the preheader because that is 817 // the nearest common dominator of all predecessors of SuccBB. We need to 818 // check for IDom being the header because successors of exit blocks can 819 // have edges from outside the loop, and we should not incorrectly update 820 // the IDom in that case. 821 for (BasicBlock *SuccBB: successors(BB)) 822 if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) { 823 if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) { 824 assert(!SuccBB->getSinglePredecessor() && 825 "BB should be the IDom then!"); 826 DT->changeImmediateDominator(SuccBB, PreHeader); 827 } 828 } 829 } 830 } 831 832 // Loop structure should be the following: 833 // Epilog Prolog 834 // 835 // PreHeader PreHeader 836 // NewPreHeader PrologPreHeader 837 // Header PrologHeader 838 // ... ... 839 // Latch PrologLatch 840 // NewExit PrologExit 841 // EpilogPreHeader NewPreHeader 842 // EpilogHeader Header 843 // ... ... 844 // EpilogLatch Latch 845 // LatchExit LatchExit 846 847 // Rewrite the cloned instruction operands to use the values created when the 848 // clone is created. 849 for (BasicBlock *BB : NewBlocks) { 850 for (Instruction &I : *BB) { 851 RemapInstruction(&I, VMap, 852 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 853 } 854 } 855 856 if (UseEpilogRemainder) { 857 // Connect the epilog code to the original loop and update the 858 // PHI functions. 859 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 860 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 861 PreserveLCSSA); 862 863 // Update counter in loop for unrolling. 864 // I should be multiply of Count. 865 IRBuilder<> B2(NewPreHeader->getTerminator()); 866 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 867 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 868 B2.SetInsertPoint(LatchBR); 869 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 870 Header->getFirstNonPHI()); 871 Value *IdxSub = 872 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 873 NewIdx->getName() + ".nsub"); 874 Value *IdxCmp; 875 if (LatchBR->getSuccessor(0) == Header) 876 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 877 else 878 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 879 NewIdx->addIncoming(TestVal, NewPreHeader); 880 NewIdx->addIncoming(IdxSub, Latch); 881 LatchBR->setCondition(IdxCmp); 882 } else { 883 // Connect the prolog code to the original loop and update the 884 // PHI functions. 885 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 886 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 887 } 888 889 // If this loop is nested, then the loop unroller changes the code in the 890 // parent loop, so the Scalar Evolution pass needs to be run again. 891 if (Loop *ParentLoop = L->getParentLoop()) 892 SE->forgetLoop(ParentLoop); 893 894 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 895 // cannot rely on the LoopUnrollPass to do this because it only does 896 // canonicalization for parent/subloops and not the sibling loops. 897 if (OtherExits.size() > 0) { 898 // Generate dedicated exit blocks for the original loop, to preserve 899 // LoopSimplifyForm. 900 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA); 901 // Generate dedicated exit blocks for the remainder loop if one exists, to 902 // preserve LoopSimplifyForm. 903 if (remainderLoop) 904 formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA); 905 } 906 907 if (remainderLoop && UnrollRemainder) { 908 DEBUG(dbgs() << "Unrolling remainder loop\n"); 909 UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1, 910 /*Force*/ false, /*AllowRuntime*/ false, 911 /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true, 912 /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1, 913 /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC, 914 /*ORE*/ nullptr, PreserveLCSSA); 915 } 916 917 NumRuntimeUnrolled++; 918 return true; 919 } 920