1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations. Other strategies 20 // include generate a loop before or after the unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/Utils/UnrollLoop.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpander.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include <algorithm> 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "loop-unroll" 41 42 STATISTIC(NumRuntimeUnrolled, 43 "Number of loops unrolled with run-time trip counts"); 44 45 /// Connect the unrolling prolog code to the original loop. 46 /// The unrolling prolog code contains code to execute the 47 /// 'extra' iterations if the run-time trip count modulo the 48 /// unroll count is non-zero. 49 /// 50 /// This function performs the following: 51 /// - Create PHI nodes at prolog end block to combine values 52 /// that exit the prolog code and jump around the prolog. 53 /// - Add a PHI operand to a PHI node at the loop exit block 54 /// for values that exit the prolog and go around the loop. 55 /// - Branch around the original loop if the trip count is less 56 /// than the unroll factor. 57 /// 58 static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count, 59 BasicBlock *LastPrologBB, BasicBlock *PrologEnd, 60 BasicBlock *OrigPH, BasicBlock *NewPH, 61 ValueToValueMapTy &VMap, Pass *P) { 62 BasicBlock *Latch = L->getLoopLatch(); 63 assert(Latch && "Loop must have a latch"); 64 65 // Create a PHI node for each outgoing value from the original loop 66 // (which means it is an outgoing value from the prolog code too). 67 // The new PHI node is inserted in the prolog end basic block. 68 // The new PHI name is added as an operand of a PHI node in either 69 // the loop header or the loop exit block. 70 for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch); 71 SBI != SBE; ++SBI) { 72 for (BasicBlock::iterator BBI = (*SBI)->begin(); 73 PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) { 74 75 // Add a new PHI node to the prolog end block and add the 76 // appropriate incoming values. 77 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr", 78 PrologEnd->getTerminator()); 79 // Adding a value to the new PHI node from the original loop preheader. 80 // This is the value that skips all the prolog code. 81 if (L->contains(PN)) { 82 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH); 83 } else { 84 NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH); 85 } 86 87 Value *V = PN->getIncomingValueForBlock(Latch); 88 if (Instruction *I = dyn_cast<Instruction>(V)) { 89 if (L->contains(I)) { 90 V = VMap[I]; 91 } 92 } 93 // Adding a value to the new PHI node from the last prolog block 94 // that was created. 95 NewPN->addIncoming(V, LastPrologBB); 96 97 // Update the existing PHI node operand with the value from the 98 // new PHI node. How this is done depends on if the existing 99 // PHI node is in the original loop block, or the exit block. 100 if (L->contains(PN)) { 101 PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN); 102 } else { 103 PN->addIncoming(NewPN, PrologEnd); 104 } 105 } 106 } 107 108 // Create a branch around the orignal loop, which is taken if the 109 // trip count is less than the unroll factor. 110 Instruction *InsertPt = PrologEnd->getTerminator(); 111 Instruction *BrLoopExit = 112 new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount, 113 ConstantInt::get(TripCount->getType(), Count)); 114 BasicBlock *Exit = L->getUniqueExitBlock(); 115 assert(Exit && "Loop must have a single exit block only"); 116 // Split the exit to maintain loop canonicalization guarantees 117 SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit)); 118 if (!Exit->isLandingPad()) { 119 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P); 120 } else { 121 SmallVector<BasicBlock*, 2> NewBBs; 122 SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa", 123 P, NewBBs); 124 } 125 // Add the branch to the exit block (around the unrolled loop) 126 BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt); 127 InsertPt->eraseFromParent(); 128 } 129 130 /// Create a clone of the blocks in a loop and connect them together. 131 /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new 132 /// loop will be created including all cloned blocks, and the iterator of it 133 /// switches to count NewIter down to 0. 134 /// 135 static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog, 136 BasicBlock *InsertTop, BasicBlock *InsertBot, 137 std::vector<BasicBlock *> &NewBlocks, 138 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, 139 LoopInfo *LI) { 140 BasicBlock *Preheader = L->getLoopPreheader(); 141 BasicBlock *Header = L->getHeader(); 142 BasicBlock *Latch = L->getLoopLatch(); 143 Function *F = Header->getParent(); 144 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 145 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 146 Loop *NewLoop = 0; 147 Loop *ParentLoop = L->getParentLoop(); 148 if (!UnrollProlog) { 149 NewLoop = new Loop(); 150 if (ParentLoop) 151 ParentLoop->addChildLoop(NewLoop); 152 else 153 LI->addTopLevelLoop(NewLoop); 154 } 155 156 // For each block in the original loop, create a new copy, 157 // and update the value map with the newly created values. 158 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 159 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F); 160 NewBlocks.push_back(NewBB); 161 162 if (NewLoop) 163 NewLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 164 else if (ParentLoop) 165 ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 166 167 VMap[*BB] = NewBB; 168 if (Header == *BB) { 169 // For the first block, add a CFG connection to this newly 170 // created block. 171 InsertTop->getTerminator()->setSuccessor(0, NewBB); 172 173 } 174 if (Latch == *BB) { 175 // For the last block, if UnrollProlog is true, create a direct jump to 176 // InsertBot. If not, create a loop back to cloned head. 177 VMap.erase((*BB)->getTerminator()); 178 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 179 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 180 if (UnrollProlog) { 181 LatchBR->eraseFromParent(); 182 BranchInst::Create(InsertBot, NewBB); 183 } else { 184 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter", 185 FirstLoopBB->getFirstNonPHI()); 186 IRBuilder<> Builder(LatchBR); 187 Value *IdxSub = 188 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 189 NewIdx->getName() + ".sub"); 190 Value *IdxCmp = 191 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 192 BranchInst::Create(FirstLoopBB, InsertBot, IdxCmp, NewBB); 193 NewIdx->addIncoming(NewIter, InsertTop); 194 NewIdx->addIncoming(IdxSub, NewBB); 195 LatchBR->eraseFromParent(); 196 } 197 } 198 } 199 200 // Change the incoming values to the ones defined in the preheader or 201 // cloned loop. 202 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 203 PHINode *NewPHI = cast<PHINode>(VMap[I]); 204 if (UnrollProlog) { 205 VMap[I] = NewPHI->getIncomingValueForBlock(Preheader); 206 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 207 } else { 208 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 209 NewPHI->setIncomingBlock(idx, InsertTop); 210 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 211 idx = NewPHI->getBasicBlockIndex(Latch); 212 Value *InVal = NewPHI->getIncomingValue(idx); 213 NewPHI->setIncomingBlock(idx, NewLatch); 214 if (VMap[InVal]) 215 NewPHI->setIncomingValue(idx, VMap[InVal]); 216 } 217 } 218 if (NewLoop) { 219 // Add unroll disable metadata to disable future unrolling for this loop. 220 SmallVector<Metadata *, 4> MDs; 221 // Reserve first location for self reference to the LoopID metadata node. 222 MDs.push_back(nullptr); 223 MDNode *LoopID = NewLoop->getLoopID(); 224 if (LoopID) { 225 // First remove any existing loop unrolling metadata. 226 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 227 bool IsUnrollMetadata = false; 228 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 229 if (MD) { 230 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 231 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 232 } 233 if (!IsUnrollMetadata) 234 MDs.push_back(LoopID->getOperand(i)); 235 } 236 } 237 238 LLVMContext &Context = NewLoop->getHeader()->getContext(); 239 SmallVector<Metadata *, 1> DisableOperands; 240 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 241 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 242 MDs.push_back(DisableNode); 243 244 MDNode *NewLoopID = MDNode::get(Context, MDs); 245 // Set operand 0 to refer to the loop id itself. 246 NewLoopID->replaceOperandWith(0, NewLoopID); 247 NewLoop->setLoopID(NewLoopID); 248 } 249 } 250 251 /// Insert code in the prolog code when unrolling a loop with a 252 /// run-time trip-count. 253 /// 254 /// This method assumes that the loop unroll factor is total number 255 /// of loop bodes in the loop after unrolling. (Some folks refer 256 /// to the unroll factor as the number of *extra* copies added). 257 /// We assume also that the loop unroll factor is a power-of-two. So, after 258 /// unrolling the loop, the number of loop bodies executed is 2, 259 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 260 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 261 /// the switch instruction is generated. 262 /// 263 /// extraiters = tripcount % loopfactor 264 /// if (extraiters == 0) jump Loop: 265 /// else jump Prol 266 /// Prol: LoopBody; 267 /// extraiters -= 1 // Omitted if unroll factor is 2. 268 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 269 /// if (tripcount < loopfactor) jump End 270 /// Loop: 271 /// ... 272 /// End: 273 /// 274 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI, 275 LPPassManager *LPM) { 276 // for now, only unroll loops that contain a single exit 277 if (!L->getExitingBlock()) 278 return false; 279 280 // Make sure the loop is in canonical form, and there is a single 281 // exit block only. 282 if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock()) 283 return false; 284 285 // Use Scalar Evolution to compute the trip count. This allows more 286 // loops to be unrolled than relying on induction var simplification 287 if (!LPM) 288 return false; 289 ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); 290 if (!SE) 291 return false; 292 293 // Only unroll loops with a computable trip count and the trip count needs 294 // to be an int value (allowing a pointer type is a TODO item) 295 const SCEV *BECount = SE->getBackedgeTakenCount(L); 296 if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy()) 297 return false; 298 299 // If BECount is INT_MAX, we can't compute trip-count without overflow. 300 if (BECount->isAllOnesValue()) 301 return false; 302 303 // Add 1 since the backedge count doesn't include the first loop iteration 304 const SCEV *TripCountSC = 305 SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1)); 306 if (isa<SCEVCouldNotCompute>(TripCountSC)) 307 return false; 308 309 // We only handle cases when the unroll factor is a power of 2. 310 // Count is the loop unroll factor, the number of extra copies added + 1. 311 if ((Count & (Count-1)) != 0) 312 return false; 313 314 // If this loop is nested, then the loop unroller changes the code in 315 // parent loop, so the Scalar Evolution pass needs to be run again 316 if (Loop *ParentLoop = L->getParentLoop()) 317 SE->forgetLoop(ParentLoop); 318 319 BasicBlock *PH = L->getLoopPreheader(); 320 BasicBlock *Header = L->getHeader(); 321 BasicBlock *Latch = L->getLoopLatch(); 322 // It helps to splits the original preheader twice, one for the end of the 323 // prolog code and one for a new loop preheader 324 BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass()); 325 BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass()); 326 BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator()); 327 328 // Compute the number of extra iterations required, which is: 329 // extra iterations = run-time trip count % (loop unroll factor + 1) 330 SCEVExpander Expander(*SE, "loop-unroll"); 331 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 332 PreHeaderBR); 333 334 IRBuilder<> B(PreHeaderBR); 335 Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 336 337 // Check if for no extra iterations, then jump to cloned/unrolled loop. 338 // We have to check that the trip count computation didn't overflow when 339 // adding one to the backedge taken count. 340 Value *LCmp = B.CreateIsNotNull(ModVal, "lcmp.mod"); 341 Value *OverflowCheck = B.CreateIsNull(TripCount, "lcmp.overflow"); 342 Value *BranchVal = B.CreateOr(OverflowCheck, LCmp, "lcmp.or"); 343 344 // Branch to either the extra iterations or the cloned/unrolled loop 345 // We will fix up the true branch label when adding loop body copies 346 BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR); 347 assert(PreHeaderBR->isUnconditional() && 348 PreHeaderBR->getSuccessor(0) == PEnd && 349 "CFG edges in Preheader are not correct"); 350 PreHeaderBR->eraseFromParent(); 351 Function *F = Header->getParent(); 352 // Get an ordered list of blocks in the loop to help with the ordering of the 353 // cloned blocks in the prolog code 354 LoopBlocksDFS LoopBlocks(L); 355 LoopBlocks.perform(LI); 356 357 // 358 // For each extra loop iteration, create a copy of the loop's basic blocks 359 // and generate a condition that branches to the copy depending on the 360 // number of 'left over' iterations. 361 // 362 std::vector<BasicBlock *> NewBlocks; 363 ValueToValueMapTy VMap; 364 365 // If unroll count is 2 and we can't overflow in tripcount computation (which 366 // is BECount + 1), then we don't need a loop for prologue, and we can unroll 367 // it. We can be sure that we don't overflow only if tripcount is a constant. 368 bool UnrollPrologue = (Count == 2 && isa<ConstantInt>(TripCount)); 369 370 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 371 // the loop, otherwise we create a cloned loop to execute the extra 372 // iterations. This function adds the appropriate CFG connections. 373 CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks, 374 VMap, LI); 375 376 // Insert the cloned blocks into function just before the original loop 377 F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0], 378 F->end()); 379 380 // Rewrite the cloned instruction operands to use the values 381 // created when the clone is created. 382 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { 383 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 384 E = NewBlocks[i]->end(); 385 I != E; ++I) { 386 RemapInstruction(I, VMap, 387 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 388 } 389 } 390 391 // Connect the prolog code to the original loop and update the 392 // PHI functions. 393 BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]); 394 ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, VMap, 395 LPM->getAsPass()); 396 NumRuntimeUnrolled++; 397 return true; 398 } 399